Skip to main content
Log in

A hybrid optimization approach based on clustering and chaotic sequences

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Evolutionary computation algorithms represent a class of stochastic methods that can be applied to a wide set of different complex optimization problems. Recently, the combination of approaches extracted from different computation techniques represents one of the most successful trends in evolutionary optimization. With this integration, the idea is to overcome the limitations of each single method and to reach a synergetic effect through their integration. In this paper, a hybrid optimization algorithm for solving optimization problems is introduced. The approach, called cluster–chaotic-optimization, combines the classification characteristics of a clustering method with the randomness of chaotic sequences to conduct its search strategy. Under the proposed method, at each generation, the population is divided into different clusters according to its space distribution. Then, individuals are modified considering two kinds of operators: intra-cluster and extra-cluster. In the intra-cluster operation, individuals of the same cluster are locally adjusted considering the position of the best element of the cluster in terms of its fitness value. On the other hand, in the extra-cluster operation, the best individual of each cluster is globally attracted to the best element of the complete population. In both operations, the adjustment on each individual position is produced by using deterministic rules and chaotic sequences. With such mechanisms, the proposed method efficiently examines the search space based on the spatial associations produced by the individuals during the optimization process. To exhibit the performance and robustness of the proposed method, different comparisons to other well-known evolutionary methods and hybrid approaches are conducted. The comparison considers several standard benchmark functions and real-world engineering problems which are typically found in the literature of evolutionary algorithms. The results suggest a high performance of the proposed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Yang X-S (2010) Engineering optimization: an introduction with metaheuristic applications. Wiley, New York

    Google Scholar 

  2. Pardalos PM, Romeijn HE, Tuy H (2000) Recent developments and trends in global optimization. J Comput Appl Math 124:209–228

    MathSciNet  MATH  Google Scholar 

  3. Cuevas E, Gálvez J, Hinojosa S, Avalos O, Zaldívar D, Pérez-Cisneros M (2014) A comparison of evolutionary computation techniques for IIR model identification. J Appl Math 2014:1–9

    Google Scholar 

  4. Ji Y, Zhang K-C, Qu S-J (2007) A deterministic global optimization algorithm. Appl Math Comput 185:382–387

    MathSciNet  MATH  Google Scholar 

  5. Holland JH (1975) Adaptation in natural and artificial systems. Univ. Michigan Press, Ann Arbor

    Google Scholar 

  6. Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Boston

    MATH  Google Scholar 

  7. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proc. IEEE int. conf. neural networks, vol 4, pp 1942–1948

  8. Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Comput. Eng. Dep. Eng. Fac. Erciyes Univ

  9. Yang X-S, Deb S (2009) Cuckoo search via Lévy flights. In: Proc. world congr. nat. biol. inspired comput. (NABIC’09), pp 210–214

  10. Birbil SI, Fang S-C (2003) An electromagnetism-like mechanism for global optimization. J Glob Optim 25:263–282

    MathSciNet  MATH  Google Scholar 

  11. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci (NY) 179(13):2232–2248

    MATH  Google Scholar 

  12. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11:341–359

    MathSciNet  MATH  Google Scholar 

  13. Hansen N (2006) The CMA evolution strategy: a comparing review. In: Lozano JA, Larrañaga P, Inza I, Bengoetxea E (eds) Towards a new evolutionary computation. Springer, Berlin, pp 75–102

    Google Scholar 

  14. Cui L, Li G, Lin Q, Du Z, Gao W, Chen J, Lu N (2016) A novel artificial bee colony algorithm with depth-first search framework and elite-guided search equation. Inf Sci (NY) 367–368:1012–1044

    Google Scholar 

  15. Cui L, Li G, Lin Q, Chen J, Lu N (2016) Adaptive differential evolution algorithm with novel mutation strategies in multiple sub-populations. Comput Oper Res 67:155–173

    MathSciNet  MATH  Google Scholar 

  16. Tan KC, Chiam SC, Mamun AA, Goh CK (2009) Balancing exploration and exploitation with adaptive variation for evolutionary multi-objective optimization. Eur J Oper Res 197(2):701–713

    MATH  Google Scholar 

  17. Alba E, Dorronsoro B (2005) The exploration/exploitation tradeoff in dynamic cellular genetic algorithms. IEEE Trans Evol Comput 9(2):126–142

    Google Scholar 

  18. Paenke I, Jin Y, Branke J (2009) Balancing population- and individual-level adaptation in changing environments. Adapt Behav 17(2):153–174

    Google Scholar 

  19. Cuevas E, Echavarría A, Ramírez-Ortegón MA (2014) An optimization algorithm inspired by the States of Matter that improves the balance between exploration and exploitation. Appl Intell 40(2):256–272

    Google Scholar 

  20. Bittner L (1962) R. Bellman, Adaptive control processes. A guided tour. XVI + 255 S. Princeton, N. J., 1961. Princeton University Press. Preis geb. $ 6.50. ZAMM Z Angew Math Mech 42(7-8):364–365

    Google Scholar 

  21. Bergstra J, Ca Y (2012) Random search for hyper-parameter optimization. J Mach Learn Res 13:281–305

    MathSciNet  MATH  Google Scholar 

  22. Blum C, Roli A (2008) Hybrid metaheuristics: an introduction. Springer, Berlin, pp 1–30

    MATH  Google Scholar 

  23. Blum C, Puchinger J, Raidl GR, Roli A (2011) Hybrid metaheuristics in combinatorial optimization: a survey. Appl Soft Comput 11(6):4135–4151

    MATH  Google Scholar 

  24. Grosan C, Abraham A (2007) Hybrid evolutionary algorithms: methodologies, architectures, and reviews. Springer, Berlin, pp 1–17

    Google Scholar 

  25. Ma H, Simon D, Fei M, Shu X, Chen Z (2014) Hybrid biogeography-based evolutionary algorithms. Eng Appl Artif Intell 30:213–224

    Google Scholar 

  26. Niknam T, Farsani EA (2010) A hybrid self-adaptive particle swarm optimization and modified shuffled frog leaping algorithm for distribution feeder reconfiguration. Eng Appl Artif Intell 23(8):1340–1349

    Google Scholar 

  27. Lai X, Zhou Y (2017) Success rates analysis of three hybrid algorithms on SAT instances. Swarm Evol Comput 34:119–129

    Google Scholar 

  28. Zhong F, Yuan B, Li B (2016) A hybrid evolutionary algorithm for multiobjective variation tolerant logic mapping on nanoscale crossbar architectures. Appl Soft Comput 38:955–966

    Google Scholar 

  29. Kao Y-T, Zahara E (2008) A hybrid genetic algorithm and particle swarm optimization for multimodal functions. Appl Soft Comput 8(2):849–857

    Google Scholar 

  30. Chaurasia SN, Singh A (2017) Hybrid evolutionary approaches for the single machine order acceptance and scheduling problem. Appl Soft Comput 52:725–747

    Google Scholar 

  31. Jin Y, Hao J-K (2016) Hybrid evolutionary search for the minimum sum coloring problem of graphs. Inf Sci (NY) 352–353:15–34

    MATH  Google Scholar 

  32. Wu Q, Wang Y, Lü Z (2015) A tabu search based hybrid evolutionary algorithm for the max-cut problem. Appl Soft Comput 34:827–837

    Google Scholar 

  33. Lim ZY, Ponnambalam SG, Izui K (2017) Multi-objective hybrid algorithms for layout optimization in multi-robot cellular manufacturing systems. Knowl Based Syst 120:87–98

    Google Scholar 

  34. Liu J, Zhang S, Wu C, Liang J, Wang X, Teo KL (2016) A hybrid approach to constrained global optimization. Appl Soft Comput 47:281–294

    Google Scholar 

  35. Mashwani WK, Salhi A, Yeniay O, Jan MA, Khanum RA (2017) Hybrid adaptive evolutionary algorithm based on decomposition. Appl Soft Comput 57:363–378

    Google Scholar 

  36. Lozano M, García-Martínez C (2010) Hybrid metaheuristics with evolutionary algorithms specializing in intensification and diversification: overview and progress report. Comput Oper Res 37(3):481–497

    MathSciNet  MATH  Google Scholar 

  37. Guo P, Cheng W, Wang Y (2017) Hybrid evolutionary algorithm with extreme machine learning fitness function evaluation for two-stage capacitated facility location problems. Expert Syst Appl 71:57–68

    Google Scholar 

  38. Dash R, Dash PK (2016) An evolutionary hybrid fuzzy computationally efficient EGARCH model for volatility prediction. Appl Soft Comput 45:40–60

    Google Scholar 

  39. Illias HA, Chai XR, Abu Bakar AH (2016) Hybrid modified evolutionary particle swarm optimisation-time varying acceleration coefficient-artificial neural network for power transformer fault diagnosis. Measurement 90:94–102

    Google Scholar 

  40. Verbiest N, Derrac J, Cornelis C, García S, Herrera F (2016) Evolutionary wrapper approaches for training set selection as preprocessing mechanism for support vector machines: experimental evaluation and support vector analysis. Appl Soft Comput 38:10–22

    Google Scholar 

  41. Xu D, Tian Y (2015) A Comprehensive survey of clustering algorithms. Ann Data Sci 2(2):165–193

    MathSciNet  Google Scholar 

  42. Streichert F, Stein G, Ulmer H, Zell A (2003) A clustering based niching method for evolutionary algorithms. In: Cantú-Paz E et al (eds) Genetic and evolutionary computation GECCO 2003. Lecture notes in computer science. Springer, Berlin

    MATH  Google Scholar 

  43. Whitley D, Rana S, Heckendorn RB (1998) The island model genetic algorithm: on separability, population size and convergence. J Comput Inf Technol 7(1):33–47

    Google Scholar 

  44. Tasoulis DK, Plagianakos VP, Vrahatis MN (2005) Clustering in evolutionary algorithms to efficiently compute simultaneously local and global minima

  45. Liang X, Li W, Zhang Y, Zhou M (2015) An adaptive particle swarm optimization method based on clustering. Soft Comput 19(2):431–448

    Google Scholar 

  46. Li C, Yang S (2009) A clustering particle swarm optimizer for dynamic optimization. In: 2009 IEEE congress on evolutionary computation, pp 439–446

  47. Weise T, Niemczyk S, Chiong R, Wan M (2011) A framework for multi-model EDAs with model recombination, pp 304–313

  48. Tsou C-S, Fang H-H, Chang H-H, Kao C-H (2006) LNCS 4247—an improved particle swarm Pareto optimizer with local search and clustering

  49. Coello CAC, Lechuga MS (2002) MOPSO: a proposal for multiple objective particle swarm optimization. In: Proceedings of the 2002 congress on evolutionary computation. CEC’02 (Cat. No.02TH8600), vol 2, pp 1051–1056

  50. Hua Y, Jin Y, Hao K (2018) A clustering-based adaptive evolutionary algorithm for multiobjective optimization with irregular pareto fronts. IEEE Trans Cybern 49(7):1–13

    Google Scholar 

  51. Yang D, Li G, Cheng G (2007) On the efficiency of chaos optimization algorithms for global optimization. Chaos, Solitons Fractals 34(4):1366–1375

    MathSciNet  Google Scholar 

  52. Gandomi AH, Yang X-S (2014) Chaotic bat algorithm. J Comput Sci 5(2):224–232

    MathSciNet  Google Scholar 

  53. Li B, Jiang W (1998) Optimizing complex functions by chaos search. Cybern Syst 29(4):409–419

    MATH  Google Scholar 

  54. Caponetto R, Fortuna L, Fazzino S, Xibilia MG (2003) Chaotic sequences to improve the performance of evolutionary algorithms. IEEE Trans Evol Comput 7(3):289–304

    Google Scholar 

  55. Snaselova P, Zboril F (2015) Genetic algorithm using theory of chaos. Proc Comput Sci 51(1):316–325

    Google Scholar 

  56. Sun Y, Liu X, Zhang Z, Wang Z, Yu Y, Zhang T, Zhu Y, Song Z (2016) A sparse probabilistic approach with chaotic artificial bee colony optimization for sea clutter soft computing. Appl Soft Comput 49:108–119

    Google Scholar 

  57. Huang L, Ding S, Yu S, Wang J, Lu K (2016) Chaos-enhanced Cuckoo search optimization algorithms for global optimization. Appl Math Model 40(5–6):3860–3875

    MathSciNet  Google Scholar 

  58. Dong N, Fang X, Wu A (2016) A novel chaotic particle swarm optimization algorithm for parking space guidance. Math Prob Eng 2016:1–14

    MathSciNet  MATH  Google Scholar 

  59. Mirjalili S, Gandomi AH (2017) Chaotic gravitational constants for the gravitational search algorithm. Appl Soft Comput 53:407–419

    Google Scholar 

  60. Murtagh F, Legendre P (2014) Ward’s hierarchical agglomerative clustering method: Which algorithms implement Ward’s criterion? J Classif 31(October):274–295

    MathSciNet  MATH  Google Scholar 

  61. Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58(301):236–244

    MathSciNet  Google Scholar 

  62. Chen L (2010) Web-age information management: 11th international conference, WAIM 2010, Jiuzhaigou, China, July 15–17, 2010: proceedings. Springer, Berlin

  63. Tatsumi K, Ibuki T, Tanino T (2015) Particle swarm optimization with stochastic selection of perturbation-based chaotic updating system. Appl Math Comput 269:904–929

    MathSciNet  MATH  Google Scholar 

  64. Lu X, Lei J, Li W, Pan Z (2019) A delayed feedback chaotic encryption algorithm based on polar codes. In: 2018 IEEE international conference on electronics and communication engineering, ICECE 2018, pp 27–31

  65. Gan H, Xiao S, Zhao Y (2018) A novel secure data transmission scheme using chaotic compressed sensing. IEEE Access 6:4587–4598

    Google Scholar 

  66. Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P (2008) Fast physical random bit generation with chaotic semiconductor lasers. Nat Photonics 2(12):728–732

    Google Scholar 

  67. Singh S, Siddiqui TJ, Singh R, Singh HV (2011) DCT-domain robust data hiding using chaotic sequence. In: 2011 International conference on multimedia, signal processing and communication technologies, pp 300–303

  68. Nozawa H (1992) A neural network model as a globally coupled map and applications based on chaos. Chaos Interdiscip J Nonlinear Sci 2(3):377–386

    MathSciNet  MATH  Google Scholar 

  69. Wang L, Smith K (1998) On chaotic simulated annealing. IEEE Trans Neural Netw 9(4):716–718

    Google Scholar 

  70. Javidi M, Hosseinpourfard R (2015) Chaos Genetic Algorithm instead Genetic Algorithm. Int Arab J Inf Technol 12(2):163–168

    Google Scholar 

  71. Yang D, Liu Z, Zhou J (2014) Chaos optimization algorithms based on chaotic maps with different probability distribution and search speed for global optimization. Commun Nonlinear Sci Numer Simul 19(4):1229–1246

    MathSciNet  Google Scholar 

  72. Yuan X, Zhao J, Yang Y, Wang Y (2014) Hybrid parallel chaos optimization algorithm with harmony search algorithm. Appl Soft Comput J 17:12–22

    Google Scholar 

  73. Li C, Zhou J, Kou P, Xiao J (2012) A novel chaotic particle swarm optimization based fuzzy clustering algorithm. Neurocomputing 83:98–109

    Google Scholar 

  74. He D, He C, Jiang L-G, Zhu H-W, Hu G-R (2000) A chaotic map with infinite collapses. In: 2000 TENCON proceedings. Intelligent systems and technologies for the new millennium (Cat. No.00CH37119), vol 2, pp 95–99

  75. He Y-Y, Zhou J-Z, Xiang X-Q, Chen H, Qin H (2009) Comparison of different chaotic maps in particle swarm optimization algorithm for long-term cascaded hydroelectric system scheduling. Chaos, Solitons Fractals 42(5):3169–3176

    MATH  Google Scholar 

  76. González JA, Reyes LI, Suárez JJ, Guerrero LE, Gutiérrez G (2003) From exactly solvable chaotic maps to stochastic dynamics. Phys D Nonlinear Phenom 178(1–2):26–50

    MathSciNet  MATH  Google Scholar 

  77. He D, He C, Jiang LG, Zhu HW, Hu GR (2001) “Chaotic characteristics of a one-dimensional iterative map with infinite collapses. IEEE Trans Circuits Syst I Fundam Theory Appl 48(7):900–906

    MathSciNet  MATH  Google Scholar 

  78. Fogarty TC (1989) Varying the probability of mutation in the genetic algorithm. In: Proc. 3rd int’l conf. genet. algorithms, pp 104–109

  79. Lawnik M (2014) Generation of numbers with the distribution close to uniform with the use of chaotic maps

  80. Anescu G (2017) Scalable test functions for multidimensional continuous optimization. U P B Sci Bull Ser C 79:27–42

    Google Scholar 

  81. Li MD, Zhao H, Weng XW, Han T (2016) A novel nature-inspired algorithm for optimization: virus colony search. Adv Eng Softw 92:65–88

    Google Scholar 

  82. Askarzadeh A (2016) A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput Struct 169:1–12

    Google Scholar 

  83. Yu JJQ, Li VOK (2015) A social spider algorithm for global optimization. Appl Soft Comput 30:614–627

    Google Scholar 

  84. Han M, Liu C, Xing J (2014) An evolutionary membrane algorithm for global numerical optimization problems. Inf Sci (NY) 276:219–241

    MathSciNet  Google Scholar 

  85. Meng Z, Pan J-S (2016) Monkey king evolution: a new memetic evolutionary algorithm and its application in vehicle fuel consumption optimization. Knowl Based Syst 97:144–157

    MathSciNet  Google Scholar 

  86. Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics 1:80–83

    MathSciNet  Google Scholar 

  87. Kennedy J, Eberhart RC (1995) Particle swarm optimization. Proc IEEE Int Conf. Neural Netw 4:1942–1948

    Google Scholar 

  88. Yang XS (2010) Nature inspired cooperative strategies for optimization (NISCO 2010). Springer, Berlin

    Google Scholar 

  89. Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68

    Google Scholar 

  90. Olorunda O, Engelbrecht AP (2008) Measuring exploration/exploitation in particle swarms using swarm diversity. In: 2008 IEEE congress on evolutionary computation (IEEE world congress on computational intelligence), pp 1128–1134

  91. Mortazavi A, Toğan V, Nuhoğlu A (2018) Interactive search algorithm: a new hybrid metaheuristic optimization algorithm. Eng Appl Artif Intell 71:275–292

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Cuevas.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: List of benchmark functions

See Tables 25, 26 and 27

Table 25 Unimodal benchmark functions used in the experimental study
Table 26 Multimodal benchmark functions used in the experimental study
Table 27 Hybrid benchmark functions used in the experimental study

Appendix 2: Engineering design problems

See Tables 28, 29, 30 and 31.

Table 28 Three-bar truss design description used in the experimental study
Table 29 Pressure vessel design description used in the experimental study
Table 30 Tension/compression spring design description used in the experimental study
Table 31 Welded beam design description used in the experimental study

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gálvez, J., Cuevas, E., Becerra, H. et al. A hybrid optimization approach based on clustering and chaotic sequences. Int. J. Mach. Learn. & Cyber. 11, 359–401 (2020). https://doi.org/10.1007/s13042-019-00979-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-019-00979-6

Keywords

Navigation