Skip to main content
Log in

A global and local feature weighted method for ancient murals inpainting

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Ancient murals have been haunted by various problems such as color fading, surface layer turning crisp and even large-area peeling off. Virtually inpainting technologies are widely used to restore these damages. In general, when structure information are blurred or completely missing within a large region, the image inpainting would be more thorny. In this paper, we study mural image inpainting by incorporating structure information collected from the limners guidance or the line drawings, and propose a global and local feature weighted method based on structure guidance to repair the damaged murals of Yulin Grottoes and Mogao Grottoes, Gansu. Unlike traditional methods, a novel sparse representation model with elastic net regularization based on similarity-preserving overcomplete dictionary is formulated to enhance the global feature consistency, and then an estimated method of neighborhood similarity is presented to guarantee local feature consistency, finally, we apply a global feature patch and local feature patch weighted method to obtain the target patch. Experimental results on damaged murals demonstrate the proposed method outperforms state-of-the-art inpainting methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Bertalmio M, Sapiro G, Caselles V, Ballester C (2000) Image inpainting. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’00, ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, pp 417–424. https://doi.org/10.1145/344779.344972

  2. Roth S, Black MJ (2005) Fields of experts: a framework for learning image priors. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), Vol. 2, pp 860–867 vol. 2. https://doi.org/10.1109/CVPR.2005.160

  3. Criminisi A, Perez P, Toyama K (2004) Region filling and object removal by examplar-based image inpainting. IEEE Trans Image Process 13(9):1200–1212. https://doi.org/10.1109/TIP.2004.833105

    Article  Google Scholar 

  4. Xu Z, Sun J (2010) Image inpainting by patch propagation using patch sparsity. IEEE Trans Image Process 19(5):1153–1165. https://doi.org/10.1109/TIP.2010.2042098

    Article  MathSciNet  MATH  Google Scholar 

  5. Wang J, Lu K, Pan D, He N, Bao BK (2014) Letters: robust object removal with an examplar-based image inpainting approach. Neurocomputing 123:150–155

    Article  Google Scholar 

  6. Rudin LI, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Physica D Nonlinear Phenomena 60:259–268

    Article  MathSciNet  Google Scholar 

  7. Komodakis N, Tziritas G (2007) Image completion using efficient belief propagation via priority scheduling and dynamic pruning. IEEE Trans Image Process 16(11):2649–2661

    Article  MathSciNet  Google Scholar 

  8. Aharon M, Elad M, Bruckstein A (2006) K-svd: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans Signal Process 54(11):4311–4322

    Article  Google Scholar 

  9. Mairal J, Elad M, Sapiro G (2007) Sparse representation for color image restoration. IEEE Trans Image Process 17(1):53–69

    Article  MathSciNet  Google Scholar 

  10. Pathak D, Krähenbühl P, Donahue J, Darrell T, Efros AA, Context encoders: feature learning by inpainting, CoRR arXiv:abs/1604.07379

  11. Zou Q, Cao Y, Li Q, Mao Q, Wang S (2014) Automatic inpainting by removing fence-like structures in rgbd images. Mach Vis Appl 25(7):1841–1858

    Article  Google Scholar 

  12. D. G. E. S. Connelly Barnes, Ivan Belaunde, Adobe systems inc, www.adobe.com/ technology/ graphics/ content_aware_fill.html

  13. Chan TF, Shen J (2001) Nontexture inpainting by curvature-driven diffusions. J Vis Commun Image Rep. 12(4):436–449

    Article  Google Scholar 

  14. Bornemann F, März T (2007) Fast image inpainting based on coherence transport. J Math Imaging Vis 28(3):259–278. https://doi.org/10.1007/s10851-007-0017-6

    Article  MathSciNet  Google Scholar 

  15. Shen J, Chan TF (2002) Mathematical models for local nontexture inpaintings. SIAM J Appl Math 62(3):1019–1043

    Article  MathSciNet  Google Scholar 

  16. Masnou S (2002) Disocclusion: a variational approach using level lines. IEEE Trans Image Process 11(2):68–76. https://doi.org/10.1109/83.982815

    Article  MathSciNet  Google Scholar 

  17. Efros AA, Leung TK (1999) Texture synthesis by non-parametric sampling. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, Vol. 2, pp 1033–1038 vol. 2. https://doi.org/10.1109/ICCV.1999.790383

  18. Wei L-Y, Levoy M (2000) Fast texture synthesis using tree-structured vector quantization, in: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’00, ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, pp 479–488. https://doi.org/10.1145/344779.345009

  19. Zontak M, Irani M (2011) Internal statistics of a single natural image. In: CVPR 2011, pp 977–984. https://doi.org/10.1109/CVPR.2011.5995401

  20. Bornard R, Lecan E, Laborelli L, Chenot J-H (2002) Missing data correction in still images and image sequences. In: Proceedings of the Tenth ACM International Conference on Multimedia, MULTIMEDIA ’02, ACM, New York, NY, USA, pp 355–361. https://doi.org/10.1145/641007.641084

  21. Drori I, Cohen-Or D, Yeshurun H (2003) Fragment-based image completion. ACM Trans Graph 22(3):303–312. https://doi.org/10.1145/882262.882267

    Article  Google Scholar 

  22. Patel AG, Kumar S, Prajapati AD (2014) Improved examplar based image inpainting using structure tensor. Int J Comput Appl 96(15):9–14

    Google Scholar 

  23. Strobel M, Diebold J, Cremers D (2014) Flow and color inpainting for video completion. In: Jiang X, Hornegger J, Koch R (eds) Pattern recognition. Springer International Publishing, Cham, pp 293–304

    Google Scholar 

  24. Siadati SZ, Yaghmaee F, Mahdavi P (2016) A new examplar-based image inpainting algorithm using image structure tensors, in: Electrical Engineering, pp 995–1001

  25. Xiao M, Li G, Tan Y, Qin J (2015) Image completion using similarity analysis and transformation. Int J Multimedia Ubiquitous Eng 10(4):193–204

    Article  Google Scholar 

  26. Li Z, He H, Yin Z, Chen F (2014) A color-gradient patch sparsity based image inpainting algorithm with structure coherence and neighborhood consistency. Signal Process 99(6):116–128

    Article  Google Scholar 

  27. Li Z, He H, Tai H, Yin Z, Chen F (2015) Color-direction patch-sparsity-based image inpainting using multidirection features. IEEE Trans Image Process 24(3):1138–1152

    Article  MathSciNet  Google Scholar 

  28. Meur OL, Gautier J, Guillemot C (2011) Examplar-based inpainting based on local geometry, In: IEEE International Conference on Image Processing, pp 3401–3404

  29. Martnez-Noriega R, Roumy A, Blanchard G (2012) Examplar-based image inpainting: fast priority and coherent nearest neighbor search. In: IEEE international workshop on machine learning for signal processing, pp 1–6

  30. Daisy M, Buyssens P, Tschumperl D, Lzoray O (2015) A smarter examplar-based inpainting algorithm using local and global heuristics for more geometric coherence, In: IEEE International Conference on Image Processing, pp 4622–4626

  31. Patel J, Sarode TK (2014) Examplar based image inpainting with reduced search region. Int J Comput Appl 92(12):27–33

    Google Scholar 

  32. Cornelis B, Ruić T, Gezels E, Dooms A, Piurica A, Platića L, Cornelis J, Martens M, De Mey M, Daubechies I (2013) Crack detection and inpainting for virtual restoration of paintings: the case of the ghent altarpiece. Signal Process 93(3):605–619

    Article  Google Scholar 

  33. Prez-Careta E, Torres-Cisneros M, Manzano OGI, Aguilera-Corts LA, Snchez-Mondragn JJ (2001) Oscillating patterns in image processing and nonlinear evolution equations. American Mathematical Society

  34. Bertalmio M, Vese L, Sapiro G, Osher S (2003) Simultaneous structure and texture image inpainting. IEEE Trans Image Process 12(8):882–889

    Article  Google Scholar 

  35. Cao F, Gousseau Y, Masnou S, Prez P (2009) Geometrically guided examplar-based inpainting. SIAM J Imaging Sci 4(4):1143–1179

    Article  Google Scholar 

  36. Du X, Cho D, Bui TD (2011) Image segmentation and inpainting using hierarchical level set and texture mapping. Singla Process 91:852–863

    Article  Google Scholar 

  37. Chen XW, Zhou B, Yu G, Fang XU, Zhao QP (2014) Structure guided texture inpainting through multi-scale patches and global optimization for image completion. Sci China Inf Sci 57(1):1–16

    Google Scholar 

  38. Wexler Y, Shechtman E, Irani M (2007) Space-time completion of video. IEEE Trans Pattern Anal Mach Intell 29(3):463–476

    Article  Google Scholar 

  39. Szeliski R, Zabih R, Scharstein D, Veksler O, Kolmogorov V, Agarwala A, Tappen M, Rother C (2008) A comparative study of energy minimization methods for markov random fields with smoothness-based priors. IEEE Trans Pattern Anal Mach Intell 30(6):1068–1080

    Article  Google Scholar 

  40. Barnes C, Shechtman E, Finkelstein A, Dan BG (2009) Patchmatch: a randomized correspondence algorithm for structural image editing, In: SIGGRAPH, pp 1–11

  41. Darabi S, Shechtman E, Barnes C, Goldman DB, Sen P (2012) Image melding: combining inconsistent images using patch-based synthesis. ACM Trans Graph 31(4):82:1–82:10

    Article  Google Scholar 

  42. He K, Sun J (2014) Image completion approaches using the statistics of similar patches. IEEE Trans Pattern Anal Mach Intell 36(12):2423–2435

    Article  Google Scholar 

  43. Ge S, Xie K, Li S, Yang R (2016) Global image completion with joint sparse patch selection and optimal seam synthesis. Signal Process 124(C):147–155

    Article  Google Scholar 

  44. Elad M, Aharon M (2006) Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans Image Process 15(12):3736–3745

    Article  MathSciNet  Google Scholar 

  45. Trkan M, Guillemot C (2013) Locally linear embedding based texture synthesis for image prediction and error concealment. In: IEEE International Conference on Image Processing, pp 3009–3012

  46. Guillemot C, Turkan M, Meur OL, Ebdelli M (2013) Object removal and loss concealment using neighbor embedding methods. Image Commun 28(10):1405–1419

    Google Scholar 

  47. Takahashi T, Konishi K, Furukawa T (2012) Structured matrix rank minimization approach to image inpainting. Midwest Symposium on Circuits and Systems, pp 860–863

  48. Guleryuz OG (2006) Nonlinear approximation based image recovery using adaptive sparse reconstructions and iterated denoising-part I: theory. IEEE Trans Image Process 15(3):555–571

    Article  Google Scholar 

  49. Fadili M, Starck J-L, Murtagh F (2009) Inpainting and zooming using sparse representations. Comput J 52(1):64–79. https://doi.org/10.1093/comjnl/bxm055

    Article  Google Scholar 

  50. Mairal J, Bach F, Ponce J, Sapiro G (2010) Online learning for matrix factorization and sparse coding. J Mach Learn Res 11: 19–60. URL http://dl.acm.org/citation.cfm?id=1756006.1756008

  51. Shen B, Hu W, Zhang Y, Zhang YJ (2009) Image inpainting via sparse representation, In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp 697–700

  52. Peyr Gabriel (2009) Sparse modeling of textures. J Math Imaging Vis 34(1):17–31

    Article  MathSciNet  Google Scholar 

  53. Yang C, Lu X, Lin Z, Shechtman E, Wang O, Li H, High-resolution image inpainting using multi-scale neural patch synthesis. CoRR arXiv:abs/1611.09969

  54. Li C, Wand M, Combining markov random fields and convolutional neural networks for image synthesis. CoRR arXiv:abs/1601.04589

  55. Iizuka S, Simo-Serra E, Ishikawa H (2017) Globally and Locally Consistent Image Completion, ACM Transactions on Graphics (Proc. of SIGGRAPH 2017) 36 (4), 107:1–107:14

  56. Song Y, Yang C, Lin Z, Li H, Huang Q, Kuo CJ, Image inpainting using multi-scale feature image translation. CoRR arXiv:abs/1711.08590

  57. Yu J, Lin Z, Yang J, Shen X, Lu X, Huang TS, Generative image inpainting with contextual attention. CoRR arXiv:1801.07892

  58. Liu G, Reda FA, Shih KJ, Wang T, Tao A, Catanzaro B, Image inpainting for irregular holes using partial convolutions. CoRR arXiv:abs/1804.07723

  59. Li Q, Zou Q, Ma D, Wang Q, Wang S (2018) Dating ancient paintings of mogao grottoes using deeply learnt visual codes. Sci China Inf Sci 15(6):1–13

    Google Scholar 

  60. Wang H, Li Q, Zou Q (2019) Inpainting of dunhuang murals by sparsely modeling the texture similarity and structure continuity. ACM J Comput Cult Herit 12(3):17. https://doi.org/10.1145/3280790

    Article  Google Scholar 

  61. Hastie Hui T (2005) Regularization and variable selection via the elastic net. J R Stat Soc Ser B (Statistical Methodology) 67(2): 301–320. URL http://www.jstor.org/stable/3647580

  62. M. Elad, Elad, m.: Sparse and redundant representations. From theory to applications in signal and image processing. springer

  63. Mallat S (2008) A wavelet tour of signal processing, 3rd edn. The Sparse Way, Academic Press

  64. Mairal J, Spams: sparse modeling software. http://spams-devel.gforge.inria.fr/

  65. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Basic Research Program of China under Grant No. 2012CB725303, National Natural Science Foundation of China under grants No. 91546106, No. 61872277, No. 41571437, No. 41971300 and No. 61671307, in part by the Shenzhen Scientific Research and Development Funding Program under Grant JCYJ20180305124802421.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Li, Q. & Jia, S. A global and local feature weighted method for ancient murals inpainting. Int. J. Mach. Learn. & Cyber. 11, 1197–1216 (2020). https://doi.org/10.1007/s13042-019-01032-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-019-01032-2

Keywords

Navigation