Skip to main content
Log in

Adaptive algorithms for low-rank and sparse matrix recovery with truncated nuclear norm

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Recent studies have shown that the use of the truncated nuclear norm (TNN) in low-rank and sparse matrix decomposition (LRSD) can realize a better approximation to rank function of matrix, and achieve effectively recovery effects. This paper addresses the algorithms for LRSD with adaptive TNN (LRSD-ATNN), and designs an efficient algorithmic frame inspired by the alternating direction method of multiple (ADMM) and the accelerated proximal gradient approach (APG). To establish the adaptive algorithms, the method of singular value estimate is utilized to find adaptively the number of truncated singular value. Experimental results on synthetic data as well as real visual data show the superiority of the proposed algorithm in effectiveness in comparison with the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. http://perception.i2r.astar.edu.sg/bk_model/bk_index.html.

  2. http://perception.i2r.astar.edu.sg/bk_model/bk_index.html.

References

  1. Bach F, Jenatton R, Mairal J, Obozinski G (2012) Optimization with sparsity-inducing penalties. Found Trends Mach Learn 4(1):1–106

    Article  MATH  Google Scholar 

  2. Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imaging Sci 2(1):183–202

    Article  MathSciNet  MATH  Google Scholar 

  3. Bouwmans T, Zahzah H E (2014) Robust PCA via principal component pursuit: A review for a comparative evaluation in video surveillance. Comput Vis Image Underst 122:22–34

    Article  Google Scholar 

  4. Cai JF, Candès EJ, Shen Z (2010) A singular value thresholding algorithm for matrix completion. SIAM J Optim 20(4):1956–1982

    Article  MathSciNet  MATH  Google Scholar 

  5. Candès EJ, Li X, Ma Y, Wright J (2011) Robust principal component analysis? J ACM 58(3):1–37

    Article  MathSciNet  MATH  Google Scholar 

  6. Candès EJ, Recht B (2009) Exact matrix completion via convex optimization. Found Comput Math 9(6):717–772

    Article  MathSciNet  MATH  Google Scholar 

  7. Candès EJ, Romberg J, Tao T (2006) Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory 52(2):489–509

    Article  MathSciNet  MATH  Google Scholar 

  8. Candès EJ, Tao T (2005) Decoding by linear programming. IEEE Trans Inf Theory 51(12):4203–4215

    Article  MathSciNet  MATH  Google Scholar 

  9. Candès EJ, Tao T (2010) The power of convex relaxation: near-optimal matrix completion. IEEE Trans Inf Theory 56(5):2053–2080

    Article  MathSciNet  MATH  Google Scholar 

  10. Cao F, Chen J, Ye H, Zhao J, Zhou Z (2017) Recovering low-rank and sparse matrix based on the truncated nuclear norm. Neural Netw 85:10–20

    Article  Google Scholar 

  11. Cao W, Wang Y, Sun J, Meng D, Yang C, Cichocki A, Xu Z (2016) Total variation regularized tensor RPCA for background subtraction from compressive measurements. IEEE Trans Image Process 25(9):4075–4090

    Article  MathSciNet  MATH  Google Scholar 

  12. Cao X, Yang L, Guo X (2016) Total variation regularized RPCA for irregularly moving object detection under dynamic background. IEEE Trans Cybern 46(4):1014–1027

    Article  Google Scholar 

  13. Dang C, Radha H (2015) RPCA-KFE: key frame extraction for video using robust principal component analysis. IEEE Trans Image Process 24(11):3742–3753

    Article  MathSciNet  MATH  Google Scholar 

  14. Ebadi SE, Izquierdo E (2017) Foreground segmentation with tree-structured sparse RPCA. IEEE Trans Pattern Anal Mach Intell. https://doi.org/10.1109/TPAMI.2017.2745573

    Article  Google Scholar 

  15. Fazel M (2002) Matrix rank minimization with applications. Doctoral dissertation, PhD thesis, Stanford University

  16. F’evotte C, Gribonval R, Vincent E (2005) BSS_EVAL toolbox user guide—revision 2.0. Technical report 1706, IRISA, pp 19. http://bassdb.gforge.inria.fr/bss_eval/. Accessed 15 Dec 2017

  17. Fu Z, Wang X, Xu J, Zhou N, Zhao Y (2016) Infrared and visible images fusion based on RPCA and NSCT. Infrared Phys Technol 77:114–123

    Article  Google Scholar 

  18. Fukushima M, Mine H (1981) A generalized proximal gradient algorithm for certain nonconvex minimization problems. Int J Syst Sci 12(8):989–1000

    Article  MATH  Google Scholar 

  19. Ganesh A, Lin Z, Wright J, Wu L, Chen M, Ma Y (2009) Fast algorithms for recovering a corrupted low-rank matrix. In: Proceedings of 3rd IEEE international workshop on computational advances in multi-sensor adaptive processing (CAMSAP). IEEE, Aruba, pp 213–216

  20. Gu S, Xie Q, Meng D, Zuo W, Feng X, Zhang L (2017) Weighted nuclear norm minimization and its applications to low level vision. Int J Comput Vis 121(2):183–208

    Article  Google Scholar 

  21. Hale ET, Yin W, Zhang Y (2008) Fixed-point continuation for minimization: methodology and convergence. SIAM J Optim 19(3):1107–1130

    Article  MathSciNet  MATH  Google Scholar 

  22. Han ZF, Leung CS, Huang LT, So HC (2017) Sparse and truncated nuclear norm based tensor completion. Neural Process Lett 45(3):729–743

    Article  Google Scholar 

  23. He Y, Li M, Zhang J, An Q (2015) Small infrared target detection based on low-rank and sparse representation. Infrared Phys Technol 68:98–109

    Article  Google Scholar 

  24. Hong B, Wei L, Hu Y, Cai D, He X (2016) Online robust principal component analysis via truncated nuclear norm regularization. Neurocomputing 175:216–222

    Article  Google Scholar 

  25. Hu Y, Zhang D, Ye J, Li X, He X (2013) Fast and accurate matrix completion via truncated nuclear norm regularization. IEEE Trans Pattern Anal Mach Intell 35(9):2117–2130

    Article  Google Scholar 

  26. Huang PS, Chen SD, Smaragdis P, Hasegawa-Johnson M (2012) Singing-voice separation from monaural recordings using robust principal component analysis. In: Proceedings of 2012 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, Kyoto, Japan, pp 57–60

  27. Javed S, Bouwmans T, Shah M, Jung SK (2017) Moving object detection on RGB-D videos using graph regularized spatiotemporal RPCA. In: Proceedings of 2017 International conference on image analysis and processing (ICIAP). Springer, Berlin, pp 230–241

  28. Jin M, Li R, Jiang J, Qin B (2017) Extracting contrast-filled vessels in X-ray angiography by graduated RPCA with motion coherency constraint. Pattern Recogn 63:653–666

    Article  Google Scholar 

  29. Lin L, Lin W, Huang S (2018) Group object detection and tracking by combining RPCA and fractal analysis. Soft Comput 22(1):231–242

    Article  Google Scholar 

  30. Lin Z, Chen M, Ma Y (2010) The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. arXiv preprint arXiv:1009.5055

  31. Lin Z, Ganesh A, Wright J, Wu L, Chen M, Ma Y (2009) Fast convex optimization algorithms for exact recovery of a corrupted low-rank matrix. Comput Adv Multi Sens Adapt Process CAMSAP 61(6):1–18

    Google Scholar 

  32. Liu DP, Li ZZ, Liu B, Chen WH, Liu TM, Cao L (2017) Infrared small target detection in heavy sky scene clutter based on sparse representation. Infrared Phys Technol 85:13–31

    Article  Google Scholar 

  33. Liu Q, Lai Z, Zhou Z, Kuang F, Jin Z (2016) A truncated nuclear norm regularization method based on weighted residual error for matrix completion. IEEE Trans Image Process 25(1):316–330

    Article  MathSciNet  MATH  Google Scholar 

  34. Liu X, Zuo Z (2013) A dim small infrared moving target detection algorithm based on improved three-dimensional directional filtering. In: Proceedings of 2013 Chinese Conference on Image and Graphics Technologies. Springer, Berlin, pp 102–108

    Google Scholar 

  35. Liu Z, Li J, Li G, Bai J, Liu X (2017) A new model for sparse and low-rank matrix decomposition. J Appl Anal Comput 7(2):600–616

    MathSciNet  Google Scholar 

  36. Ma S, Goldfarb D, Chen L (2011) Fixed point and Bregman iterative methods for matrix rank minimization. Math Program 128(1):321–353

    Article  MathSciNet  MATH  Google Scholar 

  37. Otazo R, Candès E, Sodickson DK (2015) Low-rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components. Magn Reson Med 73(3):1125–1136

    Article  Google Scholar 

  38. Oymak S, Mohan K, Fazel M, Hassibi B (2011) A simplified approach to recovery conditions for low rank matrices. In: Proceedings of 2011 IEEE international symposium on information theory (ISIT). IEEE, St. Petersburg, Russia, pp 2318–2322

  39. Peng C, Kang Z, Yang M, Cheng Q (2016) RAP: Scalable RPCA for low-rank matrix recovery. In: Proceedings of the 25th ACM international conference on information and knowledge management. ACM, Indianapolis, USA, pp 2113–2118

  40. Rahmani M, Atia GK (2015) Randomized subspace learning approach for high dimensional low rank plus sparse matrix decomposition. In: Proceedings of the 49th Asilomar conference on signals, systems and computers. IEEE, USA, pp 1796–1800

    Book  Google Scholar 

  41. Rahmani M, Atia G (2016) A subspace learning approach for high dimensional matrix decomposition with efficient column/row sampling. In: Proceedings of the 33rd international conference on machine learning, PMLR 48:1206–1214

    Google Scholar 

  42. Rahmani M, Atia GK (2017) High dimensional low rank plus sparse matrix decomposition. IEEE Trans Signal Process 65(8):2004–2019

    Article  MathSciNet  MATH  Google Scholar 

  43. Ravishankar S, Moore BE, Nadakuditi RR, Fessler JA (2017) Low-rank and adaptive sparse signal (LASSI) models for highly accelerated dynamic imaging. IEEE Trans Med Imaging 36(5):1116–1128

    Article  Google Scholar 

  44. Recht B, Fazel M, Parrilo PA (2010) Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev 52(3):471–501

    Article  MathSciNet  MATH  Google Scholar 

  45. Selesnick IW, Bayram I (2014) Sparse signal estimation by maximally sparse convex optimization. IEEE Trans Signal Process 62(5):1078–1092

    Article  MathSciNet  MATH  Google Scholar 

  46. Shi C, Cheng Y, Wang J, Wang Y, Mori K, Tamura S (2017) Low-rank and sparse decomposition based shape model and probabilistic atlas for automatic pathological organ segmentation. Med Image Anal 38:30–49

    Article  Google Scholar 

  47. Shi W, Zhang X, Zou X, Han W, Min G (2017) Auditory mask estimation by RPCA for monaural speech enhancement. In: Proceedings of 2017 IEEE/ACIS 16th international conference on computer and information science (ICIS). IEEE, Wuhan, China, pp 179–184

  48. Toh KC, Yun S (2010) An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems. Pac J Optim 6(3):615–640

    MathSciNet  MATH  Google Scholar 

  49. Vincent E, Gribonval R, F`evotte C (2006) Performance measurement in blind audio source separation. IEEE Trans Audio Speech Lang Process 14(4):1462–1469

    Article  Google Scholar 

  50. Wang Y, Su X (2014) Truncated nuclear norm minimization for image restoration based on iterative support detection. Math Prob Eng 2014:1–17

    MathSciNet  Google Scholar 

  51. Werner R, Wilmsy M, Cheng B, Forkert ND (2016) Beyond cost function masking: RPCA-based non-linear registration in the context of VLSM. In: Proceedings of 2016 international workshop on pattern recognition in neuroimaging (PRNI). IEEE, Trento, Italy, pp 1–4

  52. Xie Y, Gu S, Liu Y, Zuo W, Zhang W, Zhang L (2016) Weighted Schatten p-norm minimization for image denoising and background subtraction. IEEE Trans Image Process 25(10):4842–4857

    Article  MathSciNet  MATH  Google Scholar 

  53. Yang AY, Sastry SS, Ganesh A, Ma Y (2010) Fast-minimization algorithms and an application in robust face recognition: a review. In: Proceedings of the 17th IEEE international conference on image processing. IEEE, Hong Kong, pp 1849–1852

  54. Yu S, Zhang H, Duan Z (2017) Singing voice separation by low-rank and sparse spectrogram decomposition with prelearned dictionaries. J Audio Eng Soc 65(5):377–388

    Article  Google Scholar 

  55. Yuan X, Yang J (2009) Sparse and low-rank matrix decomposition via alternating direction methods. 12:1–16 (preprint)

  56. Zheng CY, Li H (2013) Small infrared target detection based on low-rank and sparse matrix decomposition. Appl Mech Mater 239:214–218

    Article  Google Scholar 

  57. Zhou Z, Li X, Wright J, Candès EJ, Ma Y (2010) Stable principal component pursuit. In: Proceedings of the 2010 IEEE international symposium on information theory (ISIT). IEEE, Austin, Texas, pp 1518–1522

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China under Grant 61672477.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feilong Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, W., Cao, F. Adaptive algorithms for low-rank and sparse matrix recovery with truncated nuclear norm. Int. J. Mach. Learn. & Cyber. 10, 1341–1355 (2019). https://doi.org/10.1007/s13042-018-0814-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-018-0814-9

Keywords

Navigation