Skip to main content
Log in

GRPCA21 for recovering a corrupted low-rank matrix

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Robust principal component analysis (RPCA) based methods via decomposition into low-rank plus sparse matrices offer a wide range of applications for image processing, video processing and 3D computer vision. Most of the time the observed imagery data is often arbitrarily corrupted by anything such as large sparse noise, small dense noise and other unknown fraction, which we call mixed noise in this paper. However, low rank matrix recovery by RPCA is born for the existence of large sparse noise, so its performance and applicability are limited in the presence of mixed noise. In this paper, a generalized robust principal component analysis with norm \(l_{2,1}\) model is proposed to solve the problem of low-rank matrix recovery under mixed large sparse noise and small dense noise. The corrupted matrix is written as a combination that minimizes the nuclear norm, the 1-norm and the norm \(l_{2,1}\), which has high efficiency, flexibility and robustness for low rank matrix recovery from mixed noise. Then a novel and efficient algorithm called random permutation alternative direction of multiplier method is applied to solve the model. Experiments with simulations and real datasets demonstrate efficiency and robustness of this model and algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Alpaydin E (2004) Introduction to Machine Learning (Adaptive Computation and Machine Learning) [M]. Introduction to machine learning. MIT, Oxford, p 28

    Google Scholar 

  2. Chong P, Kang Z, Yang M et al (2016) RAP: scalable RPCA for low-rank matrix recovery[C]. In: Proceedings of the 2016 ACM conference on information and knowledge management, pp. 2113–2118

  3. Cands EJ, Li X, Ma Y et al (2011) Robust principal component analysis? [J]. JACM 58(3):1–37

    Article  MathSciNet  Google Scholar 

  4. Cands EJ, Recht B (2009) Exact matrix completion via convex optimization[J]. Found Comput Math 9(6):717–772

    Article  MathSciNet  Google Scholar 

  5. Wright J, Ganesh A, Rao S et al (2009) Robust principal component analysis: exact recovery of corrupted low-rank matrices via convex optimization[C]. In: Advances in neural information processing systems, pp 2080–2088

  6. Lin Z, Chen M, Ma Y (2010) The Augmented Lagrange Multiplier method for exact recovery of corrupted low-rank matrices [J]. Eprint Arxiv, p 9

  7. Recht B, Fazel M, Parrilo P (2010) Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization [J]. SIAM Rev 52(3):471–501

    Article  MathSciNet  Google Scholar 

  8. Hu Y, Zhang D, Li X et al (2013) Fast and Accurate Matrix Completion via Truncated Nuclear Norm Regularization [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence 35(9):2117–2130

    Article  Google Scholar 

  9. Lin Z, Xu C, Zha H (2018) Robust matrix factorization by majorization minimization [J]. IEEE Trans Pattern Anal Mach Intell 40(1):208–220

    Article  Google Scholar 

  10. Qian W, Cao F (2019) Adaptive algorithms for low-rank and sparse matrix recovery with truncated nuclear norm [J]. Int J Mach Learn Cybern 10(6):1341–1355

    Article  Google Scholar 

  11. Xue Z, Dong J, Zhao Y et al (2019) Low-rank and sparse matrix decomposition via the truncated nuclear norm and a sparse regularizer [J]. Vis Comput 35(11):1549–1566

    Article  Google Scholar 

  12. Li J, Zhao LN, Hou XK (2017) Matrix recovery by randomly permuted alternating direction method of multipliers[J]. J Beijing Univ Chem Technol 44(3):123–128

    Google Scholar 

  13. Zhao JX, Zhao LN (2019) Low-rank and sparse matrices fitting algorithm for low-rank representation. Comput Math Appl. https://doi.org/10.1016/j.camwa.2019.07.012

    Article  Google Scholar 

  14. Lin Z, Ganesh A, Wright J et al (2009) Fast convex optimization algorithms for exact recovery of a corrupted low-rank matrix [J]. CAMSAP 56(3):707–722

    Google Scholar 

  15. Glowinski R (2014) On alternating direction methods of multipliers: a historical perspective [M]. Modeling, simulation and optimization for science and technology. Springer, Netherlands, pp 59–82

    MATH  Google Scholar 

  16. Zhao JX, Feng Q, Zhao LN (2019) Alternating direction and Taylor expansion minimization algorithms for unconstrained nuclear norm optimization[J]. Num Algorithms 82:371–396

    Article  MathSciNet  Google Scholar 

  17. Li J, Zhao L, Zhang M et al (2017) Low rank matrix recovery from sparse noise by 2,1 loss function[C]. In: IEEE International conference on signal & image processing

  18. Li Z, Liu J, Tang J et al (2015) Robust structured subspace learning for data representation[J]. IEEE Trans Pattern Anal Mach Intell 37(10):2085–2098

    Article  Google Scholar 

  19. Sun R, Luo ZQ, Ye Y (2015) On the expected convergence of randomly permuted ADMM [J]. Mathematics. arXiv:1503.06387

  20. Li Y, Liu G, Liu Q et al (2018) Moving object detection via segmentation and saliency constrained RPCA [J]. Neurocomputing 323:352–362

    Article  Google Scholar 

  21. Han G, Wang J, Cai X (2017) Background subtraction based on modified online robust principal component analysis [J]. Int J Mach Learn Cybern 8(6):1839–1852

    Article  Google Scholar 

  22. Bouwmans T et al (2018) On the applications of robust PCA in image and video processing. Proc IEEE 106(8):1427–1457

    Article  Google Scholar 

  23. Gu S, Xie Q, Meng D et al (2017) Weighted nuclear norm minimization and its applications to low level vision [J]. Int J Comput Vis 121(2):183–208

    Article  Google Scholar 

  24. Cands EJ, Tao T (2010) The power of convex relaxation: near-optimal matrix completion [J]. IEEE Trans Inf Theory 56(5):2053–2080

    Article  MathSciNet  Google Scholar 

  25. Deng Y et al (2018) Nuclear norm-based matrix regression preserving embedding for face recognition [J]. Neurocomputing 311:279–290

    Article  Google Scholar 

  26. Tan X, Chen S, Zhou ZH et al (2006) Face recognition from a single image per person: a survey [J]. Pattern Recog 39(9):1725–1745

    Article  Google Scholar 

  27. Dolhansky Brian, Ferrer Cristian Canton (2018) Eye in-painting with exemplar Generative Adversarial Networks [C]. CVPR

  28. Etemad K, Chellappa R (1997) Discriminant analysis for recognition of human face images [J]. J. Opt. Soc. Am. A 14(8):1724–1733

    Article  Google Scholar 

  29. Guo G, Li SZ, Chan K (March 2000) Face recognition by support vector machines[C]. Proc. of the IEEE Int. Conf. on Automatic Face and Gesture Recognition, 196-201

  30. Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding [J]. Science 290(5500):2323–2326

    Article  Google Scholar 

  31. Wright J, Yang AY, Ganesh A et al (2009) Robust face recognition via sparse representation [J]. IEEE Trans. Pattern Anal. Mach. Intell. 31(2):210–227

    Article  Google Scholar 

Download references

Acknowledgements

The work is supported by the National Natural Science Foundation of China 11301021 and 11571031.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lina Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Hou, X., Yang, H. et al. GRPCA21 for recovering a corrupted low-rank matrix. Int. J. Mach. Learn. & Cyber. 11, 1293–1305 (2020). https://doi.org/10.1007/s13042-019-01039-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-019-01039-9

Keywords

Navigation