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Abstract—Underwater robots in shallow waters usually suffer
from strong wave forces, which may frequently exceed robot’s
control constraints. Learning-based controllers are suitable for
disturbance rejection control, but the excessive disturbances
heavily affect the state transition in Markov Decision Pro-
cess (MDP) or Partially Observable Markov Decision Process
(POMDP). Also, pure learning procedures on targeted system
may encounter damaging exploratory actions or unpredictable
system variations, and training exclusively on a prior model
usually cannot address model mismatch from the targeted sys-
tem. In this paper, we propose a transfer learning framework
that adapts a control policy for excessive disturbance rejection
of an underwater robot under dynamics model mismatch. A
modular network of learning policies is applied, composed of
a Generalized Control Policy (GCP) and an Online Disturbance
Identification Model (ODI). GCP is first trained over a wide
array of disturbance waveforms. ODI then learns to use past
states and actions of the system to predict the disturbance
waveforms which are provided as input to GCP (along with the
system state). A transfer reinforcement learning algorithm using
Transition Mismatch Compensation (TMC) is developed based on
the modular architecture, that learns an additional compensatory
policy through minimizing mismatch of transitions predicted by
the two dynamics models of the source and target tasks. We
demonstrated on a pose regulation task in simulation that TMC
is able to successfully reject the disturbances and stabilize the
robot under an empirical model of the robot system, meanwhile
improve sample efficiency.

Index Terms—Underwater robot, varying environment, distur-
bance rejection, reinforcement learning, transfer learning.

I. INTRODUCTION

UNDERWATER robotics has attracted an increasing in-
terest from both research and industry in the last few

decades. Recently, the applications of Autonomous Underwa-
ter Vehicle (AUV) and Remotely Operated Vehicle (ROV) to
execute underwater tasks are more and more common, such
as sea bottom survey, offshore structures monitoring, pipeline
maintenance, biological samples collection and shipwreck
search [1], [2]. The rising demand for robotic advancements
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Fig. 1. Diagram of transfer learning in reinforcement learning between
two different dynamics models of underwater robots, Policy II produces a
compensatory control action and runs in parallel with Policy I in the target
task.

in all of these ocean research and industrial fields predicates
the need to better understand the ocean dynamics.

Ocean waves will displace a robot during task execution.
The wave forces decay exponentially from the water surface to
the seabed, and sufficient depths yield negligible disturbances
[3]. Owing to this decay, as well as the considerable size and
thrust capabilities of underwater robotic systems, the strength
and changes of ocean waves are often neglected in robot
motion planning and control in deep water applications [4].
In field applications with low operational depths and turbulent
wave climates, like bridge pile inspection [5] and sea-ice
algae characterization in Antarctica [6], this assumption can
quickly break down, since shallow water environments usually
accommodate only small-size robots that have limited thrust
capabilities, and the disturbances coming from the turbulent
flows are time-varying and may frequently exceed robot’s
thrust capabilities (such wave forces are termed as excessive
disturbances throughout this paper). As a result, increased
wave forces inevitably hinder the stability and precision of
robot motion control [7]–[9].

Disturbance Observer Based Control (DOBC) [10]–[12] has
been widely investigated for decades. The main objective is to
estimate the unknown disturbances from measurable variables,
then take a control action based on the disturbance estimation
to compensate for the influence of the disturbances. In this
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method, external disturbances and model uncertainties are
generally lumped together, then an observation mechanism is
adopted to estimate the total disturbances. This leads to the
change of the original properties for some disturbances, such
as harmonic ones, thus making it difficult for predicting future
disturbances. A further problem is that naive addition of the
disturbance estimation onto the control signal leads to inputs
over constraints.

To this end, Model Predictive Control (MPC) [4], [13],
[14] is often applied due to its constraint handling capability
through optimizing system behaviours over a future time
horizon [15]. However, the performance of MPC relies on
the accuracy of the given system dynamics model, and the
requirement for online optimization at each timestep leads to
low computational efficiency.

In contrast, Reinforcement Learning (RL) [16] has drawn
a lot of attention in learning optimal controllers for systems
that are difficult to model accurately. It is a trial-and-error
approach that allows to find an optimal sequence of com-
mands without any prior assumption about the world, and
can naturally adapt to uncertainties and noises (particularly
noises that are independent and identically distributed) in
the real system. Meanwhile, neural network controllers also
enable high computational efficiency due to their fast forward
propagation. RL is superior in solving a Markov Decision
Process (MDP), where the future states of the process depend
only on the present state, not on the past states. But the
excessive disturbances are not appropriate to be regarded as
noises any more, since the state transition of the robot system
is heavily affected by the unknown disturbances, leading to a
violation of Markov property.

Normally, when there are unobservable or hidden states to
the agent, the problem will become a Partially Observable
Markov Decision Process (POMDP). However, even if the
disturbances are considered as the unobservable parts of the
state space, the underlying transition function may still not
be able to define a MDP, since it can be difficult to predict
the next disturbances based on the current state (including
disturbances) and action only. Thus, the first research questions
in this paper are how to find a better state space to represent
the disturbances, so that the problem of excessive disturbance
rejection can be formulated into a POMDP, then how to learn
a control policy in such POMDP.

In addition, RL is able to successfully solve problems when
being trained directly on the targeted system. Sometimes,
training samples are expensive to obtain on the targeted
system. For example, high sample complexity of deep RL
algorithms often leads to long training time during their
direct application to physical systems. Learning from scratch
involves many exploratory actions, which real robots usually
cannot withstand and may endanger both the agent and its
surroundings. Other times, the targeted system may change
over time in an unpredictable way during operation. These
variations in the dynamics model may include variable friction
coefficients, actuator failures, or varying load to be manipu-
lated. In such cases, it is difficult to implement pure learning
procedures on the targeted system.

A promising approach is to make an initial guess of the

targeted system, such as a simulated counterpart of the real
robot or a static model of the system before the operation,
which is easy to get in most cases, then optimize a policy based
on this model. However, because of the inaccurate replication
of the targeted system dynamics, initially learned policies
usually cannot be directly applied on the targeted system.
Transfer learning offers a pathway to bridge the mismatch
between different dynamics models. Thus, the second research
question in this paper is how to transfer a control policy
for excessive disturbance rejection under dynamics model
mismatch.

This paper introduces a transfer learning framework that
enables successful deployment of a control policy for excessive
disturbance rejection of an underwater robot under dynamics
model mismatch, as shown in Fig. 1. The contributions of
this work are threefold. Firstly, we seek a modular design of
learning policies for excessive disturbance rejection, consisting
of an observer network and a controller network. The observer
is used to predict disturbance waveforms which are then
provided as input to the controller together with the current
system state to produce control action. The modular archi-
tecture benefits policy transfer between different dynamics in
sample efficiency, since only the controller network needs
to be adapted, but the observer network can remain fixed.
Secondly, transfer learning is developed based on the modular
architecture. To ensure the observer working correctly, an
additional compensatory policy is learned through minimizing
the mismatch of transitions predicted by the two dynamics
models of the source and target tasks, respectively. Such design
enables the observer to predict the external disturbances in the
target task. Then the model mismatch exists almost only in
the internal dynamics, leading to reduced transfer difficulty.
Thirdly, the compensatory policy is added in terms of middle
layer features instead of final network outputs in the target
task, in order to offer more flexibility in compensation under
the control constraints.

The transfer learning algorithms are evaluated on a pose
regulation task under unobservable wave forces in simulation.
In the evaluation, the source task defines a first-principle model
of an underwater robot developed from the fundamental prin-
ciples of dynamics, the target task applies an empirical model
of an underwater robot derived from real-world experimental
data. As a result, a control policy trained on the first-principle
model is still able to successfully reject the disturbances and
stabilize the robot on the empirical model through a small
amount of adaptation.

In this paper, Section II covers a review of related work
in the current literature. Section III introduces our problem
formulation. Section IV provides the detailed description of
the modular network design for excessive disturbance rejection
control, followed by the details of the transfer learning algo-
rithms in Section V. Then, Section VI presents experimental
evaluation procedures and result analysis. Limitations and
some potential future improvements are discussed in the last
section (Section VII).
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II. RELATED WORK

A. Reinforcement Learning in Partially Observable Markov
Decision Processes

Deep RL algorithms based on Q-learning [17]–[19], policy
gradients [20], [21], and actor-critic methods [22]–[24] have
been shown to learn complex skills in high-dimensional state
and action spaces, including video game playing, quadruped
robot locomotion, autonomous driving, and dexterous manip-
ulation. However, real-world control problems rarely feature
the full state information of the system. Then POMDP better
describes the dynamics of real-world environments through
explicitly recognizing that the agent only observes partial
glimpses of the underlying system state. Existing solutions to
POMDP typically maintain a belief state over the world state
given the observations so far. This method has shortcomings
in model dependency and computational cost during belief
update [25], [26].

Using Recurrent Neural Network (RNN) to represent poli-
cies is a more popular approach to handle partial observability
[18], [23], [27]–[29]. The idea being that RNN is able to retain
information from observations further back in time, and incor-
porate this information into predicting better actions and value
functions, thus performing better on tasks that require long
term planning. One of the earliest works is to apply RNN in
Deep Q-Network (DQN) framework, which enables the policy
to better handle POMDP by learning long-term dependencies.
Hausknecht and Stone [28] introduced a Deep Recurrent Q-
Network (DRQN) that was capable of successfully estimating
velocities in training video game player, where recurrent
connections create an effective way to conditionally operate on
previous observations that are far away in time. Then attention
mechanism was introduced for further improvements, leading
to a Deep Attention Recurrent Q-Network (DARQN) [30],
that builds additional connections between recurrent units and
lower layers. Attention mechanism allows the network to focus
on the most important part of the next input, so that DARQN
outperforms DRQN and DQN on the video games that require
long-term planning. In addition, RNN is not limited to the
learning algorithms based on value function, there are also
successful applications to policy gradients [27] and actor-critic
methods [23], [29].

The problem of excessive disturbance rejection has some
differences from the generic POMDP. Normally, POMDP can
be transformed back to MDP when there is full observability
of the environment. However, this is not the case when the
disturbances are considered as the unobservable parts of the
state space, since it it difficult to formulate a transition function
to predict next disturbances from current state (including dis-
turbances) and action only. Both history window approach [31]
and recurrent policy [32] attempt to resolve this issue through
characterizing the disturbed system transition as a multi-step
MDP, and assuming the unobservable disturbance waveforms
are encoded in robot motion history. The difference lies in
the way to use the history data, the history window approach
directly takes most recent state-action pairs as additional input
to the policy, while the recurrent policy employs RNN to

explore past experience in order to learn an optimal embedding
of history data.

In contrast to these "end-to-end" control policies, that take
as input a sequence of motion history and directly output the
optimal control, this paper explicitly decouples the process
into disturbance identification and motion control. We believe
that using the decoupled moderate-sized networks instead of
a large network trained by RL in an end-to-end mode [33],
might mitigate the learning difficulty and thus improve the
sample efficiency, and such modular network design benefits
policy transfer between different dynamics as well.

B. Transfer Learning in Reinforcement Learning

Although RL algorithms can learn complex skills in high-
dimensional state and action spaces, it is almost impossible
to directly deploy RL agent on real-world systems, due to the
high sample complexity. In order to accelerate the learning
process of RL, the knowledge previously obtained from related
tasks can be used [34], [35]. Transferring policy from one task
to another [36], especially from learning in physical simulators
to adapting on real robots, has aroused great interest. The
most simple idea is to use identical network architecture for
both simulation and real environment [37]. More sophisticated
learning process adds new layers when transferring to the
new task, in the meantime freezes old layers, thus avoids the
problem of catastrophically forgetting [38], [39]. There are
also other methods including domain adaptation that learns
aligned visual representations between synthetic and real-
world images [40], [41].

Much of the previous work has focused on system iden-
tification [42], [43], which provides a framework for finding
accurate system models, then simplifying the design of robot
controllers in the real world. In the context of RL, these
methods are often referred to as model-based RL [44]. That
is, data from actual policy execution is used to fit a transi-
tion model and then used to learn a control policy without
directly interacting with the real-world scene. Such methods
reduce the number of samples compared to purely model-free
RL, which generally requires tremendous data to encode the
objective function and the transition model. Various model-
based RL methods have been proposed [45]–[50], and applied
successfully on both simulated and real-world robots, such as
inverted pendulums [45], manipulators [51], and legged robots
[52].

In fact, system identification is usually interleaved with
policy optimization [53]–[56]. In other words, additional pol-
icy execution data is collected through alternating between
collecting data with the current model and retraining the model
with the aggregated data. This data aggregation procedures
improves performance by alleviating the mismatch between
the distribution of the trajectory data and that of the model-
based controller, and such an iterative process is able to
converge to an optimal policy.

Another area of research is domain randomization, where
the differences between the source and target tasks are mod-
eled as the variabilities in the source task. Therefore, the
source task can be designed to be as diverse as possible
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in the simulation in order to better generalize the trained
policy to unfamiliar system dynamics or environmental factors
in the real world. Randomization in system dynamics have
been used to design controllers that are robust to model
uncertainties. Peng et al. [57] proposed to learn a policy in
simulation through randomizing the physical parameters of the
environment, then transfer the learned policy to a real robot
for a puck pushing task. Andrychowicz et al. [58] proposed
to train dexterous manipulation skills of a robotic hand using
randomization of physical properties and object appearance in
simulation.

However, sometimes it can be difficult for transfer learning
using domain randomization, since this technique usually
needs tedious manual fine-tuning and a significant expertise
to design the distributions of simulation parameters [59].
Thus, system identification and domain randomization have
also been combined [60]–[62]. These approaches address
the problem of automatically learning the distributions of
simulated parameters to avoid manually design procedures,
thus improving the transfer learning of policies. Rajeswaran
et al. [63] and Chebotar et al. [59] applied this framework to
iteratively learn a policy over an ensemble model and used
data from the target task to adjust model distributions. The
results showed that policies can be successfully transferred
with only a few iterations of simulation updates using a small
number of real robot trials.

In summary, although neural-network-based dynamics
model can make reasonable predictions over a future time hori-
zon without physical interaction [64], the success of model-
based RL still heavily depends on the quality and quantity
of the real-world experimental data. In order to promote the
adoption of neural network models in model-based RL, finding
strategies to improve their sample efficiency is necessary. As
for domain randomization, this kind of techniques generally
restricted to only low-dimensional dynamics models. When the
real-world dynamics become more complicated, the selected
parameterization of the dynamics model might not well rep-
resent it. Thus domain randomization can be difficult to apply
in sim-to-real transfer in most cases.

III. PROBLEM FORMULATION

A. Disturbed Robot Dynamics

Consider a nonlinear time-invariant system to represent the
dynamics of an underwater robot in the form of

Mν̇ +C (ν)ν +DRB (ν)ν + gRB (η) = u+ d+ ξ,

η̇ = Jν,
(1)

where η,ν ∈ R6 are the robot’s pose and velocity, x =[
ηT νT

]T ∈ X ∈ R12 is the system state, X represents
the state space, J ∈ R6×6 is the system’s Jacobian matrix,
M ∈ R6×6 is the inertia matrix, C(ν) ∈ R6×6 is the
matrix of Coriolis and centripetal terms, M = MRB +MA

and C = CRB + CA include also added mass terms,
DRB(ν) ∈ R6×6 is the matrix of drag forces, gRB(η) ∈ R6

is the vector of gravity and buoyancy forces, u ∈ U ∈ R6

is the control vector applied to the system, U represents the

action space, d ∈ R6 represents the wave forces, and ξ ∈ R6

represents the model uncertainties.
In this work, the wave forces d are considered as external

disturbances to the system, all the other components in the
system dynamics model (1) are termed as internal dynamics.
The external disturbances are assumed to be time-correlated
signals following specific waveforms, and may frequently
exceed the control constraints of the robot. We consider the
control constraints of the form u ≤ u ≤ u with element-wise
inequality, and u,u ∈ R6 represent the respective lower and
upper bounds. The model uncertainties ξ include parametric
and structural uncertainties and exist in both internal dynamics
and external disturbances. The sources of model uncertainties
may include inaccurate estimation of hydrodynamics coef-
ficients, control latency from unmodeled thruster dynamics,
and so on. In this work, we consider discretization of the
continuous-time system in (1) modeled by

xt+1 = f (xt,ut) , (2)

which describes the evolution from time t to t + 1 of the
state x, given the action u. Also notice that the parameters of
the internal dynamics are assumed fixed but unknown to the
learning algorithms.

B. Control Objective

In this control problem, the model of the dynamics f is
unknown to the controller. A trajectory (X,U) is a sequence
of controls U = {u0,u1, · · · ,uT−1}, and corresponding state
sequence X = {x0,x1, · · · ,xT−1,xT } satisfying (2). The
objective function denoted by J is the discounted sum of
rewards r, incurred when the system starts from initial state x0

and is controlled by the control sequence U until the horizon
T is reached:

J (x0) =

T−1∑
t=0

γtr (xt,ut) , (3)

where the reward function is given as:

r (xt,ut) = −xTt Qxt − uTt Rut, (4)

with Q ∈ Rnx×nx and R ∈ Rnu×nu being weight matrices,
and γ ∈ [0, 1] is a discount factor that prioritizes near-term
rewards. The trajectory is implicitly represented using only the
controls U . The state sequence X is recovered by interaction
with the environment (2) from the initial state x0.

In this work, RL is used to optimize this control objective
through a trial-and-error approach. At each timestep t, the
system makes a transition from the state variable xt to xt+1

in response to a control signal ut chosen from some policy
π under a dynamics model f , meanwhile collecting a scalar
reward rt according to a reward function r. The goal of RL
is to learn a policy ut = π (xt) + n,n ∼ N that maximizes
the objective function J :

π∗ = argmax
π

J (x0) . (5)
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C. Transfer Learning

The key idea of transfer learning [36] is that experience or
knowledge obtained from learning to specialize in one task can
help improve learning effectiveness in a different but related
task. The former is called source task, the latter is called target
task. In general, task and MDP are used interchangeably.

In this research, the source and target tasks differ in system
dynamics. The source task defines a mathematical model of an
underwater robot developed from the fundamental principles
of dynamics, this model corresponds to the dynamics function
in (1) excluding the model uncertainties term ξ, and is referred
to as "first-principle model". The target task applies a data-
driven model of an underwater robot derived from real-world
experimental data, this model contains various uncertainties
in the real system, and is referred to as "empirical model".
Specifically, the empirical model consists of two parts, the first
part is a deep neural network learned from real-time motion
data of the robot system in still water, representing internal
dynamics; the other part is force data of real-world ocean
waves collected in open water, representing external distur-
bances. These two models differ in both internal dynamics
and external disturbances. But in the meantime, the state and
action spaces, the reward and objective functions between the
source and target tasks are all kept consistent. Furthermore,
the information transferred between the tasks is the control
policy.

In this paper, the policy directly trained on the source task
is defined as "source policy"; the policy directly trained on the
target task is defined as "target policy"; the policy trained on
the source task then directly applied on the target task without
transfer learning is defined as "unadapted policy"; the policy
trained on the source task then further adapted on the target
task using transfer learning is defined as "adapted policy".

There are many metrics to measure the benefits of transfer.
In this work, we use jumpstart and learning time. That
is, the goals of transfer learning are to improve the initial
performance of an agent in a target task, and to reduce
the learning time required by the agent to achieve optimal
performance, compared with learning from scratch in the target
task. Learning time is regarded as a surrogate for sample
complexity, which refers to the amount of data required by
a learning algorithm to converge. These two concepts are
strongly correlated, because RL agents collect data merely
through repeated interactions with an environment.

IV. MODULAR NETWORK DESIGN

Previous work [32] has demonstrated that RNN can directly
learn to control a dynamical system with unobservable distur-
bances in an end-to-end mode, where the past motion history
is mapped to the control action. While, inspired by [33],
this work applies modular learning procedures, that explicitly
decouple the process into disturbance identification and motion
control.

The learning algorithm for excessive disturbance rejec-
tion control proposed in this paper is composed of two
main modules, namely a Generalized Control Policy (GCP)
and an Online Disturbance Identification Model (ODI), as

GCP
Dynamics 

Model

ODI

𝒙𝒕

𝒖𝒕−𝟏 𝝁

𝒙𝒕+𝟏

𝒖𝒕

DP
𝒅𝒕:𝒕+𝒏

Fig. 2. Diagram of GCP-ODI. The Online Disturbance Identification
Model (ODI) employs RNN to identify the disturbance parameters µ =
{A1, ω1, φ1, · · · , Ak, ωk, φk} from the past states and actions, and the
Disturbance Prediction Model (DP) formulates a sequence of future distur-
bances dt:t+n from these parameters, where dt = A1 sin (ω1t+ φ1) +
· · ·+Ak sin (ωkt+ φk). The Generalized Control Policy (GCP) then takes
the predicted future disturbances dt:t+n along with the current state xt to
compute the control action ut.

shown in Fig. 2. Firstly, we build a RL framework to train
GCP, ut = π (xt,dt:t+n), under a system dynamics model,
xt+1 = f (xt,ut;µ), parameterized using the disturbance
parameters µ. Unlike classical RL policies where a mapping
between states and controls is established, GCP explicitly
takes a sequence of future disturbances (i.e. dt:t+n) as input
besides the current state, and outputs a control signal. This
additional input allows the policy to specialize at each set of
disturbance waveforms, and is shown to improve the control
performance in Section VI. Secondly, we employ RNN to
construct ODI, (µ,ht) = ψ (xt,ut−1,ht−1), and train it
following a supervised learning style.

When combining GCP and ODI together, the complete
workflow is to use ODI to predict the disturbance parameters µ
based on the current system state xt, the previously executed
action ut−1 of the robot, and the hidden state vector ht−1
from the previous timestep as well. The Disturbance Prediction
Model (DP) uses these parameters to produce a sequence of
future disturbances dt:t+n, which are then fed into GCP, with
the current system state xt, to generate the control action
ut. The action ut is executed on the robot and the system
dynamics gives an updated state xt+1, then the algorithm
proceeds to the next timestep (Fig. 2).

We speculate that using the decoupled moderate-sized net-
works instead of a large network trained by RL in an end-
to-end mode, might mitigate the learning difficulty and thus
improve the sample efficiency. The modular learning proce-
dures can also benefit the policy transfer under dynamics
model mismatch, since only the controller network needs to
be modified for adaptation to the target task, the identification
network can remain fixed, thus reducing the transfer difficulty.

Both GCP and ODI are parameterized as deep neural
networks. During training, GCP is trained first to cover all of
the possible disturbance waveforms that ODI might explore
during following optimization, where there is no need for any
initial network or prior knowledge for both modules.

A. Learning Generalized Control Policy

The disturbance rejection controller is expected to be gener-
alized over a range of disturbance waveforms. The intuition for
this problem is to directly train one unified control policy that
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Algorithm 1 Learning Generalized Control Policy
1: Randomly initialize policy network π
2: Initialize rollout buffer R
3: Initialize episode step counter t = 0
4: Sample state xt ∼ p (x0)
5: Sample disturbance parameters µ ∼ p (µ)
6: Initialize disturbance sequence dt:t+n from µ
7: Insert (xt,dt:t+n) into R
8: while step ≤MaxStep do
9: while R is not full do

10: Calculate disturbances dt from µ
11: Perform action ut = π (xt,dt:t+n)
12: Receive next state xt+1 = f (xt,ut;µ)
13: Receive reward rt = r (xt,ut)
14: Update dt+1:t+1+n

15: Insert (xt+1,dt+1:t+1+n,ut, rt) into R
16: Update t← t+ 1
17: if episode is terminated then
18: Reset t = 0
19: Sample xt ∼ p (x0)
20: Sample µ ∼ p (µ)
21: end if
22: end while
23: Update π using data in R
24: end while

adapts to all different waveforms. While our initial attempt
showed that, the policies change a lot when optimized over
different waveforms, and the trained unified policy can hardly
succeed at the given task. The reason behind is that the
wave forces are too strong to be considered as random noises
any more, and the disturbed system dynamics under different
waveforms tends to be drastically varied with each other.
Thus, training one single policy to deal with a wide variety of
disturbances usually leads to poor generalization.

In this work, we found that it is possible to train a
"generalized" policy to specialize at each set of waveforms
through constructing the policy network parameterized by µ.
After sufficient training, the generalized policy can achieve
high cumulative rewards over the space of µ, its performance
can be comparable with the policies trained for a specific set of
waveforms based on state input only. However, the disturbance
parameters µ are composed of frequency domain signals
{A1, ω1, φ1, · · · , Ak, ωk, φk}, simply appending these signals
to the input state cannot yield a well-performed control policy
(see Section VI). The reason behind this phenomenon is that
the frequency domain signals only provide a description of the
waveforms, but do not explicitly indicate phase information,
so that the algorithm cannot figure out where it is along the
waveforms at each timestep. One improvement is to formulate
time domain signals from the frequency domain signals,
and use multi-step future disturbances dt:t+n as additional
input for the policy, where dt = A1 sin (ω1t+ φ1) + · · · +
Ak sin (ωkt+ φk). Compared with using the frequency do-
main signals, the time domain signals do not contain complete
information of the disturbances. But they directly give the
disturbance waveforms in the near future, which are more

Algorithm 2 Learning Online Disturbance Identification
Model

1: Randomly initialize ODI netowrk ψ
2: Initialize training buffer B
3: Initialize iteration counter iter = 1
4: while ψ is not converged do
5: for i = 1 : K do
6: Sample µ̄ ∼ p (µ)
7: for j = 1 : N do
8: Sample x0 ∼ p (x0)
9: for t = 0 : T − 1 do

10: Calculate d̄t from µ̄
11: if iter == 1 then
12: Calculate d̄t:t+n from µ̄
13: Perform ut = π

(
xt, d̄t:t+n

)
14: else if iter > 1 then
15: Predict (µ̂,ht) = ψ (xt,ut−1,ht−1)
16: Calculate d̂t:t+n from µ̂
17: Perform ut = π(xt, d̂t:t+n)
18: end if
19: Receive xt+1 = f (xt,ut; µ̄)
20: end for
21: Form trajectory τ = (u0,x1, · · · ,uT−1,xT )
22: Store (τ , µ̄) in B
23: end for
24: end for
25: Optimize ψ using data in B
26: Update iter ← iter + 1
27: end while

closely related to control. Thus, they are still proved to achieve
better performance in Section VI.

Advantage Actor Critic (A2C) [23] is used to train GCP.
During each episode, the algorithm (Algorithm 1) samples
disturbance parameters µ from a uniform distribution p (µ),
and constructs a sequence of future disturbances in the time
domain dt:t+n, then performs the trajectory under the policy
π (xt,dt:t+n) and the dynamics model f (xt,ut;µ). Once
the trajectory data are collected, the policy network π will
be updated following A2C rules.

B. Learning Online Disturbance Identification Model

Even though GCP is capable of performing optimal control
under different waveforms, the policy can only succeed with
the correct disturbance parameters, but this information is
usually not easy to obtain. This issue can be addressed by
learning an Online Disturbance Identification Model (ODI),
µ = ψ (xt,ut−1,ht−1), that continuously identifies the cor-
rect disturbance parameters for GCP.

The training of ODI can be framed as a supervised learning
problem, where the model aims to predict the disturbance
parameters µ with the input being the most recent state-
action pair (xt,ut−1) and the hidden state ht−1 from the
previous timestep. The optimization is conducted through
minimizing the objective function using Stochastic Gradient
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Descent (SGD):

θ∗ψ = argmin
θψ

∑
(τi,µi)∈B

T−1∑
t=0

‖µi − ψ (xt,ut−1,ht−1; θψ)‖2 ,

(6)
where τ = {x0,u0, · · · ,xT−1,uT−1,xT } is a trajectory
of states and actions in each episode, and θψ represents the
parameters of ODI network ψ. During training, we randomly
sample the space of µ for K times, and we simulate N
episodes for each sampled µ̄, with the policy π

(
xt, d̄t:t+n

)
and the dynamics f (xt,ut; µ̄). The trajectory data is then
stored in the training buffer B and used to update ODI network
ψ using (6) (Algorithm 2).

After optimizing ODI ψ using (6), we noticed that the
performance of the combined algorithm, GCP-ODI, was much
worse than directly feeding the true disturbance parameters
µ̄ to GCP (see Section VI). This result is not surprising
since the trajectories used for training ODI are generated by
performing a control policy π

(
xt, d̄t:t+n

)
under a dynamics

model f (xt,ut; µ̄), where they both use the same disturbance
parameters µ̄ in their formulation. However, when ODI is
deployed with GCP, due to the lack of information at the
initial timestep and the regression error in the neural network,
ODI will inevitably make some error in the prediction. This
error tends to be more and more aggravated over time because
the next state-action pair fed to ODI is generated by the
control policy π(xt, d̂t:t+n) using an incorrectly predicted
disturbance parameters µ̂, under the dynamics model with the
true disturbance parameters f (xt,ut; µ̄).

In order to solve this issue, one possible idea is to itera-
tively train ODI by using mismatched disturbance parameters
(µ̂ 6= µ̄) for the control policy π(xt, d̂t:t+n) and the sys-
tem dynamics f (xt,ut; µ̄). In each iteration, more training
samples are generated following the previous procedures, but
the disturbances used by GCP now come from the predicted
disturbance parameters of ODI µ̂, rather than the true distur-
bance parameters µ̄ used in the system dynamics. Then, ODI
is trained again through combining the mismatched training
samples with previously gathered ones according to (6). After
a small number of iterations, the combined system, GCP-ODI,
achieves close performance with GCP that is fed with the true
disturbance parameters µ̄.

V. TRANSFER LEARNING ALGORITHM

Previous work on transfer learning in RL [57], [59], [65]
generally consider model discrepancies as a whole. Then in
the problem of excessive disturbance rejection, the model
mismatch in both external disturbances and internal dynamics
will be combined together and treated equally by the existing
transfer learning algorithms, without taking full advantage of
the characteristics of the underwater disturbances. While in
this work, the external disturbances are separated from the
internal dynamics and processed independently, through using
ODI to predict a set of disturbance waveforms that best fit
the real ones in the target task. The residual mismatch in
the external disturbances, which is shown to be sufficiently
small in Section VI, is then merged into the mismatch of

CP

GCP

ODI

𝒙𝒕

ෝ𝒖𝒕−𝟏 𝝁

𝒙𝒕+𝟏

ෝ𝒖𝒕

DP
𝒅𝒕:𝒕+𝒏

Empirical

Model

𝒖𝒕
𝒄 𝒖𝒕
+

+

Fig. 3. Diagram of transfer reinforcement learning using Control Action
Compensation (CAC).

the internal dynamics and adapted together by the transfer
learning. Such framework is expected to reduce the amount of
total model mismatch that the transfer process needs to adapt,
thus improves the learning efficiency during transfer.

This section discusses three transfer RL algorithms, Control
Action Compensation (CAC), Transition Mismatch Compen-
sation with Control Combination (TMC-control) and with
Feature Combination (TMC-feature), based on the modular
architecture of GCP-ODI proposed in Section IV. All of
them follow a basic idea of training an additional policy to
compensate the dynamics model mismatch between the source
and target tasks, as shown in Fig. 1.

A. Control Action Compensation

We first propose a transfer RL algorithm using Control
Action Compensation (CAC), as shown in Fig. 3. This al-
gorithm learns an additional control policy, which generates a
compensatory control action uct directly added to the control
input computed by the source policy (i.e. GCP) ût, the
combined control action ut is then applied to the empirical
model in the target task. The training process uses the task
reward function (4), which establishes similar optimization
goals for both the source policy and the compensatory policy.
In order to ensure that ODI remains effective, the action fed
into ODI should be the output of the source policy ût, that is
what ODI has seen during training. However, through transfer
learning using (4), CAC algorithm could not optimize the
compensatory policy to a satisfactory performance. This is
because, although ODI is fed with the action of the source
policy, the whole trajectory data still comes from the combined
control policy and the empirical model in the target task. In
contrast, ODI is trained using the trajectory data generated by
the source policy under the first-principle model in the source
task. Thus, the differently distributed trajectories fed to ODI
lead to worse performance of the whole system.

B. Transition Mismatch Compensation

To address the issue of trajectory mismatch, we develop
another transfer RL algorithm based on Transition Mismatch
Compensation (TMC), as shown in Fig. 4. This algorithm
learns a compensatory policy from the difference between
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Fig. 4. Diagram of transfer reinforcement learning using Transition Mismatch
Compensation with Control Combination (TMC-control).

transitions of the first-principle model and the empirical model,
et = xt − x̂t. In this case, the compensatory policy uses a
different optimization goal where the reward is given by

rm (xt,ut,xt+1) = r (xt,ut)− ‖et+1‖2
= −xTt Qxt − uTt Rut − ‖xt+1 − x̂t+1‖2

,

(7)

which does not divert the source policy from reaching its
objective. The purpose of such optimization setting is to
eliminate the transition mismatch e by forcing the empirical
model to behave like the first-principle model as if there is no
model mismatch. When the transition mismatch approaches
zero et → 0, the state trajectories of the empirical model
will get similar with those of the first-principle model, making
ODI work correctly by using the trajectory data matched with
the training process. In the meantime, the outcome of the
combined control policy will approach the outcome of the
optimal policy with respect to the first-principle model. Also,
under this setting, the well trained ODI is able to predict a
set of waveforms that well describe the real disturbances from
the distributions of simulated parameters, thus the total model
mismatch required to be compensated is reduced.

However, these optimization effects are achievable only
when the full power of the compensatory control is released.
We found that, in order to have good performance against
the excessive disturbances, the control actions of the source
policy ût often reach or exceed the control constraints, leaving
a little space for the compensation to directly take effect.
Thus, the compensatory term needs to learn a very complicated
function in order to optimize overall system performance under
the constraints of robot control capabilities. That is why we
believe the transfer learning has not reached its performance
limit, and we may need a more efficient way to apply the
control compensation.

We then propose TMC with feature combination (see Fig. 5)
to further improve TMC framework. Similar with TMC-
control, the optimization of TMC-feature still applies the
reward function (7) for maximizing task performance as well
as minimizing transition mismatch at the same time. The
difference is that, rather than naively adding together the
control actions, TMC-feature combines features before the last
layer of the two policy networks, then feeds the combined
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GCP

ODI
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ෝ𝒖𝒕−𝟏 𝝁
DP

𝒅𝒕:𝒕+𝒏
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𝒖𝒕
[∙,∙]

First-Principle
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ෝ𝒖𝒕

𝒙𝒕+𝟏

ෝ𝒙𝒕+𝟏

𝒆𝒕+𝟏
+

−

Fig. 5. Diagram of transfer reinforcement learning using Transition Mismatch
Compensation with Feature Combination (TMC-feature), [·, ·] represents
feature combination, the blue blocks represent the final layers of two policy
networks.

features into fully connected layers to produce expected con-
trol. Combining middle layer features might be an effective
way to deal with the control constraints, such approach can
offer more flexibility and improve network capacity, since the
middle layer features may contain more comprehensive infor-
mation compared with the final layer outputs with physical
significance. Through combining middle layer features, the
restrict limitations in the control space might be eased in a
"feature space", then reducing the learning difficulty of the
compensatory policy.

VI. EXPERIMENTS

A. Construction of Empirical Model

We are interested in deploying an underwater robot in
shallow water where there are excessive wave forces. But it
can be difficult to implement an accurate localization system in
open water. Thus, we build a simulator based on an empirical
model. Specifically, we collect motion data of an underwater
robot, named Submerged Pile Inspection Robot (SPIR) (as
shown in Fig. 6), in a water tank and train a deep neural
network to represent the internal dynamics of the real robot
(introduced in Section VI-A). We also collect real-world wave

Fig. 6. Tank test of Submerged Pile Inspection Robot (SPIR) over a set of
QR code markers in a water tank.
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TABLE I
DISTRIBUTIONS OF SIMULATED DISTURBANCE PARAMETERS USED IN THE SOURCE TASK.

Component Wave 1 2 3 4 5
Amplitude w.r.t. |u| 0 ∼ 50% 50 ∼ 100% 50 ∼ 100% 50 ∼ 100% 0 ∼ 50%

Period (s) 1 ∼ 2 2 ∼ 4 2 ∼ 4 2 ∼ 4 4 ∼ 8
Phase (rad) −π ∼ π −π ∼ π −π ∼ π −π ∼ π −π ∼ π
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Fig. 7. Example of simulated disturbances in X, Y and yaw directions.

forces in open water to represent the external disturbances
(introduced in Section VI-B). The simulator is then used to
define the target task.

We first build a visual localization system through using a
downward-looking camera mounted to the underwater robot
SPIR and a set of QR code markers fixed on the bottom of
the water tank. The localization algorithm is able to calculate
the relative pose of the robot with respect to a global frame
defined by the markers. Fig. 6 provides a demonstration of
the tank test when SPIR localizes itself over the markers in
the water tank. Inertial Measurement Unit (IMU) data is also
recorded. SPIR is controlled by 12 thrusters, the control data
of each thruster is directly read from the onboard computer in
the form of Pulse-Width Modulation (PWM) signal. During
data collection, the robot moves in a fully autonomous mode
and executes random control actions at each timestep. In
order to ensure safe operation, an additional control term is
employed when necessary to keep the robot away from the
tank wall. We continuously record the motion and control data
for over 4 hours. The online data collection provides us with
the raw sensor data expressed in their own frame. We then
employ Extended Kalman Filter (EKF) [66] to produce a more
accurate estimation of the full state x of SPIR from these raw
sensor data.

Normally, a transition function (i.e. dynamics model) would
take the current state xt and control ut as input, and output
the predicted next state xt+1. However, when there is a very
short time interval ∆t between two consecutive states, the
predicted next state xt+1 will become too similar with the
current state xt, and the state difference may not well indicate
the underlying dynamics [56]. Thus, the transition function
might be difficult to learn. This problem can be solved by
learning a transition function that predicts the state change
over one timestep ∆t. Then the predicted next state is now
given by: xt+1 = xt + fnn (xt,ut; θf ).
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Fig. 8. Example of real-world disturbances in X, Y and yaw directions.

We divided the recorded motion data into training dataset
Dtrain and validation dataset Dval, where the data is further
sliced into inputs (xt,ut) and labels xt+1 − xt. We then
conduct feature normalization on both inputs and labels by
subtracting the mean of the data and dividing by the standard
deviation of the data, to ensure the loss function weights
the different parts equally. After data preprocessing, we train
the dynamics model fnn (xt,ut; θf ) offline using supervised
learning by minimizing the error:

E(θf ) =
∑

(x,u)∈Dtrain

‖(xt+1 − xt)− fnn (xt,ut; θf )‖2 ,

(8)
using SGD. While training on the training dataset Dtrain, we
also calculate the mean squared error in (8) on the validation
dataset Dval to optimize hyperparameters.

B. Experimental Setup

The performance of the designed algorithms is tested
through a pose regulation task in simulation, where the robot
starts with random pose and velocity in each episode, the
goal is to control the robot to navigate toward a target pose
then stabilize itself under the external disturbances. Each
episode contains 200 timesteps with 0.05s per timestep. The
adopted A2C framework employs a parallel training mode
through using 16 agents synchronously, the equivalent real-
world training time for each agent in the source task is 16.67
hours.

Normally, an underwater robot has 6 degree of freedom
(DOF). In this experiment, only the horizontal motion and
control (X, Y and yaw) of the robot are considered, then
the robot has a 6-dimensional state space X ∈ R6 and a
3-dimensional action space U ∈ R3. In the source task, we
build a first-principle model of SPIR that enables large scale
training in simulation. The model is assumed to has the mass
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Fig. 9. Distribution of the distance from the robot to the target during
last 100 timesteps under the first-principle model: (a) A2C; (b) GCP-true
using as input the frequency domain signals {A1, ω1, φ1, · · · , Ak, ωk, φk};
(c) GCP-true using as input the processed frequency domain signals
{A1, ω1, ω1t+ φ1, · · · , Ak, ωk, ωkt+ φk}; (d) GCP-true using as input
the time domain signals dt:t+n; (e) GCP-ODI at the 1st iteration; (f) GCP-
ODI at the 2nd iteration; (g) GCP-ODI at the 3rd iteration; (h) GCP-ODI at
the 4th iteration; (i) DOB-Net.

of 60kg and a simplified cuboid shape with the dimension
of 0.68 × 0.75 × 0.19m3. Both hydrodynamics and control
latency are excluded. The control constraints are given as
|u| = |u| = [112N 112N 82Nm]T .

Besides, the source task uses simulated disturbances. They
are exerted on all 3 directions (X, Y and yaw) of the robot
in the global frame, and are constructed as a superposition
of multiple sinusoidal waves with different amplitudes A,
frequencies ω and phases φ. In this work, we use a com-
position of 5 sinusoidal waves, whose parameter distributions
and waveforms are given in Table I and Fig. 7. Our goal is
to enable the trained control policy to deal with unknown
time-correlated disturbances, and the policy is expected to
adapt to a wide range of waveforms, instead of a fixed
one. Thus, the amplitudes, frequencies and phases of the
simulated disturbances are randomly sampled from the given
distributions in each training episode.

The target task uses an empirical model of SPIR, composed
of the neural network dynamics in Section VI-A and real-
world disturbances. These disturbances come from force data
of real-world ocean waves collected in open water, as shown
in Fig. 8. The data collection process is implemented through
connecting a force/torque sensor between SPIR and a metal
pole, the metal pole is fixed to a bridge over turbulent water
flows, and the robot is deployed in the water and remains
unactuated. Then, the readings of the force/torque sensor
are regarded as the external wave forces and torques. We
notice that the real-world disturbances have widely varying
amplitudes, which are not constrained within the ranges of
the simulated disturbance parameters, leading to a more chal-
lenging control problem.

C. Modular Network

The performance of the modular learning architecture, GCP-
ODI, is evaluated first for excessive disturbance rejection

Fig. 10. Trajectories of the robot using A2C and GCP-ODI under the first-
principle model.

under the first-principle model. As shown in Fig. 9, it can
be seen that training a RL policy with disturbances dt:t+n or
disturbance parameters µ as additional input can achieve better
performance, compared with conventional RL policy (A2C).
In terms of the part of policy input representing disturbances,
we found that using time domain signals outperforms using
frequency domain signals, even though time is combined with
the frequency domain parameters to give phase information
µ = {A1, ω1, ω1t+ φ1, · · · , Ak, ωk, ωkt+ φk}. This result
indicates that it might be difficult for RL to find an effective
mapping between the frequency domain signals of the distur-
bances and the control output. In contrast, the time domain
signals are more closely related to control. Thus, although
the time domain variables only contain partial information
of the disturbance waveforms (i.e. only n timesteps of future
disturbances), adopting these variables still perform well.

We also found that, the robot hardly stabilize itself near
the target when ODI is only trained on the initially collected
data (1st iteration). This is because these data is generated
by a control policy and a dynamics model with consistent
disturbance parameters µ̄, but there are actually mismatched
disturbance parameters µ̄ 6= µ̂ during the online operation of
GCP-ODI. This situation can be mitigated through iteratively
alternating between gathering more data with the current ODI
and GCP, and retraining ODI using the aggregated data. After
several iterations (4 in our case), the disturbance rejection
capability of the robot reaches a relatively high level, even
approaching the performance of GCP when given the true
disturbance parameters µ̄. In addition, we also evaluate an end-
to-end learning framework for excessive disturbance rejection,
called Disturbance Observer Network (DOB-Net) [32], as a
comparison with the modular architecture of GCP-ODI. We
found that DOB-Net also achieves an excellent stability under
the same task settings, but not as good as the iteratively trained
GCP-ODI (4th iteration). This result is reasonable, because
GCP explicitly takes the values of disturbance forces as input,
instead of implicitly encoding the prediction of disturbances
into the hidden state of RNN, as is the case in end-to-end
learning. Such additional input information allows the policy
to better specialize at different disturbance waveforms, thus
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TABLE II
VARIATIONS IN THE FIRST-PRINCIPLE MODEL.

Parameters Original Model Variated Model

Mass 60kg 50kg
60kg 70kg

Geometry
Cuboid Geometry:

0.68× 0.75× 0.19m3 CAD Geometry

Hydrodynamics No Added Mass or Damping Added Mass and Damping

Velocity Constraints ±
[
1.0m/s 1.0m/s π

2
rad/s

]
±

[
0.7m/s 0.7m/s π

3
rad/s

]
±

[
0.7m/s 0.7m/s π

3
rad/s

]
±

[
1.0m/s 1.0m/s π

2
rad/s

]
Control Constraints ± [112N 112N 82Nm] ± [86N 86N 62Nm]

± [86N 86N 62Nm] ± [112N 112N 82Nm]
Control Offset None 30% of Control Constraints |u|

Control Latency None 100ms
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(a) Smaller Mass
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(b) Larger Mass
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(c) Geometry
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(d) Hydrodynamics
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(e) Smaller Velocity Constraints
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(f) Larger Velocity Constraints
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(g) Smaller Control Constraints
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(h) Larger Control Constraints
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(i) Control Offset
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(j) Control Latency

Fig. 11. Distribution of the distance from the robot to the target during last 100 timesteps for different variations in the first-principle model: (1) GCP-ODI
trained and tested on the original model (i.e. source policy); (2) GCP-ODI trained and tested on the variated model (i.e. target policy); (3) GCP-ODI trained
on the original model and tested on the variated model (i.e. unadapted policy); (4) transfer learning using TMC-feature (i.e. adapted policy).

potentially improves the control performance.
Fig. 10 provides a more intuitive illustration of the algorithm

effectiveness, by comparing the trajectories of the robot using
the conventional A2C and the well trained GCP-ODI (after
4 iterations of training). We set a performance metric to
be the range of the robot’s distance to the target during
last 100 timesteps of an episode, referred to as "converged
region". It is found that GCP-ODI can dramatically improve
the control stability of the robot under the unknown excessive
disturbances, the converged region can be reduced from 1.85m
to 0.233m.

D. Transfer Learning on Various Model Uncertainties

It has been validated in the previous section that GCP-
ODI performs well on the first-principle model, but there
are still many uncertainties in the actual system dynamics.
Before deploying the transfer learning on the empirical model,
we first evaluate the influence of different sources of model
uncertainties.

In this part of evaluation, both the source and target tasks
apply the first-principle models but with different model

parameters, they are called original model and variated model,
respectively. Possible uncertainties in the dynamics model for
the underwater robot may include:
• Mass
• Geometry
• Hydrodynamics
• Velocity Constraints
• Control Constraints
• Control Offset
• Control Latency

Table II summarizes different model parameters and cor-
responding variations in the first-principle model. Fig. 11
gives the detailed evaluation results of each type of model
variation. We can see that variations of mass and geometry
have little influence on the control performance when using the
unadapted policy compared with using the target policy on the
variated model, then there is no need to spend much effort on
estimating precise mass and geometry of the real system when
designing a source task (a first-principle model) for transfer.
For the variations of velocity constraints, we found that the
target policy, the unadapted policy, and the adapted policy
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Fig. 12. Distribution of the distance from the robot to the target during last
100 timesteps for the transfer learning: (a) GCP-ODI trained and tested on
the first-principle model; (b) GCP-ODI trained and tested on the empirical
model; (c) GCP-ODI trained on the first-principle model and tested on the
empirical model; (d) transfer learning using CAC; (e) transfer learning using
TMC-control; (f) transfer learning using TMC-feature; (g) transfer learning
based on DOB-Net.

on the variated model have similar performance. That is to
say, the control performance depends mostly on the dynamics
model itself, rather than the applied algorithms. Thus, it is
not necessary to apply the transfer learning under this kind of
model uncertainties.

It is possible to model most of the hydrodynamic effects,
but still impossible to quantify online, due to the difficulty in
estimating coefficients. Thus we do not make any assumption
of the hydrodynamics in the original model. This variation
in the dynamics model brings a great impact on the control
stability when using the unadapted policy. Another important
source of uncertainties is control latency, which widely exists
in most of mechanical and electronic systems. But just like
the hydrodynamics, the control latency is also hard to be well
simulated, so we assume no latency in the original model. The
nature of latency might complicate the motion data used in
ODI, leading to adverse effects on the control performance for
the unadapted policy. The application of the transfer learning
is necessary when these two model uncertainties exist, which
is normally the case for the underwater robots.

The control constraints of the real system may have some
scaling or offset compared to the mathematically modeled
ones. This phenomenon can be caused by the uncertainties
in thrusters’ dynamics. Also, the robot may be subjected to
some unexpected external forces, like the pulling force of the
power cable for tethered AUV. The variation of the control
constraints and the occurrence of the control offset have some
influence for the unadapted policy, in which case the transfer
learning is also required. But this influence is only moderate
since most of the control signals are at the bound values u
and u (see Fig. 14).

E. Transfer Learning on Empirical Model

An empirical model has been constructed using real-world
experimental data, then we focus on transferring a control
policy trained on the first-principle model to be successfully
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Fig. 13. Training process of the transfer learning among different algorithms:
(a) cumulative task reward; (b) cumulative transition mismatch.

deployed on the empirical model. Note that we provide the
results of GCP-ODI trained directly on the empirical model,
these results are used as optimal performance in the target
task, and can be considered as an informal performance upper
bound for the transfer learning algorithms. This policy is
available since the empirical model including the real-world
disturbances can be deployed in the simulation, but these
results are difficult to obtain on a real robot due to high sample
complexity and damaging exploratory policy.

Fig. 12 shows the test results of different algorithms, we can
see that GCP-ODI has poor stability when trained on the first-
principle model then directly deployed on the empirical model.
In contrast, GCP-ODI demonstrates much better performance
when directly trained on the empirical model. That is the
reason why we need the transfer learning between these two
dynamics models.

The training process of the transfer learning can be visu-
alized from Fig. 13. We evaluate two objectives, which are
cumulative task reward R =

∑T
t=1 r (xt,ut) and cumulative

transition mismatch E =
∑T
t=1 ‖et‖2 in each training episode.

It can be seen that the transfer learning algorithms converge
faster than GCP using the true disturbance parameters µ̄ on
either the first-principle model or the empirical model (GCP-
fp and GCP-emp), not to mention GCP is also followed by
the iteratively training of ODI. Thus, the three algorithms of
transfer learning based on GCP-ODI all improve the sample
efficiency, compared with training GCP-ODI from scratch
without transfer.

Among the three transfer learning algorithms, CAC cannot
successfully stabilize the robot, since ODI uses inconsistent
trajectory data during transfer and training. TMC-control
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Fig. 14. Comparison among different control signals (X-axis) for the robot
during the transfer learning on the empirical model: (a) transfer learning using
TMC-control; (b) transfer learning using TMC-feature.

achieves much better performance due to the introduction of a
parallel first-principle model, so that the transition mismatch
e can be minimized. But this result still cannot be considered
as a satisfactory solution. We then look at TMC-feature,
which gives a more effective combination approach of the
compensatory control signals uc and the original ones û,
by combining middle layer features of the policy networks.
Both Fig. 13 (a) and Fig. 12 prove that TMC-feature achieves
better control performance than TMC-control. In addition,
through further evaluating the different control components
during transfer (see Fig. 14), we found that in TMC-control
algorithm, the compensation uc is relatively small compared
to GCP output û, then adding uc to û will not make much
difference. Also, most of the added control actions have been
truncated by the control constraints u and u, leading to
limited effects of the compensatory control actions. While
for TMC-feature algorithm, combining features distinguishes
the resultant control actions u from the output of GCP û,
there is even obvious phase advance in u that compensates
the control latency. Fig. 15 shows the trajectories of the robot
when using TMC-feature algorithm and the direct deployment
of GCP-ODI on the empirical model after trained on the first-
principle model. There is a significant improvement in the
control stability of the robot after using the transfer learning,
the converged region can be reduced to only 0.4m.

However, even though the transfer learning using TMC-
feature is able to well stabilize the robot, there is still no-
ticeable gap from GCP-ODI directly trained on the empirical
model (see Fig. 12). This phenomenon can be explained
through Fig. 13 (b), where the cumulative mismatch of TMC-
feature cannot be fully eliminated. This result might be caused
by the existence of control constraints, which limits the algo-
rithm’s ability to reject disturbances and compensate model
mismatch in the meantime.

In addition, during deployment on the empirical model,
ODI is able to predict a set of disturbance parameters µ̂ that
best fit the real-world disturbances, which are not known to
the learning algorithm and do not follow the distributions

Fig. 15. Trajectories of the robot using GCP-ODI and TMC-feature under
the empirical model.

of simulated disturbance parameters. We give a waveform
calculated from the disturbance parameters predicted at a
timestep in the middle of a trajectory, as shown in Table III,
and compare it with the real-world disturbances exerted on
the empirical model during test. We can see from Fig. 16 that
the predicted disturbances are quite similar to the real-world
ones, then there is only a small mismatch between these two
disturbance waveforms. Thus, the total model mismatch that
the transfer learning is required to compensate is reduced, then
the burden for the compensation is reduced.

In this section, we also evaluate the transfer algorithm based
on the end-to-end learning framework for excessive distur-
bance rejection, i.e. DOB-Net. Similar with TMC, this transfer
process also trains an additional policy to compensate the
dynamics model mismatch between the source and target tasks.
This algorithm is used as a comparison with TMC. Thanks to
the ability of ODI to predict the unknown disturbances on
the empirical model, the total model mismatch is reduced
and the transfer learning is easier to train, compared with
transfer learning based on DOB-Net. As illustrated in Fig. 13,
the convergence speed of TMC-feature is clearly higher than
that of transferring DOB-Net. The final performance of TMC-
feature, however, is not as good as the transferred DOB-Net
(see Fig. 12), this is reasonable since the transition mismatch
e is difficult to be minimized to zero under current algorithm
design. Further improvements could be investigated on a more
optimized approach to combine compensatory signals.

VII. CONCLUSION & FUTURE WORK

This paper proposes a learning framework to address the
control problem for excessive disturbance rejection of an
underwater robot under dynamics model mismatch. We first
introduce a modular architecture of RL, composed of an
observer network (ODI) and a controller network (GCP). ODI
is used to predict a set of disturbance waveforms based on the
observed past states and actions of the system, GCP then is
able to produce expected control to actively reject disturbances
from the current system state and the predicted disturbance
waveforms. Then we develop a transfer RL algorithm, TMC,
based on the modular architecture that learns an additional
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TABLE III
PREDICTED DISTURBANCE PARAMETERS BY ODI UNDER THE EMPIRICAL MODEL.

Component Wave 1 2 3 4 5
Amplitude w.r.t. |u| 34.06% 66.63% 84.59% 53.93% 37.93%

Period (s) 5.98 3.01 2.73 2.31 1.88
Phase (rad) -0.22π 0.40π -0.65π -0.94π -0.74π
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Fig. 16. Comparison between the real-world disturbances and the predicted
disturbances by ODI in Y direction, during transfer learning on the empirical
model.

compensatory policy through minimizing mismatch of transi-
tions predicted by the two dynamics models of the source and
target tasks. And the compensatory policy is added in terms
of middle layer features instead of final network outputs in the
target task.

The transfer learning algorithms are evaluated on a pose
regulation task in simulation, where the source task defines a
first-principle model of SPIR developed from the fundamental
principles of dynamics, the target task applies an empirical
model of SPIR derived from real-world experimental data. As
a result, TMC algorithm achieves satisfactory performance on
the empirical model after transfer, in the meantime enhance
the sample efficiency with respect to learning from scratch
without transfer. Furthermore, the modular architecture also
outperforms the end-to-end network during transfer in terms
of the sample efficiency, since the observer network ODI is
able to predict the disturbances in the target task, then the total
model mismatch is reduced.

Several aspects can be further explored in the future. It is
known that if there are more component sinusoidal waves in
simulated disturbances, then more realistic disturbance wave-
forms ODI can predict. But as the number of component waves
increases (over 5), identifying high-dimensional disturbance
parameters becomes challenging. Because it typically requires
millions of training samples to cover a large output space of
ODI, both trajectory data gathering by GCP and training of
ODI have exponentially increased difficulty. More rigorous
analysis is needed to evaluate the sample efficiency of GCP-
ODI regarding high-dimensional disturbance parameters.

For both the disturbance rejection control using GCP-ODI
and the tranfer learning using TMC, we can see that these
policies can achieve similar performance with the correspond-
ing baselines, which are GCP given the true disturbance
parameters and GCP-ODI directly trained on the target task,
respectively. However, the conditions of convergence and the
theoretical limits of the proposed algorithms have not been

established in this research, thus definitely require further
investigation.

In the formulation of modular network architecture, GCP
takes a fixed length of time domain disturbances as additional
input, constructed from the predicted disturbance parameters
of ODI. Such formulation outperforms using frequency do-
main signals (i.e. predicted disturbance parameters), but it
provides only partial information of the disturbance wave-
forms, thus cannot ensure the control solutions are optimal. A
more efficient representation of the disturbance information is
required. In addition, the real-world wave forces may be jointly
determined by fluid conditions, robot morphology, as well as
varying robot states and controls, and may vary with not only
time but also space. Thus, using a superposition of multiple
sinusoidal waves, which are only functions of time, to simulate
the disturbances may not be sufficient. A comprehensive and
multivariable function is required for a better description of
the wave forces. We can seek a machine learning approach to
explicitly build a wave model for interested water areas.

This research only covers the work using an empirical model
in simulation, while the ultimate goal is to deploy the transfer
learning on real-world robotic systems. A possible idea is to
use professional devices, like wave generators, to generate
realistic wave forces in the water tank. Another way is to
directly deploy the robot in open water, where an accurate
localization system would be necessary. Current solutions
mainly focus on Simultaneous Localization And Mapping
(SLAM), and the biggest concerns will be the localization
accuracy on an unstable platform and the blurred images
underwater.

The sample efficiency of the transfer learning directly
depends on the mismatch between the first-principle model
and the empirical model or the real robot. Sometimes, we
may not be given a good prior model of the robot, then there
is no way to pretrain a policy that helps in the transfer. In that
case, we may investigate model-based reinforcement learning
that online learns a model then optimizes a policy based on
the model.
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