



Abstract: In artificial intelligence, proposing an efficient algorithm with an appropriate hardware implementation has always

been a challenge because of the well-accepted fact that AI hardware implementations should ideally be comparable to biological

systems in terms of hardware area. Active Learning Method (ALM) is a fuzzy learning algorithm inspired by human brain

computations. Unlike traditional algorithms, which employ complicated computations, ALM tries to model human brain

computations using qualitative and behavioral descriptions of the problem. The main computational engine in ALM is the Ink

Drop Spread (IDS) operator, but this operator imposes high memory requirements and computational costs, making the ALM

algorithm and its hardware implementation unsuitable for some of the applications. This paper proposes an adaptive alternative

method for implementing the IDS operator; a method which results in a marked reduction in the algorithm’s computational

complexity and in the amount of memory required and hardware. To check its validity and performance, the method was used to

carry out modeling and pattern classification tasks. This paper used challenging and real-world datasets and compared with well-

known algorithms (ANFIS and MLP) in software simulation and hardware implementation. Compared to traditional

implementations of the ALM algorithm and other learning algorithms, the proposed FPGA implementation offers higher speed,

less hardware, and improved performance, thus facilitating real-time application. Our ultimate goal in this paper was to present a

hardware implementation with an on-chip training that allows it to adapt to its environment without dependency on the host

system (on-chip learning).

Keywords: Soft Computing, Ink Drop Spread (IDS) Operator, Fuzzy Modeling, Pattern Classification, Field-Programmable

Gate Array (FPGA) Implementation.

1. INTRODUCTION

 The creation of algorithms capable of simulating the human brain’s computing systems has always been an extremely

attractive field of research, and numerous studies have been carried out with that goal as their objective. The algorithms proposed

have been widely used in many applications for tasks like function modeling, control, prediction and data analysis. Two general

approaches have been adopted in this type of research, namely ANNs and fuzzy logic. Some researchers consider the direct

modeling of the neural networks in living organisms to be the most desirable option [1, 2], whereas, from the fuzzy logic point of

1
 Corresponding author, Tel: +989112834604.

 E-mail address: sajjad_haghzad@ee.sharif.edu (Preferred: sajjad.haghzad@gmail.com)

Sajad Haghzad Klidbary*
1
, Saeed Bagheri Shouraki*, and Bernabe Linares-Barranco**

*Research Group for Brain Simulation and Cognitive Science, Artificial Creatures Laboratory(ACL), Department

of Electrical Engineering, Sharif University of Technology, Azadi Avenue, Tehran,11365-11155, Iran.

** Instituto de Microelectronica de Sevilla (IMSE-CNM), Consejo Superior de Investigaciones Cientificas (CSIC)

and Universidad de Sevilla, 41092 Sevilla, Spain.

 Digital Hardware Realization of a Novel Adaptive Ink Drop

Spread Operator and Its Application in Modeling and

Classification and On-Chip Training

mailto:sajjad_haghzad@ee.sharif.edu%20(Preferred
mailto:sajjad.haghzad@gmail.com

view, human brain computations can also be modeled as a group of “IF-THEN” rules with linguistic variables [3, 4]. The

stability and performance of both approaches have been thoroughly discussed in literature [5-10], [11-18].

 One of the most important challenges for the algorithms available to date have been hardware implementation feasibility and

high speed performance in real-time and online applications. The idea of creating an artificial brain with a hardware system

similar to the human brain that can be used in intelligent robots has always attracted considerable attention. It should be

mentioned that without a simple computing structure it is not possible to implement the brain’s computational power and

learning capabilities. Therefore, it is also highly desirable for any proposed hardware to be similar and comparable with

biological systems [17, 19]. The digital hardware implementations of these algorithms have most attention and they are further

classified as follows: 1) FPGA-based implementation, 2) digital signal processor (DSP)-based implementation, and 3)

application specific integrated chip (ASIC)-based implementation. In these classes, FPGA is one of the most commonly

employed platforms for implementing different algorithms on a single chip due to its reconfigurable, parallel architecture,

distributed on-chip memory and logic, and powerful design, programming and synthesis tools [20]. There are two generally

accepted approaches to FPGA implementation. In the first approach, the training phase is offline (the training data is static,

which is named off-chip learning) and the weights obtained are implemented on the hardware. This kind of implementation is

purpose-specific [21, 22]. On the other hand, in the second approach, the hardware has a learning capability, meaning that it can

be used in time-variant (non-deterministic) and non-stationary (variable parameter) systems (solution space is dynamic and new

data is added continuously, which is named on-chip learning) [23-26]. The second approach is actually to create an artificial

brain, albeit at the cost of larger hardware. This area of research is still a hot topic.

 Recently, state of the art algorithms that using Deep Learning techniques have shown well results and have attracted significant

attention[27, 28]. In order to implement these algorithms, one of the most important problems is finding suitable hardware

platforms with the appropriate usage of resources in different applications (computational bottleneck). Almost most of the

proposed algorithms use sophisticated mathematical calculations that are almost applicable in software environments, but such

computational intensity limits their usability due to large area/power requirement. This is called the area versus precision design

tradeoff. The tradeoff is to choose an appropriate balance between precision and the size/cost of the hardware resources

consumed.

 Multi-Layer Perceptron (MLP-BP) and ANFIS (Adaptive Neuro-Fuzzy Inference System) are examples of algorithms that

perform well in modeling and classifying and are implemented on different hardware platforms [25, 29-32]. MLP, which uses

the error back propagation learning rule, is one the most popular learning algorithms used in ANNs. ANFIS, which integrates

both neural networks and fuzzy logic inference systems, is one of the most popular neuro-fuzzy techniques. Fuzzy logic takes

into account the imprecision and uncertainty of the system that is being modeled, while the neural network endows with

adaptability. Based on comparable results as well as reasonable hardware, these algorithms are well known algorithms in soft

computing compared to the state of the art algorithms such as Deep Learning.

 Numerous dedicated hardware implementations, based on FPGA, have been proposed in the past two decades [17, 19] and

references therein. These algorithms are complex due to the use of complex mathematics (such as gradient based equation)

requiring the use of approximate relationships for hardware implementation. Their hardware implementation is often purpose-

specific and most of the implemented hardware has no learning capability. Furthermore, increasing the number of neurons and

hidden layers in various applications (large scale problems) consume considerably more FPGA resources.

 The ALM, an effective soft computing algorithm inspired by the human brain’s learning capability, was first presented by

Shouraki in 1997[33] as an algorithm for modeling and controlling. It has a simple structure and, unlike counterparts such as the

Sugeno-Yasukawa[34] and Takagi-Sugeno[14] algorithms, less computational complexities. Thanks to its specific learning

algorithm, its convergence is faster than that of the others[35]. Murakami and Honda demonstrated the high capability of the

ALM in the field of soft computing[35], and in some applications it has been reported that its execution speed is 10 times faster

than that of the Takagi-Sugeno and Sugeno-Yasukawa methods. Further advantages of ALM include its fast execution time, its

noise robustness and, more importantly, the fact that it does not require a recursive learning process. The use of ALM has been

reported in several successful applications in fields like control[36, 37], robotics[38, 39], modeling[40-44], soft computing and

artificial intelligence[41, 45-48], image processing[49], and real-time processing[50].

 The main idea underlying ALM is to approximate a multi-input single-output (MISO) system with some single-input single-

output (SISO) subsystems. Each of these subsystems, known as IDS planes, represents the relationship between the output and

one of the inputs. From each IDS unit extracts two informative features are named as Narrow Path and Spread. Training samples

are mapped by instilling ink drops to represent the relationship between the inputs and the output as patterns formed on the IDS

planes. ALM implementation requires a lot of resources, which in many applications may not be available. The goal of this work

is therefore to propose a novel description of IDS planes in which computational complexity and hardware area are both reduced

in FPGA implementation. The description should also be suitable for systems with a larger number of inputs, thus making it

possible to eliminate the computational complexity of the IDS operation and reduce the required number of memory cells. In our

proposed algorithm, we describe the IDS with two vectors, one of the vectors indicates the output-input relationship (Narrow

path) and the other indicates the degree of Belief in the occurrence of output associated with each input. The following points

illustrate the algorithm’s effectiveness and suitability:

1) In the original algorithm, the memory space required to implement the 2-D IDS plane is quite large and memory was not used

efficiently. However, the proposed method reduces both the memory requirement (reduced from 𝐿𝑥 ∗ 𝐿𝑦 𝑡𝑜 2 ∗ 𝐿𝑥, where

𝐿𝑥 and 𝐿𝑦 are the quantization levels) and the algorithm’s computational complexity thanks to a new description of IDS

planes. The reduction in required memory and computations enable the algorithm to deal with systems with a large number of

inputs.

2) Change in the paradigm of the learning process in the IDS planes results in a considerable reduction in the number of circuit

elements required in the hardware implementation. This reduction results in a smaller chip and lower power consumption

than in earlier implementations.

3) Compared to analog implementations, digital implementations are often simpler and more cost efficient, with higher noise

robustness and shorter design times. However, larger silicon area and more power consumption are restricting. Digital

circuits also enjoy higher level of scalability, reliability, stability, repeatability, and flexibility, and these features become

more important in adaptive systems (time variant) where the function of the system is dependent on its parameters.

4) Our proposed algorithm has less software and hardware execution time and needs less area and resources related to MLP and

ANFIS implementation and its FPGA implementation have dynamic learning capability (on-chip learning capability).

 It is known that, in the human brain, computations are performed efficiently; however, currently available brain simulation

algorithms are not comparably efficient. There is, therefore, a need for faster and efficient algorithms in software and hardware

environment. The contribution of our work is not only to improve ALM, but also to propose an algorithm with an appropriate

learning capability while taking into account the limitations of its hardware implementation (implementation of a complete fuzzy

system). Furthermore, by fewer hardware resources implementation point of view, we wanted to propose a hardware which is not

application dependent but versatile enough to be employed in different applications (On-chip learning: hardware with learning

capability). For these reasons, the basis of work is based on the ALM, which inspired by human brain computations and need

less complex computational formulas regard to other algorithms.

 The rest of the paper is organized as follows. The main concepts of ALM and IDS operators are reviewed and the studies into

hardware implementations of ALM in section 2. Section 3 illustrates and evaluates our proposed algorithm on real-world

datasets. The hardware implementation on an FPGA platform is presented in section 4, and finally Section 5 presents some

conclusions and suggests areas for future research.

2. A BRIEF OVERVIEW OF ALM

 In this section, ALM is discussed in more detail. It’s worth mentioning that ALM is completely different notation than active

learning that is a special scenario in semi-supervised learning in which for finding most informative samples. Due to the

qualitative, imprecise nature of fuzzy processing and computation systems, demand has grown for soft computing methods for

simulating brain behavior. ALM, which uses fuzzy methods, is based precisely on the assumption that humans have an

inaccurate attitude toward their surrounding events and, instead of memorizing numbers and digits, memorize the general

behavior of the system as a series of vague, imprecise images (without using the complex mathematical and numerical iterative

processes). This idea is inspired by the behavior of the brain itself, where it is assumed that the relationship between environment

variables is stored as images. When faced by complex issues, human beings try to find a general knowledge about the system by

simplifying concepts and finding logical relationships between them. By breaking complex problems into several simpler ones,

ALM increases their understandability, and by combining and establishing links between those simpler concepts, it acts as if it

were improving connections between neurons in neural networks, creating similar output. The operation of this method is shown

in Fig. 1. ALM consists of two parts: the updating of the IDS planes and inference.

 MISO
Inference

Engine

X1

X2

XD

.

.

.

Y Y

SISO
(IDS)

SISO
(IDS)

SISO
(IDS)

X1

X2

XD

Ymin

Ymax

Xi min Xi max

Feature
Extracting

Unit
(FEU)

Xi – Y Plane (IDSi)

(a) (b)

.

.

.

.

.

.

NP1

SP1

Narrow
Path

&
Spread

NP2

SP2

NP

SP

D

D

Fig. 1. (a) In ALM, the system is broken up into several SISO systems and each of these SISO systems is modeled with an IDS plane. In the inferential

processing stage, all of the outputs from those systems then logically compound and the output of the whole system is obtained. (b) The effect of the IDS

operator on experience points or training data as ink drops on the IDS plane. Narrow Path and Spread features are extracted from any of those planes.

2.1. IDS Operator

 The core of the ALM is the IDS operator, which is implemented by means of a fuzzy interpolation and curve-fitting technique,

and models uncertainty. The IDS operator works on the basis that events have a continuous nature and learning patterns are not

limited to experimental data, and that their neighborhoods have information with lower degrees of uncertainty. Assuming the

quantized input and output space, each of the subsystems is a gridded plane as shown in Fig. (2-a).

 To see how the IDS operator works, we assume 𝑇1(𝑥1, 𝑥2, 𝑦) = (5,8,6) and 𝑇2(𝑥1, 𝑥2, 𝑦) = (9,7,10) as learning data in a two-

input single-output system. In the first step, the ALM for the system assumes two planes, such as (𝑥1 − 𝑦) and (𝑥2 − 𝑦). In the

second step the IDS operator drops the ink. In (𝑥1 − 𝑦) the quantized gridded plane projects 𝑇11(𝑥1, 𝑦) = (5,6) and

𝑇21(𝑥1, 𝑦) = (9,10) and in (𝑥2 − 𝑦) the quantized gridded plane projects 𝑇21(𝑥2, 𝑦) = (8,6) and 𝑇22(𝑥2, 𝑦) = (7,10). For

simplicity, only one IDS plane is shown in Fig. (2-a).

Ym
in

Ym
a

x

Xi min Xi max

X1 – Y Plane (IDS1)

x
y

(a)

Y

X1

Narrow Path

Xt *

*
Y

Spread

(b)

5
6

x
y

9
10

X1 – Y Plane (IDS1)

Fig. 2. IDS functionality. (a) The structure of one IDS plane is shown. When new training data enters, the plane is updated. The training data related to this

plane are 𝑇11(𝑥1, 𝑦) = (5,6) and 𝑇21(𝑥1, 𝑦) = (9,10). (b) When overlapping occurs with other training data, patterns are created as shown. For a hypothetical

point 𝑥𝑡, the Narrow Path and Spread values are expressed in graphic form.

 After spreading and overlapping, the ink drops create continuous shapes in the space, as shown in Fig. (2-b). Narrow path and

Spread features, which both describe the relationship between the input and the output, are extracted by the extracting unit.

 Membership functions corresponding to each ink drop can be assumed as being Gaussian, pyramidal, conical, or any 3-D

convex functions. In these functions, the further the distance from the center of the function, the lower the degree of membership.

If the ink drops overlap, the overlap point becomes darker and the degree of belief about those points increases.

2.2. Inference Engine in ALM

 Once the IDS operator has acted on 2-D planes, the Narrow Path and Spread features of the patterns generated are extracted

and then used in the inferential stage of ALM. The Narrow Path function in 𝐼𝐷𝑆𝑖 reveals the relationship between the output and

the ith input. The Spread value represents the importance of each input variable 𝑥𝑖 compared to other variables when

determining the amount of system output. A wide spread in some input domains reveals that the output is dominantly affected by

other inputs rather than 𝑥𝑖, because the output has varied a lot, while the ith input is almost constant. If the Spread is wide for all

input domains on an IDS plane, fuzzy partitioning the domain of other inputs is suggested in order to make the resulting sub-

domain sparser. In this case, a separate IDS plane is required for each sub-domain. By splitting the input domain, more

knowledge can be extracted from the IDS planes, resulting in lower approximation error.

 To calculate Narrow Path, operators such as max, sum, and saturating sum can be used. To find the Spread around each

Narrow Path point, the point’s darkness or the spread radius around it can be considered. The method proposed in [40] is

discussed below. Note that because of the inaccurate nature of the algorithm and the IDS operator, there is no huge difference

between the final results of the methods; the choice of method ultimately depends on the hardware and the processing speed.

 Consider that we have 𝑆 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑁 , 𝑦𝑁)} which includes 𝑁, training data 𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝐷)𝑇, 𝑥𝑖 ⊆ 𝑅𝐷 .

In the first step, ALM quantizes the input and the output range of each IDS plane. Assuming that 𝑝(𝑥, 𝑦) is one point on the

𝑥𝑖 − 𝑦 plane with a darkness of 𝑑(𝑥, 𝑦). The training data is updated as (𝑥𝑠 , 𝑦𝑠) as shown:

(1) 𝑃𝑥,𝑦
= {𝑝(𝑥, 𝑦)|𝑥 ∈ 𝑋𝑖 , 𝑦 ∈ 𝑌},

(2) 𝑑(𝑥𝑠 + 𝑢 , 𝑦𝑠 + 𝑣) = 𝑑(𝑥𝑠 + 𝑢 , 𝑦𝑠 + 𝑣) + ℎ(𝑢 , 𝑣), −𝑅 ≤ 𝑢, 𝑣 ≤ 𝑅,

in (2), 𝑅 is the ink drop radius and h is the shape of the ink drop function. Functions 𝜓 and 𝑆 are the Narrow path and Spread

values, respectively, and are defined by the following equations:

(3) 𝜓
𝑥𝑖

(𝑥) = {𝑏 | ∑ 𝑑(𝑥, 𝑦)

𝑏

𝑦=𝑦𝑚𝑖𝑛

≈ ∑ 𝑑(𝑥, 𝑦)

𝑦𝑚𝑎𝑥

𝑦=𝑏

, 𝑏 ∈ 𝑌 },

(4) 𝑆𝑥𝑖
(𝑥) = max𝑦∈𝑌 {𝑦|𝑑(𝑥, 𝑦) > 𝑇𝐻} − min𝑦∈𝑌 {𝑦|𝑑(𝑥, 𝑦) > 𝑇𝐻}.

 The first equation implies that the Narrow Path value on the IDSi plane for any given quantized input x is b, if the sum of the

grids darkness values above the (x, b) grid is approximately equal to the sum of the grids darkness values below the (x, b). The

second equation implies that the Spread value on the IDSi plane for any given quantized input x is proportional to the effective

width of the formed pattern on the column of grids on the coordination of x. In (4), threshold 𝑇𝐻 is the minimum acceptable

darkness of grids on the IDS plane for measuring Spread (for modeling purposes, 𝑇𝐻 = 0). In the case of 𝑁-input with 𝑚𝑖

partitions for 𝑖th input variable, the number of IDS units corresponding to 𝑖th input which is denoted by 𝑙𝑖 and total number of

IDS units, L is as follows:

𝑙𝑖 = ∏ 𝑚𝑖′

𝑁

𝑖′=1, 𝑖′=𝑖
 (5)

𝐿 = ∑ 𝑙𝑖

𝑁

𝑖=1
= ∑

𝑁

𝑖=1
∏ 𝑚𝑖′

𝑁

𝑖′=1, 𝑖′=𝑖
 (6)

 Fig. 3 shows the general ALM structure for a two-input single-output system. Note that the number of fuzzy partitions on each

input domain is two. The modeling relationships and rules in Fig. 3 are as follows:

)7)

𝑅11: 𝑖𝑓 𝑥2 𝑖𝑠 𝐴21(𝑠𝑚𝑎𝑙𝑙)𝑡ℎ𝑒𝑛 𝑦 𝑖𝑠 𝜓11 ,

𝑅12: 𝑖𝑓 𝑥2 𝑖𝑠 𝐴22(𝑏𝑖𝑔)𝑡ℎ𝑒𝑛 𝑦 𝑖𝑠 𝜓12 ,

𝑅21: 𝑖𝑓 𝑥1 𝑖𝑠 𝐴11(𝑠𝑚𝑎𝑙𝑙)𝑡ℎ𝑒𝑛 𝑦 𝑖𝑠 𝜓21 ,

𝑅22: 𝑖𝑓 𝑥1 𝑖𝑠 𝐴21(𝑏𝑖𝑔)𝑡ℎ𝑒𝑛 𝑦 𝑖𝑠 𝜓22 .

 At the end, the final output is the weighted sum of the above rules:

(8) 𝑦 𝑖𝑠 𝛽11𝜓11𝑜𝑟 𝛽12𝜓12 𝑜𝑟 𝛽21𝜓21 𝑜𝑟 𝛽22𝜓22.

 The output for a system which has 𝐶 number of IDS planes can therefore be calculated by the following equation:

(9) 𝛽𝑖 =

𝛾𝑖 ×
1

𝑆𝑥𝑖
(𝑥𝑖)

∑ 𝛾𝑗 ×
1

𝑆𝑥𝑗
(𝑥𝑗)

𝑐
𝑗=1

,

𝑦(𝑥) = ∑ 𝛽𝑖 ×

𝑐

𝑖=1

𝜓
𝑥𝑖

(𝑥𝑖). (10)

 In which 𝜓𝑥𝑖
 is the Narrow Path, 𝑆𝑥𝑖

 is the Spread and 𝛾𝑖 is our degree of belief corresponding to each IDS plane (degree of

each rule). As is shown in the equations, the ALM inference is the weighted sum of the Narrow Path values obtained from the

IDS planes. In testing phase, for white vertical column grids on the 𝑥 axis, the values of 𝜓
𝑥𝑖

(𝑥) and 𝑆𝑥𝑖
(𝑥) are assumed to be

equal to 𝑦𝑚𝑎𝑥/2.

 The ink radius is a significant factor affecting performance, effectiveness, convergence speed, and output error. When

determining the radius, the number and density of training data in the plane should be taken into account. The radius is usually

considered as a percentage of the resolution, density and distribution of data in space. The number of quantization levels for each

of the input and output variables are related to the type of application, speed, and the desired accuracy. Partitioning points and

radius have been obtained through trial and error. By employing heuristic methods, optimum parameters can be achieved.

 Thanks to its fuzzy attitude to data, ALM has an acceptable capability in noisy systems such as function modeling and control

systems[51, 52]. It also has several advantages. The order in which data is entered is not important, and, unlike ANNs, updating

is done locally with no need to update globally for new data. For more information regarding ALM, see the references [35, 53] to

further explore.

X1-Y
plane

(IDS11)

Input Layer Modeling Layer Inference Layer

X1

X2

Y

a21(X2) > a22(X2)

A21 A22

X2

X2

X1

Y

a11(X1) < a12(X1)

A11 A12

X1

a11(X1), a12(X1), a21(X2), a22(X2)

X1-Y
plane

(IDS12)

X2-Y
plane

(IDS21)

X2-Y
plane

(IDS22)

y11, β 11

OR

y12, β 12

OR

y21, β 21

OR

y22, β 22

y22, S 22

y11, S 11

y12, S 12

y21, S 21

Y

Fig. 3. General structure of ALM for a two-input single-output system. As can be seen, each of the inputs is broken up into two fuzzy partitions. After

partitioning, for each partition of the first variable, one particular IDS of the second variable is considered.

2.3. RELATED WORKS ON ALM HARDWARE IMPLEMENTATION

 Hardware implementation of ALM has been a challenge ever since the algorithm was first introduced. The ultimate goal is to

implement an IDS chip. In this section, previous implementations of IDS are reviewed and compared.

 The first hardware implementation, a quantitative structure inspired by the human retina, was proposed by Shouraki [54]. In

Shouraki’s proposed structure, each IDS plane was modeled by gridded planes and each grid was implemented by a photo

resistor and two light emitting diodes in parallel. The advantages were that no high precision computing circuits were needed and

that this structure introduced a quantitative computing paradigm. The main drawback was the structure’s large hardware

requirement in IDS units, which eventually resulted in poor ALM performance. To deal with this problem, Shouraki assumed

two main column memory vectors 𝑋 and 𝑌, and two image column memory vectors 𝑋′ and 𝑌′, in a technique called RIDS [55].

In this structure, instead of the IDS operator, the affected neighboring grids were updated by their average values. The structure

hardware was based on mixed analog-digital technology, and comprised capacitive circuits, digital column memory vectors,

switching circuits and ADCs. The main drawback of this method was its repetitiveness: in offline applications, for each iteration

of the operator, the numbers of points were doubled (larger memory), and the averaging operation was a considerable time-

consuming process in RIDS.

 To deal with real-time applications, Murakami proposed High Speed IDS (HIDS) [40, 56]. In this structure, IDS planes were

considered as memory cards communicating independently with the central processor through a PCI bus. Each of these cards

was equipped with a controller which controlled data transfer, IDS operations and feature extraction. This structure was

expensive and large, due to the employment of a PCI bus, signaling and data transfer were not performed fast enough. Actually,

the structure Murakami proposed was intended only for experimental purposes in the laboratory, and not as a component of any

intelligent system in the future. With the controller and the large amount of memory space it required, it was simply too

inefficient.

 In another study, Tarkhan proposed an analog hardware based on analog current memory circuits as a means of achieving a fast

structure. By simplifying the IDS operation with a subtraction function, ink intensity was coded as current stored in an analog

memory [57]. Digital implementation is generally simpler and less expensive than analog implementation because it is less

complicated and its design process, testing, simulation and synthesis are cheaper. It is also less complex [58]. The drawbacks of

the aforementioned methods are, therefore, their high power consumption and the high complexity of each memory cell.

 In the original ALM implementation, creating IDS planes and then storing values in the memory was time consuming, so

Firouzi, adopting another approach, employed pipelined RIDS (PRIDS) [59]. In this architecture, a pipelined circuit was

proposed for the averaging operation and the capacitive switching circuit was replaced by a simple digital circuit. Obviously, this

structure was faster than the previous one; however, its drawback was that it used a separate division circuit for each stage of the

pipeline, and this negatively affected the hardware implementation and timing parameters of the whole design. Because of

iterative learning process of RIDS, it is suitable for offline applications rather than online ones.

 In recent years, a memristor implementation of ALM has also been proposed. Memristor is a two-terminal element with values

that vary according to the voltage applied. It acts like a memory resistor. The first memristor implementation of IDS planes was

proposed by Merrikh-bayat [51] and Esmaili [60]. IDS planes require a large number of memristors, but large scale memristor-

crossbar structures have not been successfully implemented. Considering the numerous advantages of digital circuits, and the

problems involved in implementing large scale memristor-crossbars, the applications described in this work are limited to digital

domains.

 The aforementioned hardware structures all suffer from having large memory requirements for storing IDS planes,

computational complexity, high power consumption and large hardware, and previous implementations of ALM have therefore

also been marked by excessive hardware complexity, despite the simple nature of the algorithm. This has made their

implementation almost impossible for large-scale systems. It should be remembered that without a simple computing structure it

is not possible to simulate the brain’s computational power and learning capabilities. Moreover, the potential of the ALM

algorithm in adaptive and online applications cannot be achieved with previous hardware implementations. Therefore, we

propose a novel algorithm which eliminates, to some extent, the aforementioned problems regarding precision, speed, and

hardware area.

3. THE PROPOSED ALGORITHM (NAIDS/NAALM)

 One fact which should be kept in mind is that the human brain has a very efficient processing; however, currently available

algorithms are not comparably efficient. In this regard, the algorithm as it stands cannot be considered adequate, and faster and

novel ways need to be found to solve this problem or change our attitude towards the issues that surround it. In ALM, inference

is based on the features which are extracted from the IDS units. Hence, the ALM performance is directly related to the

performance and implementation of the IDS units. IDS operator utilizes simple operators for instilling and overlapping ink drops,

but the feature extraction unit has high computational cost. Therefore, the drawbacks of IDS computational systems are its need

to huge computation, huge memory space and hardware which to store IDS planes information and extract Narrow path and

spread features. A replacement therefore has to be found capable of reducing IDS computation complexities and thereby

changing the learning paradigm in IDS. This would increase the algorithm’s software simulation speed and improve its hardware

solutions.

 The first effective step toward presenting a new algorithm as an IDS replacement is to provide a suitable mapping technique

capable of depicting the whole space. This mapping technique should be able to overcome the challenge of computational

complexity and should utilize simple equations, capable of being implemented and used in related applications. In the proposed

algorithm, the IDS planes are described by two descriptive vectors (memory vectors), where all information about the planes is

stored. Based on the distances between these vectors and the training data on the IDS plane, their values shift toward the data by

Gaussian function. The two vectors are Narrow Path (NP) and degree of Belief (BL). Like other learning algorithms, the

proposed algorithm has two main phases; training and test.

 Assume that the training set of 𝑆 which includes 𝑁, 𝐷-dimensional training data. Each of the memory vectors of the IDS plane

are shown as 𝑣(𝑥). 𝑣𝑁𝑃 is related to the output of each input that is an equivalent the variation of the Narrow Path in the IDS

plane. 𝑣𝐵𝐿 represents the degree of Belief towards each of the outputs. The learning method is that when new training data is

entered, the related values stored in the memory vectors are updated based on their distances with 𝑦 (output) of the training data.

 The initial values for 𝑣𝑁𝑃 and 𝑣𝐵𝐿 in the training phase of the algorithm are as follows:

(11) 𝑣𝑁𝑃(𝑖) = 𝐿𝑦/2, i ∈ {1, 2, 3, … , 𝐿x},

(12) 𝑣𝐵𝐿(𝑖) = 0, i ∈ {1, 2, 3, … , 𝐿x},

in the proposed method, these vectors can have any initial values, without affecting the final convergence of output. For each

input data by measuring the distance between the data and the memory vectors of each IDS plane, the vectors can be updated.

Assuming that point 𝑞(𝑥) is located on the 𝑥-axis and we have(𝑥𝑠 , 𝑦𝑠) as training data, the memory vectors are updated using

the following equations:

(13) 𝑄(𝑥) = {𝑞(𝑥)|𝑥 ∈ 𝑋𝑖},

(14) 𝑣𝑁𝑃(𝑥𝑠 + 𝑢) = 𝑣𝑁𝑃(𝑥𝑠 + 𝑢) + 𝜔 × [𝑦𝑠 − 𝑣𝑁𝑃(𝑥𝑠)] × 𝑔(𝑢), −𝐼𝑟 ≤ 𝑢 ≤ 𝐼𝑟,

(15) 𝑣𝐵𝐿(𝑥𝑠 + 𝑢) = 𝑣𝐵𝐿(𝑥𝑠 + 𝑢) + ⍺ × 𝑔(𝑢) , − 𝐼𝑟 ≤ 𝑢 ≤ 𝐼𝑟,

𝑔(𝑢) = 𝑒
(𝑢−𝑥𝑠

)2

2𝛿2 is the Gaussian function with the standard deviation 𝛿. 𝐼𝑟 which is called as the smoothing radius in the new

IDS method(NAIDS) which has value of 3/2𝛿 ≤ 𝐼𝑟 ≤ 4𝛿.

 The parameters used in this memory vector are learning coefficients 𝜔, 𝛼 and 𝛿. Learning coefficients are used to determine

the effectiveness and the convergence of the IDS memory vectors towards the training data and standard deviation is used to

determine how many neighbors of the training data would be affected. 𝜔 always has a value close to one and 𝛼 is determined

according to the distance between the input training data and 𝑣𝑁𝑃. If this distance is less than 𝐼𝑟, 𝛼 takes a maximum value (for

example 𝛼ℎ𝑖𝑔ℎ = 𝜔) and if the distance is higher than 𝐼𝑟, 𝛼 takes a minimum value (𝛼𝑙𝑜𝑤). The values of these parameters are

directly related to the effectiveness, speed and convergence of the algorithm and are determined taking into account problems,

the amount of training data and convergence speed. When the number of training data is low, ω and α should be increased and

when the number of training data is high, these parameters should be decreased in order to increase output accuracy. These

parameters can be calculated by trial and error methods or using optimization methods such as GA or new technique [61]. In the

example shown in Fig.4, which depicts the performance and convergence of the algorithm, two hypothetical training data are

driven into the system and the process of updating the memory vectors is shown.

X

Y

0

Y *

Y *

X

Y

0

d1

d2

1

2

X * 2X *
1

V NP
V BL

Updating

⍺ ×g(u)

W×d2×g(u)

(a) (b)

X * X *1 2

Sample 1

Sample 2

W×d1×g(u)

⍺ ×g(u)

32 32

32 32

16

Fig. 4. The performance of the proposed algorithm for a SISO system.)a) Two quantized hypothetical training data(𝑥𝑞1, 𝑦𝑞1) = (7,5) and (𝑥𝑞2, 𝑦𝑞2) = (26,24),

(quantization level is 𝐿 = 32).)b) Vectors related to the IDS planes are updated based on the coefficient which directly correlates to the distance between the

training data and the vectors. The surrounding data is updated by Gaussian function as in (14) and (15). The parameter values are 𝜔 = 0.4, 𝛼 = 0.9, and 𝐼𝑟 = 6.

 In the proposed algorithm, data patterns in the experience space described by two separate memory vectors. Unlike in the

regular IDS algorithm, which requires a memory matrix for storage, the description of the IDS space in the proposed algorithm

uses a considerably smaller amount of memory (memory reduction from 𝐿𝑥 ∗ 𝐿𝑦 to 2 ∗ 𝐿𝑥). The IDS operator was therefore

removed and its computational complexities not taken into consideration (removal of complex computations in (3) and (4)).

After the learning stage, in the test stage, only the related values of the test data from the memory vectors are read and there is no

need for any computation to find the features of the IDS planes. In the inference stage, the output of the system can be calculated

by the following equation:

(16) 𝛽𝑖 =
𝛾𝑖 × 𝑣𝐵𝐿(𝑥𝑖)

∑ 𝛾𝑗 × 𝑣𝐵𝐿(𝑥𝑗)𝑐
𝑗=1

,

𝑦(𝑥) = ∑ 𝛽𝑖 ×

𝑐

𝑖=1

𝑣𝑁𝑃(𝑥𝑖). (17)

 As can be seen in (16), and unlike in (9), the division has been deleted and 𝑣𝐵𝐿(𝑥𝑖) has the same performance as
1

𝑆𝑥𝑖(𝑥𝑖)
. Other

operators, such as subtraction and division, which take up a lot of hardware volume in the desired chip, are unnecessary. It

should be noted that only needs to read two memory vectors. For analyzing the computational complexity (O-notation) of

algorithms, time complexity and space complexity are reported. Despite the original IDS operation that requires a 𝐿𝑥 ∗

𝐿𝑦 memory matrix to store the information of each IDS plane, in the proposed approach, two vectors with length 𝐿𝑥 are

sufficient. Therefore, ALM has 𝑆(𝑛) = 𝑂(𝑅𝑠𝑛
2) space complexity and NAALM has 𝑆(𝑛) = 𝑂(𝑅𝑠𝑛) space complexity. This

modification results in considerable decrease in the memory requirement. ALM for each IDS unit has 𝑇(𝑛) = 𝑂(𝑛 × 𝑅2 + 𝑅𝑠𝑛
2)

time complexity and NAALM has 𝑇(𝑛) = 𝑂(𝑛 × 𝐼𝑟 + 𝑅𝑠𝑛) time complexity, where 𝑛 is the number of input samples and

𝑅(𝐼𝑟) is the ink radius in ALM (smoothing radius in NAALM) and 𝐿 is the resolution of the IDS plane. Hence, removing

extraction of features and using sample-based training mode instead of batch-based training mode, results in considerable

increase in the speed and decrease in the hardware. Therefore, the complexity of the NAALM is less than ALM. In the rest of

the paper, an ALM algorithm with its IDS unit replaced by an NAIDS unit is referred to as an “NAALM”.

3.1. Evaluation and Results

 In this section, in order to analyze the proposed algorithm, some simulations were carried out to test various standard

benchmarks. We only compare NAALM with ALM, ANFIS and MLP. Due to, in the next section, we want to investigate

hardware implementation, we only choose the algorithms that their implementation be fair and comparable with our proposed

algorithm not with the state of the art algorithms that their implementation are difficult and need a lot of resources and memories

(algorithms with fewer number of neurons have been chosen for fair comparison). We first discuss modeling applications and

then discuss classification. For more precision in some simulations, the genetic algorithm can be used. All of the simulations are

done by MATLAB 2013 environment and Neural Network and Fuzzy Logic Toolbox with Core i5 processor, 2.4 GHz, and 4GB

RAM (a personal computer).

3.2. Modeling

 Function modeling is utilized in several fields, including control, estimation and complex system modeling. This section is

about the system modeling of 𝑌1 and 𝑌2, two non-linear two-input, single-output systems.

(18) Y1 = (1 + X1
−2 + X2

−1.5) 2 , 1 ≤ X1 , X2 ≤ 10

(19) Y2 = (X1 − 6 × SinX2) 2 , 1 ≤ X1 , X2 ≤ 10

 To examine the algorithm’s accuracy and modeling error, FVU (Fraction of Variance Unexplained) and Pearson Correlation

Coefficients (PCC) were used, as in [35, 51]. The corresponding equations are as follows:

(20) 𝐹𝑉𝑈 =
∑ (𝑦𝑒(𝑥𝑖) − 𝑦(𝑥𝑖))2𝑘

𝑖=1

∑ (𝑦(𝑥𝑖) − 𝑦̅)2𝑘
𝑖=1

, 𝑦̅ = (
1

𝑘
) ∑ 𝑦(𝑥𝑖)

𝑘

𝑖=1

,

(21)
𝑃𝐶𝐶 =

∑ (𝑦𝑖 − 𝑦̅) × (𝑘
𝑖=1 𝑦𝑖

𝑒 − 𝑦𝑒̅̅ ̅)

√∑ (𝑦𝑖 − 𝑦̅)2 × ∑ (𝑦𝑖
𝑒

− 𝑦𝑒̅̅ ̅)

2𝑘
𝑖=1

𝑘
𝑖=1

.

 In equation (20), 𝑦𝑒 is the output of the model, 𝑦 is the output of function, 𝑘 is the number of test data. In equations, 𝑦̅ and 𝑦𝑒̅̅ ̅

are the averages of two vectors. An accurate model has a low FVU value and a 𝑃𝐶𝐶 close to one. Fig. 5 shows two functions 𝑌1

and 𝑌2 and the model approximated by an NAALM.

 The performance of the proposed algorithm was evaluated and compared with ALM, MLP and ANFIS, and the results are

shown in Table 1. In MLP network simulations, 2 neurons are considered as an input, 10 neurons for the hidden layer and 1

neuron as the system output. The neuron activation function is sigmoid and the learning algorithm is the Levenberg-Marquardt

(LV) algorithm, with a learning rate 0.09. In ANFIS network simulations, the FIS has been generated using the function genfis1,

the number of membership functions for each input is two and the membership functions are bell-shaped. The maximum number

of epochs in MLP and ANFIS is assumed 200. The inputs normalized in the interval [-1, 1]. In simulations, in modeling dataset,

70% of which were used in the training phase.

Fig. 5. (a) Function Y1 as defined in (18). (b) The model approximated by the NAALM. The training sample size is 700. The number of fuzzy partitions in each

input domain is 10. Parameter settings are as follows: Ir = 14, ω = 0.59, ⍺ = 0.28, 𝐿𝑥 = 𝐿𝑦 = 160. In this example, FVU=0.0361 and PCC=0.9851. (c)

Function Y2 as defined in (19). (d) The model approximated by the NAALM. The training sample size is 700. The number of fuzzy partitions in each 𝑥1 domain

is 8 and in each 𝑥2 domain, 12. Parameter settings are as follows: Ir = 14, ω = 0.57, ⍺ = 0.39, Lx = Ly = 200. In this example, FVU=0.0292 and

PCC=0.9879.

 According to the results shown in Table 1, the proposed algorithm could therefore represents a good modeling of the functions.

As reported in the table, by assuming constant learning coefficients, in order to increase the accuracy in small datasets, the radius

should be increased. On the other hand, in large datasets, the radius should be decreased. Increasing the radius in large datasets

creates inaccurate information from neighbors. The reason for the low accuracy of the proposed algorithm and the ALM is due to

the imaging of the data on the IDS planes, which will overlook valuable information embedded in large datasets. Thanks to the

absence of iterative processes in the training phase, ALM is faster than the MLP and ANFIS algorithms. NAALM is faster than

ALM because the calculations associated with the feature extraction have been avoided. Hence, there must be a compromise

between accuracy and speed (processing time), which, speed is a critical parameter for real-time applications. Compared to

ANFIS in the modeling of non-smooth 𝑌2, the number of membership function should be changed for higher accuracy.

Table 1: Comparison of NAALM, ALM, ANFIS and MLP based on FVU and PCC metrics. For Y1, in NAALM, ⍺ = 0.25 and ω = 0.51 . For Y2, in NAALM,

⍺ = 0.3 and ω = 0.53 . The partitioning points in the input domain in Y1 are 10 for x1 and 10 for x2, and in Y2 are 8 for x1 and 12 for x2. Each algorithm is

repeated 20 times and the average reported.

1000 # Samples 250

Time(s) PCC FVU Time(s) PCC FVU R/Ir Function Alg.
0.0708 0.9879 ± 0.0061 0.0263 ± 0.0097 0.0214 0.9392 ± 0.0125 0.1211 ± 0.0169 8

𝐘𝟏

NAALM

0.0861 0.9912 ± 0.0052 0.0203 ± 0.0081 0.0218 0.9662 ± 0.0137 0.0831 ± 0.0154 12

0.0918 0.9904 ± 0.0064 0.0211 ± 0.0091 0.0231 0.9734 ± 0.0118 0.0629 ± 0.0131 16
0.0721 0.9863 ± 0.0077 0.0327 ± 0.0084 0.0158 0.9331 ± 0.0189 0.1344 ± 0.0207 8

𝐘𝟐 0.0897 0.9872 ± 0.0066 0.0243 ± 0.0079 0.0162 0.9557 ± 0.0152 0.0951 ± 0.0180 12
0.0922 0.9869 ± 0.0069 0.0268 ± 0.0086 0.0168 0.9682 ± 0.0139 0.0781 ± 0.0142 16
0.2192 0.9852 ± 0.0082 0.0223 ± 0.0083 0.1780 0.9467 ± 0.0127 0.1112 ± 0.0163 8

𝐘𝟏

ALM

0.2304 0.9901 ± 0.0078 0.0217 ± 0.0076 0.1811 0.9645 ± 0.0134 0.0872 ± 0.0159 12

0.2620 0.9864 ± 0.0085 0.0293 ± 0.0092 0.1979 0.9698 ± 0.0115 0.0713 ± 0.0144 16

0.2539 0.9811 ± 0.0082 0.0289 ± 0.0093 0.2258 0.9388 ± 0.0176 0.1256 ± 0.0184 8

𝐘𝟐 0.2807 0.9861 ± 0.0077 0.0219 ± 0.0089 0.2342 0.9656 ± 0.0147 0.0848 ± 0.0172 12

0.2960 0.9842 ± 0.0080 0.0241 ± 0.0090 0.2403 0.9702 ± 0.0131 0.0745 ± 0.0133 16

1.1808 0.9980 ± 0.0012 0.0042 ± 0.0011 0.3173 0.9964 ± 0.0019 0.0079 ± 0.0028 - 𝐘𝟏
ANFIS

1.1455 0.9656 ± 0.0044 0.0875 ± 0.0082 0.3226 0.9456 ± 0.0143 0.1116 ± 0.0339 - 𝐘𝟐
3.9697 0.9993 ± 0.0010 0.0015 ± 0.0020 1.8985 0.9904 ± 0.0376 0.0189 ± 0.0731 - 𝐘𝟏

MLP
4.6756 0.9988 ± 0.0018 0.0025 ± 0.0036 1.6431 0.9937 ± 0.0174 0.0129 ± 0.0345 - 𝐘𝟐

 As mentioned before, by breaking the domain of the input data, the error will be reduced to a good extent. Moreover, learning

coefficients (α and ω) have an improving effect on accuracy. In Fig. 6, some experiments on modeling dataset show how these

parameters affect the modeling results. As shown in the Fig. 6, with regard to the number of training data, appropriate values can

be obtained for parameters to converge faster and result in lower error rates. As shown, the curves related to different parameters

have a minimum value that the best convergence happened for that value. Determining the radius, learning parameters and the

number of partitions are affected by the size of the training set and the density of data points in the feature space.

(a) (b)

Fig 6. (a) The Comparison proposed method based on FVU with respect to different value of learning coefficients (α and ω) and 𝐼𝑟 = 16 in approximating

function of 𝑌1 . (b) The Comparison proposed method based on FVU with respect to different value of radius and number of partitioning approximating function

of 𝑌1 . Parameters are as follows: α = 0.3, w = 0.55. In both simulations the training set size is 1000.

3.3. Classification

 Undoubtedly, one of the key capabilities of the human brain is its ability to classify surrounding objects based on how those

objects’ features relate to each other. To examine the performance of the proposed algorithm in greater depth, therefore,

evaluation in the classification problems is investigated. In all simulation we used 10-fold cross validation method for model

evaluation. The Iris dataset is a real famous standard classification benchmark containing 150 data samples for three species of

iris flowers (each species has 50 samples). Each data sample has four features (lengths and widths of petal and sepal). Two of the

three classes are not linearly separable, as can be seen in Fig. (7-a).

X2

X1

(b)

Setosa (Blue), Versicolor (Green), Virginica (Red)

(X1)

(X
2)

(X
3)

(X
4)

(X1)

(X2) (X3)(X2)

(X1)

(X
3)

(X
4)

(X
4)

(a)

(a) (c)
X1

X2

Fig. 7. (a) Iris flowers dataset, divided into three classes: Setosa (blue), Versicolar (green), and Virginica (red). Each sample has four features: Sepal length,

Sepal width, Petal length and Petal width. (b) Aggregation dataset divided seven different classes and each sample has two features (788 data samples in all). (c)

Girl dataset divided nine different classes and each sample has two features.

 The classification accuracy of different algorithms for Iris, Aggregation, and Girl dataset are shown in Table 2. In Iris dataset,

the whole system was modeled as a four-input, single-output system with four IDS planes in the first step being broken up

depending on the required accuracy. In NAALM, ⍺ = 0.44, and ω = 0.77‌. The fuzzy partitioning in the input domains is 4 for

ALM and NAALM algorithms. The quantization levels are 256 and 100 in ALM and NAALM, respectively. In MLP network

simulations, 4 neurons are considered as an input, 7 neurons for the hidden layer neurons and 1 neuron as the system output. The

neuron activation function is sigmoid and the learning rate is 0.03. In ANFIS network simulations, the FIS has been generated

using the function genfis2. Number of epochs are 100 and 400 in MLP and ANFIS, respectively.

Table 2: Classification results of ALM, NAALM, ANFIS and MLP in the Iris, Aggregation, and Girl datasets. Each algorithm was repeated 20 times and the

average reported. The processing time is to compare the speed of proposed algorithm.

Dataset Iris Aggregation Girl

Algorithm R / Ir Accuracy % Time (S.) R / Ir Accuracy % Time (S.) R / Ir Accuracy % Time (S.)

NAALM

12 95.33 ± 5.49 0.0319 16 97.34 ± 1.09 0.0253 4 98.22 ± 0.42 0.4101

14 𝟗𝟕. 𝟑𝟑 ± 4.66 0.0328 20 𝟗𝟗. 𝟓𝟎 ± 0.98 0.0261 8 99.47 ± 0.31 0.7132

16 94.67 ± 5.26 0.0335 24 96.07 ± 1.62 0.0267 12 98.23 ± 0.21 0.8613

ALM

12 94.00 ± 5.84 0.0987 16 96.22 ± 1.13 0.2314 4 98.30 ± 0.13 0.6220

14 95.33 ± 𝟑. 𝟐𝟐 0.1043 20 99.37 ± 𝟎. 𝟔𝟓 0.2651 8 99.43 ± 𝟎. 𝟏𝟏 0.8951

16 93.33 ± 5.44 0.1175 24 98.24 ± 0.82 0.2993 12 98.01 ± 0.14 1.3736

ANFIS - 95.33 ± 4.50 0.9332 - 99.49 ± 3.03 7.8148 - 98.15 ± 0.08 390.95

MLP - 96.67 ± 3.51 0.7847 - 99.10 ± 3.42 2.1687 - 𝟗𝟗. 𝟖𝟐 ± 0.28 29.892

 The Aggregation and Girl dataset are shown in Fig. (7-b) and Fig. (7-c) respectively. In Aggregation dataset, in NAALM,

⍺ = 0.17 and ω = 0.73 . The fuzzy partitioning in the inputs domain were 9 for ALM and NAALM algorithms. The

quantization levels are 128 and 100 in ALM and NAALM, respectively. In MLP network simulations, 2 neurons are considered

as an input, 22 neurons for the hidden layer neurons and 1 neuron as the system output. The neuron activation function is

sigmoid and the learning rate is 0.08. In ANFIS network simulations, the FIS has been generated using the function genfis1, the

number of membership functions for each input is 3 and the membership functions are bell-shaped. Number of epochs are 100

and 600 in MLP and ANFIS, respectively. In Girl dataset, in NAALM, ⍺ = 0.16 and ω = 0.55 . The fuzzy partitioning in the

inputs domain were 5 for ALM and NAALM algorithms. The quantization levels are 256 and 300 in ALM and NAALM,

respectively. In MLP network simulations, 2 neurons are considered as an input, 24 neurons for the hidden layer neurons and 1

neuron as the system output. The neuron activation function is sigmoid and the learning rate is 0.09. In ANFIS network

simulations, the FIS has been generated using the function genfis1, the number of membership functions for each input is 3 and

the membership functions are bell-shaped. Number of epochs are 120 and 150 in MLP and ANFIS, respectively.

 Based on the preceding tables, the proposed algorithm not only has a better speed and lower computation cost than the other

three algorithms, but it also has less variance in its output (i.e., it is more stable), because, unlike the other types of algorithms, it

has no need for random initialization. It is worth mentioning that NAALM and ALM algorithm are knowledge-based method,

unlike neural network methods, which are black box methods. In this regard, and again unlike neural network algorithms, this

algorithm has no need to preprocess the datasets when dealing with complex problems (in these examples, normalized into

standard distribution), and these capabilities constitute the advantages of the proposed method in comparison with ANNs.

 For more evaluation, we used challenging and real-world datasets (11 datasets). Table 3 shows the properties of all datasets and

the Table 4 shows the classification accuracy of the algorithms. The four algorithms were compared on these new datasets with

different number of features, samples, and classes. 10-fold cross validation method is used for model evaluation.

Table 3: This table shows the properties of all datasets that were used in our evaluation.

Dataset # objects # features # classes Source

Banana 5300 2 2 http://sci2s.ugr.es/keel/category.php?cat=clas#sub2

2-Spiral 194 2 2 http://cs.joensuu.fi/sipu/datasets

Path-based1 300 2 3 http://cs.joensuu.fi/sipu/datasets/

3-Spiral 312 2 3 http://cs.joensuu.fi/sipu/datasets

Aggregation 788 2 7 http://cs.joensuu.fi/sipu/datasets

Girl 93000 2 9 http://ee.sharif.edu/~acl/Projects

Haberman 306 3 2 http://sci2s.ugr.es/keel/category.php?cat=clas#sub2

Iris 150 4 3 http://sci2s.ugr.es/keel/category.php?cat=clas#sub2

Appendicitis 106 7 2 http://sci2s.ugr.es/keel/category.php?cat=clas#sub2

Wisconsin 683 9 2 http://sci2s.ugr.es/keel/category.php?cat=clas#sub2

Wine 178 13 3 http://sci2s.ugr.es/keel/category.php?cat=clas#sub2

Table 4: The comparison of NAALM, ALM, ANFIS and MLP based on accuracy. Acc: Accuracy, Par: Number of partitions, Res: Quantization levels, R: Ink

radius in IDS, Ir: Smoothing radius of NAIDS, α and ω learning coefficients, MFs: Number of membership function, Ep: Epochs, Top: Topology of network, Lr:

Learning rate.

Alg./Dataset Banana 2-Spiral Path-based1 3-Spiral Haberman Appendicitis Wisconsin Wine

ALM

Acc 89.88 ± 𝟏. 𝟖𝟗 𝟏𝟎𝟎 ± 𝟎. 𝟎 𝟗𝟖. 𝟖𝟖 ± 1.85 99.67 ± 𝟎. 𝟑𝟕 74.07 ± 6.89 88.05 ± 6.85 𝟗𝟕. 𝟑𝟕 ± 1.51 98.32 ± 2.39

Par 10,10 13,13 9,9 10,10 4,3,3 1,1,2,1,1,1,2 1,1,1,1,1,4,1,1,1 2,1,3,3,1,1,3,1,1,1,1,1,1

Res 160 × 160 256 × 256 90 × 90 128 × 128 200 × 200 128 × 128 128 × 128 128 × 128

R 16 10 20 18 6 12 12 7

NAALM

Acc 𝟖𝟗. 𝟗𝟐 ± 2.87 𝟏𝟎𝟎 ± 𝟎. 𝟎 98.56 ± 2.45 𝟗𝟗. 𝟕𝟎 ± 0.96 73.44 ± 6.74 88.22 ± 6.97 97.13 ± 1.21 98.86 ± 2.41

Par 10,10 13,13 9,9 10,10 4,3,3 1,1,2,1,1,1,2 1,1,1,1,1,4,1,1,1 2,1,3,3,1,1,3,1,1,1,1,1,1

Res 140 × 140 256 × 256 90 × 90 100 × 100 150 × 150 128 × 128 160 × 160 128 × 128

𝑰𝒓 14 9 22 24 6 12 12 7

⍺. 0.19 0.47 0.42 0.36 0.31 0.45 0.32 0.39

𝝎. 0.39 0.89 0.68 0.96 0.37 0.87 0.74 0.88

ANFIS

Acc 73.21 ± 2.06 75.29 ± 9.23 98.33 ± 2.36 99.69 ± 0.99 77.11 ± 7.12 𝟗𝟔. 𝟔𝟒 ± 𝟏. 𝟗𝟔 89.80 ± 𝟎. 𝟔𝟓 𝟏𝟎𝟎 ± 𝟎. 𝟎

MFs genfis1/3 genfis2/- genfis1/3 genfis3/- genfis2/- genfis2/- genfis2/- genfis2/-

Ep 800 1000 350 400 200 400 300 70

MLP

Acc 74.34 ± 2.73 40.94 ± 13.41 96.67 ± 2.22 97.81 ± 4.18 77.33 ± 6.44 88.36 ± 3.18 94.44 ± 1.24 98.83 ± 2.29

Top 2-18-2 2-130-1 2-27-3 2-18-3 3-4-2 7-15-2 9-30-2 13-22-3

Ep 200 1000 50 500 100 50 200 100

Lr 0.04 0.05 0.07 0.04 0.03 0.04 0.06 0.05

 In Tables 2 and 4, in Wine, Aggregation and 3-Spiral datasets, the accuracies of all algorithms are high because of proper

distance between classes. In Banana and Iris datasets, because of close classes, partitioning the inputs in ALM and AALM does

not improve the accuracy, and hence the classification accuracy has an upper bound such as MLP and ANFIS. In 2-spiral dataset,

it needs an algorithm to learn a highly non-linear separation, partitioning the input domain in NAALM and ALM improves the

accuracy compared to other methods. MLP has low accuracy due to the non-linearity of the data as well as the low number of

training data. In Path-based1 dataset just like 2-Spiral, it needs an algorithm to learn a non-linear separation. The Haberman

dataset is imbalanced, and because the ranges of some inputs are almost the same and they are in integer form, classes are found

to be close to each other. In Appendicitis dataset, as the sample are in real form, ranges of all inputs are the same, and samples of

each class are positioned in the same distance to each other, IDS operator of ALM and smoothing operator of NAALM does not

considerably improve the accuracy, and eventually results in close classes. In Wisconsin, ALM algorithm has the highest

accuracy. All algorithms have high precision in the Girl dataset (accuracy> % 98.1). A large number of samples in this dataset

encountered the lack of memory and time processing (computational cost) in many algorithms. In this dataset, due to the large

number of samples, the MLP and ANFIS algorithms encountered time processing problem because of their computational nature.

As reported in the Table 2, NAALM was much faster than ALM and other algorithms. Therefore, in all datasets reported, the

distribution of classes is the important factor in determining the accuracy of algorithms. Therefore, the proposed algorithm shows

the same or in some cases better performance as the original ALM in function modeling and classification.

 Noise is one of the major challenges in the domain of soft computing. The noise resistance of the different algorithms was

compared and the results are shown in Fig. (8-a). The percentage of applied noise was determined by (20):

𝑥𝑛𝑜𝑖𝑠𝑦 = 𝑥 + 𝑛̃𝑝 , 𝑛̃𝑝 =
𝑥 × 𝑛̃ × 𝑝

100
, (22)

where 𝑝 is the noise percentage, 𝑛̃ is a uniform random number between -1 and 1 and 𝑥 is the training data point. Actually, in

(22) randomly displaces training data points as a percentage of their own values.

(a) (b)

A
cc

u
ra

cy

Fig. 8. (a) PCC comparison between NAALM, ALM, ANFIS, and MLP in the Aggregation dataset with respect to different percentages of applied noise. The

values of the parameters are equal to the values stated in the Table 2. (b) The convergence speed of NAALM and ALM in approximating function Y1. The values

of the parameters are equal to the value stated in the Table 1.

 The IDS operator and smoothing operator are comparable to the Gaussian noise that is added to the data in the training process.

In this regard, the NAALM performance is similar to that of the other algorithms in terms of noise immunity. Additionally, the

ALM and NAALM algorithms have less variation (more convergence stability) than ANFIS and MLP. In ANNs, depending on

the initial values of weightings, different results may be obtained (producing different output weighted matrixes) and the training

times might also be different. ALM and NAALM, however, are always stable and their answers converge to the almost same

result. In order to compare the convergence speed of NAALM, ALM, ANFIS and MLP, function 𝑌1 is considered. Fig. (8-b)

compares the convergence speed with respect to the number of training samples. Fig. (8-b) shows the average processing time

for 20 execution of each algorithm. NAALM is faster than ALM, because the calculations associated with the feature extraction

has been avoided (its mathematical simplicity), moreover, for the test data the algorithm should read the memory vectors.

4. HARDWARE IMPLEMENTATION (EXPERIMENTAL RESULTS) ON FPGA

 The building of a digital architecture in FPGA in which to implement the proposed algorithm was therefore another of this

paper’s objectives. In applications where online training is required, training time is often a critical parameter and speeding it up

is very desirable. The main reason for realizing algorithms on FPGA is to find a solution set very fast. In this section, the

hardware implementation of the proposed algorithm is presented in more detail. To implement the algorithm, the aforementioned

equations in (14) and (15) had to be implemented. As is well known, multipliers are complicated modules (in terms of area,

latency, and power consumption) and should be avoided as much as possible. The implementation was designed with a view to

reducing multipliers in all of its steps. The implementation has been verified in several steps including MATLAB simulation,

HDL based simulation, and ChipScope analyzer. The structure of the proposed hardware is shown in Fig. 9.

 In Fig. (9-a), inputs 𝑥 and output 𝑦 are 8-bit integers. To choose the planes, two 4-bit integers called Sel_11 and Sel_12 were

used to enable the IDS planes of 𝑥1 using a priority decoder, and another two 4-bit integers called Sel_21 and Sel_22 were used

to enable the IDS planes of 𝑥2 using a priority decoder. A single (learning) bit was used to distinguish between training mode

and test mode. Each IDS plane had a separate FSM (Finite State Machine) and memory controller. In practice, each data point

was often mapped to more than one plane (the maximum number of active planes being four), and parallelization of the

algorithm in simultaneously updating multiple planes was considered useful. The proposed hardware can work in serial mode or

parallel mode (higher speed but more resources employed). In serial mode, only one plane is active, but in parallel mode up to

four planes are active. The inference block was the defuzzifier subsystem which, in the test phase, uses DSP blocks to compute

the weighted sum of Narrow Path and Belief values, and transfers to output (delivering a crisp output). The input control signal

and the inputs are generated by using any type of programmable hardware, e.g., a microcontroller, DSP or any processor and this

part is not discussed. In this implementation, the communication overhead cost between the CPU and FPGA is low and a good

option is to have a System-on-Chip which includes FPGA and processors in the same chip.

 Fig. (9-b) shows the FSM diagram, where controlling signals were generated to control the sequence of updating and

appropriate communication with Block RAMs. This FSM had four working states: Idle (I), Begin (B), Reading (R), and Writing

(W). In the Idle state, output was shown and no training was performed. In this state, the RAM block had time to call 𝑦 values.

When the learning signal was activated, the machine went into the Begin state. In this state, yerror(𝑦𝑠 − 𝑣𝑁𝑃), as mentioned in

(14), was computed and stored. In the Reading state, current values of cells were read from the memory. New memory values

were then computed, and when the writing signal was activated the writing process was performed.

 Fig. (9-c) shows the algorithm’s memory vector (descriptive vector) structure. Keeping two lines of 256-bits memory vectors

(the length of memory vectors depends on assumed resolution) with Byte access requires considerable resources and its

implementation is not practically feasible, especially when more than one plane is required. Two blocks of RAM were therefore

used to improve the speed. This meant that one clock cycle was needed for reading and providing data. Dual-Port RAM blocks

were chosen for this purpose that, in any time two cell of RAM update (the address line of Address_A/B, as shown in Fig. 9).

This part included two parallel processes of 𝑣BL and 𝑣NP. Memory vector 𝑣BL was stored as a fixed-point number with 9 bits for

the whole part and 3 bits for the fractional part. Memory vector 𝑣NP was stored as a fixed-point number with 11 bits for the

whole part and 3 bits for the fractional part. This choice was made to reduce the FPGA’s resource consumption. The fractional

part was used to show numbers between zero and one which are made by α and 𝜔.

IDLE(I)
(00)

FSM

READ(R)
(10)

WRITE(W)
(11)

RAM
(NP)

Memory(IDS planes)

FSM

Input for train
(x1,x2,y)

Memory
Controller

NAIDS1n

FPGA Unit(System block diagram)

Output(y)

Memory Units
8 bit

Inference
unit

1 bit

Learning

NPs

BLs

(a) (b)

BEGIN(B)
(01)

Counter≠Ir+1

Co
un

te
r=

Ir
+1

Learning

Learning

(c)

3 line

+

M
u

x

00

11

01

10

Under flow A/BOver flow A/B

11'b00000000000

11'b11111111111

11

11

NP A/B

13Address A/B

W_E A/B

RAM
(SP)

+
9

9

BL A/B13

α

Address_A/B

W_E A/B

3

+ M
u

x

C
o

m
p

ar
at

o
r

Data Path

FF

Clk

Q

Y

-NP A/B

State=BEGIN

0

1

× M
u

x

FF

Clk

Q

State=READ

0

1
[Ir+1-Counter]

M
u

x

0

1

C
o

m
p

ar
at

o
r

AND

α

α

Ir

-Ir

(d)

Memory Controller

(e)

FF

Clk

Q

Address_A

M
u

x

I

W

B

R

State

+
1

X

FF

Clk

Q

Address_B

M
u

x

I

W

B

R

State

+
-1

X

FF

Clk

Q

W_E_A/B

M
u

x

I

W

B

R

State

0

Over flow A/B

FF

Clk

Q

Counter

M
u

x

I

W

B

R

State

+
1

0

Core

.
 .

 .

Sel_11

En

En

4 bit

8 bit

.
 .

 .

NAIDS2n

(1)

(2)

(3)

(1)

(2)

(3)

(4)

(1)

(2)

13

13 3

1

11

11

11'b00000000000

Sel_12

4 bit

Sel_21

4 bit

Sel_22

4 bit

4

4

4

4

ink

α ink

low

 high

Y
error

Y
error

Y
error

α
error

α
error

α
 high

1

3

Reset

Fig. 9. Structure of the hardware realization of NAALM. (a) Block diagram of the hardware. (b) FSM diagram. (c) Addressing the memory. (d) Data path. (e)

Signaling and memory controller.

 In Fig. (9-c), the results produced in the next training step were added to the values previously stored in the memory. In the

𝑣NP memory vector, the role of the multiplexer in the input of the memory was to feed the output of the adder (final summation

result) as input to the RAM block and to compare overflow and underflow. When either of these states occurred, the input would

be replaced with, respectively, zero and 256 − 1/8 (the smallest and largest numbers that can be shown in the fixed-point

standard). Since Belief was updated with small steps, there was no need for such consideration. The memory length for 𝑘 planes

was 256 × 𝑘. En was the enable signal for the RAM block and W_E was the enable writing signal. The control logic block was

responsible for asserting these enable signals for the RAM block. Address_A and Address_B are the address lines for updating

the cells that had to be updated.

 As can be seen in Fig. (9-d), the process of updating the value of the memory vectors consisted of three steps. First, in the

Begin state, the y value of the input was subtracted and yerror value was computed (in part (d-1)). Secondly, in part (d-2), αerror

or αℎ𝑖𝑔ℎ[Ir + 1 − counter] × yerror in the Read state was computed (𝐼𝑟 is the smoothing radius as in (14)). α and g(u) were

expressed as a single term α × g(u), so to avoid a multiplier, the values of α × g(u) for both values of α1and α2(respectively

called 𝛼𝑙𝑜𝑤and 𝛼ℎ𝑖𝑔ℎwith values 0.875 and 0.25) were stored as a 3-bit array with length Ir + 1. Finally, in part (d-3), two

comparators and an AND gate checked the condition |yerror| < Ir for choosing α between αhigh and αlow for use in the Belief

memory vector. In our hardware implementation, because of the linearity and simplicity of the computing operations, a linear

smoothing operator (2-D Pyramid) was used. Since 𝑔(𝑢) is symmetric, it was sufficient to store just one half of its value.

 The unit shown in Fig. (9-e) was responsible for generating addressing signals. Signals Address_A and Address_B were

signals connected to memory ports A and B, which updated two cells of the memory vectors each time by entering the Write

state. In part (e-1), first the x value fed into Address_A and in next clock cycle, 𝑥 added to one and this process controlled by

multiplexer (for signal Address_B is the same as part (e-1)). The two ports’ write enable signals were activated in the Read state

and deactivated in the Write state. In part (e-3), the multiplexer’s role was to choose W_E_A/B activation signals for writing. In

part (e-4), the counter counted the number of write processes. Because in each update of the planes, 2 ∗ 𝐼𝑟 + 1 cells had to be

updated or the dual-port memory had access to up to two cells, for a complete update 𝐼𝑟 + 1 write processes were required in the

memory. The counter counted 𝐼𝑟 + 1 write processes and then returned to the Idle state. In the Idle state all parameters were

returned to their initial values. Each updating needed 𝐼𝑟 + 1 clocks for reading and 𝐼𝑟 + 1 clocks for writing, so each learning

epoch took 2 ∗ 𝐼𝑟 + 2 clocks. With regard to the symmetry of 𝑔(𝑢), by appropriately choosing to update 2 ∗ 𝐼𝑟 + 1 cells of

memory (from the middle, in two directions), the number of multipliers could be reduced to a signed 4-bit multiplier and 9-bit

multipliers. As shown in the Fig. 9, all the values were stored in Flip Flops (FFs. /Registers).

4.1. Hardware Results

 All the materials discussed in the previous section were implemented in serial mode and parallel mode on Spartan-6 FPGA

Node-Board, Xilinx Spartan-6 series XC6SLX150T[62] and XC6SLX16 using Verilog synthesis. To demonstrate the proposed

method, the software simulation and hardware implementation results are compared in Fig. 10 and Table 5. Fig.)10-a) and Fig.

)10-b) show the learned pattern and the convergence of Narrow Path and Belief for function Y1 for X1 − Y sub-space. As can be

seen, the result of the proposed algorithm based on the MATLAB simulation perfectly similar to that obtained in the FPGA

implementation, meaning that the hardware implementation was realized perfectly. The comparison of hardware and software

results is presented in the Table 5. As can be seen from Table 5, the FPGA implementation of NAALM achieved high precision

in approximating functions. According to the results, the speed obtained in the FPGA implementation was so higher than that

obtained in the software implementation. The comparison between software simulation and hardware implementation is reported

only for reference and just to show there is no mistake.

VBL

V
NP

PCC=0.9963 PCC=0.9941

(a) (b)

Fig.10. Comparison of proposed algorithm (NAIDS) based on PCC metric, between MATLAB simulation and FPGA implementation in the same condition. (a)

Convergence of 𝑣𝑁𝑃 memory vector. (b) Convergence of 𝑣𝐵𝐿 memory vector. Training sample size is 1000 and the parameter settings are as follows: Ir = 6, ω =

0.875, ⍺ = 0.25. In this example, there were no fuzzy partitioning points for function Y1 and x1 − y subspace.

 Table 5: Comparison between the results obtained by our proposed hardware in an FPGA parallel implementation with those obtained in a software-based

simulation of NAALM based on FVU and PCC metrics. In NAALM, ⍺ = 0.25, ω = 0.875 , Ir = 6 and The partitioning points in the input domain in Y1 are 10

for x1 and x2, and in Y2 8 for x1 and 12 for x2. The training sample size for all algorithms is 1000. Each algorithm was repeated 20 times and the average

reported.

Function

Software simulation

(based on MATLAB)

Hardware implementation

(based on FPGA XC6SLX150T)

FVU PCC Time(s) FVU PCC Time(s)

𝒀𝟏 0.0278 ± 0.0084 0.9884 ± 0.0067 0.0681𝑠 0.0295 ± 0.0071 0.9871 ± 0.0076 118 𝜇𝑠
𝒀𝟐 0.0335 ± 0.0072 0.9869 ± 0.0073 0.0719𝑠 0.0344 ± 0.0069 0.9855 ± 0.0059 118 𝜇𝑠

 The structure of the proposed algorithm is fully compatible with FPGA constraints. For resource utilization, Table 6 provides

resources including (percentage of resources) and the maximum working frequency reported by Xilinx Synthesis Technology

(XST) to synthesis the HDL codes on Spartan-6 with timing constraints (Post-place and Route (PAR)). In this table, we compare

the resources used in the hardware implementation of the proposed algorithm with those used by other algorithms (other articles)

and the results in different families of Xilinx are summarized. Because the amount of resources consumed by the proposed

algorithm is very low, for this reason, we compared with small networks of ANFIS and MLP.

 As can be seen in Table 6, the proposed algorithm was implemented in serial mode and parallel mode on two devices from the

Spartan-6 family. With parallel implementation, a higher speed was achieved, but this also imposed higher resource

requirements. We used two kinds of implantation: one with an inference block (defuzzifier subsystem) and one without. We

compared the hardware resources needed by other implementations of ANFIS, MLP and with a previous implementation of

ALM in many different structures and for various applications.

 In Table 6, the second column is the FPGA family and the third column is learning capability, i.e., whether the hardware is

learnable or not. When the training phase of the system is on-chip, the proposed architecture does not need to include the training

process in software environment, and all the parameters are fixed during system operation. Logic elements were reported. Logic

resource utilization included FFs, LUTs, occupied Slices, and RAM blocks for storing memory vectors. For a fair comparison,

small MLP and ANFIS networks were chosen, the results showing great optimization in term of resources. In comparison with

the other implementations, the proposed hardware used fewer resources. In serial mode, the proposed hardware was able to work

with a clock frequency of 156.54 MHz (with a critical path of 6.39 ns), and in parallel mode it was able to work with a clock

frequency of 136.63 MHz (with a critical path of 7.32 ns). This is faster than the previous implementation. The results show that,

due to its fast response time, the system is suitable for real-time applications. Apart from its higher speed, the proposed algorithm

also has a lower area.

Table 6: The results of hardware realization of NAALM on Xilinx Spartan-6 series, showing. The resources required (utilization) for the proposed algorithm, in

both serial and parallel modes. Reported quantities are compared for FPGA implementation of ALM, NAALM, ANFIS, and MLP algorithms. Working

frequencies, learning times, occupied slices, etc. are also compared. Using different families is only for indication the low cost of the proposed algorithm.

Algorithm
FPGA

Chip

Hardware

Learning

Capability

Application

/Topology

Resources

FFs LUTs
Occupied

Slices

BRAM

8/16

Clock

Frequency

(MHz)

Mean

Learning

Time Per

data

Time for

Test

Data

Traditional ALM

Cyclone II

2C35F672C6

Yes 1-IDS-Plane -
795

(≈3%)
- -

130.13
(7.68 ns)

115.8 ns -

Pipeline

Traditional ALM

(10 Stage)

Yes 1-IDS-Plane -
6805
(23%)

- -
43.48

(23 ns)
14.48 ns -

Serial NAALM

Spartan-6

XC6SLX150T

Yes
Function
Modeling

(20-IDS-Plane)

51
(<1%)

158
(<1%)

57
(<1%)

9 RAM
16B (3%)

156.54
(6.39 ns)

408.8 ns 6.39 ns

Serial NAALM

with

defuzzification

Yes
Function
Modeling

 (20-IDS-Plane)

92
(<1%)

665
(<1%)

99
(<1%)

9 RAM
16B (3%)

145.92
(6.85)

438.6 ns 68.5 ns

Parallel NAALM Yes
Function
Modeling

 (20-IDS-Plane)

376
(<1%)

2572
(2.8%)

920
(4%)

40 RAM
8B (7%)

136.63
(7.32 ns)

117.1 ns 7.32 ns

parallel NAALM

with

defuzzification

Yes
Function
Modeling

 (20-IDS-Plane)

384
(<1%)

3061
(3.3%)

1146
(5%)

40 RAM
8B (7%)

135.78
(7.37 ns)

117.8 ns 59.0 ns

Serial NAALM

Spartan-6

XC6SLX16

Yes
Function
Modeling

 (20-IDS-Plane)

51
(<1%)

158
(1.7%)

66
(2.9%)

9 RAM
16B(28%)

151.19
(6.61 ns)

423.3 ns 6.61 ns

Serial NAALM

with

defuzzification

Yes
Function
Modeling

 (20-IDS-Plane)

92
(<1%)

665
(7.3%)

248
(11%)

9 RAM
16B(28%)

139.53
(7.17 ns)

458.7 ns 71.7 ns

Parallel NAALM Yes
Function
Modeling

 (20-IDS-Plane)

376
(2.1%)

2563
(28%)

911
(40%)

40 RAM
8B (63%)

132.77
(7.53 ns)

120.5 ns 7.53 ns

Parallel NAALM

with

defuzzification

Yes
Function
Modeling

 (20-IDS-Plane)

383
(2.1%)

3062
(34%)

1107
(49%)

40 RAM
8B (63%)

130.29
(7.68 ns)

122.9 ns 53.7 ns

ANFIS in [63]
Spartan-3

XC3S200
No

Function
Modeling
(3 MFs in
variables)

881
(22%)

2042
(53%)

1100
(57%)

-
50

(20 ns)
- 15 𝜇𝑠

ANFIS in [21]
Spartan-3

XC3S200
No

Function
Modeling
 (3 MFs in
variables)

674
(17%)

1457
(37%)

762
(39%)

-
50

(20 ns)
- 8 𝜇𝑠

ANFIS in [64]
Spartan-6

XC6SL45
No

Controller

(3 MFs in
variables)

-
936
(3%)

446
(6%)

21 RAM
16B(17%)

- - 75 ns

MLP in [65]
Virtex 2

pro
Yes

XOR problem
 (1-2-1)

544
(2%)

635
(2.3 %)

578
(4.2%)

2 RAM
16B(2%)

82.96
 (12 ns)

- -

MLP in [66]
Virtex 2

X2V250FG
Yes

XOR problem
 (2-6-2-2)

846
(27%)

1931
(55%)

1299
(84%)

8 RAM
16B(33%)

41.55
 (24 ns)

0.78 𝜇𝑠 0.18 𝜇𝑠

MLP in [22]
Virtex-5

Xc5vsx50t
Yes

Spectrometry
 (10-3-1)

2243
(6%)

8043
(24 %)

489
(6%)

- - - -

MLP in [29]
Virtex

XCV400hq240
No

Estimator
 (8-5-5-3)

2558
(26%)

 5460
(56 %)

2993
(62%)

2 RAM
 (20 %)

73
(13.69 ns)

- -

MLP in [67]
Spartan-6

AC6SLX150T
No

Classification
 (9-9-6)

4239
(2.3 %)

 2226
(2.4 %)

-
34 RAM
8B(6 %)

100
(10 ns)

- 1 𝜇𝑠

 As can be seen, the proposed hardware reduced the time required for training compared to previous hardware solutions. In the

training phase, the “Mean learning time per data” is the time the hardware needs to update the block RAMs. When the training

phase is complete, in the test phase, the “Time for test data” is the time needed to read the memory vectors and the available

output for the input test data. As can be seen in the table, the hardware implementation of the proposed algorithm was faster than

that of all the other algorithms because it required no complex computation.

 The MLP and ANFIS training process was based on least square methods, which are computationally expensive. Both MLP

and ANFIS are multiplication rich by nature, and they use a lot of FPGA resources. As can be seen, the ANFIS implementation

is not on-chip training and only some of the MLP implementation are on-chip training. This is fine for solving simple problems

(in small neural networks) but is unusable for real life solutions. In contrast, the proposed algorithm is on-chip training and

online learning, because it is non-iterative and has less hardware. In fact, the algorithm has simple computations, such as

summation, subtraction, and multiplication.

 Our proposed algorithm eliminates some of the drawbacks that afflict traditional ALM implementations on VLSI circuits. This

novel digital structure has more flexibility and scalability than previous architectures and other algorithms. To date, almost all

hardware that has been proposed has been offline, and training phase has been conducted in software, with the results being

implemented on hardware. Consequently, one of the most important advantages of the proposed algorithm (the main contribution

of the paper) is that its hardware implementation is capable of on-chip training for applications with time variant parameters.

Regardless of the application, the only thing that has to be changed is the coefficient. There is no need to modify the structure (it

is easily scaled). Learnable hardware is essential for future intelligent systems. Ambient intelligence needs small embedded

systems (hardware implementation) able to learn dataset online with a large number of inputs, and also able to adapt themselves

to changing conditions.

5. CONCLUSION

 ALM is a computing tool based on brain simulation. Despite successful applications of this algorithm in various domains, its

IDS operations suffer from high computational costs. In this paper, a novel learning algorithm is proposed as an alternative to the

original method. The proposed algorithm makes use of describing vectors (memory vectors) for the IDS planes. This

modification has resulted not only in an acceptable level of performance, but also in considerable reduction of the hardware area.

Different simulations on real-world datasets showed that the proposed method is not only very effective, simple and fast, but also

just as accurate as other algorithms. In the FPGA implementations (the proposed hardware is described directly using Hardware

Description Language (HDL)) carried out as part of this study, the following criteria were taken into account; learning speed,

throughput, computational independence, memory requirement, output precision, element limitations, and scalability and

flexibility in an adaptive systems. Therefore, the proposed algorithm is the implementation of a complete fuzzy systems and it

can be implemented in any commercial FPGA or ASIC technology. The main advantage of the proposed algorithm and its

hardware is its online training capability (on-chip learning), which makes it suitable for time variant and real-time systems (due

to its fast response time, it has no limitations with regard to applications). In NAALM, inputs and output are fuzzy and in the

training phase, the vectors are updated in the same way as in the SOM (Self Organizing Map) algorithm described in (14). In

addition, by assuming an individual neuron for each quantization level, each input reinforces the weights of a set of neurons, as

happens when training SNNs. Ultimately; the proposed method can be considered as a neuro-fuzzy system linking up the two

domains of ANNs and fuzzy systems. The proposed algorithm scales well in dataset with very large number of samples due to

low memory requirement and computational nature. Unlike other algorithms, in dealing with datasets that require more neurons

to increase accuracy, the proposed method is able to easily learn these datasets and does not require increasing hardware volume.

However, in dataset with large number of features, NAALM (like ALM) suffers from the complexity. In this regard, further

research is required to find a novel approach (using a matrix memory instead of using memory vectors in learning phase or

proposing an algorithm that does not need to split system). The MATLAB codes and Verilog codes of the FPGA circuits used

are available as supplementary material for download.

Compliance with Ethical Standards

Conflict of interest The authors declare that they have no conflict of interest.

Acknowledgments

 The authors would like to thank Mohsen Firouzi and Menoa Keshishian for their generous contribution to our analysis. This

work was partially supported by the INSF (Iran National Science Foundation) grant number 96000943.

REFERENCES

[1] Tsoukalas, L.H. and R.E. Uhrig, Fuzzy and neural approaches in engineering. 1996: John Wiley & Sons, Inc.

[2] Samarasinghe, S., Neural networks for applied sciences and engineering: from fundamentals to complex pattern recognition. 2006: CRC Press.

[3] Zadeh, L.A., Fuzzy sets. Information and control, 1965. 8(3): p. 338-353.

[4] Zadeh, L.A., Outline of a new approach to the analysis of complex systems and decision processes. IEEE Transactions on systems, Man, and

Cybernetics, 1973(1): p. 28-44.

[5] Widrow, B., D.E. Rumelhart, and M.A. Lehr, Neural networks: applications in industry, business and science. Communications of the ACM, 1994.

37(3): p. 93-106.

[6] Basheer, I. and M. Hajmeer, Artificial neural networks: fundamentals, computing, design, and application. Journal of microbiological methods, 2000.

43(1): p. 3-31.

[7] Ukil, A., Intelligent systems and signal processing in power engineering. 2007: Springer Science & Business Media.

[8] Paliwal, M. and U.A. Kumar, Neural networks and statistical techniques: A review of applications. Expert systems with applications, 2009. 36(1): p.

2-17.

[9] Haykin, S., Neural Networks: A Comprehensive Foundation: Macmillan College Publishing Company. New York, 1994.

[10] Park, B.-J., W. Pedrycz, and S.-K. Oh, Polynomial-based radial basis function neural networks (P-RBF NNs) and their application to pattern

classification. Applied Intelligence, 2010. 32(1): p. 27-46.

[11] Sun, X.-y., et al., Improved probabilistic neural network PNN and its application to defect recognition in rock bolts. International Journal of Machine

Learning and Cybernetics, 2016. 7(5): p. 909-919.

[12] Bezdek, J.C., Fuzzy mathematics in pattern classification. 1973.

[13] Mamdani, E.H., Application of fuzzy algorithms for control of simple dynamic plant. Electrical Engineers, Proceedings of the Institution of, 1974.

121(12): p. 1585-1588.

[14] Takagi, T. and M. Sugeno, Fuzzy identification of systems and its applications to modeling and control. IEEE transactions on systems, man, and

cybernetics, 1985(1): p. 116-132.

[15] Tanaka, K. and H.O. Wang, Fuzzy control systems design and analysis: a linear matrix inequality approach. 2004: John Wiley & Sons.

[16] Terano, T., K. Asai, and M. Sugeno, Applied fuzzy systems. 2014: Academic Press.

[17] Bosque, G., I. del Campo, and J. Echanobe, Fuzzy systems, neural networks and neuro-fuzzy systems: A vision on their hardware implementation and

platforms over two decades. Engineering Applications of Artificial Intelligence, 2014. 32: p. 283-331.

[18] Singh, P., A brief review of modeling approaches based on fuzzy time series. International Journal of Machine Learning and Cybernetics, 2017. 8(2):

p. 397-420.

[19] Misra, J. and I. Saha, Artificial neural networks in hardware: A survey of two decades of progress. Neurocomputing, 2010. 74(1): p. 239-255.

[20] Monmasson, E., et al., FPGAs in industrial control applications. IEEE Transactions on Industrial informatics, 2011. 7(2): p. 224-243.

[21] Saldaña, H.J.B. and C.S. Cárdenas. Design and implementation of an adaptive neuro-fuzzy inference system on an FPGA used for nonlinear function

generation. in ANDESCON, 2010 IEEE. 2010.

[22] Gomperts, A., A. Ukil, and F. Zurfluh, Development and implementation of parameterized FPGA-based general purpose neural networks for online

applications. IEEE Transactions on Industrial Informatics, 2011. 7(1): p. 78-89.

[23] Eldredge, J.G. and B.L. Hutchings. RRANN: a hardware implementation of the backpropagation algorithm using reconfigurable FPGAs . in Neural

Networks, 1994. IEEE World Congress on Computational Intelligence., 1994 IEEE International Conference on . 1994.

[24] Yun, S.B., et al. Hardware implementation of neural network with expansible and reconfigurable architecture . in Neural Information Processing,

2002. ICONIP'02. Proceedings of the 9th International Conference on. 2002. IEEE.

[25] del Campo, I., et al., Efficient hardware/software implementation of an adaptive neuro-fuzzy system. IEEE Transactions on Fuzzy Systems, 2008.

16(3): p. 761-778.

[26] Baptista, F.D. and F. Morgado-Dias, Automatic general-purpose neural hardware generator. Neural Computing and Applications, 2017. 28(1): p. 25-

36.

[27] Lacey, G.J., Deep Learning on FPGAs. 2016.

[28] Ortega-Zamorano, F., et al., Layer multiplexing FPGA implementation for deep back-propagation learning. Integrated Computer-Aided Engineering,

2017. 24(2): p. 171-185.

[29] Himavathi, S., D. Anitha, and A. Muthuramalingam, Feedforward neural network implementation in FPGA using layer multiplexing for effective

resource utilization. IEEE Transactions on Neural Networks, 2007. 18(3): p. 880-888.

[30] Ortega-Zamorano, F., et al., Efficient implementation of the backpropagation algorithm in fpgas and microcontrollers. IEEE transactions on neural

networks and learning systems, 2016. 27(9): p. 1840-1850.

[31] Soudry, D., et al., Memristor-based multilayer neural networks with online gradient descent training. IEEE transactions on neural networks and

learning systems, 2015. 26(10): p. 2408-2421.

[32] Ortigosa, E.M., et al., Hardware description of multi-layer perceptrons with different abstraction levels. Microprocessors and Microsystems, 2006.

30(7): p. 435-444.

[33] Shouraki, S.B., A novel fuzzy approach to modeling and control and its hardware implementation based on brain functionality and specifications.

2000.

[34] Sugeno, M. and T. Yasukawa, A fuzzy-logic-based approach to qualitative modeling. IEEE Transactions on fuzzy systems, 1993. 1(1): p. 7-31.

[35] Murakami, M. and N. Honda, A study on the modeling ability of the IDS method: A soft computing technique using pattern-based information

processing. International journal of approximate reasoning, 2007. 45(3): p. 470-487.

[36] Bahrpeyma, F., A. Zakerolhoseini, and H. Haghighi, Using IDS fitted Q to develop a real-time adaptive controller for dynamic resource provisioning

in Cloud's virtualized environment. Applied Soft Computing, 2015. 26: p. 285-298.

[37] Sakurai, Y., A study of the learning control method using PBALM-a nonlinear modeling method. PhD, The University of Electro-Communications,

Tokyo, 2005.

[38] Shahdi, S.A. and S.B. Shouraki. Supervised active learning method as an intelligent linguistic controller and its hardware implementation . in 2nd

IASTEAD International Conference on Artificial Intelligence and Applications (AIA'02), Malaga, Spain . 2002.

[39] Shouraki, S.B. and N. Honda. Fuzzy controller design by an active learning method. in 31th Symposium of Intelligent Control. Tokyo, Japan. 1998.

[40] MURAKAMI, M., Practicality of modeling systems using the IDS method: Performance investigation and hardware implementation . 2008, The

University of Electro-Communications.

[41] Firouzi, M., S.B. Shouraki, and J. Conradt. Sensorimotor Control Learning Using a New Adaptive Spiking Neuro-Fuzzy Machine, Spike-IDS and

STDP. in International Conference on Artificial Neural Networks. 2014. Springer.

[42] Cranganu, C. and F. Bahrpeyma, Use of active learning method to determine the presence and estimate the magnitude of abnormally pressured fluid

zones: a case study from the Anadarko Basin, Oklahoma, in Artificial Intelligent Approaches in Petroleum Geosciences. 2015, Springer. p. 191-208.

[43] Merrikh-Bayat, F., F. Merrikh-Bayat, and S.B. Shouraki, The neuro-fuzzy computing system with the capacity of implementation on a memristor

crossbar and optimization-free hardware training. IEEE Transactions on Fuzzy Systems, 2014. 22(5): p. 1272-1287.

[44] Ghorbani, M.J., M.A. Choudhry, and A. Feliachi. Distributed multi-agent based load shedding in power distribution systems. in Electrical and

Computer Engineering (CCECE), 2014 IEEE 27th Canadian Conference on. 2014. IEEE.

[45] Shouraki, S.B., N. Honda, and G. Yuasa, Fuzzy interpretation of human intelligence. International Journal of Uncertainty, Fuzziness and Knowledge-

based Systems, 1999. 7(04): p. 407-414.

[46] Firouzi, M., S.B. Shouraki, and I.E.P. Afrakoti, Pattern analysis by active learning method classifier. Journal of Intelligent & Fuzzy Systems, 2014.

26(1): p. 49-62.

[47] Javadian, M., S.B. Shouraki, and S.S. Kourabbaslou, A novel density-based fuzzy clustering algorithm for low dimensional feature space. Fuzzy Sets

and Systems, 2016.

[48] Klidbary, S.H., et al. Outlier robust fuzzy active learning method (ALM). In: IEEE 2017, 7th International Conference on Computer and Knowledge

Engineering (ICCKE), pp. 347-352.

[49] Shahraiyni, T.H., et al., Application of the Active Learning Method for the estimation of geophysical variables in the Caspian Sea from satellite ocean

colour observations. International Journal of Remote Sensing, 2007. 28(20): p. 4677-4683.

[50] Sagha, H., et al. Real-Time IDS using reinforcement learning. in Intelligent Information Technology Application, 2008. IITA'08. Second International

Symposium on. 2008. IEEE.

[51] Merrikh-Bayat, F., S.B. Shouraki, and A. Rohani, Memristor crossbar-based hardware implementation of the IDS method. IEEE Transactions on

Fuzzy Systems, 2011. 19(6): p. 1083-1096.

[52] Shouraki, S.B., A novel fuzzy approach to modeling and control and its hardware implementation based on brain functionality and specifications.

2000.

[53] Shouraki, S.B. and N. Honda, Recursive Fuzzy Modeling Based on Fuzzy Interpolation. JACIII, 1999. 3(2): p. 114-125.

[54] Shouraki, S.B. and N. Honda. Outlines of a soft computer for brain simulation. in International Conference on Soft Computing

Information/Intelligence Systems. 1998.

[55] Bagheri, S. and N. Honda. Hardware simulation of brain learning process. in 15 Fuzzy Symposium. 1999.

[56] Murakami, M. and N. Honda. Hardware for a new fuzzy-based modeling system and its redundancy. in Fuzzy Information, 2004. Processing

NAFIPS'04. IEEE Annual Meeting of the. 2004. IEEE.

[57] Tarkhan, M., S.B. Shouraki, and S.H. Khasteh, A novel hardware implementation of IDS method. IEICE Electronics Express, 2009. 6(23): p. 1626-

1630.

[58] Rabaey, J.M., A.P. Chandrakasan, and B. Nikolic, Digital integrated circuits. Vol. 2. 2002: Prentice hall Englewood Cliffs.

[59] Firouzi, M., et al. A novel pipeline architecture of Replacing Ink Drop Spread. in Nature and Biologically Inspired Computing (NaBIC), 2010 Second

World Congress on. 2010. IEEE.

[60] Afrakoti, I.E.P., S.B. Shouraki, and B. Haghighat, An Optimal Hardware Implementation for Active Learning Method Based on Memristor Crossbar

Structures. IEEE Systems Journal, 2014. 8(4): p. 1190-1199.

[61] Afrakoti, I.E.P., A. Ghaffari, and S.B. Shouraki. Effective partitioning of input domains for ALM algorithm. in Pattern Recognition and Image

Analysis (PRIA), 2013 First Iranian Conference on. 2013. IEEE.

[62] Iakymchuk, T., et al. An AER handshake-less modular infrastructure PCB with x8 2.5 Gbps LVDS serial links. in Circuits and Systems (ISCAS), 2014

IEEE International Symposium on. 2014. IEEE.

[63] Saldaña, H.J.B. and C. Silva-Cárdenas. A digital hardware architecture for a three-input one-output zero-order ANFIS. in Circuits and Systems

(LASCAS), 2012 IEEE Third Latin American Symposium on. 2012. IEEE.

[64] Gómez-Castañeda, F., et al. Photovoltaic panel emulator in FPGA technology using ANFIS approach. in Electrical Engineering, Computing Science

and Automatic Control (CCE), 2014 11th International Conference on. 2014. IEEE.

[65] Bahoura, M. and C.-W. Park. FPGA-implementation of high-speed MLP neural network. in Electronics, Circuits and Systems (ICECS), 2011 18th

IEEE International Conference on. 2011. IEEE.

[66] Gironés, R.G., et al., FPGA implementation of a pipelined on-line backpropagation. Journal of VLSI signal processing systems for signal, image and

video technology, 2005. 40(2): p. 189-213.

[67] Echanobe, J., R. Finker, and I. del Campo. A divide-and-conquer strategie for FPGA implementations of large MLP-based classifiers. in Neural

Networks (IJCNN), 2015 International Joint Conference on. 2015. IEEE.

Appendix A. Proof of convergence

 As it has also been discussed, the training mode in the original ALM algorithm is batch-Mode, and in NAALM is Sample-

Mode. In order to prove the convergence of vNP vector, first, we show the change in one element of this vector for training

samples:

𝑣𝑁𝑃
𝐼

𝐾𝐼+1
= 𝑣𝑁𝑃

𝐼
0

+ 𝜔 × ∑ 𝑒
−

(𝐼−𝑥𝑡)2

2𝜎2

𝐾𝐼

𝑡=0

× (𝑦𝑡 − 𝑣𝑁𝑃𝑡

𝑥𝑡) (A .1)

 Where, (xt, yt) is training sample, I is the index of the vector for updating, K𝐼 is the total number of training samples in element

𝐼, 𝜔 is learning rate, xt is the input that vary between one and the quantization level of 𝑋 axis (L𝑥). For each training sample

associated with each quantization level, following equation holds:

(A . 2) 𝑘1 + 𝑘2 + ⋯ + 𝑘𝐿𝑥
= 𝐾

 𝐾 is the total number of training samples (number of iterations) in the IDS plane. For the benefit of simplicity and less

computations, if xt = I, the previous equation can be simplified:

(A . 3) 𝑣𝑁𝑃
𝐼

𝐾𝐼+1
= 𝑣𝑁𝑃

𝐼
0

+ 𝜔 × ∑

𝐾𝐼

𝑡=0

(𝑦𝑡
− 𝑣𝑁𝑃𝑡

𝐼)

 If we expand the summation, a recursive equation can be obtained as follows:

(A . 4) 𝑣𝑁𝑃
𝐼

𝐾𝐼+1
= (1 − 𝜔)𝑘𝐼+1 × 𝑣𝑁𝑃

𝐼
0

+ 𝜔 × ∑

𝐾𝐼

𝑖=0

(1 − 𝜔)𝑘𝐼−𝑖 ∗ 𝑦𝑖

 If KI ≫ 1, in the previous equation, the first term of the equation tends to zero, and by assuming m = kI − i, following

equation can be obtained:

(A . 5) 𝑣𝑁𝑃
𝐼

𝐾𝐼+1
= 𝜔 × ∑

𝑚

𝑖=0

(1 − 𝜔)𝑚 ∗ 𝑦𝑘𝐼−𝑚

 This equation shows that the final output of the algorithm converges to the weighted sum of outputs. With regard to forgetting

property introduced in the proposed method (NAALM), the impact of training samples that were shown later in the training

phase is higher than that of training samples that were shown to the algorithm earlier. It should be mentioned that because of the

fact that NAALM algorithm partition the inputs domains. Therefore, for the mentioned recursive algorithm, the standard

deviation of 𝑣𝑁𝑃
 is small and because the computations are conducted in the fuzzy space (space with uncertainty), the lack of

equivalency (the difference between Batch-Mode and Sample-Mode in training phase) do not significantly affect the final result.

 With regard to assumptions we made about the convergence of describing vectors, the value of degree of Belief would be:

(A . 6) 𝑣𝐵𝐿
𝐼

𝐾𝐼+1
= 𝑣𝐵𝐿

𝐼
0

+ ⍺

 If we expand the summation, a recursive equation can be obtained as follows:

𝑣𝐵𝐿
𝐼

𝐾𝐼+1
= 𝑣𝐵𝐿

𝐼
0

+ ∑ ⍺

𝐾𝐼

𝑖=0

 (A . 7)

 If KI ≫ 1, in the previous equation, following equation can be obtained:

𝑣𝐵𝐿
𝐼

𝐾𝐼+1
= 𝑣𝐵𝐿

𝐼
0

+ (𝐾𝐼 + 1) × ⍺ (A . 8)

 This equation shows that as the number of training samples (or the number of iterations) increases, the value of Belief

increases, and eventually our belief to the occurrence of that event converge to constant value (𝐾I < ∞ and ⍺ < 1).

