
ar
X

iv
:1

81
2.

10
42

6v
3

 [
cs

.L
G

]
 2

6
D

ec
 2

01
9

Noname manuscript No.
(will be inserted by the editor)

Stochastic Trust Region Inexact Newton Method for Large-scale

Machine Learning

Vinod Kumar Chauhan ∗
· Anuj Sharma ·

Kalpana Dahiya

Received: date / Accepted: date

Abstract Nowadays stochastic approximation methods are one of the major research direction to deal
with the large-scale machine learning problems. From stochastic first order methods, now the focus is
shifting to stochastic second order methods due to their faster convergence and availability of computing
resources. In this paper, we have proposed a novel Stochastic Trust RegiOn Inexact Newton method,
called as STRON, to solve large-scale learning problems which uses conjugate gradient (CG) to inexactly
solve trust region subproblem. The method uses progressive subsampling in the calculation of gradient
and Hessian values to take the advantage of both, stochastic and full-batch regimes. We have extended
STRON using existing variance reduction techniques to deal with the noisy gradients and using pre-
conditioned conjugate gradient (PCG) as subproblem solver, and empirically proved that they do not
work as expected, for the large-scale learning problems. Finally, our empirical results prove efficacy of
the proposed method against existing methods with bench marked datasets.

Keywords stochastic optimisation · subsampling · second order methods · inexact newton · large-scale
learning

1 Introduction

Machine learning involves data intensive optimization problems which have large number of component
functions corresponding to large amount of available data. Traditional/classical methods, like Newton
method, fail to perform well on such large-scale learning problems (i.e., problems with large number of
data points) due to large per-iteration complexity. So nowadays one of the major challenge in machine
learning is to develop scalable and efficient algorithms to deal with these large-scale learning problems
[40, 11, 12].

To solve the machine learning problems, gradient descent (GD) [10] is the classical method of choice

∗Most of this work was done when author was doing his PhD at Panjab University Chandigarh, India.
∗This is a pre-print of an article published in International Journal of Machine Learning and Cybernetics. The final
authenticated version is available online at: https://doi.org/10.1007/s13042-019-01055-9

Vinod Kumar Chauhan
Department of Engineering
University of Cambridge, UK
E-mail: vk359@cam.ac.uk
Homepage: http://www.eng.cam.ac.uk/profiles/vk359

Anuj Sharma
Computer Science & Applications
Panjab University Chandigarh, INDIA
E-mail: anujs@pu.ac.in
Homepage: https://sites.google.com/view/anujsharma

Kalpana Dahiya
University Institute of Engineering and Technology
Panjab University Chandigarh, INDIA
E-mail: kalpanas@pu.ac.in

http://arxiv.org/abs/1812.10426v3
http://www.eng.cam.ac.uk/profiles/vk359
https://sites.google.com/view/anujsharma

but it trains slowly while dealing with large-scale learning problems due to high per-iteration cost.
Stochastic approximation based methods [33] can be quite effective in such situations but they converge
slowly due to the noisy approximations of gradient. So a variety of stochastic variance reduction tech-
niques came to existence, e.g., [25, 17, 34, 2, 19]. But the major limitation of these methods is that they
can converge up to linear rate only.

Newton method is another classical method to solve optimization problems, which can give up to
quadratic convergence rate [7]. But again (pure) Newton method is not feasible with large-scale learning
problems due to huge per-iteration computational complexity and need to store a huge Hessian matrix.
So nowadays one of the most significant open question in optimization for machine learning is: “Can we
develop stochastic second order methods with quadratic convergence, like Newton method but has low
per-iteration complexity, like stochastic approximation methods?”. After success in the stochastic first
order methods, the research is shifting its focus towards the stochastic second order methods to leverage
the faster convergence of second order methods and the available computing power.

Inexact Newton (also called truncated Newton or Hessian free) methods and quasi-Newton methods
are among the major research directions for developing second order methods [5]. Inexact Newton meth-
ods try to solve the Newton equation approximately without calculating and storing the Hessian matrix.
On the other hand, quasi-Newton methods try to approximate the Hessian inverse and avoid the need
to store the Hessian matrix. Thus both the methods try to resolve the issues with Newton method for
solving large-scale learning problems. The stochastic variants of inexact Newton and quasi-Newton, fur-
ther reduce the complexity of these methods by using subsampled gradient and Hessian calculations. In
this paper, we have proposed a novel stochastic trust region inexact Newton (STRON) method to solve
the large-scale learning problems, which introduces subsampling to gradient and Hessian calculations.
It uses progressive subsampling to enjoy the benefits of both the regimes, stochastic approximation and
full-batch learning. We further extend the method using existing variance reduction techniques to deal
with noise produced by subsampling of gradient values, and by proposing PCG for solving the trust
region subproblem.

1.1 Optimization Problem

We consider unconstrained convex optimization problem of expected risk, as given below:

min
w

R(w) = E [f (w; ξ)] , (1)

where f (w; ξ) = f (w;xi, yi) = f (h (w;xi) , yi) is a smooth composition of linear prediction model h
and loss function f over randomly selected data point (xi, yi) from the unknown distribution P (xi, yi),
parameterized by the model parameter w ∈ R

n. Since it is not feasible to solve (1) as P is unknown so
the model is approximated by taking a set N = {(x1, y1), ..., (xl, yl)} of l data points from the unknown
distribution P and then solving the empirical risk minimization problem, as given below:

min
w

F (w) =
1

l

l
∑

i=1

f(w;xi, yi). (2)

For simplicity, we take f (w;xi, yi) = fi(w). Finite sum optimization problems of type (2) exists across
different fields, like signal processing, statistics, operation research, data science and machine learning,
e.g., logistic regression and SVM in machine learning.

1.2 Solution Techniques

Simple iterative classical method to solve (2) is gradient descent (GD) [10], as given below:

wk+1 = wk − αk∇F (wk) , (3)

where (k + 1) is iteration number and αk is called learning rate or step size. The complexity of this
iteration is O (nl) which is large for large-scale learning problems due to large number of data points.

2

Stochastic gradient descent (SGD) [33] is very effective to deal with such problems due to its low per-
iteration complexity, as given below:

wk+1 = wk − αk∇fik (wk) , (4)

where ik is randomly selected data point. But convergence can’t be guaranteed in SGD because of noisy
gradient values.

Another classical second order method to solve (2) is Newton method, as given below:

wk+1 = wk − αk∇
2F (wk)

−1
∇F (wk) . (5)

The complexity of this iteration is O(n2l + n3) and it needs to store and invert the Hessian matrix
∇2F (wk), which is computationally very expensive and needs large memory for large-scale learning
problems, respectively. That’s why first order methods and their stochastic variants have been studied
very extensively, during the last decade, to solve the large-scale learning problems but not second order
methods. As stochastic first order methods have hit their limits and due to good availability of computing
power, the main focus is shifting towards stochastic second order methods, and nowadays one important
open question is to find stochastic second order methods with quadratic convergence rates.

There are two major research directions for second order methods: quasi-Newton methods and inexact
Newton methods, both of which try to resolve the issues associated with the Newton method. Quasi-
Newton methods try to approximate the Hessian matrix during each iteration, as given below:

wk+1 = wk − αkBk∇F (wk) , (6)

where Bk is an approximate of ∇2F (wk)
−1

, e.g., Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm
is one such method [20]. On the other hand, inexact Newton methods try to solve the Newton system
approximately, e.g., Newton-CG [38]. Both the methods try to resolve the issues related with Newton
method but still their complexities are large for large-scale problems. So a number of stochastic variants
of these methods have been proposed, e.g., [8, 9, 6, 3] which introduce subsampling to gradient and
Hessian calculations.

1.3 Contributions

The contributions of the manuscript are listed below:

– The manuscript highlights the recent shift of stochastic methods from first order to second order
methods and raises an open question that we need stochastic second order methods with quadratic
convergence rate to solve the large-scale machine learning problems.

– We have proposed a novel subsampled variant of trust region inexact Newton method for solving large-
scale learning problems, which is called STRON and is the first stochastic variant of trust region
inexact Newton methods. STRON uses progressive subsampling scheme for gradient and Hessian
calculations to enjoy the benefits of both stochastic and full batch regimes. STRON can converge up
to quadratic rate and answers the raised open question.

– STRON has been extended using existing variance reduction techniques to deal with the noisy ap-
proximations of the gradient calculations. The extended method uses stochastic variance reduced
gradient (SVRG) for variance reduction with static batching for gradient calculations and progressive
batching for the Hessian calculations. The empirical results prove that this does not work as expected
for large-scale learning.

– We further extend STRON and use PCG, instead of CGmethod, to solve the Newton system inexactly.
We have used weighted average of identity matrix and diagonal matrix as the preconditioner. But
even this fails to work as expected for large-scale learning.

– Finally, our empirical experiments prove the efficacy of STRON against existing techniques with
bench marked datasets.

3

2 Literature Review

Stochastic approximation methods are very effective to deal with the large-scale learning problems due
to their low per-iteration cost, e.g., SGD [33], but they lead to slow convergence rates due to the noisy
approximation. To deal with the noise issue, a number of techniques have been proposed and some of the
important techniques (as discussed in [16]) are: (a) decreasing learning rates [37], (b) using mini-batching
[13], (c) importance sampling [16], and (d) variance reduction [23]. The variance reduction methods can
further be classified into three categories: primal methods [34, 15], dual methods [36] and primal-dual
methods [39]. The variance reduction techniques are effective to deal with the large-scale learning prob-
lems because of low per-iteration complexity, like SGD, and have fast linear convergence, like GD. These
techniques exploit the best of SGD and GD but for these stochastic variants of first order methods the
convergence is limited to linear rate only, unlike the second order methods which can give up to quadratic
rate.

Second order methods utilize the curvature information to guide the step direction towards the solu-
tion and exhibit faster convergence than the first order methods. But huge per-iteration cost due to the
huge Hessian matrix and its inversion make the training of models slow for large-scale problems. So cer-
tain techniques have been developed to deal with the issues related to Hessian matrix, e.g., quasi-Newton
methods and inexact Newton methods are two major directions to deal with the huge computational
cost of Newton method. Quasi-Newton methods approximate the Hessian matrix during each iteration,
e.g., BFGS [20] and its limited memory variant, called L-BFGS [28], are examples of the quasi-Newton
class which use gradient and parameter values from the previous iterations to approximate the Hessian
inverse. L-BFGS uses only recent information from previous M -iterations. On the other hand, inexact
Newton methods try to solve the Newton system approximately, e.g., Newton-CG [38].

Recently, several stochastic variants of BFGS and L-BFGS have been proposed to deal with large-scale
problems. Schraudolph et al. [35] proposed stochastic variants of BFGS and L-BFGS for the online setting,
known as oBFGS. Mokhtari and Ribeiro [30] extended oBFGS by adding regularization which enforces
upper bound on the eigen values of the approximate Hessian, known as RES (Regularized Stochastic
BFGS). Stochastic quasi-Newton (SQN) [9] is another stochastic variant of L-BFGS which collects cur-
vature information at regular intervals, instead of at each iteration. Variance-reduced Stochastic Newton
(VITE) [29] extended RES and proposed to use variance reduction for the subsampled gradient values
for solving smoothly strongly convex problems. Kolte et al. [24] provided another stochastic L-BFGS
method with variance reduction using SVRG (referred as SVRG-LBFGS). Moritz et al. [31] proposed
Stochastic L-BFGS (SLBFGS) using SVRG for variance reduction and using Hessian-vector product to
approximate the gradient differences for calculating the Hessian approximations, also referred as SVRG-
SQN. SVRG-LBFGS and SVRG-SQN differ in how the curvature is approximated (i.e. how Hessian is
approximated), former collects the curvature information once during each epoch (outer iterations) using
gradient differences but later collects the curvature information after regular intervals inside the inner-
iterations using Hessian-vector products. Berahas et al. [4] proposed multi-batch scheme into stochastic
L-BFGS where batch sample changes with some overlaps with previous iteration. Bollapragada et al. [6]
proposed progressive batching, stochastic line search and stable Newton updates for L-BFGS. Bollapra-
gada et al. [5] studies the conditions on the subsample sizes to get the different convergence rates.

Stochastic inexact Newton methods are also explored extensively. Byrd et al. [8] proposed stochastic
variants of Newton-CG along with L-BFGS method. Bollapragada et al. [5] studies subsampled New-
ton methods and find conditions on subsample sizes and forcing term (constant used with the residual
condition), for linear convergence of Newton-CG method. Bellavia et al. [3] studies the effect of forcing
term and line search to find linear and super-linear convergence of Newton-CG method. Newton-SGI
(stochastic gradient iteration) is another way of solving the linear system approximately and is studied
in Agarwal et al. [1].

Trust Region Newton (TRON) method is one of the most efficient solver for solving large-scale linear
classification problems [27]. This is trust region inexact Newton method which does not use any subsam-
pling and is present in LIBLINEAR library [18]. Hsia et al. [21] extends TRON by improving the trust
region radius value. Hsia et al. [22], further extends TRON and uses preconditioned conjugate gradient
(PCG) which uses weighted average of identity matrix and diagonal matrix as a preconditioner, to solve
the trust region subproblem. Since subsampling is an effective way to deal with the large-scale problems
so in this paper, we have proposed a stochastic variant of trust region inexact Newton method, which
have not been studied so far to the best of our knowledge.

4

3 Trust Region Inexact Newton Method

Inexact Newton methods, also called as Truncated Newton or Hessian free methods, solve the Newton
equation (linear system) approximately. CG method is a commonly used technique to solve the trust
region subproblem approximately. In this section, we discuss inexact Newton method and its trust region
variation.

3.1 Inexact Newton Method

The quadratic model mk(p) obtained using Taylor’s theorem is given below:

F (wk + p)− F (wk) ≈ mk(p) ≡ ∇F (wk)
T
p+

1

2
pT∇2F (wk) p. (7)

Taking derivative of mk(p) w.r.t. p and equating to zero, we get,

∇2F (wk) p = −∇F (wk) , (8)

which is Newton system and its solution gives Newton method, as given below:

wk+1 = wk + pk = wk −∇2F (wk)
−1

∇F (wk) . (9)

The computational complexity of this iteration is O(n2l + n3) which is very expensive. This iteration
involves the calculation and inversion of a large Hessian matrix which is not only very expensive to
calculate but expensive to store also. CG method approximately solves the subproblem (8) without
forming the Hessian matrix, which solves the issues related to large computational complexity and need
to store the large Hessian matrix. Each iteration runs for a given number of CG iterations or until the
residual condition is satisfied, as given below:

‖rk‖ ≤ η
′

k‖∇F (wk) ‖, (10)

where rk = ∇2F (wk) p+∇F (wk) and η
′

k is a small positive value, known as forcing term [32].

3.2 Trust Region Inexact Newton Method

Trust region is a region in which the approximate quadratic model of the given function gives correct
approximation for that function. In trust region methods, we don’t need to calculate the step size (also
called learning rate) directly but they indirectly adjust the step size as per the trust region radius. Trust
region method solves the following subproblem to get the step direction pk:

min
p

mk (p) s.t. ‖p‖ ≤ △k, (11)

where mk(p) is a quadratic model of F (wk + p) − F (wk), as given in (7) and △k is the trust region
radius. This subproblem can be solved similar to Newton-CG, except that now we need to take care
of the extra constraint of p. TRON (trust region Newton method) [27] is one of the most famous and
widely used such method, which is used in LIBLINEAR [18] to solve l2-regularized logistic regression and
l2-SVM problems. Hsia et al. [21] extends TRON by proposing better trust region radius. Hsia et al. [22]
further extends TRON using PCG subproblem solver which uses average of identity matrix and diagonal
matrix as preconditioner, to solve the trust region subproblem and shows that PCG could be effective
to solve ill-conditioned problems.

Then the ratio of actual and predicted reductions of the model is calculated, as given below:

ρk =
F (wk + pk)− F (wk)

mk(pk)
. (12)

The parameters are updated for the (k + 1)th iteration as given below:

wk+1 =

{

wk + pk, if ρk > η0,

wk, if ρk ≤ η0,
(13)

5

where η0 > 0 is a given constant. Then the trust region radius △k is updated as per the ratio of actual
reduction and predicted reduction, and a framework for updating △k as given in [26], is given below:

△k+1 ∈











[γ1 min{‖pk‖,△k}, γ2△k] , if ρk ≤ η1,

[γ1△k, γ3△k] , if ρk ∈ (η1, η2) ,

[△k, γ3△k] , if ρk ≥ η2,

(14)

where 0 < η1 < η2 ≤ 1 and 0 < γ1 < γ2 < 1 < γ3. If ρk ≤ η1 then the Newton step is considered
unsuccessful and the trust region radius is shrunk. On the other hand if ρk ≥ η2 then the step is
successful and the trust region radius is enlarged. We have implemented this framework as given in the
LIBLINEAR library [18] and chose the following pre-defined values for the above constants: η0 = 1e− 4,
η1 = 0.25, η2 = 0.75, γ1 = 0.25, γ2 = 0.5 and γ3 = 4.

4 STRON

STRON exploits the best of both, stochastic and batch regimes, using progressive subsampling to solve
the large-scale learning problems. As stochastic gradient descent (SGD) trains faster for large-scale learn-
ing problems than gradient descent (GD) due to low computations per iteration but GD is more accurate
than SGD due to batch calculations, similarly STRON takes benefit of low computation during initial
iterations and as it reaches the solution region it uses batch calculations to find accurate solution like
TRON. The major challenge with STRON is to decide when to switch from stochastic to full-batch
regime, i.e., to tune the subsampling rate.

STRON introduces stochasticity into the trust region inexact Newton method and calculates sub-
sampled function, gradient and Hessian values to solve the trust region subproblem, as given below:

min
p

mk(p) = ∇FXk
(wk)

T
p+

1

2
pT∇2FSk

(wk) p, s.t. ‖p‖ ≤ △k, (15)

where ∇2FSk
(wk) and ∇FXk

(wk) are subsampled Hessian and gradient values over the subsamples Sk

and Xk, respectively, as defined below:

∇2FSk
(wk) =

1

|Sk|

∑

i∈Sk

∇2fi (wk) ,

∇FXk
(wk) =

1

|Xk|

∑

i∈Xk

∇fi (wk) ,

FXk
(wk) =

1

|Xk|

∑

i∈Xk

fi (wk) ,

(16)

where subsamples are increasing, i.e., |Xk| < |Xk+1|, |Sk| < |Sk+1| and FXk
is subsampled function value

used for calculating ρk. STRON solves (15) approximately for given number of CG iterations or until
the following residual condition is satisfied:

‖rk‖ ≤ η
′

k‖∇FXk
(wk) ‖, (17)

where rk = ∇2FSk
(wk) p+∇FXk

(wk).
STRON is presented by Algorithm 1. It randomly selects subsamples Sk and Xk for the kth iteration
(outer iterations). Xk and Sk are used for calculating the gradient and Hessian values, respectively. Then
it solves the trust region subproblem using CG solver (inner iterations) which uses subsampled Hessian in
calculating Hessian-vector products. CG stops when residual condition, same as (17), satisfies, it reaches
maximum #CG iterations or it reaches the trust region boundary. The ratio of reduction in actual and
predicted reduction is calculated similar to (12) but using subsampled function, and is used for updating
the parameters as given in (13). Then trust region radius △k is updated as per ρk as given in (14) and
these steps are repeated for a given number of iterations or until convergence.

STRON uses progressive subsampling, i.e., dynamic subsampling to calculate function, gradient and
Hessian values, and solves the Newton system approximately. It is effective to deal with large-scale
problems since it uses subsampling and solves the subproblem approximately, without forming the Hessian
matrix but using only Hessian-vector products. So it handles the complexity issues related with the
Newton method.

6

Algorithm 1 STRON

1: Input: w0

2: Result: w = wk

3: for k = 0, 1, ... do
4: Randomly select subsamples Sk and Xk

5: Calculate subsampled gradient ∇FXk
(wk)

6: Solve the trust region subproblem using Algorithm 2, to get the step direction pk
7: Calculate the ratio ρk =

(

FXk
(wk + pk)− FXk

(wk)
)

/mk(pk)
8: Update the parameters using (13)
9: Update the trust region radius △k using (14)
10: end for

Algorithm 2 CG Subproblem Solver

1: Inputs: △k > 0, η
′

k
∈ (0, 1)

2: Result: pk = pj
3: Initialize p0 = 0, r0 = d0 = −∇FXk

(wk)
4: for j = 1, 2, ... do

5: if ‖rj−1‖ < η
′

k
‖∇FXk

(wk)‖ then

6: return pk = pj−1

7: end if

8: Calculate subsampled Hessian-vector product vj = ∇2FSk
(wk)dj−1

9: αj = ‖rj−1‖2/
(

dTj−1
vj

)

10: pj = pj−1 + αjdj−1

11: if ‖pj‖ ≥ △k then

12: Calculate τj such that ‖pj−1 + τjdj−1‖ = △k

13: return pk = pj−1 + τjdj−1

14: end if

15: rj = rj−1 − αjvj ,
16: βj = ‖rj‖

2/‖rj−1‖
2, dj = rj + βjdj−1

17: end for

4.1 Complexity

The complexity of trust region inexact Newton (TRON) method depends on function, gradient and CG
subproblem solver. This is dominated by CG subproblem solver and is given byO (nl)×#CG iterations, and for sparse data, O (#nnz)×
#CG iterations, where #nnz is number of non-zeros values in the dataset. For subsampled trust region in-
exact Newton (STRON) method, the complexity per-iteration is given byO (n|Sk|)×#CG iterations, and for sparse data, O (#nnzSk

)×
#CG iterations, where #nnzSk

is number of non-zeros values in the subsample Sk. Since #CG iterations
taken by TRON and STRON do not differ much so the per-iteration complexity of STRON is smaller
than TRON in the initial iterations and later becomes equal to TRON due to progressive subsampling,
i.e., when |Sk| = N .

4.2 Analysis

STRON method uses progressive subsampling with the assumption that eventually mini-batch size be-
comes equal to the whole dataset, i.e., for some value of k ≥ k̄ > 0, STRON becomes TRON. So we can
follow the theoretical results given in TRON, which itself refers the results from [26]. For k ≥ k̄, we get
different convergence depending upon the value of η

′

k: If η
′

k < 1 then STRON converges Q-linearly, if

η
′

k → 0 as k → ∞ then STRON has Q-superlinear convergence and when η
′

k ≤ κ0‖∇F (wk)‖ for κ0 > 0
then STRON converges at quadratic rate.

5 Experimental Results

In this section, we discuss experimental settings and results. The experiments have been conducted with
the bench marked binary datasets as given in the Table 1, which are available for download from LibSVM
website1. We use following methods in experimentation:

1 https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

7

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

Table 1: Datasets used in experimentation

Dataset #features #datapoints
gisette 5000 6,000
rcv1.binary 47,236 20,242
webspam (unigram) 254 350,000
covtype.binary 54 581,012
ijcnn1 22 49,990
news20.binary 1,355,191 19,996
real-sim 20,958 72,309
Adult 123 32,561
mushroom 112 8124

TRON [22]: This is a trust region inexact Newton method without any subsampling. It uses precon-
ditioned CG method to solve the trust region subproblem and it is present in the current version of
LIBLINEAR library [18].
STRON: This is the proposed stochastic trust region inexact Newton method with progressive sub-
sampling technique for gradient and Hessian calculations. It uses CG method to solve the trust region
subproblem.
STRON-PCG: This is an extension of STRON using PCG for solving the trust region subproblem, as
discussed in the Subsection A.1.
STRON-SVRG: This is another extension of STRON using variance reduction for subsampled gradient
calculations, as discussed in Subsection A.2.
Newton-CG [8]: This is stochastic inexact Newton method which uses CG method to solve the sub-
problem. It uses progressive subsampling similar to STRON.
SVRG-SQN [31]: This is stochastic L-BFGS method with variance reduction for gradient calculations.
SVRG-LBFGS [24]: This is another stochastic L-BFGS method with variance reduction. It differs from
SVRG-SQN method in approach by which Hessian information is sampled.

5.1 Experimental Setup

The datasets have been divided into 80% and 20%, for training and testing datasets, respectively to plot
the convergence, and 5-fold cross-validation has been used to present results in Table 2. We have used
λ = 1/l for all methods because generally it gives good results and at the same time help to reduce
number of tunable hyper-parameters. #CG iterations has been set to a sufficiently large value of 25,
as all the inexact Newton methods use 5-10 iterations and hardly go beyond 20 iterations. Progressive
batching scheme uses initial batch size of 1% for all datasets except ijcnn which uses 10% of dataset and
the subsample size is increased linearly for all datasets, except covtype where exponential rate is used.
Moreover we set the rate such that subsample size equals dataset size in 5 epochs because, generally
second order methods reach the solution region in 4-5 epochs and converge in 8-10 epochs. For the sake
of simplicity and avoid extra sampling, we take same subsample for Hessian and gradient calculations,
i.e, Sk = Xk. Quasi-Newton methods (SVRG-SQN and SVRG-LBFGS) use mini-batch size of 10% with
stochastic backtracking line search to find the step size and same size mini-batches are taken for gradient
and Hessian subsampling. Memory of M = 5 is used in quasi-Newton methods with L = 5 as update
frequency of Hessian inverse approximation for SVRG-SQN method. All the algorithms use similar exit
criterion of decrease in gradient value where we calculate gradient (‖g0‖) at w0 and run the algorithms
until ‖gk‖ ≤ ǫ‖g0‖, where ‖gk‖ is gradient value at kth-iteration and ǫ is the given tolerance level.
Moreover all the methods are implemented in C++2 with MATLAB interface and experiments have
been executed on MacBook Air (8 GB 1600 MHz DDR3, 1.6 GHz Intel Core i5 and 256GB SSD).

5.2 Comparative Study

The experiments have been performed with strongly convex and smooth l2-regularized logistic regression
problem as given below:

2 experimental results can be reproduced using the library LIBS2ML [14].

8

https://github.com/jmdvinodjmd/LIBS2ML

min
w

F (w) =
1

l

l
∑

i=1

log
(

1 + exp
(

−yiw
Txi

))

+
λ

2
‖w‖2. (18)

The results have been plotted as optimality (F (w)−F (w∗)) versus training time (in seconds) and accuracy
versus training time for high ǫ(=10−10)-accuracy solutions, as given in the Figs. 1, 2 and 3. As it is
clear from the results, STRON converges faster than all other methods and shows improvement against
TRON on accuracy vs. time plots. Moreover, quasi-Newton methods converges slower than inexact
Newton methods as already established in the literature [27]. As per the intuitions, STRON takes initial
advantage over TRON due to subsampling and as it reaches the solution region the progressive batching
scheme reaches the full batching scheme and converges with same rate as TRON. That’s why, in most
of the figures, we can observe STRON and TRON converging in parallel lines. Moreover, we observe a
horizontal line for accuracy vs. time plot with covtype dataset because all methods give 100% accuracy.
Generally, the models are trained for low ǫ(=10−02)-accuracy solutions. So we present the results for

0 0.1 0.2 0.3 0.4 0.5 0.6
Time (seconds)

10-20

10-15

10-10

10-5

100

Op
tim

alit
y g

ap

SVRG_LBFGS
STRON
SVRG_SQN
NewtonCG
TRON

0 0.1 0.2 0.3 0.4 0.5
Time (seconds)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

T
es

t A
cc

ur
ac

y

SVRG_LBFGS
STRON
SVRG_SQN
NewtonCG
TRON

0 0.5 1 1.5
Time (seconds)

10-15

10-10

10-5

100

O
pt

im
al

ity
 g

ap SVRG_LBFGS
STRON
SVRG_SQN
NewtonCG
TRON

0 0.5 1 1.5
Time (seconds)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

T
es

t A
cc

ur
ac

y

SVRG_LBFGS
STRON
SVRG_SQN
NewtonCG
TRON

0 2 4 6 8 10 12
Time (seconds)

10-15

10-10

10-5

100

O
pt

im
al

ity
 g

ap

SVRG_LBFGS
STRON
SVRG_SQN
NewtonCG
TRON

0 2 4 6 8 10 12
Time (seconds)

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

T
es

t A
cc

ur
ac

y

SVRG_LBFGS
STRON
SVRG_SQN
NewtonCG
TRON

Fig. 1: First column presents optimality versus training time (in seconds) and second column presents
accuracy versus training time, on mushroom (first row), rcv1 (second row) and news20 (third row)
datasets.

9

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time (seconds)

10-15

10-10

10-5

100

O
pt

im
al

ity
 g

ap

SVRG_LBFGS
STRON
SVRG_SQN
NewtonCG
TRON

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time (seconds)

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

T
es

t A
cc

ur
ac

y

SVRG_LBFGS
STRON
SVRG_SQN
NewtonCG
TRON

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Time (seconds)

10-20

10-15

10-10

10-5

100

105

O
pt

im
al

ity
 g

ap

SVRG_LBFGS
STRON
SVRG_SQN
NewtonCG
TRON

0 1 2 3 4 5
Time (seconds)

10-1

100

101

Te
st

Ac
cu

rac
y

SVRG_LBFGS
STRON
SVRG_SQN
NewtonCG
TRON

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Time (seconds)

10-15

10-10

10-5

100

O
pt

im
al

ity
 g

ap

SVRG_LBFGS
STRON
SVRG_SQN
NewtonCG
TRON

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Time (seconds)

0.904

0.906

0.908

0.91

0.912

0.914

0.916

0.918

0.92

0.922

0.924

T
es

t A
cc

ur
ac

y

SVRG_LBFGS
STRON
SVRG_SQN
NewtonCG
TRON

Fig. 2: First column presents optimality versus training time (in seconds) and second column presents
accuracy versus training time, on Adult (first row), covtype (second row) and ijcnn1 (third row).

such a case using Table 2, which reports results using 5-fold cross validation. As it is clear from the table,
STRON either outperforms other solvers or shows results pretty close to the best method.

5.3 Results with SVM

We extend STRON to solve l2-SVM problem which is a non smooth problem, as given below:

min
w

F (w) =
1

l

l
∑

i=1

max(0, 1− yiw
Txi)

2 +
λ

2
‖w‖2. (19)

The results are reported in the Fig. 4 with news20 and real-sim datasets. As it is clear from the figure,
STRON shows results similar to logistic regression problem and outperforms all other methods.

10

0 1 2 3 4
Time (seconds)

10-15

10-10

10-5

100

O
pt

im
al

ity
 g

ap SVRG_LBFGS
STRON
SVRG_SQN
NewtonCG
TRON

0 1 2 3 4
Time (seconds)

0.7

0.75

0.8

0.85

0.9

0.95

T
es

t A
cc

ur
ac

y

SVRG_LBFGS
STRON
SVRG_SQN
NewtonCG
TRON

Fig. 3: First column presents optimality versus training time (in seconds) and second column presents
accuracy versus training time, on real-sim dataset.

Table 2: Comparison of Training Time (seconds) for low accuracy (ǫ=0.01) solution

Datasets↓ Methods→ SVRG LBFGS STRON SVRG SQN Newton CG TRON

covtype
Time 0.8440±0.1770 0.0620±0.0045 0.4140±0.0397 0.9740±0.1907 0.7294±0.0162
Accuracy 1.00±0.0 1.00±0.0 1.00±0.0 1.00±0.0 1.00±0.0

real-sim
Time 1.5920±0.5867 0.9340±0.1258 2.3480±0.5909 0.68±0.01 0.88±0.10
Accuracy 0.9670±0.0055 0.9697±0.0017 0.9670 ±0.0029 0.9688±0.0022 0.9698±0.0015

rcv1
Time 2.1780±0.1813 0.5700±0.0200 3.2840±0.0270 0.5860±0.0167 0.6589±0.0866
Accuracy 0.9641±0.0023 0.9640±0.0025 0.9637±0.0024 0.9640±0.0024 0.9639±0.0027

news20
Time 42.8960±2.5993 6.9620±1.3534 84.0520±2.2915 6.764±0.0074 7.2470±0.3567
Accuracy 0.9333±0.0079 0.9337±0.0076 0.9339±0.0072 0.9338±0.0074 0.9338±0.0077

mushroom
Time 0.1540±0.01340 0.0820±0.0268 0.1820 ±0.01920 0.072±0.0045 0.1316±0.0169
Accuracy 0.9995±0.0007 0.9992±0.0005 0.9986±0.0026 0.9996±0.0005 0.9995±0.0005

ijcnn1
Time 0.3460±0.1390 0.2560±0.03780 0.3600±0.1158 0.3120±0.0795 0.2564±0.0185
Accuracy 0.9235±0.0022 0.9232±0.0021 0.9237±0.0018 0.9238±0.0025 0.9233±0.0185

Adult
Time 0.3620±0.0981 0.2000±0.0187 0.3100±0.0644 0.2380±0.0084 0.2139±0.0046
Accuracy 0.8479±0.0028 0.8470±0.0028 0.8469±0.0031 0.8473±0.0030 0.8477±0.0028

gisette
Time 9.5620±0.9891 8.1800±0.4260 10.7020±1.1314 41.6480±36.1190 10.4277±0.1709
Accuracy 0.9725±0.0036 0.9730±0.0045 0.9690±0.0026 0.9701±0.0057 0.9755±0.0028

webspam
Time 6.0480±2.2814 6.3720±0.9942 7.6080±2.1462 3.272±0.2141 9.0548±1.2572
Accuracy 0.9139±0.0033 0.9214±0.0019 0.9158±0.0036 0.9219±0.0017 0.9227±0.0009

6 Conclusion

We proposed a novel stochastic trust region inexact Newton method, called as STRON, to solve the
large-scale learning problems. The proposed method used progressive batching scheme to deal with noisy
approximations of gradient and Hessian, and enjoyed the benefits of both stochastic and full batch
regimes. STRON has been extended to use preconditioned CG as trust region subproblem solver and
to use variance reduction for noisy gradient calculations. Our empirical results proved the efficacy of
STRON against the state-of-art techniques with bench marked datasets.

Acknowledgements First author is thankful to Ministry of Human Resource Development, Government of INDIA, to
provide fellowship (University Grants Commission - Senior Research Fellowship) to pursue his PhD. We are also thankful
to the anonymous reviewers for their constructive comments to improve the quality of our manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

11

0 5 10 15 20 25 30
Time (seconds)

10-15

10-10

10-5

100

O
pt

im
al

ity
 g

ap

SVRG_LBFGS
STRON
SVRG_SQN
NewtonCG
TRON

0 5 10 15 20 25 30
Time (seconds)

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

T
es

t A
cc

ur
ac

y

SVRG_LBFGS
STRON
SVRG_SQN
NewtonCG
TRON

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (seconds)

10-15

10-10

10-5

100

O
pt

im
al

ity
 g

ap

SVRG_LBFGS
STRON
SVRG_SQN
NewtonCG
TRON

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (seconds)

0.7

0.75

0.8

0.85

0.9

0.95

T
es

t A
cc

ur
ac

y

SVRG_LBFGS
STRON
SVRG_SQN
NewtonCG
TRON

Fig. 4: Experiments with l2-SVM on news20 (first row) and real-sim (second row) datasets.

A Extensions

In this section, we discuss extensions of the proposed method with PCG for solving the trust region subproblem, and with
variance reduction technique.

A.1 PCG Subproblem Solver

Number of iterations required by CG method to solve the subproblem depend on the condition number of the Hessian
matrix. So for ill-conditioned problems CG method converges slowly. To avoid such situations, generally a non-singular
matrix M , called preconditioner, is used as follow. For the linear system ∇2F (w)p = −∇F (w), we solve following system:

M−1∇2F (w)p = −M−1∇F (w). (20)

Generally, M−1 = LLT is taken to ensure the symmetry and positive definiteness of M−1∇2F (w). PCG can be useful for
solving the ill-conditioned problems but it involves extra computational overhead. We follow [22] to use PCG as a weighted
average of identity matrix and diagonal matrix of Hessian, as given below:

M = α× diag(H) + (1− α)× I, (21)

where H is a Hessian matrix and 0 ≤ α ≤ 1. For α = 0, there is no preconditioning and for α = 1 it is a diagonal
preconditioner. In the experiments, we have taken α = 0.01 for TRON and STRON-PCG [22]. To apply PCG to trust
region subproblem, we can use Algorithm 2 without any modifications, after changing the trust region subproblem (11), as
given below [38]:

min
p̂

(

L−1∇FXk
(wk)

)T
p̂ +

1

2
p̂T

(

L−1∇2FSk
(wk)L

−T
)

p̂, s.t. ‖p̂‖ ≤ △k, (22)

where p̂ = LT p. STRON using PCG as a trust region subproblem solver is denoted by STRON-PCG and the results are
reported in Fig. 5. It compares TRON, STRON and STRON-PCG on news20 and rcv1 datasets. As it is clear from the
figure, both STRON and STRON-PCG outperform TRON.
PCG trust region subproblem solver involves extra cost for calculating the preconditioner, and for TRON the overhead
due to preconditioner is given by

O (n)×#CG iterations + O(nl). (23)

And for STRON-PCG, preconditioner involves extra cost as given below:

O (n)×#CG iterations + O(n|Sk|). (24)

12

0 1 2 3 4 5
Time (seconds)

10-20

10-15

10-10

10-5

100

O
pt

im
al

ity
 g

ap

STRON-SVRG
STRON
TRON

0 1 2 3 4 5
Time (seconds)

10-1

100

101

T
es

t A
cc

ur
ac

y

STRON-SVRG
STRON
TRON

0 0.2 0.4 0.6 0.8 1
Time (seconds)

10-15

10-10

10-5

100

O
pt

im
al

ity
 g

ap

STRON-SVRG
STRON
TRON

0 0.2 0.4 0.6 0.8 1
Time (seconds)

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84
T

es
t A

cc
ur

ac
y

STRON-SVRG
STRON
TRON

Fig. 5: Comparative study of STRON PCG, STRON and TRON on covtype (first row) and Adult (second
row) datasets.

A.2 Stochastic Variance Reduced Trust Region Inexact Newton Method

Recently, researchers have proposed stochastic variants of second order methods with variance reduction. So it is an
interesting question to know that how will variance reduction work with stochastic trust region inexact Newton methods,
as this is not studied yet. Our empirical results prove that variance reduction does not work in this case, even after using
progressive subsampling for Hessian calculation.

To improve the quality of search direction, we have used SVRG as variance reduction technique for gradient calculations,
as given below:

gk = ∇FSk
(wk)−∇FSk

(w̄) +∇F (w̄), (25)

where w̄ is parameter value at the start of outer iteration. STRON-SVRG uses variance reduction for gradient calculations
and progressive batching for Hessian calculations, as given in the Algorithm 3. The experimental results are presented in
Fig. 6 with news20 and rcv1 datasets. As it is clear from the figures, STRON-SVRG lags behind STRON and TRON, i.e.,
variance reduction in STRON-SVRG is not sufficient to beat the progressive batching in gradient calculations of STRON.
This is because both, STRON-SVRG and STRON, are stochastic/subsampled variants of TRON and to compensate for
the noisy gradient calculations, former uses well-known variance reduction strategy but later uses progressive subsampling
strategy. STRON is able to beat TRON but STRON-SVRG fails and lags behind both.

B More Results

In this appendix, we provide more results and study the effect of regularization coefficient on the methods.

13

Algorithm 3 STRON with Variance Reduction

1: Inputs: w0, m
2: Result: w = wk

3: for i = 0, 1, 2, ... do
4: Calculate ∇F (wi) and set w̄ = wi

5: for k = 0, 1, ..., (m− 1) do

6: Randomly select subsamples Sk and Xk

7: Calculate subsampled gradient ∇FXk
(wk)

8: Calculate variance reduced gradient using (25)
9: Solve the trust region subproblem using Algorithm 2 with variance reduced gradient, instead of subsampled

gradient, to get the step direction pk
10: Calculate the ratio ρk =

(

FXk
(wk + pk)− FXk

(wk)
)

/mk(pk)
11: Update the parameters using (13)
12: Update the trust region △k using (14)
13: end for

14: end for

0 2 4 6 8 10 12 14 16 18 20
Time (seconds)

10-15

10-10

10-5

100

O
pt

im
al

ity
 g

ap

STRON-SVRG
STRON
TRON

0 2 4 6 8 10 12 14 16 18 20
Time (seconds)

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

T
es

t A
cc

ur
ac

y

STRON-SVRG
STRON
TRON

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time (seconds)

10-15

10-10

10-5

100

O
pt

im
al

ity
 g

ap

STRON-SVRG
STRON
TRON

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time (seconds)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

T
es

t A
cc

ur
ac

y

STRON-SVRG
STRON
TRON

Fig. 6: Comparative study of STRON-SVRG, STRON and TRON on news20 (first row) and rcv1 (second
row) datasets.

B.1 More Experiments

Fig. 7 presents more results on gisette and webspam datasets on l2-SVM and l2-regularized logistic regression, respectively.
We observe results similar to Figs. 1–4, which show that STRON outperforms all other techniques.

B.2 Effect of Regularization Coefficient

Here we study the effect of the value of regularization coefficient (λ) on the convergence and accuracy of STRON and
TRON methods. Fig. 8 presents the results with a series of values for λ = {1/l, 1e− 1, 1e− 3, 1e− 5, 1e− 7} using news20
dataset with SVM. From the figure, it is clear that both the methods are affected by the choice of value λ. For larger values
of λ = {1e−1, 1e−3}, both the methods converge to the less accurate solution, as depicted in terms of optimality gap and
accuracy plots. On the other hand, for values of λ < 1e− 3, there do not seem be much difference in the accuracy of both

14

0 5 10 15 20 25
Time (seconds)

10-8

10-6

10-4

10-2

100

102
O

pt
im

al
ity

 g
ap

SVRG_LBFGS
STRON
SVRG_SQN
NewtonCG
TRON

0 1 2 3 4 5 6 7 8 9 10
Time (seconds)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

T
es

t A
cc

ur
ac

y

SVRG_LBFGS
STRON
SVRG_SQN
NewtonCG
TRON

0 5 10 15 20 25 30 35 40 45 50
Time (seconds)

10-15

10-10

10-5

100

O
pt

im
al

ity
 g

ap

SVRG_LBFGS
STRON
SVRG_SQN
NewtonCG
TRON

0 1 2 3 4 5 6 7 8 9 10
Time (seconds)

0.4

0.5

0.6

0.7

0.8

0.9

T
es

t A
cc

ur
ac

y

SVRG_LBFGS
STRON
SVRG_SQN
NewtonCG
TRON

Fig. 7: First row presents results with gisette on SVM and second row presents results with webspam on
logistic regression.

the methods. But, in terms of optimality gap, it is clear that smaller the value of λ, better is the solution, although there
seem to be no difference on the corresponding accuracy plot. Moreover, for all the values of λ, STRON clearly outperforms
TRON method.

Generally, machine learning problems involve tuning a lot of hyper-parameters which are quite difficult to tune. So to
reduce number of parameters to tune, we set λ = 1/l, which works well in practice, as it sets the value relative to the size
of the dataset and gives good results, as is clear from the figure.

0 5 10 15 20 25
Time (seconds)

10-6

10-5

10-4

10-3

10-2

10-1

100

O
pt

im
al

ity
 g

ap

TRON 1/l
STRON 1/l
TRON 1e-1
STRON 1e-1
TRON 1e-3
STRON 1e-3
TRON 1e-5
STRON 1e-5
TRON 1e-7
STRON 1e-7

0 1 2 3 4 5 6 7 8 9 10
Time (seconds)

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

T
es

t A
cc

ur
ac

y

TRON 1/l
STRON 1/l
TRON 1e-1
STRON 1e-1
TRON 1e-3
STRON 1e-3
TRON 1e-5
STRON 1e-5
TRON 1e-7
STRON 1e-7

Fig. 8: Effect of regularization coefficient on STRON and TRON methods.

15

References

1. Agarwal N, Bullins B, Hazan E (2017) Second-order stochastic optimization for machine learning in linear time. Journal
of Machine Learning Research 18(116):1–40

2. Allen-Zhu Z (2017) Katyusha: The First Direct Acceleration of Stochastic Gradient Methods. Journal of Machine
Learning Research (to appear) Full version available at http://arxiv.org/abs/1603.05953

3. Bellavia S, Krejic N, Jerinkic NK (2018) Subsampled inexact newton methods for minimizing large sums of convex
functions. Optimization Online URL http://www.optimization-online.org/DB_HTML/2018/01/6432.html

4. Berahas AS, Nocedal J, Takac M (2016) A multi-batch l-bfgs method for machine learning. In: Advances in Neural
Information Processing Systems 29, pp 1055–1063

5. Bollapragada R, Byrd R, Nocedal J (2016) Exact and Inexact Subsampled Newton Methods for Optimization. arXiv
URL https://arxiv.org/abs/1609.08502

6. Bollapragada R, Nocedal J, Mudigere D, Shi HJ, Tang PTP (2018) A progressive batching l-BFGS method for machine
learning. In: Proceedings of the 35th International Conference on Machine Learning, PMLR, Proceedings of Machine
Learning Research, vol 80, pp 620–629

7. Boyd S, Vandenberghe L (2004) Convex Optimization. Cambridge University Press, New York, NY, USA
8. Byrd R, Chin G, Neveitt W, Nocedal J (2011) On the use of stochastic hessian information in optimization methods

for machine learning. SIAM Journal on Optimization 21(3):977–995, DOI 10.1137/10079923X
9. Byrd RH, Hansen SL, Nocedal J, Singer Y (2016) A stochastic quasi-newton method for large-scale optimization. SIAM

Journal on Optimization 26(2):1008–1031
10. Cauchy AL (1847) Méthode générale pour la résolution des systèmes d’équations simultanées. Compte Rendu des

S’eances de L’Acad’emie des Sciences XXV S’erie A(25):536–538
11. Chauhan VK, Dahiya K, Sharma A (2017) Mini-batch block-coordinate based stochastic average adjusted gradient

methods to solve big data problems. In: Proceedings of the Ninth Asian Conference on Machine Learning, PMLR,
vol 77, pp 49–64, URL http://proceedings.mlr.press/v77/chauhan17a.html

12. Chauhan VK, Dahiya K, Sharma A (2018) Problem formulations and solvers in linear svm: a review. Artificial Intelli-
gence Review DOI 10.1007/s10462-018-9614-6, URL https://doi.org/10.1007/s10462-018-9614-6

13. Chauhan VK, Sharma A, Dahiya K (2018) Faster learning by reduction of data access time. Applied Intelligence
48(12):4715–4729, DOI 10.1007/s10489-018-1235-x

14. Chauhan VK, Sharma A, Dahiya K (2019) LIBS2ML: A Library for Scalable Second Order Machine Learning Algo-
rithms. arXiv URL https://arxiv.org/abs/1904.09448 , 1904.09448

15. Chauhan VK, Sharma A, Dahiya K (2019) Saags: Biased stochastic variance reduction methods for large-scale learning.
Applied Intelligence DOI 10.1007/s10489-019-01450-3

16. Csiba D, Richt P (2016) Importance Sampling for Minibatches pp 1–19, arXiv:1602.02283v1
17. Defazio A, Bach F, Lacoste-Julien S (2014) Saga: A fast incremental gradient method with support for non-strongly

convex composite objectives. In: Proceedings of the 27th International Conference on Neural Information Processing
Systems, MIT Press, Cambridge, MA, USA, NIPS’14, pp 1646–1654

18. Fan R, Chang K, Hsieh C, Wang X, Lin C (2008) Liblinear: A library for large linear classification. JMLR 9:1871–1874
19. Fanhua S, Zhou K, Cheng J, Tsang IW, Zhang L, Tao D (2018) Vr-sgd: A simple stochastic variance reduction method

for machine learning. arXiv URL https://arxiv.org/abs/1802.09932

20. Fletcher R (1980) Practical methods of optimization, vol. 1, unconstrained optimization
21. Hsia CY, Zhu Y, Lin CJ (2017) A study on trust region update rules in newton methods for large-scale linear classifi-

cation. In: Proceedings of the Ninth Asian Conference on Machine Learning, PMLR, Proceedings of Machine Learning
Research, vol 77, pp 33–48

22. Hsia CY, Chiang WL, Lin CJ (2018) Preconditioned conjugate gradient methods in truncated newton frameworks
for large-scale linear classification. In: Proceedings of the Tenth Asian Conference on Machine Learning, PMLR,
Proceedings of Machine Learning Research

23. Johnson R, Zhang T (2013) Accelerating stochastic gradient descent using predictive variance reduction. In: Burges
CJC, Bottou L, Welling M, Ghahramani Z, Weinberger KQ (eds) Advances in Neural Information Processing Systems
26, Curran Associates, Inc., pp 315–323

24. Kolte R, Erdogdu M, Ozgur A (2015) Accelerating svrg via second-order information. In: NIPS Workshop on Opti-
mization for Machine Learning

25. Le Roux N, Schmidt M, Bach F (2012) A Stochastic Gradient Method with an Exponential Convergence Rate for
Strongly-Convex Optimization with Finite Training Sets. Tech. rep., INRIA

26. Lin C, Mor J (1999) Newton’s method for large bound-constrained optimization problems. SIAM Journal on Opti-
mization 9(4):1100–1127, DOI 10.1137/S1052623498345075

27. Lin CJ, Weng RC, Keerthi SS (2008) Trust region newton method for logistic regression. JMLR 9:627–650
28. Liu DC, Nocedal J (1989) On the limited memory bfgs method for large scale optimization. Mathematical Programming

45(1):503–528
29. Lucchi A, McWilliams B, Hofmann T (2015) A variance reduced stochastic newton method. arXiv URL

http://arxiv.org/abs/1503.08316

30. Mokhtari A, Ribeiro A (2014) Res: Regularized stochastic bfgs algorithm. IEEE Transactions on Signal Processing
62(23):6089–6104

31. Moritz P, Nishihara R, Jordan MI (2016) A linearly-convergent stochastic l-bfgs algorithm. In: AISTATS
32. Nocedal, Wright S (1999) Numerical Optimization. Springer, New York
33. Robbins H, Monro S (1951) A stochastic approximation method vol-22:pp. 400–407
34. Schmidt M, Le Roux N, Bach F (2016) Minimizing finite sums with the stochastic average gradient. Math Program

pp 1–30
35. Schraudolph NN, Yu J, Gnter S (2007) A stochastic quasi-newton method for online convex optimization. In: Meila

M, Shen X (eds) Proceedings of the Eleventh International Conference on Artificial Intelligence and Statistics, PMLR,

16

http://arxiv.org/abs/1603.05953
http://www.optimization-online.org/DB_HTML/2018/01/6432.html
https://arxiv.org/abs/1609.08502
http://proceedings.mlr.press/v77/chauhan17a.html
https://doi.org/10.1007/s10462-018-9614-6
https://arxiv.org/abs/1904.09448
1904.09448
arXiv:1602.02283v1
https://arxiv.org/abs/1802.09932
http://arxiv.org/abs/1503.08316

Proceedings of Machine Learning Research, vol 2, pp 436–443
36. Shalev-Shwartz S, Zhang T (2013) Stochastic dual coordinate ascent methods for regularized loss. J Mach Learn Res

14(1):567–599
37. Shalev-Shwartz S, Singer Y, Srebro N (2007) Pegasos: Primal estimated sub-gradient solver for svm. In: Proceedings

of the 24th International Conference on Machine Learning, ACM, New York, NY, USA, ICML ’07, pp 807–814
38. Steihaug T (1983) The conjugate gradient method and trust regions in large scale optimization. SIAM Journal on

Numerical Analysis 20(3):626–637
39. Zhang Y, Xiao L (2015) Stochastic primal-dual coordinate method for regularized empirical risk minimization. In:

Proceedings of the 32Nd International Conference on International Conference on Machine Learning - Volume 37,
ICML’15, pp 353–361

40. Zhou L, Pan S, Wang J, Vasilakos AV (2017) Machine learning on big data: Opportunities and challenges. Neurocom-
puting 237:350 – 361, DOI https://doi.org/10.1016/j.neucom.2017.01.026

17

	1 Introduction
	2 Literature Review
	3 Trust Region Inexact Newton Method
	4 STRON
	5 Experimental Results
	6 Conclusion
	A Extensions
	B More Results

