Skip to main content
Log in

Sparse robust multiview feature selection via adaptive-weighting strategy

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Due to the rich and comprehensive information of multiview data, multi-view learning has been attracted widely attention. Efficiently exploiting multiview data to select discriminative features to improve classification performance is very important in multi-view learning. Most existing supervised methods learn an entire projection matrix by concatenating multiple views into a long vector, thus they often ignore the relationship between views. To solve this problem, in this paper, we propose a novel sparse robust multiview feature selection model, which simultaneously considers the robustness, individuality and commonality of views via adaptive-weighting strategy. The model adopts the soft capped-norm loss to calculate the residual in each view to effectively reduce the impact of noises and outliers. Moreover, the model employs the adaptive-weighting strategy to show the individuality and commonality of views without introducing extra parameters. In addition, it introduces structured sparsity regularization to select the discriminative features. An efficient iterative algorithm is proposed to individually learn each block of the projection matrix with low computational complexity, and the convergence of the proposed optimization algorithm is verified theoretically and experimentally. The comparative experiments are conducted on multiview datasets with several state-of-the-art algorithms, and the experimental results show that the proposed method gets better performance than the others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. http://archive.ics.uci.edu/ml/datasets/Multiple+Features.

  2. http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php.

  3. http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm.

  4. http://attributes.kyb.tuebingen.mpg.de.

References

  1. Zhang R, Nie FP, Li XL (2018) Self-weighted supervised discriminative feature selection. IEEE Trans Neural Netw Learn Syst 29(8):3913–3918

    Article  Google Scholar 

  2. Lin Q, Xue Y, Wen J, Zhong P (2019) A sharing multi-view feature selection method via alternating direction method of multipliers. Neurocomputing 333:124–134

    Article  Google Scholar 

  3. Sechidis K, Brown G (2018) Simple strategies for semi-supervised feature selection. Mach Learn 107(2):357–395

    Article  MathSciNet  Google Scholar 

  4. Sheikhpour R, Sarram MA, Gharaghani S, Chahooki MAZ (2020) A robust graph-based semi-supervised sparse feature selection method. Inf Sci 531:13–30

    Article  MathSciNet  Google Scholar 

  5. Wang A, Wang H (2017) Unsupervised feature selection via low-rank approximation and structure learning. Knowl Based Syst 124:70–79

    Article  Google Scholar 

  6. Liaghat S, Mansoori EG (2019) Filter-based unsupervised feature selection using Hilbert-Schmidt independence criterion. Int J Mach Learn Cybern 10(9):2313–2328

    Article  Google Scholar 

  7. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. Proc IEEE Comput Soc Conf Comput Vision Pattern Recognit 1:886–893

    Google Scholar 

  8. Ojala T, Pietikinen M, Menpa T (2002) Multiresolution gray scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  Google Scholar 

  9. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  10. Oliva A, Torralba A (2001) Modeling the shape of the scene: a holistic representation of the spatial envelope. Int J Comput Vis 42(3):145–175

    Article  Google Scholar 

  11. Zhao J, Xie X, Xu X, Sun S (2017) Multi-view learning overview: percent progress and new challenges. Inf Fusion 38:43–54

    Article  Google Scholar 

  12. Peng J, Luo P, Guan Z, Fan J (2019) Graph-regularized multi-view semantic subspace learning. Int J Mach Learn Cybern 10(5):879–895

    Article  Google Scholar 

  13. Tan B, Zhong EH, Xiang EW, Yang Q (2014) Multi-transfer: transfer learning with multiple views and multiple sources. Stat Anal Data Min 7:282–293

    Article  MathSciNet  Google Scholar 

  14. Zhang N, Ding S, Sun T, Liao H, Wang L, Shi Z (2020) Multi-view RBM with posterior consistency and domain adaptation. Inf Sci 516:142–157

    Article  Google Scholar 

  15. Cheng X, Zhu Y, Song J, Wen G, He W (2017) A novel low-rank hypergraph feature selection for multi-view classification. Neurocomputing 253:115–121

    Article  Google Scholar 

  16. Yang M, Cheng D, Nie F (2019) Adaptive-weighting discriminative regression for multi-view classification. Pattern Recognit 88:236–245

    Article  Google Scholar 

  17. Tao H, Hou C, Yi D, Zhu J (2020) Multiview classification with cohesion and diversity. IEEE Trans Cybern 50(5):2124–2137

    Article  Google Scholar 

  18. Wang H, Nie F, Huang H (2013) Multi-view clustering and feature learning via structured sparsity. In: Proceedings of the international conference on machine learning, pp 352–360. http://proceedings.mlr.press/v28/wang13c.html

  19. Huang S, Zhao K, Xu Z (2018) Self-weighted multi-view clustering with soft capped norm. Knowl Based Syst 158:1–8

    Article  Google Scholar 

  20. Sun S, Xie X, Yang M (2016) Multiview uncorrelated discriminant analysis. IEEE Trans Cybern 46(12):3272–3284

    Article  Google Scholar 

  21. Kan M, Shan S, Zhang H, Lao S, Chen X (2016) Multi-view discriminant analysis. IEEE Trans Pattern Anal Mach Intell 38(1):188–194

    Article  Google Scholar 

  22. Mei X, Hong Z, Prokhorov DV, Tao D (2015) Robust multitask multiview tracking in videos. IEEE Trans Neural Netw Learn Syst 26:2874–2890

    Article  MathSciNet  Google Scholar 

  23. Zhu X, Li X, Zhang S (2016) Block-row sparse multiview multilabel learning for image classification. IEEE Trans Cybern 46(2):450–461

    Article  Google Scholar 

  24. Yang W, Gao Y, Shi Y, Cao L (2015) MRM-Lasso: a sparse multiview feature selection method via low-rank analysis. IEEE Trans Neural Netw Learn Syst 26(11):2801–2815

    Article  MathSciNet  Google Scholar 

  25. Li Y, Shi X, Du C, Liu Y, Wen Y (2016) Manifold regularized multi-view feature selection for social image annotation. Neurocomputing 204:135–141

    Article  Google Scholar 

  26. Cong Y, Wang S, Liu J, Cao J, Yang Y, Luo J (2015) Deep sparse feature selection for computer aided endoscopy diagnosis. Pattern Recognit 48(3):907–917

    Article  Google Scholar 

  27. Wang H, Nie F, Huang H, Risacher SL, Saykin AJ (2012) Identifying disease sensitive and quantitative trait-relevant biomarkers from multidimensional heterogeneous imaging genetics data via sparse multimodal multitask learning. Bioinformatics 28(12):I127–I136

    Article  Google Scholar 

  28. Wang H, Nie F, Huang H, Ding C (2013) Heterogeneous visual features fusion via sparse multimodal machine. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3097–3102. https://doi.org/10.1109/CVPR.2013.398

  29. Wang H, Nie F, Huang H, Kim S, Nho K (2012) Identifying quantitative trait loci via group-sparse multitask regression and feature selection: an imaging genetics study of the ADNI cohort. Bioinformatics 28(2):229–237

    Article  Google Scholar 

  30. Zhang Q, Tian Y, Yang Y, Pan C (2014) Automatic spatial-spectral feature selection for hyperspectral image via discriminative sparse multimodal learning. IEEE Trans Geosci Remote Sens 53(1):261–279

    Article  Google Scholar 

  31. Wang N, Xue Y, Lin Q, Zhong P (2019) Structured sparse multi-view feature selection based on weighted hinge loss. Multimedia Tools Appl 78(11):15455–15481

    Article  Google Scholar 

  32. Shi C, Duan C, Gu Z, Tian Q, An G, Zhao R (2019) Semi-supervised feature selection analysis with structured multi-view sparse regularization. Neurocomputing 30:412–424

    Article  Google Scholar 

  33. Zhong J, Wang N, Lin Q, Zhong P (2019) Weighted feature selection via discriminative sparse multi-view learning. Knowl Based Syst 178:132–148

    Article  Google Scholar 

  34. Wangila K, Gao K, Zhu P, Hu Q, Zhang C (2017) Mixed sparsity regularized multi-view unsupervised feature selection. In: Proceedings of the international conference on image processing, pp 1930–1934. https://doi.org/10.1109/ICIP.2017.8296618

  35. Nie F, Li J, Li X (2017) Convex multiview semi-supervised classification. IEEE Trans Image Process 26(12):5718–5729

    Article  MathSciNet  Google Scholar 

  36. Nie F, Huang H, Cai X, Ding C (2010) Efficient and robust feature selection via joint L2,1-norms minimization. In: Proceedings of the 24th Annual conference on neural information processing systems, pp 1813–1821. https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html

  37. Cai X, Nie F, Heng H (2013) Exact top-k feature selection via l2,0-norm constraint. In: Proceedings of the 23rd international joint conference on artificial intelligence, pp. 1240–1246. http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6975

  38. Wang F, Rao Q, Zhang Y, Chen X (2016) Robust sparse subspace learning for unsupervised feature selection. In: Proceedings of the international joint conference on neural networks, pp 4205–4212. https://doi.org/10.1109/IJCNN.2016.7727748

  39. Du S, Ma Y, Li S, Ma Y (2017) Robust unsupervised feature selection via matrix factorization. Neurocomputing 241:115–127

    Article  Google Scholar 

  40. Tang C, Liu X, Li M, Wang P, Chen J, Wang L, Li W (2018) Robust unsupervised feature selection via dual self-representation and manifold regularization. Knowl Based Syst 145:109–120

    Article  Google Scholar 

  41. Gao H, Nie F, Cai W, Huang H (2015) Robust capped norm nonnegative matrix factorization. In: Proceedings of the 24th ACM international conference on information and knowledge management, pp 871–880. https://doi.org/10.1145/2806416.2806568

  42. Lan G, Hou C, Yi D (2016) Robust feature selection via simultaneous capped l2-norm and l2,1-norm minimization. In: Proceedings of the 2016 IEEE international conference on big data analysis, pp 1–5. https://doi.org/10.1109/ICBDA.2016.7509813

  43. Lan G, Hou C, Nie F, Luo T, Yi D (2018) Robust feature selection via simultaneous capped norm and sparse regularizer minimization. Neurocomputing 283:228–240

    Article  Google Scholar 

  44. Wang H, Nie F, Huang H, Risacher S, Ding C (2011) Sparse multi-task regression and feature selection to identify brain imaging predictors for memory performance. In: Proceedings of the IEEE international conference on computer vision, pp 557–562. https://doi.org/10.1109/ICCV.2011.6126288

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Zhong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Zhong, J., Chen, Y. et al. Sparse robust multiview feature selection via adaptive-weighting strategy. Int. J. Mach. Learn. & Cyber. 13, 1387–1408 (2022). https://doi.org/10.1007/s13042-021-01453-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-021-01453-y

Keywords

Navigation