Skip to main content
Log in

Adaptive feature weighting for robust Lp-norm sparse representation with application to biometric image classification

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Sparse representation has attracted much attention in the field of biometrics, such as face recognition and palmprint recognition. Although the \(l_{p}\)-norm \((0 < p < 1)\) based sparse representation can obtain more sparse solution than the widely used \(l_{1}\)-norm based method, it needs to solve a non-convex optimization problem, which leads to poor robustness in real application. In this paper, we propose a robust \(l_{p}\)-norm sparse representation method with adaptive feature weighting. We derive the adaptive feature weighting method by self-paced learning (SPL), and utilize it to guide the features of \(l_{p}\)-norm sparse representation in the easy-to-hard learning process. Differing from existing SPL methods, feature weighted SPL in our method dynamically evaluates the learning difficulty of each feature rather than sample. For the advantages of the proposed method, it can avoid \(l_{p}\)-norm sparse minimization failing into bad local minima and reduce the effects of noise feature in the early learning stage. Experiments on several biometric image datasets show that our proposed method is superior to conventional \(l_{p}\)-norm based method and the state-of-the-art classification methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Xu Y, Fan Z, Qiu M, Zhang D, Yang J-Y (2013) A sparse representation method of bimodal biometrics and palmprint recognition experiments. Neurocomputing 103:164–171

    Article  Google Scholar 

  2. Deng W, Hu J, Guo J (2012) Extended SRC: undersampled face recognition via intraclass variant dictionary. IEEE Trans Pattern Anal Mach Intell 34(9):1864–1870

    Article  Google Scholar 

  3. Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227

    Article  Google Scholar 

  4. Wang S-J, Yan W-J, Sun T, Zhao G, Fu X (2016) Sparse tensor canonical correlation analysis for micro-expression recognition. Neurocomputing 214:218–232

    Article  Google Scholar 

  5. Cao F, Feng X, Zhao J (2017) Sparse representation for robust face recognition by dictionary decomposition. J Vis Commun Image Represent 46:260–268

    Article  Google Scholar 

  6. Zhang Z, Xu Y, Shao L, Yang J (2018) Discriminative block-diagonal representation learning for image recognition. IEEE Trans Neural Netw Learn Syst 29(7):3111–3125

    Article  MathSciNet  Google Scholar 

  7. Gao S, Tsang IWH, Chia LT (2010) Kernel sparse representation for image classification and face recognition. LNCS 6314(4):1–14

    Google Scholar 

  8. Naseem I, Togneri R, Bennamoun M (2010) Linear regression for face recognition. IEEE Trans Pattern Anal Mach Intell 32(11):2106–2112

    Article  Google Scholar 

  9. Yang M, Zhang L, Zhang D, Wang S (2012) Relaxed collaborative representation for pattern classification. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit 1:2224–2231

    Google Scholar 

  10. Liu G, Lin Z, Liu G (2010) Robust subspace segmentation by low rank represention. Icml 44(8):1432–1445

    Google Scholar 

  11. Jing Zong J, Shuang Qiu T (2017) Medical image fusion based on sparse representation of classified image patches. Biomed Signal Process Control 34:195–205

    Article  Google Scholar 

  12. Yan K, Xu Y, Fang X, Zheng C, Liu B (2017) Protein fold recognition based on sparse representation based classification. Artif Intell Med 79:1–8

    Article  Google Scholar 

  13. Zhang L, Yang M, Feng X (2011) Sparse representation or collaborative representation: which helps face recognition? In: 2011 International conference on computer vision, pp 471–478

  14. Combettes PL, Pesquet JC (2011) Proximal splitting methods in signal processing BT—fixed-point algorithms for inverse problems. Fixed-Point Algorithms Inverse Probl 49(10):185–212

    Article  Google Scholar 

  15. Ekanadham C, Tranchina D, Simoncelli EP (2011) Recovery of sparse translation-invariant signals with continuous basis pursuit. IEEE Trans Signal Process 59(10):4735–4744

    Article  MathSciNet  Google Scholar 

  16. Xu Y, Li Z, Yang J, Zhang D (2017) A survey of dictionary learning algorithms for face recognition. IEEE Access 5:8502–8514

    Article  Google Scholar 

  17. Zhang Z, Xu Y, Yang J, Li X, Zhang D (2015) A survey of sparse representation: algorithms and applications. IEEE Access 3:490–530

    Article  Google Scholar 

  18. Zheng L, Wang S, Liu Z, Tian Q (2013) Lp-norm IDF for large scale image search. In: 2013 IEEE conference on computer vision and pattern recognition, pp 1626–1633

  19. Lu Y, Lai Z, Li X, Wong WK, Yuan C, Zhang D (2019) Low-rank 2-D neighborhood preserving projection for enhanced robust image representation. IEEE Trans Cybern 49(5):1859–1872

    Article  Google Scholar 

  20. Bengio Y, Louradour J, Collobert R, Weston J (2019) Curriculum learning. In: Proceedings of the 26th Annual International Conference on Machine Learning - ICML’09, pp 1–8

  21. Kumar MP, Packer B, Koller D (2010) Self-paced learning for latent variable models. Adv Neural Inf Process Syst 23:1189–1197

    Google Scholar 

  22. Zhao Q, Meng D, Jiang L, Xie Q, Xu Z, Hauptmann AG (2015) Self-paced learning for matrix factorization. AAAI pp. 3196–3202

  23. Jiang L, Meng D, Yu SI, Lan Z, Shan S, Hauptmann A (2014) Self-paced learning with diversity. Adv Neural Inf Process Syst, pp. 2078–2086

  24. Jiang L, Meng D, Zhao Q, Shan S, Hauptmann AG (2015) Self-paced curriculum learning. AAAI, pp 1–30

  25. Lin L, Wang K, Meng D, Zuo W, Zhang L (2018) Active self-paced learning for cost-effective and progressive face identification. IEEE Trans Pattern Anal Mach Intell 40(1):7–19

    Article  Google Scholar 

  26. Kumar MP, Turki H, Preston D, Koller D (2011) Learning specific-class segmentation from diverse data. In: Proceedings of the IEEE international conference on computer vision, pp. 1800–1807

  27. Lee YJ, Grauman K (2011) Learning the easy things first: self-paced visual category discovery. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, pp. 1721–1728

  28. Amaldi E, Kann V (1998) On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems. Theor Comput Sci 209(1–2):237–260

    Article  MathSciNet  Google Scholar 

  29. Zhang Z, Lai Z, Xu Y, Shao L, Wu J, Xie G-S (2017) Discriminative elastic-net regularized linear regression. IEEE Trans Image Process 26(3):1466–1481

    Article  MathSciNet  Google Scholar 

  30. Donoho DL (2006) For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution. Commun Pure Appl Math 59(6):797–829

    Article  MathSciNet  Google Scholar 

  31. Lu Y, Yuan C, Lai Z, Li X, Zhang D, Wong WK (2019) Horizontal and vertical nuclear norm-based 2DLDA for image representation. IEEE Trans Circuits Syst Video Technol 29(4):941–955

    Article  Google Scholar 

  32. Floudas CA, Visweswaran V (1993) Primal-relaxed dual global optimization approach. J Optim Theory Appl 78(2):187–225

    Article  MathSciNet  Google Scholar 

  33. Lu Y, Lai Z, Xu Y, Li X, Zhang D, Yuan C (2016) Low-rank preserving projections. IEEE Trans Cybern 46(8):1900–1913

    Article  Google Scholar 

  34. Jiang L, Meng D, Mitamura T, Hauptmann AG (2014) Easy samples first. In: Proceedings of the ACM international conference on multimedia—MM’14, pp. 547–556

  35. Zhang M, Yang Y, Zhang H, Shen F, Zhang D (2016) L2, p-norm and sample constraint based feature selection and classification for AD diagnosis. Neurocomputing 195:104–111

    Article  Google Scholar 

  36. Saab R, Chartrand R, Yilmaz O (2008) Stable sparse approximations via nonconvex optimization. In: 2008 IEEE international conference on acoustics, speech and signal processing, pp. 3885–3888

  37. Chartrand R (2007) Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Process Lett 14(10):707–710

    Article  Google Scholar 

  38. Chartrand R, Yin W (2008) Iteratively reweighted algorithms for compressive sensing. In: 2008 IEEE international conference on acoustics, speech and signal processing, pp. 3869–3872

  39. Chartrand R (2007) Nonconvex compressed sensing and error correction. ICASSP IEEE Int Conf Acoust Speech Signal Process Proc 3(3):889–892

    MathSciNet  Google Scholar 

  40. Zhang Z, Shao L, Xu Y, Liu L, Yang J (2018) Marginal representation learning with graph structure self-adaptation. IEEE Trans Neural Netw Learn Syst 29(10):4645–4659

    Article  MathSciNet  Google Scholar 

  41. “PolyU multispectral palmprint Database.” [Online]. Available: http://www.comp.polyu.edu.hk/~biometrics/MultispectralPalmprint/MSP.htm

  42. “PolyU FKP Database.” [Online]. Available: http://www.comp.polyu.edu.hk/~biometrics/FKP/polyudb.htm

  43. Martinez AM, Benavente R (1998) The AR face database

  44. Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Sparsity and robustness in face recognition. IEEE Trans Pattern Anal Mach Intell 31(2):210–227

    Article  Google Scholar 

  45. Candès EJ et al (2011) Robust principal component analysis? J ACM 58(3):1–37

    Article  MathSciNet  Google Scholar 

  46. Liu G, Yan S (2011) Latent low-rank representation for subspace segmentation and feature extraction. In: 2011 international conference on computer vision, pp. 1615–1622

  47. Xu Y, Zhang D, Yang J, Yang JY (2011) A two-phase test sample sparse representation method for use with face recognition. IEEE Trans Circuits Syst Video Technol 21(9):1255–1262

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Natural Science Foundation of China (Nos. 61732006, 61501230, 61876082 and 61861130366), National Science and Technology Major Project (No. 2018ZX10201002), and the Fundamental Research Funds for the Central Universities (No. NP2018104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daoqiang Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Q., Xu, N., Huang, SJ. et al. Adaptive feature weighting for robust Lp-norm sparse representation with application to biometric image classification. Int. J. Mach. Learn. & Cyber. 11, 463–474 (2020). https://doi.org/10.1007/s13042-019-00986-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-019-00986-7

Keywords

Navigation