Skip to main content
Log in

Haptic recognition using hierarchical extreme learning machine with local-receptive-field

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

In order to perform useful tasks in people’s daily life, robots must be able to both communicate and understand the sensations they experience and may need to know the haptic properties of an object before touching it. To enable better tactile understanding for robots, we propose an effective hierarchical extreme learning machine with local-receptive-field architecture, while introducing the local receptive field concept in neuroscience and maintaining ELM’s advantages of training efficiency. In this paper, we further extend the LRF-based ELM method to a hierarchical model for haptic classification. Experimental validation on the Penn Haptic Adjective Corpus 2 dataset illustrates that the proposed hierarchical method achieves better recognition performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cadoret G, Smith AM (1996) Friction, not texture, dictates grip forces used during object manipulation. J Neurophysiol 75(5):1963–1969

    Article  Google Scholar 

  2. Johansson RS, Flanagan JR (2009) Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat Rev Neurosci 10(5):345–359

    Article  Google Scholar 

  3. Romano JM, Hsiao K, Niemeyer G et al (2011) Human-inspired robotic grasp control with tactile sensing. IEEE Trans Robot 27(6):1067–1079

    Article  Google Scholar 

  4. Gorostiza, JF, Salichs MA (2011) End-user programming of a social robot by dialog. In: Proceedings of the IEEE international conference on robotics and automation (ICRA), pp 1102–1114

  5. Brooks DJ, Lignos C, Finucane C et al (2012) Make it so: continuous, flexible natural language interaction with an autonomous robot. Grounding language for physical systems workshop at the AAAI conference on artificial intelligence

  6. Zhang L, Zuo W, Zhang D (2016) LSDT: latent sparse domain transfer learning for visual adaptation. IEEE Trans Image Process 25(3):1177–1191

    Article  MathSciNet  Google Scholar 

  7. Gönen M, Alpaydın E (2011) Multiple kernel learning algorithms. J Mach Learn Res 12(Jul):2211–2268

    MathSciNet  MATH  Google Scholar 

  8. Liu H, Wu Y, Sun F, Fang B, Guo D Weakly-paired multi-modal fusion for object recognition. IEEE Trans Autom Sci Eng (in press). https://doi.org/10.1109/TASE.2017.2692271

  9. Liu H, Sun F, Guo D, Fang B (2017) Structured output-associated dictionary learning for haptic understanding. IEEE Trans Syst Man Cybern Syst 47(7):1564–1574

    Article  Google Scholar 

  10. Liu H, Qin J, Sun F et al (2017) Extreme kernel sparse learning for tactile object recognition. IEEE Trans Cybern 47(12):4509–4520

    Article  Google Scholar 

  11. Liu H, Yu Y, Sun F, Gu J (2017) Visual-tactile fusion for object recognition. IEEE Trans Autom Sci Eng 14(2):996–1008

    Article  Google Scholar 

  12. Liu H, Guo D, Sun F (2016) Object recognition using tactile measurements: kernel sparse coding methods. IEEE Trans Instrum Meas 65(3):656–665

    Article  Google Scholar 

  13. Zheng H, Fang L, Ji M et al. (2016) Deep learning for surface material classification using haptic and visual information. IEEE Trans Multimed 18(12):2407–2416

    Article  Google Scholar 

  14. Gao Y, Hendricks LA, Kuchenbecker KJ et al (2016) Deep learning for tactile understanding from visual and haptic data. Robotics and automation (ICRA), 2016 IEEE international conference on. IEEE, pp 536–543

  15. Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1):489–501

    Article  Google Scholar 

  16. Huang G, Zhou H, Ding X, Zhang R, (2012) Extreme learning machine for regression and multi-class classification. In: Proceedings of the IEEE Systems Man and Cybernetics Society, pp 513–529

  17. Cao J, Zhao Y, Lai X et al. (2015) Landmark recognition with sparse representation classification and extreme learning machine. J Frankl Inst 352(10):4528–4545

    Article  MathSciNet  Google Scholar 

  18. Cambria E, Huang GB, Kasun LLC et al. (2013) Extreme learning machines [trends & controversies]. IEEE Intell Syst 28(6):30–59

    Article  Google Scholar 

  19. Yang Y, Wu QMJ (2016) Multilayer extreme learning machine with subnetwork nodes for representation learning. IEEE Trans Cybern 46(11):2570–2583

    Article  Google Scholar 

  20. Tang J, Deng C, Huang GB (2016) Extreme learning machine for multilayer perceptron. IEEE Trans Neural Netw Learn Syst 27(4):809–821

    Article  MathSciNet  Google Scholar 

  21. Zhang L, Zhang D (2016) Evolutionary cost-sensitive extreme learning machine. IEEE Trans Neural Netw

  22. Zhang L, Zhang D (2016) Robust visual knowledge transfer via extreme learning machine-based domain adaptation. IEEE Trans Image Process 25(10):4959–4973

    Article  MathSciNet  Google Scholar 

  23. Zhang L, Zhang D (2015) Domain adaptation extreme learning machines for drift compensation in E-nose systems. IEEE Instrum Meas 64(7):1790–1801

    Article  Google Scholar 

  24. Huang G, Bai Z, Kasun LLC, Chi MV (2015) Local receptive fields based extreme learning machine. In: Proceedings of the IEEE computational intelligence magazine, pp 18–29

  25. Schwarz M, Schulz H, Behnke S (2015) RGB-D object recognition and pose estimation based on pre-trained convolutional neural network features. In: Proceedings of the IEEE internatioanl conference on robotics and automation (ICRA), pp 1329–1335

  26. Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117

    Article  Google Scholar 

  27. Huang W, Hong H, Song, G, Xie K (2014) Deep process neural network for temporal deep learning. In: Proceedings of the international joint conference neural networks (IJCNN), pp 465–472

  28. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444

    Article  Google Scholar 

  29. Ding S, Zhang N, Zhang J (2017) Unsupervised extreme learning machine with representational features. Int J Mach Learn Cybern 8(2):587–595

    Article  Google Scholar 

  30. Hu L, Chen Y, Wang J et al. (2017) OKRELM: online kernelized and regularized extreme learning machine for wearable-based activity recognition. Int J Mach Learn Cybern 1–7. https://doi.org/10.1007/s13042-017-0666-8

    Article  Google Scholar 

  31. Zhang J, Ding S, Zhang N et al (2016) Incremental extreme learning machine based on deep feature embedded. Int J Mach Learn Cybern 7(1):111–120

    Article  Google Scholar 

  32. Liu P, Huang Y, Meng L (2016) Two-stage extreme learning machine for high-dimensional data. Int J Mach Learn Cybern 7(5):765–772

    Article  Google Scholar 

  33. Zhao H, Li G, Zhang H (2016) An improved algorithm for segmenting online time series with error bound guarantee. Int J Mach Learn Cybern 7(3):365–374

    Article  Google Scholar 

  34. Chu V, McMahon L, Riano L, McDonald CG, He Q, Perez-Tejada JM, Arrigo M, Darrell T, Kuchenbecker KJ, (2015) Robotic learing of haptic adjectives through physical interaction. In: Proceedings of the IEEE international conference on robotics and automation (ICRA), pp 279–292

  35. Chu V, McMahon L, Riano L, McDonald CG, He Q, Perez-Tejada JM, Arrigo M, Fitter N, Nappo J, Darrell T, Kuchenbecker KJ (2013) Using robotic explorarory procedures to learn the meaning of haptic adjectives. In: Proceedings of the IEEE international conference on robotics and automation (ICRA), pp 3048–3055

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grants U1613212, 61673238, 91420302, and 61327809, in part by the National High-Tech Research and Development Plan under Grant 2015AA042306.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaping Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Liu, H., Xu, X. et al. Haptic recognition using hierarchical extreme learning machine with local-receptive-field. Int. J. Mach. Learn. & Cyber. 10, 541–547 (2019). https://doi.org/10.1007/s13042-017-0736-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-017-0736-y

Keywords

Navigation