Skip to main content
Log in

Learning label-specific features via neural network for multi-label classification

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

In multi-label learning, learning specific features for each label is an effective strategy, and most of the existing multi-label classification methods based on label-specific features commonly use the original feature space to learn specific features for each label directly. Due to the problem of dimensionality disaster in the feature space, it may not be the optimal strategy to directly generate the specific feature of the label in the original feature space. Therefore, this paper proposes a multi-label learning framework that joins neural networks and label-specific features. First, the neural network projects the original feature space to a low-dimensional mapping space to learn potential low-dimensional feature space representations, and this nonlinear feature mapping can mine the potential feature information inside the complex feature space. Then, in the low-dimensional mapping space, specific features of the labels are learned using empirical minimization loss. Finally, a unified multi-label classification model is constructed by considering label correlation and instance similarity issues. Extensive experiments are conducted on 12 different multi-label data sets and demonstrate the better generalizability of our proposed approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. code: http://mulan.sourceforge.net/datasets-mlc.html.

  2. code: http://www.kecl.ntt.co.jp/as/members/ueda/yahoo.tar.

  3. code: http://cse.seu.edu.cn/people/zhangml/Resources.htm#data.

References

  1. Gargiulo F, Silvestri S, Ciampi M, De Pietro G (2019) Deep neural network for hierarchical extreme multi-label text classification. Appl Soft Comput 79:125–138

    Article  Google Scholar 

  2. Li Y, Song Y, Luo J (2017) Improving pairwise ranking for multi-label image classification. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3617–3625

  3. Wen S, Liu W, Yang Y, Zhou P, Guo Z, Yan Z, Chen Y, Huang T (2020) Multilabel image classification via feature/label co-projection. IEEE Trans Syst Man Cybern Syst 51:7250–7259

    Article  Google Scholar 

  4. Gull S, Shamim N, Minhas F (2019) Amap: hierarchical multi-label prediction of biologically active and antimicrobial peptides. Comput Biol Med 107:172–181

    Article  Google Scholar 

  5. Liu L, Tang L, Jin X, Zhou W (2019) A multi-label supervised topic model conditioned on arbitrary features for gene function prediction. Genes 10(1):57

    Article  Google Scholar 

  6. Zhang M-L, Zhou Z-H (2013) A review on multi-label learning algorithms. IEEE Trans Knowl Data Eng 26(8):1819–1837

    Article  Google Scholar 

  7. Boutell MR, Luo J, Shen X, Brown CM (2004) Learning multi-label scene classification. Pattern Recogn 37(9):1757–1771

    Article  Google Scholar 

  8. Zhang M-L, Zhou Z-H (2007) Ml-knn: a lazy learning approach to multi-label learning. Pattern Recogn 40(7):2038–2048

    Article  MATH  Google Scholar 

  9. Gong C, Tao D, Yang J, Liu W (2016) Teaching-to-learn and learning-to-teach for multi-label propagation. In: Proceedings of the AAAI conference on artificial intelligence, vol 30

  10. Weng W, Lin Y, Shunxiang W, Li Y, Kang Y (2018) Multi-label learning based on label-specific features and local pairwise label correlation. Neurocomputing 273:385–394

    Article  Google Scholar 

  11. Read J, Pfahringer B, Holmes G, Frank E (2011) Classifier chains for multi-label classification. Mach Learn 85(3):333–359

    Article  MathSciNet  Google Scholar 

  12. Zhao W, Kong S, Bai J, Fink D, Gomes C (2021) Learning high-order label correlation for multi-label classification via attention-based variational autoencoders. arXiv preprint arXiv:2103.06375

  13. Guo B, Hou C, Nie F, Yi D (2016) Pervised multi-label dimensionality reduction. In: 2016 IEEE 16th international conference on data mining (ICDM. IEEE), pp 919–924

  14. Øyvind MK, Cristina S-R, Maria BF, Robert J (2019) Noisy multi-label semi-supervised dimensionality reduction. Pattern Recogn 90:257–270

    Article  Google Scholar 

  15. Zhang M-L, Lei W (2014) Lift: multi-label learning with label-specific features. IEEE Trans Pattern Anal Mach Intell 37(1):107–120

    Article  Google Scholar 

  16. Huang J, Li G, Huang Q, Wu X (2015) Learning label specific features for multi-label classification. In: 2015 IEEE international conference on data mining. IEEE, pp 181–190

  17. Huang J, Li G, Huang Q, Xindong W (2017) Joint feature selection and classification for multilabel learning. IEEE Trans Cybern 48(3):876–889

    Article  Google Scholar 

  18. Zhang M-L, Zhou Z-H (2006) Multilabel neural networks with applications to functional genomics and text categorization. IEEE Trans Knowl Data Eng 18(10):1338–1351

    Article  Google Scholar 

  19. Bello M, Nápoles G, Sánchez R, Bello R, Vanhoof K (2020) Deep neural network to extract high-level features and labels in multi-label classification problems. Neurocomputing 413:259–270

    Article  Google Scholar 

  20. Nam J, Kim J, Mencía EL, Gurevych I, Furnkranz J (2014) Large-scale multi-label text classification–revisiting neural networks. Joint European conference on machine learning and knowledge discovery in databases. Springer, Berlin, pp 437–452

    Chapter  Google Scholar 

  21. Weizhi Liao Yu, Wang YY, Zhang X, Ma P (2020) Improved sequence generation model for multi-label classification via cnn and initialized fully connection. Neurocomputing 382:188–195

    Article  Google Scholar 

  22. Wang J, Yang Y, Mao J, Huang Z, Huang C, Xu W (2016) Cnn-rnn: a unified framework for multi-label image classification. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2285–2294

  23. Zhang M-L (2009) M l-rbf: Rbf neural networks for multi-label learning. Neural Process Lett 29(2):61–74

    Article  Google Scholar 

  24. Huimin L, Zhang M, Xing X, Li Y, Shen HT (2020) Deep fuzzy hashing network for efficient image retrieval. IEEE Trans Fuzzy Syst 29(1):166–176

    Google Scholar 

  25. Xie Y, Zhang J, Xia Y, Shen C (2020) A mutual bootstrapping model for automated skin lesion segmentation and classification. IEEE Trans Med Imaging 39(7):2482–2493

    Article  Google Scholar 

  26. Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of data with neural networks. Science 313(5786):504–507

    Article  MathSciNet  MATH  Google Scholar 

  27. Cheng Y, Zhao D, Wang Y, Pei G (2019) Multi-label learning with kernel extreme learning machine autoencoder. Knowl-Based Syst 178:1–10

    Article  Google Scholar 

  28. Parwez MA, Abulaish M et al (2019) Multi-label classification of microblogging texts using convolution neural network. IEEE Access 7:68678–68691

    Article  Google Scholar 

  29. Zhu J, Liao S, Lei Z, Li SZ (2017) Multi-label convolutional neural network based pedestrian attribute classification. Image Vis Comput 58:224–229

    Article  Google Scholar 

  30. Nam J, Mencía EL, Kim HJ, Fürnkranz J (2017) Maximizing subset accuracy with recurrent neural networks in multi-label classification. In: Proceedings of the 31st international conference on neural information processing systems, pp 5419–5429

  31. Chen SF, Chen YC, Yeh CK, Wang YCF (2018) Order-free rnn with visual attention for multi-label classification. In: Thirty-Second AAAI conference on artificial intelligence

  32. Rui H, Liuyue K (2021) Local positive and negative label correlation analysis with label awareness for multi-label classification. Int J Mach Learn Cybern 12:1–14

    Google Scholar 

  33. Bidgoli AA, Ebrahimpour-komleh H, Rahnamayan S (2021) A novel binary many-objective feature selection algorithm for multi-label data classification. Int J Mach Learn Cybern 12(7):2041–2057

    Article  MATH  Google Scholar 

  34. Huang J, Qin F, Zheng X, Cheng Z, Yuan Z, Zhang W, Huang Q (2019) Improving multi-label classification with missing labels by learning label-specific features. Inf Sci 492:124–146

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhu W, Li W, Jia X (2020) Multi-label learning with local similarity of samples. In: 2020 International joint conference on neural networks (IJCNN). IEEE, pp 1–8

  36. Zhu Y, Kwok JT, Zhou Z-H (2017) Multi-label learning with global and local label correlation. IEEE Trans Knowl Data Eng 30(6):1081–1094

    Article  Google Scholar 

  37. Jie B, Zhang D, Cheng B, Shen D, Initiative ADN (2015) Manifold regularized multitask feature learning for multimodality disease classification. Hum Brain Mapp 36(2):489–507

    Article  Google Scholar 

  38. Han H, Mengxing Huang Yu, Zhang XY, Feng W (2019) Multi-label learning with label specific features using correlation information. IEEE Access 7:11474–11484

    Article  Google Scholar 

  39. Gersho A, Gray RM (2012) Vector quantization and signal compression, vol 159. Springer, Berlin

    MATH  Google Scholar 

  40. Abdel-Ghaffar KAS (2019) Sets of binary sequences with small total hamming distances. Inf Process Lett 142:27–29

    Article  MathSciNet  MATH  Google Scholar 

  41. Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imag Sci 2(1):183–202

    Article  MathSciNet  MATH  Google Scholar 

  42. Lin Z, Ganesh A, Wright J, Wu L, Chen M, Ma Y (2009) Fast convex optimization algorithms for exact recovery of a corrupted low-rank matrix. Coordinated Science Laboratory Report no. UILU-ENG-09-2214, DC-246

  43. Wang Y, Zheng W, Cheng Y, Zhao D (2020) Joint label completion and label-specific features for multi-label learning algorithm. Soft Comput 24(9):6553–6569

    Article  Google Scholar 

  44. Tan Y, Sun D, Shi Y, Gao L, Gao Q, Lu Y (2021) Bi-directional mapping for multi-label learning of label-specific features. Appl Intell 52:1–20

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (no. 62071001), the Anhui Natural Science Foundation of China (nos. 2008085MF192 and 2008085MF183), the Key Science Project of Anhui Education Department of China (nos. KJ2018A0012, KJ2019A0023, and KJ2019A0022), and the CERNET Innovation Project of China (nos. NGII20180612, NGII20180312, and NGII20180624).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, L., Sun, D., Shi, Y. et al. Learning label-specific features via neural network for multi-label classification. Int. J. Mach. Learn. & Cyber. 14, 1161–1177 (2023). https://doi.org/10.1007/s13042-022-01692-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-022-01692-7

Keywords

Navigation