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Abstract
A classification problem aims at constructing a best classifier with the smallest risk. When the sample size approaches infinity, 
the learning algorithms for a classification problem are characterized by an asymptotical property, i.e., universal consistency. 
It plays a crucial role in measuring the construction of classification rules. A universal consistent algorithm ensures that 
the larger the sample size of the algorithm is, the more accurately the distribution of the samples could be reconstructed. 
Support vector machines (SVMs) are regarded as one of the most important models in binary classification problems. How 
to effectively extend SVMs to twin support vector machines (TWSVMs) so as to improve performance of classification has 
gained increasing interest in many research areas recently. Many variants for TWSVMs have been proposed and used in 
practice. Thus in this paper, we focus on the universal consistency of TWSVMs in a binary classification setting. We first 
give a general framework for TWSVM classifiers that unifies most of the variants of TWSVMs for binary classification 
problems. Based on it, we then investigate the universal consistency of TWSVMs. To do this, we give some useful definitions 
of risk, Bayes risk and universal consistency for TWSVMs. Theoretical results indicate that universal consistency is valid 
for various TWSVM classifiers under some certain conditions, including covering number, localized covering number and 
stability. For applications of our general framework, several variants of TWSVMs are considered.

Keywords Binary classification · Twin support vector machine (TWSVM) · Bayes risk · Universal consistency · 
Regularization

1 Introduction

As sample size increases gradually to infinity, there is an 
asymptotical property for learning algorithms, called con-
sistency. It is an extremely important part in statistical learn-
ing theory. In fact, though the sample size is always finite for 

practical problems, the consistency of learning algorithms 
guarantees that by using more samples, a more accurate 
distribution could be reconstructed. Since the concept of 
consistency was first proposed by Vapnik and Chervonen-
kis [27–29], the consistency of various learning algorithms 
has been extensively explored in statistical learning and 
machine learning areas.

According to different settings for learning machines, the 
consistency could be summarized as the following types. 
The consistency of empirical risk minimization (ERM) 
method [29] is a classical type of consistency. The loss 
function minimizing empirical risk is used to approximate 
the loss function minimizing true risk. For example, Chen 
et al. [5] studied the consistency of ERM method based on 
convex losses of multi-class classification problems. Brown-
lees et al. [4] investigated the performance bound of heavy-
tailed losses from the view of consistency of ERM method. 
Berner et al. [1] analyzed the generalization error of ERM 
method based on deep artificial neural network hypothesis. 
Xu et al. [30] proposed the general framework for statisti-
cal learning with group invariance, and paid attention to 
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the consistency of the general framework. Fisher consist-
ency  [10] strengthens the property of unbiasedness for 
parameters of functions. It estimates the parameters of 
functions directly, and uses the estimated values of param-
eters to approximate their true values. For instance, Liu [17] 
established the Fisher consistency theory for different loss 
functions of multi-category support vector machine (SVM) 
algorithms. Fathony et al. [8] proposed an adversarial bipar-
tite matching algorithm with the computational efficiency 
and Fisher consistency properties.

In addition to the two types, universal consistency is also 
a typical type of consistency, which measures the consist-
ency of learning algorithms with the base of structural risk 
minimization (SRM) method. Indeed, the ERM method 
is only about empirical risk, and is not about regulariza-
tion term. However in many practical situations, in order to 
control the generalization ability of learning machines, the 
regularization term is always considered. To this end, Vap-
nik [26] proposed the SRM method to balance the empirical 
risk of training data and generalization ability of learning 
machines. Later, the concept of universal consistency was 
introduced to demonstrate the consistency of many learn-
ing algorithms based on SRM method. For example, Stein-
wart [25] showed the universal consistency for SVMs and 
their different variants on a unified framework. Liu et al. [16] 
indicated that the extreme learning machine (ELM) was uni-
versally consistent for radial basis function networks, and 
pointed out the direction to select the optimal kernel func-
tions in ELM application. Dumpert and Christmann [7] con-
cerned the universal consistency of localized kernel based 
methods. Gyorfi et al. [12] shared the universal consistent 
results for the nearest-neighbor prototype algorithm in the 
multi-class classification setting, and the convergence rate 
was also conducted based on the universal consistency. In 
summary, universal consistency has been studied deeply in 
many problem settings. Here, the present paper focuses on 
universal consistency for binary classification problems.

SVMs are a type of powerful tools for binary classifi-
cation problems. The key idea is to construct two parallel 
hyper-planes such that the positive and negative classes are 
separated well, and then maximize the margin between the 
two parallel hyper-planes, resulting in the minimization of 
the regularization term. SVMs were widely applied to many 
practical problems, such as text classification [15], face rec-
ognition [23] and bioinformatics [9] etc. Though successful 
in these applications, SVMs still have some difficulties, since 
they deal only with small sample problems. It would take 
very expensive computational cost for large scale sample 
problems.

In order to reduce the computational cost of SVMs, many 
extensions to SVM were proposed and studied. For instance, 
a generalized eigenvalue proximal support vector machine 
(GEPSVM) [18] was such an extension, which constructs 

two non-parallel hyper-planes, so that each hyper-plane is 
closest to one of the two classes and is also as far away from 
the other class as possible. Based on SVMs and GEPSVM, 
Jayadeva et al. [13] established another extension to SVMs, 
that is, twin support vector machine (TWSVM). The main 
idea of TWSVM is similar to that of GEPSVM, while the 
formulation is entirely different from that of GEPSVM. In 
fact, it derives a pair of quadratic programming problems 
(QPPs) for TWSVM, and the formulation of each QPP is 
similar to that of SVMs, except that only one class of the 
training samples appears in the constraints of each QPP. In 
brief, the computational cost of TWSVM is only one fourth 
of that of SVMs.

Similar to SVMs, TWSVM also has many variants for 
binary classification problem. For instance, smooth TWSVM 
algorithm [14] approximated a smoothing function �(x, �) to 
the plus function (x)+ in the process of solving the QPPs, 
such that the learnt classifier was more smoother than before. 
Twin bounded SVM (TBSVM) algorithm [21] embedded 
a regularization term to TWSVM, according to the SRM 
principle, and thus improved the classification performance. 
Weighted linear loss TWSVM algorithm [22] was con-
structed to adjust the impact of each point on the hyperplane, 
and thus the weights for the slack variables were given. Least 
squares TBSVM algorithm based on L1-norm distance met-
ric [32] was a least square version of TBSVM firstly, and 
then substituted L1-norm for L2-norm to enhance the robust-
ness. Besides, there are many other algorithms based on the 
same idea as TWSVM, like robust TWSVM algorithm [19], 
margin-based TWSVM with unity norm hyperplanes [20], 
fuzzy TWSVM algorithm [11] etc. Though these TWSVM 
variants are formulated well and applied to different practi-
cal problems, up to now their universal consistency has not 
been studied.

In this study, we address the universal consistency of 
TWSVM and its variants. Since it is very cumbersome to 
analyze the universal consistency of the TWSVM variants 
one by one, we suggest to do this work under a general 
framework. However, there is no unified framework for all 
TWSVM variants in the literature. So we first try to con-
struct a general framework for TWSVM variants. Further-
more, as not all the variants are based on the same idea, it is 
very difficult to find a general framework fit to all variants, 
we determine to construct a general framework for most of 
the variants based on the idea of TWSVM, and formulate 
it as a general optimization problem. Concretely, the opti-
mization problem consists of two minimization problems, 
each of which contains two terms: the first term measures 
the average of losses for both the positive and negative data, 
and the second term is expressed by a regularization term 
for maximizing some margin.

With the general framework, we then study the universal 
consistency of the general optimization problem. We first 
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introduce the definition of universal consistency for the gen-
eral optimization problem, and then show in what condi-
tions, the universal consistency is valid. When introducing 
the definition of universal consistency, risk RP(f ) and Bayes 
risk RP for the general optimization problem are related, and 
thus are redefined here. When showing the validity of uni-
versal consistency in some conditions, an assertion is neces-
sary and thus is proposed. Since the definitions like regular-
ized L1-risk Rreg

1,P,c1
(f1) and regularized L2-risk Rreg

2,P,c2
(f2) are 

very important to describe the assertion, the detailed defini-
tions are given before the assertion. The assertion is then 
described centered on a pair of concentration inequalities. 
Under three different conditions based on covering number, 
localized covering number and stability respectively, it 
derives three different pairs of concentration inequalities, 
and thus it concludes three different results for universal 
consistency.

The rest of the paper is organized as follows: Section 2 
gives the preliminaries. Section 3 derives the general frame-
work for most variants of TWSVM and formulates it as a 
general optimization problem. Section 4 introduces the defi-
nitions of risk, Bayes risk and universal consistency for this 
optimization problem and proposes an assertion to theoreti-
cally support the universal consistency. Section 5 presents 
the theoretical results about the assertion. Finally, Sect. 6 
concludes this paper.

2  Preliminaries

Here, we give some notations and concepts that would be 
used in the following sections. Denote ℝ = (−∞,+∞) , 
ℝ

+ = [0,+∞) . Suppose X is a compact metric space, and 
k ∶ X × X ↦ ℝ is a positive semi-definite kernel. We define 
a quantity K

Let H be the reproducing kernel Hilbert space (RKHS) 
with respect to kernel k. Reminder that there is a mapping 
� ∶ X ↦ H satisfying the reproducing property, that is,

Suppose the kernel k is continuous, then the element of H 
is also continuous on X. In this situation, there is a mapping 
I ∶ H ↦ C(X) , which continuously embeds the RKHS H into 
the space of all continuous functions C(X)

We say k is a universal kernel, if the mapping I is dense.
Let � ∶ ℝ

+ ×ℝ
+
→ ℝ

+ be an non-descending function 
denoted by �(c, t) . This function is continuous in 0 with 

K = sup
�√

k(x, x), x ∈ X
�
.

k(x1, x2) =< 𝛷(x1),𝛷(x2) >, x1, x2 ∈ X,

If =< f ,𝛷(x) >H , f ∈ H,

respect to the variable c, and is unbounded when the variable 
t tends to infinity. We introduce the following definition [25] 
to explain in which case, � is a regularization function.

Definition 1 Given a function �(c, t) , assume there 
exists t > 0 satisfying the inequality 𝛺(c, t) < ∞ for 
any c > 0 . Then, � is a regularization function, if for all 
c > 0 , s, t ∈ ℝ

+ , and for all sequences (tn) ⊂ ℝ
+ with 

tn → t and 𝛺(c, tn) < ∞ , we have �(c, 0) = �(0, s) and 
�(c, tn) → �(c, t).

For any given loss function L ∶ Y ×ℝ ×ℝ
+
→ ℝ

+ , 
denote

where � ∈ [0, 1], t ∈ ℝ, � ∈ ℝ
+ . Let

Then L is an admissible loss function [25], redefined as 
follows:

D e f i n i t i o n  2  G i ve n  a  c o n t i n u o u s  f u n c t i o n 
L ∶ Y ×ℝ ×ℝ

+
→ ℝ

+ . Then L is an admissible loss func-
tion, if for any � ∈ [0, 1∕2) we have t𝛼 < 0 , and if for any 
� ∈ (1∕2, 1] we have t𝛼 > 0.

3  A general framework for twin support 
vector machines

Denote by X ⊆ ℝ
d the input space for instances and by 

Y = {−1, 1} the output space for labels. Let S be the training 
set belonging to the space X × Y  with m samples 
(xi, yi), i = 1,… ,m . Suppose S consists of m1 positive sam-
ples relabeled by (x1

i
, 1) , i = 1,… ,m1 , and m2 negative sam-

ples relabeled by (x2
j
,−1) , j = 1,… ,m2 with m = m1 + m2 . 

Assume the data of the training set S are sampled from an 
unknown distribution P on X × Y  , and they are independent 
and identical distributed (i.i.d.). Denote matrices A, B and D 
as follows

We give a general framework to cover most of the variants 
of TWSVM, which is formulated as follows:

C(�, t, �) = �L(1, t, �) + (1 − �)L(−1, t, �),

t� = argmin
t∈ℝ

C(�, t, �),

M(�, �) = C(�, t� , �).

AT = (x1
1
,… , x1

m1
), BT = (x2

1
,… , x2

m2
), DT = (AT ,BT ).

(1)
min
f1∈H

m1∑

i=1

�1(1, f1(x
1
i
)) +

m2∑

j=1

�2(−1, f1(x
2
j
), �1)

+�∗(c1, ||f1||H),
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where c1 , c2 , �1 , �2 are all trade-off parameters, f1 , f2 are 
the hyper-planes corresponding to the positive and negative 
classes, respectively, and H is RKHS. Here, �1 is one loss 
function measuring the squared distance from the data of 
one class to the corresponding hyper-plane. �2 is another loss 
function measuring the slack variable such that the distance 
from the data of the other class to the same hyper-plane is 
no smaller than 1. �∗ is a regularization term for maximiz-
ing some margin.

Note that in the minimization problem Eq. (1), �1 meas-
ures the loss for one positive sample and �2 measures the 
loss for one negative sample. The sum of the first two 
terms is the total loss for all the positive and negative 
samples. Now we want to combine the two loss functions 
into one revised loss function such that it could measure 
the loss for any positive or negative sample about hyper-
plane f1 . Given a function p(y)

the revised loss function L1 can be defined as

Analogously, a revised loss function L2 is defined as

in the minimization problem Eq. (2). It measures the loss 
for any positive or negative sample about hyper-plane f2 . 
Therefore, the general framework can be rewritten as

Obviously, it is equivalent to the optimization problem

(2)
min
f2∈H

m2∑

j=1

�1(−1, f2(x
2
j
)) +

m1∑

i=1

�2(1, f2(x
1
i
), �2)

+�∗(c2, ||f2||H),

p(y) =

{
1, y = 1,

0, y = −1,

L1(y, f1(x), �1) = p(y)�1(y, f1(x))

+ (1 − p(y))�2(y, f1(x), �1)

=

{
�1(1, f1(x)), y = 1,

�2(−1, f1(x), �1), y = −1.

L2(y, f2(x), �2) = (1 − p(y))�1(y, f2(x))

+ p(y)�2(y, f2(x), �2)

=

{
�2(1, f2(x), �2), y = 1,

�1(−1, f2(x)), y = −1,

min
f1∈H

m∑

i=1

L1(y, f1(x), �1) +�∗(c1, ||f1||H),

min
f2∈H

m∑

i=1

L2(y, f2(x), �2) +�∗(c2, ||f2||H),

where �(⋅, ⋅) =
1

m
�∗(⋅, ⋅) is also a regularization function. To 

sum up, this optimization problem Eq. (3) is a unified frame-
work for most of TWSVM variants considered in the paper.

Note, in linear case, the two non-parallel hyper-planes 
are conducted as f1(x) = xTw1 + b1 for positive sam-
ples and f2(x) = xTw2 + b2 for negative samples, respec-
tively. Similarly in nonlinear case, they are formulated 
as f1(x) = k(xT ,DT )u1 + b1 for positive samples and 
f2(x) = k(xT ,DT )u2 + b2 for negative samples, where k 
is a kernel function. The final classifier f ∶ X → ℝ for 
both linear and non-linear cases could be expressed as 
f (x) = |f2(x)| − |f1(x)| . Given a new sample x, the predicted 
label of x is

Let � , � are two slack variables, and e1 , e2 are two vectors 
whose elements are all 1’s and whose dimensions are m1 and 
m2 , respectively. Below, we give several examples that can 
be expressed by the unified framework.

Example 1 (TWSVM [13]) For linear TWSVM, the optimi-
zation problem is formulated as follows:

For nonlinear TWSVM, the optimization problem is formu-
lated as follows:

Let �∗(ci, ||fi||H) = 0, i = 1, 2 . Let

(3)

min
f1∈H

1

m

m∑

i=1

L1(y, f1(x), �1) +�(c1, ||f1||H),

min
f2∈H

1

m

m∑

i=1

L2(y, f2(x), �2) +�(c2, ||f2||H),

y =

{
1, f (x) > 0,

−1, otherwise.

min
w1,b1,�

1

2

‖‖‖A
Tw1 + e1b1

‖‖‖
2

+ �1e
T
2
�, s.t. − (BTw1 + e2b1)

+ � ≥ e2, � ≥ 0,

min
w2,b2,�

1

2
||BTw2 + e2b2||2 + �2e

T
1
�, s.t.(ATw2 + e1b2)

+ � ≥ e1, � ≥ 0,

min
u1,b1,�

1

2
||k(AT ,DT )u1 + e1b1||2 + �1e

T
2
�,

s.t. − (k(BT ,DT )u1 + e2b1) + � ≥ e2, � ≥ 0,

min
u2,b2,�

1

2
||k(BT ,DT )u2 + e2b2||2 + �2e

T
1
�,

s.t.(k(AT ,DT )u2 + e1b2) + � ≥ e1, � ≥ 0.
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and let

Then, the optimization problems of linear and nonlinear case 
of TWSVM could be both converted to the general frame-
work Eq. (3).

Example 2 (TBSVM [21]) For linear TBSVM, the optimiza-
tion problem is formulated as follows:

For nonlinear TBSVM, the optimization problem is formu-
lated as follows:

Let

Connected with Eqs. (4) and (5), the optimization problems 
of linear and nonlinear case of TBSVM could be both con-
verted to the general framework Eq. (3).

Example 3 (Improved LSTSVM [31]) For linear improved 
LSTSVM, the optimization problem is formulated as 
follows:

(4)
�1(1, f1(x

1
i
)) =

1

2
f 2
1
(x1

i
), i = 1,… ,m1,

�1(−1, f2(x
2
j
)) =

1

2
f 2
2
(x2

j
), j = 1,… ,m2,

(5)

�2(1, f2(x
1
i
), �2) = �2�i = �2 max(0, (1 − f2(x

1
i
))),

i = 1,… ,m1,

�2(−1, f1(x
2
j
), �1) = �1�j = �1 max(0, (1 + f1(x

2
j
))),

j = 1,… ,m2.

min
w1,b1,�

1

2
||ATw1 + e1b1||2 + �1e

T
2
� +

1

2
c1(||w1||2 + b2

1
),

s.t. − (BTw1 + e2b1) + � ≥ e2, � ≥ 0,

min
w2,b2,�

1

2
||BTw2 + e2b2||2 + �2e

T
1
� +

1

2
c2(||w2||2 + b2

2
),

s.t.(ATw2 + e1b2) + � ≥ e1, � ≥ 0.

min
u1,b1,�

1

2
||k(AT ,DT )u1 + e1b1||2 + �1e

T
2
�

+
1

2
c1(||u1||2 + b2

1
),

s.t. − (k(BT ,DT )u1 + e2b1) + � ≥ e2, � ≥ 0,

min
u2,b2,�

1

2
||k(BT ,DT )u2 + e2b2||2 + �2e

T
1
�

+
1

2
c2(||u2||2 + b2

2
),

s.t.(k(AT ,DT )u2 + e1b2) + � ≥ e1, � ≥ 0.

(6)
�∗(c1, ||f1||H) =

1

2
c1(||w1||2 + b2

1
),

�∗(c2, ||f2||H) =
1

2
c2(||w2||2 + b2

2
).

For nonlinear improved LSTSVM, the optimization problem 
is formulated as follows:

Let

Considering Eqs. (4) and (6), the optimization problems of 
linear and nonlinear case of improved LSTSVM could be 
both converted to the general framework Eq. (3).

4  Universal consistency of TWSVMs

Since TWSVM and its variants are all built based on SRM 
principle, we study the universal consistency of TWSVMs 
in a general framework, that is, the universal consistency of 
the optimization problem (3).

4.1  Definitions

Given the training set S, let fS ∶ X → ℝ be the classifier of 
the optimization problem Eq. (3) learned from the training 
set S, where fS(⋅) = |f2,S(⋅)| − |f1,S(⋅)| and f1,S, f2,S ∶ X → ℝ 
are measurable functions corresponding to the positive and 
negative hyper-planes, respectively. In order to make the 
classifier work well, we need to make sure it is as small as 
possible for the wrongly classified probability of a novel data 
(x, y) drown from P independently to S. The wrong classi-
fication represents that sign(fS(x)) ≠ y . In what follows, it is 

min
w1,b1,�

1

2
||ATw1 + e1b1||2 + �1�

T� +
1

2
c1(||w1||2 + b2

1
),

s.t. − (BTw1 + e2b1) + � ≥ e2, � ≥ 0,

min
w2,b2,�

1

2
||BTw2 + e2b2||2 + �2�

T� +
1

2
c2(||w2||2 + b2

2
),

s.t.(ATw2 + e1b2) + � ≥ e1, � ≥ 0.

min
u1,b1,�

1

2

‖‖‖k(A
T ,DT )u1 + e1b1

‖‖‖
2

+ �1�
T�

+
1

2
c1(||u1||2 + b2

1
),

s.t. − (k(BT ,DT )u1 + e2b1) + � ≥ e2, � ≥ 0,

min
u2,b2,�

1

2

‖‖‖k(B
T ,DT )u2 + e2b2

‖‖‖
2

+ �2�
T�

+
1

2
c2
(
||u2||2 + b2

2

)
,

s.t.(k(AT ,DT )u2 + e1b2) + � ≥ e1, � ≥ 0.

�2(1, f2(x
1
i
), �2) = �2�

2
i
= �2(max{0, 1 − f2(x

1
i
)})2,

i = 1,… ,m1,

�2(−1, f1(x
2
j
), �1) = �1�

2
j
= �1(max{0, 1 + f1(x

2
j
)})2,

j = 1,… ,m2.
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necessary to redefine risk, Bayes risk and universal consist-
ency for the optimization problem Eq. (3).

Definition 3 (Risk)) Given a measurable function 
f ∶ X → ℝ , the risk of f is the wrongly classified probability 
of data (x, y) drawn from P independently to S, i.e.,

where f (⋅) = |f2(⋅)| − |f1(⋅)| , and f1, f2 ∶ X → ℝ are both 
measurable functions corresponding to the positive and 
negative hyper-planes, respectively.

Definition 4 (Bayes Risk) The Bayes risk with respect to 
distribution P, denoted by RP , is the smallest achievable risk

where f (⋅) = |f2(⋅)| − |f1(⋅)| , and f1, f2 ∶ X → ℝ are both 
measurable functions corresponding to the positive and 
negative hyper-planes, respectively.

Bayes risk is the minimal value of risk RP(f ) , and thus 
is the minimal true risk with respect to distribution P on 
space X × Y  . Given the training set S, to make the wrongly 
classified probability as small as possible, we must make the 
risk RP(fS) of the classifier fS infinitely close to the minimal 
true risk. Thereby, the universal consistency is defined in 
the following:

Definition 5 (Universal consistency) The classifier fS of 
optimization problem Eq. (3) is universally consistent, if 
the following equation

is valid in probability with respect to distribution P on space 
X × Y  , where f (⋅) = |f2(⋅)| − |f1(⋅)| , and f1, f2 ∶ X → ℝ are 
both measurable functions corresponding to the positive and 
negative hyper-planes, respectively. Furthermore, if Eq. (7) 
is valid almost surely, the classifier fS is strongly universally 
consistent.

Universal consistency is a key point to explain the suc-
cess for the optimization problem Eq. (3), and to provide 
the solid theoretical basis. Thus in the below, we begin to 
discuss under what conditions, the universal consistency is 
guaranteed for the optimization problem Eq. (3).

4.2  Assertion

Though researchers have developed lots of variants based 
on the idea of TWSVM in the literature, there is still no 
theoretical study for the universal consistency of any vari-
ant. Also, no existing technique could be regarded as a 

RP(f ) = P{(x, y) ∶ sign(f (x)) ≠ y},

RP = inf{RP(f )|f ∶ X → ℝ is measurable},

(7)lim
m→∞

RP(fS) = RP

reference in analyzing the universal consistency of the 
general optimization problem Eq. (3). Nevertheless, there 
is one specific technique for investigating the universal 
consistency of SVMs  [25], and this technique can be 
applied to study the universal consistency of the problem 
Eq. (3). The reason is that TWSVMs are the extensions 
to SVMs, and the difference of the two problems is that 
TWSVMs formulate two QPPs, while SVMs formulate 
only one. The QPPs for TWSVMs and the QPP for SVMs 
are constructed in a similar way, both with two terms: loss 
function term and regularization function term. Therefore, 
in order to tackle the universal consistency of the optimi-
zation problem Eq. (3), a similar assertion like that in [25] 
is necessary to pay attention to. Before this, we give some 
definitions which would be used in the assertion.

Definition 6 (L1- and L2-Risks) Given two loss functions L1 , 
L2 and a probability distribution P, L1-risk is the expectation 
of loss function L1 corresponding to the hyper-plane f1 , and 
L2-risk is the expectation of L2 corresponding to f2 , both 
defined as follows:

Definition 7 (Minimal L1- and L2-Risks) The minimal L1 - 
and L2-risks on the probability distribution P are the smallest 
achievable L1-risk and L2-risk, respectively, both defined as 
follows:

Definition 8 (Regularized L1- and L2-Risks) Given the regu-
larization function � and a RKHS H, the regularized L1 - and 
L2-risks are defined by

respectively for all c1, c2 > 0 and for all f1, f2 ∈ H.

Note, if the distribution P is an empirical measure on 
the training set S, we rewrite them as R1,S(f1) , R2,S(f2) , R1,S , 
R2,S , R

reg

1,S,c1
(f1) and Rreg

2,S,c2
(f2) , respectively. We can see that 

R
reg

1,S,c1
(f1) and Rreg

2,S,c2
(f2) are just the two objective functions 

in Eq. (3). Then, the assertion is concluded in four steps 
as follows: 

Step 1:  Show tha t  there  exis t  two e lements 
f1,P,c1 , f2,P,c2 ∈ H minimizing the regularized L1-
risk and regularized L2-risk, respectively, 

R1,P(f1) =E(x,y)∼PL1(y, f1(x), �1), R2,P(f2)

=E(x,y)∼PL2(y, f2(x), �2).

R1,P = inf{R1,P(f1)|f1 ∶ X → ℝ is measurable},

R2,P = inf{R2,P(f2)|f2 ∶ X → ℝ is measurable}.

R
reg

1,P,c1
(f1) =R1,P(f1) +�(c1, ||f1||H), R

reg

2,P,c2
(f2)

=R2,P(f2) +�(c2, ||f2||H),
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Step 2:  Show that the minimal L1-risk R1,P could be 
achieved at the element f1,P,c1 by the regularized L1
-risk with c1 tending to 0, and the minimal L2-risk 
R2,P could be achieved at f2,P,c2 by the regularized 
L2-risk with c2 tending to 0. 

Step 3:  For sequences of measurable functions 
f1,m, f2,m ∶ X → ℝ , fm(⋅) = |f2,m(⋅)| − |f1,m(⋅)| , and 
for admissible loss functions L1,L2 , show that the 
Bayes risk RP could be achieved at fm with m tend-
ing to infinity, if the following equations hold true 

Step 4:  Find a pair of concentration inequalities, where 
one concentration inequality of them relates the L1
-risk with the empirical L1-risk at point f1,S,c1 , and 
the other relates the L2-risk with the empirical L2
-risk at point f2,S,c2 . The universal consistency of 
optimization problem Eq. (3) could be conducted 
from the pair of concentration inequalities.

Assume that the assertion holds true, now we can see 
how to demonstrate the universal consistency of optimiza-
tion problem Eq. (3). First, we could find two elements

and show the existence by Step 1, since S is the empiri-
cal measure of P. Next, the upper bounds for the prob-
abilities of the events |R1,S(f1,S,c1 ) − |R1,P(f1,S,c1 )| ≥ � and 
|R2,S(f2,S,c2 ) − |R2,P(f2,S,c2 )| ≥ � occurring could be derived 
according to Hoeffding’s inequalities [6], respectively. Fur-
thermore, the two derived inequalities about upper bounds 
are exactly the pair of concentration inequalities we want in 
Step 4. Then, we force the two upper bounds both to tend to 
0, by setting two sequences c1(m) and c2(m) both to tend to 
0 when m tends to infinity. Following Step 2, we have two 
measurable sequences f1,S,c1(m) and f2,S,c2(m) such that

Naturally, the conditions for Step 3 are valid. Finally, the 
universal consistency is guaranteed by virtue of Step 3.

Note that, the assertion’s validity is just some kind of 
assumption without any proof up to now. Thus, in the rest 
of the paper, we would complete the assertion by testify-
ing it’s validity.

f1,P,c1 = argmin
f1∈H

R
reg

1,P,c1
(f1), f2,P,c2 = argmin

f2∈H

R
reg

2,P,c2
(f2).

lim
c1→0

R
reg

1,P,c1
(f1,P,c1 ) = R1,P, lim

c2→0
R
reg

2,P,c2
(f2,P,c2 ) = R2,P.

lim
m→∞

R1,P(f1,m) = R1,P, lim
m→∞

R2,P(f2,m) = R2,P.

f1,S,c1 = argmin
f1∈H

R
reg

1,S,c1
(f1), f2,S,c2 = argmin

f2∈H

R
reg

2,S,c2
(f2),

lim
m→∞

R1,P(f1,S,c1(m)) = R1,P, lim
m→∞

R2,P(f2,S,c2(m)) = R2,P.

5  Theoretical results

Here, we investigate the assertion and use some theorems 
to support the validity of the assertion in each step. Three 
theorems are first given to show Steps 1–3 of the assertion, 
respectively. In the next three subsections, three pairs of 
concentration inequalities are derived for Step 4 based on 
different conditions, including covering number, localized 
covering number and stability, respectively. Theorems are 
given to show that the universal consistency is valid based 
on different concentration inequalities. The proofs follow 
the idea in [25]. Because of space limit for the paper, the 
detailed proofs of Theorems and Lemmas are put to the sup-
plementary material. Readers can see the supplementary 
material for the proofs.

Let k be a positive semi-definite kernel, L1, L2 be admissi-
ble loss functions, and � be a regularization function. Given 
the parameters �1, �2 , define for c1, c2 > 0 that

Note that 0 < 𝛿c1 , 𝛿c2 < ∞ , and we have

For the loss function Li,ci , i = 1, 2 , denote by | ⋅ |1 the 
supremum

Theorem 1 Assume k is a continuous kernel on X. Let L1 and 
L2 be two admissible loss functions, and � be a regulari-
zation function. There exist two elements f1,P,c1 , f2,P,c2 ∈ H 
such that

for the probability distribution P and for any c1, c2 > 0 . Fur-
thermore, we have ‖f1,P,c1‖H ≤ �c1 and ‖f2,P,c2‖H ≤ �c2.

Theorem 1 corresponds to Step 1 of the assertion, and 
ensures the existence of two elements f1,P,c1 and f2,P,c2 which 
minimize the regularized L1-risk and regularized L2-risk, 
respectively. Here, �c1 and �c2 are two critical quantities and 
give upper bounds on the norm of the solutions to the opti-
mization problem Eq. (3), respectively.

�c1 = sup{t ∶ �(c1, t) ≤ L1(1, 0, �1) + L1(−1, 0, �1)},

�c2 = sup{t ∶ �(c2, t) ≤ L2(1, 0, �2) + L2(−1, 0, �2)},

L1,c1 = L1|Y×[−�c1K,�c1K]×�1
, L2,c2 = L2|Y×[−�c2K,�c2K]×�2

.

𝛿1 = inf{𝛿c1 ∶ c1 ∈ (0, 1]} > 0, 𝛿2 = inf{𝛿c2 ∶ c2 ∈ (0, 1]} > 0.

|Li,ci |1 = sup

{|Li(y, t
�

, �i) − Li(y, t
��

, �i)|
|t� − t

�� |
∶ y ∈ Y , t

�

, t
��

∈ [−�ciK, �ciK], t
� ≠ t

��}
.

R
reg

1,P,c1
(f1,P,c1 ) = inf

f1∈H
R
reg

1,P,c1
(f1), R

reg

2,P,c2
(f2,P,c2 )

= inf
f2∈H

R
reg

2,P,c2
(f2),
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Lemma 1 There exist two measurable functions 
f ∗
1
, f ∗
2
∶ [0, 1] → ℝ such that M1(�, �1) = C(�, f ∗

1
(�), �1) and 

M2(�, �2) = C(�, f ∗
2
(�), �2) for any � ∈ [0, 1] . Then, we have

where PX is the marginal distribution of probability distribu-
tion P on X.

Lemma 1 converts the minimal L1-risk and minimal L2
-risk to the expectations of M1 and M2 , respectively. It is 
necessary to the proof of Step 2.

Theorem 2 Assume k is a universal kernel on X. Let L1 and 
L2 be two admissible loss functions, and � be a regulariza-
tion function. We have

for the probability distribution P and for any c1, c2 > 0,

Theorem 2 corresponds to Step 2 of the assertion, and 
guarantees that the minimal L1-risk and minimal L2-risk 
could be achieved at f1,P,c1 and f2,P,c2 , respectively, with c1 , 
c2 tending to 0.

Theorem 3 Let L1 and L2 be two admissible loss functions, 
and � be a regularization function. If there exist 𝛿1 > 0 and 
𝛿2 > 0 such that R1,P(f1) ≤ R1,P + �1 and R2,P(f2) ≤ R2,P + �2 
for any two measurable functions f1, f2 ∶ X → ℝ , we have 
RP(f ) ≤ RP + � for any 𝜖 > 0 , where f (⋅) = |f2(⋅)| − |f1(⋅)|.

Theorem 3 corresponds to Step 3 of the assertion, and 
explains the following relations

are valid for all sequences of measurable functions f1,m , f2,m 
and fm(⋅) = |f2,m(⋅)| − |f1,m(⋅)|.

5.1  Universal consistency based on covering 
number

Now we pay attention to Step 4 of the assertion, and want 
to find a pair of concentration inequality based on covering 
number [33].

Definition 9 Given a metric space (M, d) , the covering num-
ber of M is defined as

R1,P = ∫X

M1(f
∗
1
(P(1|x)), �1)PX(dx),

R2,P = ∫X

M2(f
∗
2
(P(1|x)), �2)PX(dx),

lim
c1→0

R
reg

1,P,c1
(f1,P,c1 ) = R1,P, lim

c2→0
R
reg

2,P,c2
(f2,P,c2 ) = R2,P,

{
limm→∞ R1,P(f1,m) = R1,P

limm→∞ R2,P(f2,m) = R2,P

⟹ lim
m→∞

RP(fm) = RP

where B(x, �) is a closed ball with the center at point x and 
with a radius 𝜖 > 0.

Instead of using covering number directly, its logarith-
mic form is employed more frequently, which is denoted 
as H((M, d), �) = lnN((M, d), �).

In addition, we have to measure the continuity of a func-
tion. Given a loss function L1 , the modulus and inverted 
modulus of continuity [2] of the function are expressed as 
w(L1, �) and w−1(L1, �) , respectively,

With these definitions, we begin to formulate the pair of con-
centration inequalities for the optimization problem Eq. (3) 
by the following lemma, and establish the consistency result 
by the following theorem.

Lemma 2 Assume k is a continuous kernel on X. Let L1 and 
L2 be two admissible loss functions, and � be a regulariza-
tion function. For the probability distribution P and for any 
m ≥ 1 , c1, c2 > 0 , 𝜖 > 0 , we have

where  Pr  i s  the  jo in t  probabi l i ty  o f  da ta 
(x1, y1) × (x2, y2) ×… × (xm, ym) from the training set S.

Note that each sample (xi, yi) ∈ S ⊆ X × Y , i = 1,… ,m 
fo l lows the  probabi l i ty  d is t r ibut ion  P ,  t hen 
(x1, y1) × (x2, y2) ×… × (xm, ym) ∈ (X × Y)m follows the 
probability distribution Pm.

Theorem 4 Assume k is a universal kernel on X. Let L1 and 
L2 be two admissible loss functions, and � be a regulari-
zation function. Suppose there are two positive sequences 
(c1(m)) , (c2(m)) with c1(m) → 0 , c2(m) → 0 and

N((M, d), 𝜖)

= min
{
n ∈ ℕ|x1,… , xn ∈ M ⊆

n⋃

i=1

B(xi, 𝜖)
}
,

w(L1, 𝛿) = sup
y∈Y ,𝜆1∈ℝ

+,t
�
,t
��
∈ℝ,|t� −t�� |≤𝛿

|L1(y, t
�

, 𝜆1) − L1(y, t
��

, 𝜆1)|,

w−1(L1, 𝜖) = sup{𝛿 > 0 ∶ w(L1, 𝛿) ≤ 𝜖}.

Pr{S ∶ �R1,S(f1,S,c1 ) − R1,P(f1,S,c1 )� ≥ �}

≤ 2 exp

�
H(�c1 I,�

−1(L1,c1 , �∕3)) −
2�2m

9‖L1,c1‖
2
∞

�
,

Pr{S ∶ �R2,S(f2,S,c2 ) − R2,P(f2,S,c2 )� ≥ �}

≤ 2 exp

�
H(�c2 I,�

−1(L2,c2 , �∕3)) −
2�2m

9‖L2,c2‖
2
∞

�
,
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for all 𝜖 > 0 , when m approaches infinity. Then the optimiza-
tion problem Eq. (3) is universally consistent. If we have the 
additional conditions

for all 𝜖 > 0 , the optimization problem Eq.  (3) is even 
strongly universally consistent.

Lemma 2 and Theorem 4 are corresponding to the fourth 
step of the assertion. By virtue of covering numbers of �c1I 
and �c2I , the pair of concentration inequalities are derived 
first. Based on them, the universal consistency of TWSVMs 
is then conducted. Next we give an example to explain the 
case in detail.

Example 4 Given a TWSVM variant like TBSVM [21], we 
consider the nonlinear case and use the Gaussian kernel k on 
X ⊂ ℝ

d . There is an upper bound for the covering number 
of I in [33]

Then we have

The classifier is universally consistent by Theorem 4.

5.2  Universal consistency based on localized 
covering number

Sometimes, we suggest the pair of concentration inequalities 
based on the localized covering number, instead of covering 
number. Given a function set F = {f ∶ X ↦ ℝ} , the local-
ized covering number of F  is

‖L1,c1(m)‖
2
∞

m
H(�c1(m)I,�

−1(L1,c1(m), �)) ⟶ 0,

‖L2,c2(m)‖
2
∞

m
H(�c2(m)I,�

−1(L2,c2(m), �)) ⟶ 0,

(8)

∞∑

m=1

exp{−𝜖m∕||L1,c1(m)||
2
∞
} < ∞,

∞∑

m=1

exp{−𝜖m∕||L2,c2(m)||
2
∞
} < ∞,

H(I, �) ≤ a(ln
1

�
)d+1, for some positive constant a.

for any 𝜖 > 0 and m ≥ 1 , where �|X0|
∞  is the space ℝ|X0| with 

the maximum norm, and F|X0
= {f|X0

∶ f ∈ F} could be 
regarded as a subset of �|X0|

∞  . The logarithm of localized 
covering number is H(F,m, �) = lnN(F,m, �) . Now we 
start to obtain another pair of concentration inequalities for 
the optimization problem Eq. (3) according to the following 
lemma, and derive the universal consistency by the follow-
ing theorem.

Lemma 3 Assume k is a continuous kernel on X. Let L1 and 
L2 be two admissible loss functions, and � be a regulariza-
tion function. For the probability distribution P and for any 
m ≥ 1 , c1, c2 > 0 , 𝜖 > 0 , we have

where  Pr  i s  the  jo in t  probabi l i ty  o f  da ta 
(x1, y1) × (x2, y2) ×… × (xm, ym) from the training set S.

Theorem 5 Assume k is a universal kernel on X. Let L1 and 
L2 be two admissible loss functions, and � be a regulari-
zation function. Suppose there are two positive sequences 
(c1(m)) , (c2(m)) with c1(m) → 0 , c2(m) → 0 and

for all 𝜖 > 0 , when m approaches infinity. Then the optimiza-
tion problem Eq. (3) is universally consistent. Furthermore, 
if we have additional conditions Eq. (8) for all 𝜖 > 0 , the 
problem Eq. (3) is even strongly universally consistent.

Lemma 3 presents another pair of concentration inequali-
ties based on the localized covering numbers of �c1I and �c2I . 
And Theorem 5 discusses the conditions under which, the 
universal consistency is valid for TWSVMs. Thus, Lemma 3 
and Theorem 5 imply the validation of Step 4 of the asser-
tion. In the following, an example is illustrated to exhibit the 
universal consistency.

Example 5 Given a TWSVM variant, we study the nonlinear 
case. The universal kernel k(x, x�

) = �∞
n=0

an�n(x)�n(x
�

) is 
advised here, where an > 0, n = 0, 1, 2,… , and �n ∶ X → ℝ 

N(F,m, 𝜖) = sup{N((F|X0
,�

|X0|
∞ ), 𝜖) ∶ X0 ⊂ X, |X0| ≤ m},

Pr{S ∶�R1,S(f1,S,c1 ) − R1,P(f1,S,c1 )� ≥ �}

≤ 12m exp

�
H(�c1 I, 2m,�

−1(L1,c1 , �∕6)) −
�2m

36‖L1,c1‖
2
∞

�
,

Pr{S ∶�R2,S(f2,S,c2 ) − R2,P(f2,S,c2 )� ≥ �}

≤ 12m exp

�
H(�c2 I, 2m,�

−1(L2,c2 , �∕6)) −
�2m

36‖L2,c2‖
2
∞

�
,

‖L1,c1(m)‖
2
∞

m

�
logm +H(�c1(m)I, 2m,�

−1(L1,c1(m), �))
�
⟶ 0,

‖L2,c2(m)‖
2
∞

m

�
logm +H(�c2(m)I, 2m,�

−1(L2,c2(m), �))
�
⟶ 0,
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are all continuous functions uniformly bounded with 
|| ⋅ ||∞-norm. The localized covering number of I is upper 
bounded [24],

which indicates that

By virtue of Theorem 5, it is obvious that the classifier is 
universal consistent.

5.3  Universal consistency based on stability

For practical problems, the case for convex loss functions 
and for the regularization function �(c, t) = ct2 is often con-
sidered for the optimization problem Eq. (3). In this case, a 
stable classifier is always employed. Here, the property for 
stability [3] is redefined as follows:

D e f i n i t i o n  1 0  G i v e n  a  t r a i n i n g  s e t 
S = {(xi, yi) ∈ X × Y , i = 1,… ,m}  ,  l e t 
fS(⋅) = |f2,S(⋅)| − |f1,S(⋅)| be the classifier on set S for the 
optimization problem Eq. (3). Replace the i’th sample (xi, yi) 
with (x, y), and the new set is denoted by Si,(x,y) . If there exist 
two sequences (�1(m)) and (�2(m)) such that the following 
inequalities

are valid for any (x�

, y
�

) ∈ X × Y  , the classifier fS is stable 
with respect to sequences (�1(m)) and (�2(m)).

Lemma 4 Let L1 and L2 be two convex loss functions, 
�(c, f ) = c‖f‖2 , and (c1(m)) , (c2(m)) be two sequences for 
the regularization function. The classifier is stable with 
respect to sequences (

2K2|L1,c1(m)|
2
1

mc1(m)
) and (

2K2|L2,c2(m)|
2
1

mc2(m)
).

In Lemma 4, the classifier of the optimization problem 
Eq. (3) has shown to be stable for the convex loss func-
tions L1 , L2 and for the regularization function �(c, t) = ct2 . 
Below, we verify Step 4 of the assertion.

H(I,m, 𝜖) ≤ b(
logm

𝜖2
)𝜌 for some postive constant b, 0 < 𝜌 < 1,

|L1(y
�

, f1,S(x
�

), �1) − L1(y
�

, f1,Si,(x,y) (x
�

), �1)| ≤ �1(i),

|L2(y
�

, f2,S(x
�

), �2) − L2(y
�

, f2,Si,(x,y) (x
�

), �2)| ≤ �2(i),

Lemma 5 Assume k is a continuous kernel on X. Let L1 and 
L2 be two admissible loss functions, and � be a regulariza-
tion function. Let �1(m) =

2K2|L1,c1(m)|
2
1

mc1(m)
 and �2(m) =

2K2|L2,c2(m)|
2
1

mc2(m)
 . 

Suppose the classifier is stable with respect to k, L1 , L2 , � , 
(c1(m)), (c2(m)) , �1(m) and �2(m) . Then, we have

where  Pr  i s  the  jo in t  probabi l i ty  o f  da ta 
(x1, y1) × (x2, y2) ×… × (xm, ym) from the training set S.

Theorem  6 Assume k is a universal kernel on X. Let 
L1 and L2 be two convex admissible loss functions, and 
�(c, f ) = c‖f‖2 . Suppose there are two positive sequences 
(c1(m)) and (c2(m)) with c1(m) → 0 , c2(m) → 0 , and

when m tends to infinity. Then the optimization problem 
Eq. (3) is universally consistent.

In Lemma 5, a pair of concentration inequalities is 
conducted under the condition that the classifier is stable. 
With the inequalities, the universal consistency of the opti-
mization problem Eq. (3) is then obtained in Theorem 6.

6  Conclusion

In this paper, the universal consistency of TWSVMs for 
binary classification is addressed. Since many variants of 
TWSVM have been proposed, we first summarize a gen-
eral framework of TWSVMs, which covers most of the 
TWSVM variants. We then perform theoretical study on 
universal consistency of the general framework in detail by 
defining an assertion. This assertion consists of four steps. 
In the first three steps, the regularized L1-risk and regu-
larized L2-risk are introduced to build connections with 
the Bayes risk. In the last step, some pairs of concentra-
tion inequalities are derived based on different conditions, 
including covering number, localized covering number and 
stability. Universal consistency in different situations is 
proved based on different pairs of concentration inequali-
ties, respectively.

Pr{S ∶�R1,S(f1,S,c1 ) − R1,P(f1,S,c1 )� > 𝜖 + 𝛽1(m)}

≤ 2 exp

�
−

𝜖2m

2(m𝛽1(m) + ‖L1,c1(m)‖∞)
2

�
,

Pr{S ∶�R2,S(f2,S,c2 ) − R2,P(f2,S,c2 )� > 𝜖 + 𝛽2(m)}

≤ 2 exp

�
−

𝜖2m

2(m𝛽2(m) + ‖L2,c2(m)‖∞)
2

�
,

mc1(m)
2

|L1,c1(m)|
4
1

⟶ ∞,
mc2(m)

2

|L2,c2(m)|
4
1

⟶ ∞,
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