Skip to main content
Log in

Object-based feature extraction for hyperspectral data using firefly algorithm

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Object-based classification methods can improve the accuracy of hyperspectral image classification due to the fact that they incorporate spatial information into the classification procedure by assigning neighboring pixels into the same class. In this paper, a new object-based feature extraction method is proposed which makes use of information theory to reduce the Bayes error. In this way, the proposed method exploits higher order statistics for feature extraction which are very effective for non Gaussian data such as hyperspectral images. The criterion to be minimized is composed of three mutual information terms. The first and second terms, consider the maximal relevance and minimal redundancy, respectively, while the third term takes into account the segmentation map containing disjoint spatial regions. To obtain the segmentation map, we apply the firefly clustering algorithm whose fitness function simultaneously considers the intra-distance between samples and their cluster centroids, and inter-distance between centroids of any two clusters. Our experimental results, performed using a variety of hyperspectral scenes, indicate that the proposed framework gives better classification results than some state-of the-art spectral–spatial feature extraction methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cheng G, Han J, Zhou P, Guo L (2014) Multi-class geospatial object detection and geographic image classification based on collection of part detectors. ISPRS J Photogramm Remote Sens 98:119–132

    Google Scholar 

  2. Shahdoosti HR, Javaheri N (2019) A new kernel fuzzy based feature extraction method using attraction points. Multidimension Syst Signal Process 30(2):1009–1027

    MATH  Google Scholar 

  3. Shahdoosti HR, Javaheri N (2018) A fast algorithm for feature extraction of hyperspectral images using the first order statistics. Multimed Tools Appl 77(18):23633–23650

    Google Scholar 

  4. Camps-Valls G, Gomez-Chova L, Muñoz-Marí J, Vila-Francés J, Calpe-Maravilla J (2006) Composite kernels for hyperspectral image classification. IEEE Geosci Remote Sens Lett 3(1):93–97

    Google Scholar 

  5. Zhou Y, Peng J, Chen CP (2015) Extreme learning machine with composite kernels for hyperspectral image classification. IEEE J Sel Top Appl Earth Obs Remote Sens 8(6):2351–2360

    Google Scholar 

  6. Li J, Marpu PR, Plaza A, Bioucas-Dias JM, Benediktsson JA (2013) Generalized composite kernel framework for hyperspectral image classification. IEEE Trans Geosci Remote Sens 51(9):4816–4829

    Google Scholar 

  7. Tarabalka Y, Fauvel M, Chanussot J, Benediktsson JA (2010) SVM-and MRF-based method for accurate classification of hyperspectral images. IEEE Geosci Remote Sens Lett 7(4):736–740

    Google Scholar 

  8. Li W, Prasad S, Fowler JE (2014) Hyperspectral image classification using Gaussian mixture models and Markov random fields. IEEE Geosci Remote Sens Lett 11(1):153–157

    Google Scholar 

  9. Tarabalka Y, Benediktsson JA, Chanussot J (2009) Spectral–spatial classification of hyperspectral imagery based on partitional clustering techniques. IEEE Trans Geosci Remote Sens 47(8):2973–2987

    Google Scholar 

  10. Tarabalka Y, Chanussot J, Benediktsson JA (2010) Segmentation and classification of hyperspectral images using watershed transformation. Pattern Recognit 43(7):2367–2379

    MATH  Google Scholar 

  11. Fauvel M, Benediktsson JA, Chanussot J, Sveinsson JR (2008) Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles. IEEE Trans Geosci Remote Sens 46(11):3804–3814

    Google Scholar 

  12. Castaings T, Waske B, Atli Benediktsson J, Chanussot J (2010) On the influence of feature reduction for the classification of hyperspectral images based on the extended morphological profile. Int J Remote Sens 31(22):5921–5939

    Google Scholar 

  13. Yang XS, He X (2013) Firefly algorithm: recent advances and applications. Int J Swarm Intell 1(1):36–50

    Google Scholar 

  14. Zhang J, Cui Z, Wang Y, Wang H, Cai X, Chen J, Li W (2019) A coupling approach with GSO-BFOA for many-objective optimization. IEEE Access 7:120248–120261

    Google Scholar 

  15. Cui Z, Zhang J, Wang Y, Cao Y, Cai X, Zhang W, Chen J (2019) A pigeon-inspired optimization algorithm for many-objective optimization problems. Sci Chin Inf Sci 62(7):070212

    Google Scholar 

  16. Cui Z, Li F, Zhang W (2019) Bat algorithm with principal component analysis. Int J Mach Learn Cybern 10(3):603–622

    Google Scholar 

  17. Wang GG, Cai X, Cui Z, Min G, Chen J (2017) High performance computing for cyber physical social systems by using evolutionary multi-objective optimization algorithm. IEEE Trans Emerg Top Comput. https://doi.org/10.1109/TETC.2017.2703784

    Article  Google Scholar 

  18. Zhang J, Xue F, Cai X, Cui Z, Chang Y, Zhang W, Li W (2019) Privacy protection based on many-objective optimization algorithm. Concurr Comput Pract Exp. https://doi.org/10.1002/cpe.5342

    Article  Google Scholar 

  19. Van der Merwe DW, Engelbrecht AP (2003) Data clustering using particle swarm optimization. In: Evolutionary computation, 2003. CEC’03. The 2003 Congress on, vol 1, pp 215–220. IEEE

  20. Zhang C, Ouyang D, Ning J (2010) An artificial bee colony approach for clustering. Expert Syst Appl 37(7):4761–4767

    Google Scholar 

  21. Yang XS, He X (2013) Bat algorithm: literature review and applications. Int J Bio Inspir Comput 5(3):141–149

    Google Scholar 

  22. Dhivya M, Sundarambal M (2011) Cuckoo search for data gathering in wireless sensor networks. Int J Mob Commun 9(6):642–656

    Google Scholar 

  23. Horng MH (2012) Vector quantization using the firefly algorithm for image compression. Expert Syst Appl 39(1):1078–1091

    Google Scholar 

  24. Banati H, Bajaj M (2011) Fire fly based feature selection approach. IJCSI Int J Comput Sci Issues 8(4):473

    Google Scholar 

  25. Basu B, Mahanti GK (2011) Fire fly and artificial bees colony algorithm for synthesis of scanned and broadside linear array antenna. Prog Electromagn Res 32:169–190

    Google Scholar 

  26. Senthilnath J, Omkar SN, Mani V (2011) Clustering using firefly algorithm: performance study. Swarm Evolut Comput 1(3):164–171

    Google Scholar 

  27. Shapiro L, Stockman G (2002) Computer vision. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  28. Baudat G, Anouar F (2000) Generalized discriminant analysis using a kernel approach. Neural Comput 12(10):2385–2404

    Google Scholar 

  29. Kuo BC, Li CH, Yang JM (2009) Kernel nonparametric weighted feature extraction for hyperspectral image classification. IEEE Trans Geosci Remote Sens 47(4):1139–1155

    Google Scholar 

  30. Tuia D, Ratle F, Pozdnoukhov A, Camps-Valls G (2010) Multisource composite kernels for urban-image classification. IEEE Geosci Remote Sens Lett 7(1):88–92

    Google Scholar 

  31. Fang L, Li S, Duan W, Ren J, Benediktsson JA (2015) Classification of hyperspectral images by exploiting spectral–spatial information of superpixel via multiple kernels. IEEE Trans Geosci Remote Sens 53(12):6663–6674

    Google Scholar 

  32. Gan L, Xia J, Du P, Chanussot J (2018) Multiple feature kernel sparse representation classifier for hyperspectral imagery. IEEE Trans Geosci Remote Sens. https://doi.org/10.1109/TGRS.2018.2814781

    Article  Google Scholar 

  33. Sun L, Wu Z, Liu J, Xiao L, Wei Z (2015) Supervised spectral–spatial hyperspectral image classification with weighted Markov random fields. IEEE Trans Geosci Remote Sens 53(3):1490–1503

    Google Scholar 

  34. Yu H, Gao L, Li J, Li SS, Zhang B, Benediktsson JA (2016) Spectral-spatial hyperspectral image classification using subspace-based support vector machines and adaptive Markov random fields. Remote Sens 8(4):355

    Google Scholar 

  35. Benediktsson JA, Palmason JA, Sveinsson JR (2005) Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Trans Geosci Remote Sens 43(3):480–491

    Google Scholar 

  36. Plaza A, Martinez P, Plaza J, Perez R (2005) Dimensionality reduction and classification of hyperspectral image data using sequences of extended morphological transformations. IEEE Trans Geosci Remote Sens 43(3):466–479

    Google Scholar 

  37. Cavallaro G, Dalla Mura M, Benediktsson JA, Bruzzone L (2015) Extended self-dual attribute profiles for the classification of hyperspectral images. IEEE Geosci Remote Sens Lett 12(8):1690–1694

    Google Scholar 

  38. Kavzoglu T, Colkesen I, Yomralioglu T (2015) Object-based classification with rotation forest ensemble learning algorithm using very-high-resolution WorldView-2 image. Remote Sens Lett 6(11):834–843

    Google Scholar 

  39. Zehtabian A, Ghassemian H (2016) Automatic object-based hyperspectral image classification using complex diffusions and a new distance metric. IEEE Trans Geosci Remote Sens 54(7):4106–4114

    Google Scholar 

  40. Ma L, Li M, Gao Y, Chen T, Ma X, Qu L (2017) A novel wrapper approach for feature selection in object-based image classification using polygon-based cross-validation. IEEE Geosci Remote Sens Lett 14(3):409–413

    Google Scholar 

  41. Yang XS (2008) Nature-inspired metaheuristic algorithms. Luniver Press, UK

    Google Scholar 

  42. Omran M, Engelbrecht AP, Salman A (2005) Particle swarm optimization method for image clustering. Int J Pattern Recognit Artif Intell 19(03):297–321

    Google Scholar 

  43. Cover TM, Thomas JA (1991) Elements of information theory. Wiley, New York

    MATH  Google Scholar 

  44. Hellman M, Raviv J (1970) Probability of error, equivocation, and the Chernoff bound. IEEE Trans Inf Theory 16(4):368–372

    MathSciNet  MATH  Google Scholar 

  45. Peng H, Long F, Ding C (2005) Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27(8):1226–1238

    Google Scholar 

  46. Mandal M, Mukhopadhyay A (2013) An improved minimum redundancy maximum relevance approach for feature selection in gene expression data. Proc Technol 10:20–27

    Google Scholar 

  47. Kamandar M, Ghassemian H (2013) Linear feature extraction for hyperspectral images based on information theoretic learning. IEEE Geosci Remote Sens Lett 10(4):702–706

    Google Scholar 

  48. Parzen E (1962) On estimation of a probability density function and mode. Ann Math Stat 33(3):1065–1076

    MathSciNet  MATH  Google Scholar 

  49. Sain SR, Scott DW (1996) On locally adaptive density estimation. J Am Stat Assoc 91(436):1525–1534

    MathSciNet  MATH  Google Scholar 

  50. Hild KE, Erdogmus D, Torkkola K, Principe JC (2006) Feature extraction using information-theoretic learning. IEEE Trans Pattern Anal Mach Intell 28(9):1385–1392

    Google Scholar 

  51. Hyperspectral Remote Sensing Scenes. http://www.ehu.es/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes. Accessed 11 Sep 2017

  52. Shahdoosti HR, Javaheri N (2018) A new hybrid feature extraction method in a dyadic scheme for classification of hyperspectral data. Int J Remote Sens 39(1):101–130

    Google Scholar 

  53. Li W, Liu J, Du Q (2016) Sparse and low-rank graph for discriminant analysis of hyperspectral imagery. IEEE Trans Geosci Remote Sens 54(7):4094–4105

    Google Scholar 

  54. Imani M, Ghassemian H (2017) High-dimensional image data feature extraction by double discriminant embedding. Pattern Anal Appl 20(2):473–484

    MathSciNet  Google Scholar 

  55. Kianisarkaleh A, Ghassemian H (2016) Nonparametric feature extraction for classification of hyperspectral images with limited training samples. ISPRS J Photogramm Remote Sens 119:64–78

    Google Scholar 

  56. Imani M, Ghassemian H (2018) Discriminant analysis in morphological feature space for high-dimensional image spatial–spectral classification. J Appl Remote Sens 12(1):016024

    Google Scholar 

  57. Shahdoosti HR, Mirzapour F (2017) Spectral–spatial feature extraction using orthogonal linear discriminant analysis for classification of hyperspectral data. Eur J Remote Sens 50(1):111–124

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Shahdoosti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The gradients of different terms used in the objective function \(Q\left( {R,_{{}} W,_{{}} E} \right)\) with respect to the (n1, n2)th entry of the transformation matrix A are:

$$\frac{{\partial H\left( {v_{i} } \right)}}{{\partial {\mathbf{A}}\left( {n_{1} ,n_{2} } \right)}} = \left\{ {\begin{array}{*{20}l} 0 \hfill & {i \ne n_{1} } \hfill \\ {\frac{1}{{N_{p} }}\left( {\frac{1}{{\sigma_{i}^{2} }}\sum\limits_{k = 1}^{{N_{p} }} {\frac{{\sum\nolimits_{e = 1}^{{N_{p} }} {G\left( {v_{i}^{kt} - v_{i}^{et} ;\sigma_{i}^{2} } \right)\left( {v_{i}^{kt} - v_{i}^{et} } \right)\left( {y_{{n_{2} }}^{kt} - y_{{n_{2} }}^{et} } \right)} }}{{\sum\nolimits_{e = 1}^{{N_{p} }} {G\left( {v_{i}^{kt} - v_{i}^{et} ;\sigma_{i}^{2} } \right)} }}} } \right)} \hfill & {i = n_{1} } \hfill \\ \end{array} } \right.$$
(20)
$$\frac{{\partial \hat{H}\left( {v_{i} } \right)}}{{\partial {\mathbf{A}}\left( {n_{1} ,n_{2} } \right)}} = \left\{ {\begin{array}{*{20}l} 0 \hfill & {i \ne n_{1} } \hfill \\ {\frac{1}{{N_{h} }}\left( {\frac{1}{{\hat{\sigma }_{i}^{2} }}\sum\limits_{k = 1}^{{N_{h} }} {\frac{{\sum\nolimits_{e = 1}^{{N_{h} }} {G\left( {v_{i}^{k} - v_{i}^{e} ;\hat{\sigma }_{i}^{2} } \right)\left( {v_{i}^{k} - v_{i}^{e} } \right)\left( {y_{{n_{2} }}^{k} - y_{{n_{2} }}^{e} } \right)} }}{{\sum\nolimits_{e = 1}^{{N_{h} }} {G\left( {v_{i}^{k} - v_{i}^{e} ;\hat{\sigma }_{i}^{2} } \right)} }}} } \right)} \hfill & {i = n_{1} } \hfill \\ \end{array} } \right.$$
(21)
$$\frac{{\partial H\left( {v_{i} |C} \right)}}{{\partial {\mathbf{A}}\left( {n_{1} ,n_{2} } \right)}} = \left\{ {\begin{array}{*{20}l} 0 \hfill & {i \ne n_{1} } \hfill \\ {\frac{1}{{N_{p} }}\sum\limits_{o = 1}^{{N_{c} }} {\sum\limits_{k = 1}^{{N_{o} }} {\frac{{\sum\nolimits_{e = 1}^{{N_{o} }} {G\left( {v_{i}^{o,kt} - v_{i}^{o,et} ;\sigma_{i,o}^{2} } \right)\left( {v_{i}^{o,kt} - v_{i}^{o,et} } \right)\left( {y_{{n_{2} }}^{o,kt} - y_{{n_{2} }}^{o,et} } \right)} }}{{\sigma_{i,o}^{2} \sum\nolimits_{e = 1}^{{N_{p} }} {G\left( {v_{i}^{o,kt} - v_{i}^{o,et} ;\sigma_{i,o}^{2} } \right)} }}} } } \hfill & {i = n_{1} } \hfill \\ \end{array} } \right.$$
(22)
$$\frac{{\partial \hat{H}\left( {v_{i} |C} \right)}}{{\partial {\mathbf{A}}\left( {n_{1} ,n_{2} } \right)}} = \left\{ {\begin{array}{*{20}l} 0 \hfill & {i \ne n_{1} } \hfill \\ {\frac{1}{{N_{h} }}\sum\limits_{\lambda = 1}^{{N_{b} }} {\sum\limits_{k = 1}^{{N_{\lambda } }} {\frac{{\sum\nolimits_{e = 1}^{{N_{\lambda } }} {G\left( {v_{i}^{\lambda ,k} - v_{i}^{\lambda ,e} ;\hat{\sigma }_{i,\lambda }^{2} } \right)\left( {v_{i}^{\lambda ,k} - v_{i}^{\lambda ,e} } \right)\left( {y_{{n_{2} }}^{\lambda ,k} - y_{{n_{2} }}^{\lambda ,e} } \right)} }}{{\hat{\sigma }_{i,\lambda }^{2} \sum\nolimits_{e = 1}^{{N_{\lambda } }} {G\left( {v_{i}^{\lambda ,k} - v_{i}^{\lambda ,e} ;\hat{\sigma }_{i,\lambda }^{2} } \right)} }}} } } \hfill & {i = n_{1} } \hfill \\ \end{array} } \right.$$
(23)
$$\begin{aligned} \frac{{\partial H\left( {v_{i} ,v_{j} } \right)}}{{\partial {\mathbf{A}}\left( {n_{1} ,n_{2} } \right)}} & = \frac{1}{{N_{p} \sigma_{i}^{2} }}\sum\limits_{k = 1}^{{N_{p} }} {\frac{{\sum\nolimits_{e = 1}^{{N_{p} }} {G\left( {v_{i}^{kt} - v_{i}^{et} ;\sigma_{i}^{2} } \right)G\left( {v_{j}^{kt} - v_{j}^{et} ;\sigma_{j}^{2} } \right)\left( {v_{i}^{kt} - v_{i}^{et} } \right)\left( {y_{{n_{2} }}^{kt} - y_{{n_{2} }}^{et} } \right)} }}{{\sum\nolimits_{e = 1}^{{N_{p} }} {G\left( {v_{i}^{kt} - v_{i}^{et} ;\sigma_{i}^{2} } \right)G\left( {v_{j}^{kt} - v_{j}^{et} ;\sigma_{j}^{2} } \right)} }}\delta_{{in_{1} }} } \\ & \quad + \frac{1}{{N_{p} \sigma_{j}^{2} }}\sum\nolimits_{k = 1}^{{N_{p} }} {\frac{{\sum\nolimits_{e = 1}^{{N_{p} }} {G\left( {v_{j}^{kt} - v_{j}^{et} ;\sigma_{j}^{2} } \right)G\left( {v_{i}^{kt} - v_{i}^{et} ;\sigma_{i}^{2} } \right)\left( {v_{j}^{kt} - v_{j}^{et} } \right)\left( {y_{{n_{2} }}^{kt} - y_{{n_{2} }}^{et} } \right)} }}{{\sum\nolimits_{e = 1}^{{N_{p} }} {G\left( {v_{j}^{kt} - v_{j}^{et} ;\sigma_{j}^{2} } \right)G\left( {v_{i}^{kt} - v_{i}^{et} ;\sigma_{i}^{2} } \right)} }}} \delta_{{jn_{1} }} \\ \end{aligned}$$
(24)

where \(\delta\) is the Kronecker delta function:

$$\delta_{{q_{1} q_{2} }} = \left\{ {\begin{array}{*{20}l} 1 \hfill & {q_{1} = q_{2} } \hfill \\ 0 \hfill & {q_{1} \ne q_{2} } \hfill \\ \end{array} } \right.$$
(25)

Using Eqs. (20) to (25), one can easily obtain Eq. (19).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahdoosti, H.R., Tabatabaei, Z. Object-based feature extraction for hyperspectral data using firefly algorithm. Int. J. Mach. Learn. & Cyber. 11, 1277–1291 (2020). https://doi.org/10.1007/s13042-019-01038-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-019-01038-w

Keywords

Navigation