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Abstract
Myocardial infarction (MI) is detected using electrocardiography (ECG) signals. Machine learning (ML) models have been 
used for automated MI detection on ECG signals. Deep learning models generally yield high classification performance but 
are computationally intensive. We have developed a novel multilevel hybrid feature extraction-based classification model 
with low time complexity for MI classification. The study dataset comprising 12-lead ECGs belonging to one healthy and 
10 MI classes were downloaded from a public ECG signal databank. The model architecture comprised multilevel hybrid 
feature extraction, iterative feature selection, classification, and iterative majority voting (IMV). In the hybrid handcrafted 
feature (HHF) generation phase, both textural and statistical feature extraction functions were used to extract features from 
ECG beats but only at a low level. A new pooling-based multilevel decomposition model was presented to enable them to 
create features at a high level. This model used average and maximum pooling to create decomposed signals. Using these 
pooling functions, an unbalanced tree was obtained. Therefore, this model was named multilevel unbalanced pooling tree 
transformation (MUPTT). On the feature extraction side, two extractors (functions) were used to generate both statistical 
and textural features. To generate statistical features, 20 commonly used moments were used. A new, improved symmetric 
binary pattern function was proposed to generate textural features. Both feature extractors were applied to the original MI 
signal and the decomposed signals generated by the MUPTT. The most valuable features from among the extracted feature 
vectors were selected using iterative neighborhood component analysis (INCA). In the classification phase, a one-dimensional 
nearest neighbor classifier with ten-fold cross-validation was used to obtain lead-wise results. The computed lead-wise 
results derived from all 12 leads of the same beat were input to the IMV algorithm to generate ten voted results. The most 
representative was chosen using a greedy technique to calculate the overall classification performance of the model. The 
HHF-MUPTT-based ECG beat classification model attained excellent performance, with the best lead-wise accuracy of 
99.85% observed in Lead III and 99.94% classification accuracy using the IMV algorithm. The results confirmed the high 
MI classification ability of the presented computationally lightweight HHF-MUPTT-based model.
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1 Introduction

Myocardial infarction (MI) occurs when the sudden cessa-
tion of blood flow in a coronary artery due to occlusion, 
which results in the death of the part of the heart muscle sup-
plied by the artery. The occlusion is almost always caused 
by acute thrombosis of the culprit infarct artery [1] induced 
by inflammation [2] and release of thrombogenic factors 

[3] at a location overlying a ruptured atherosclerotic plaque 
[4] that has formed from the progressive accumulation of 
cholesterol, fat, and fibrin in the coronary artery wall [5]. 
Depending on the coronary artery involved, different areas 
of the heart undergo cell death that disrupts locoregional 
myocardial contractility and electrical activation/conduc-
tion [6] in the affected muscle. Surface electrocardiography 
(ECG), which is routinely used in the acute emergency set-
ting to diagnose MI in patients presenting with characteristic 
chest pain symptoms [7], maps out the underlying areas of 
MI-induced perturbed electrical activation, thus offering a 
window to the location and extent of heart muscle damage, 
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which is of prognostic significance. Additionally, MI locali-
zation provides advanced information on the putative culprit 
coronary artery, which is useful for planning the approach 
during acute percutaneous coronary intervention for revas-
cularization [8].

Manual interpretation of the ECG requires experts, which 
may not always be accessible, especially in smaller district 
medical facilities or in emergency ambulances in transit. 
Many different decision support systems based on machine 
learning (ML) have been developed to assist doctors and 
paramedical personnel in diagnosing MI [9–11]. These stud-
ies have reported high accuracy rates with machine learn-
ing techniques [12–14]. Rahman et al. [15] proposed an 
ECG-based model for detecting five classes (Covid-19, MI, 
abnormal heartbeat, recovered MI, and normal), which they 
trained. They tested on a dataset comprising 250 Covid-19, 
77 MI, 548 abnormal heartbeats, 203 recovered MI, and 859 
normal ECG images. After data augmentation to balance 
classes in the dataset, they obtained 97.83% classification 
accuracy with InceptionV3 for the five classes. Jahmunah 
et al. [16] proposed a model based on Gabor convolutional 
neural networks for four-class classification of normal, MI, 
coronary artery disease, and congestive heart failure using 
ECG signals. Their study dataset comprised 84,703 normal, 
20,265 MI, 15,300 coronary artery disease, and 30,000 con-
gestive heart failure ECG segments. They achieved accu-
racy rates of 99.55% and 98.74% for convolutional neural 
networks and Gabor convolutional neural networks, respec-
tively. Gibson et al. [17] proposed a one-dimensional convo-
lutional neural network for the detection of MI using single-
lead ECG signals. They attained 90.50% accuracy for binary 
classification of ST-elevation versus non-ST-elevation MI. 
Sharma et al. [18] used an optimal biorthogonal filter bank 
to develop a model for MI diagnosis. On their study dataset 
of ECGs from 148 MI and 52 normal subjects, their model 
attained 99.74% binary classification accuracy. Darmawah-
yuni et al. [19] applied long short-term memory and recur-
rent neural network to their model for MI classification. In 
their database of ECG signals of 290 subjects, they attained 
balanced accuracy of 83.00%.

1.1  Motivation and our model

ECG signal classification is an important area of research 
at the intersection of ML and cardiology. Many works/stud-
ies have been published on using ECG-based ML models 
to diagnose diverse cardiological conditions. While known 
to yield high performance, deep learning models are con-
strained by high computational demands. In contrast, hand-
crafted models have lower time complexities but usually 
cannot attain high performance since the features are gener-
ated at a low level. To overcome this problem, a hybrid hand-
crafted feature (HHF) engineering method was proposed 

that could extract features at multiple levels. In our model, 
textural and statistical feature extraction using one-dimen-
sional improved symmetric binary pattern (1D-ISBP) and 
20 common statistical moments were combined with mul-
tilevel unbalanced pooling tree transformation (MUPTT), 
which enabled the extraction of features at both high and low 
levels. The most valuable features were selected using itera-
tive neighborhood component analysis (INCA). The selected 
features were classified using a shallow k-nearest neighbor 
(kNN)-based classifier, one-dimensional nearest neighbor 
(1NN), with tenfold cross-validation (CV) to yield lead-wise 
results. Finally, lead-wise results from all 12 leads corre-
sponding to a single beat were input to an iterative major-
ity voting (IMV) algorithm to choose the most representa-
tive lead for classification using 1NN. The proposed model 
attained excellent accuracy for MI classification using both 
lead-wise and IMV outputs.

1.2  Novelties and contributions

We proposed two novel functions, and these functions are 
1D-ISBP and MUPTT. To extract distinctive textural fea-
tures from an ECG signal, we proposed 1D-ISBP. In the 
advanced signal classification models, transformations have 
been used to extract features in the frequency domain to get 
high classification ability. Moreover, deep learning models 
(especially CNNs) have been used as pooling functions. We 
mimicked deep learning networks to propose this classifi-
cation model. However, pooling functions have a routing 
problem. For instance, maximum pooling routes only peak 
values and average pooling routes only average values. To 
handle this problem, we proposed MUPTT. MUPTT is a 
multiple pooling-based multilevel transformations. This 
research proposes an accurate ECG signal classification 
model by deploying these methods (MUPTT, 1D-ISBP, 
statistical feature generation, iterative feature selector, clas-
sifier, and IMV).

Novelties and contributions of the presented HHF-
MUPTT-based MI classification model are listed below.

Novelties:

– Pooling functions have commonly been used in deep 
learning networks. In this work, we presented a hand-
crafted features-based model in which we mimicked 
deep networks to attain high classification results using 
simple models. A new pooling pooling-based transforma-
tion named MUPTT was proposed to create a multilevel 
feature generator.

– A new, improved textural feature extractor, 1D-ISBP, was 
presented as an improved version of the center symmetric 
local binary pattern (CSLBP) [20].

Contributions:



1653International Journal of Machine Learning and Cybernetics (2023) 14:1651–1668 

1 3

– In this work, we used handcrafted models to propose 
an effective one-dimensional signal classification archi-
tecture. A good feature engineering model must extract 
multilevel features and eliminate redundant features to 
attain high classification ability. The other advantage of 
the handcrafted features-based models is low running 
time. However, the handcrafted feature extractors cannot 
extract features at high level. Handcrafted features can be 
divided into two main types: textural and statistical. In 
our model, we assembled 1D-ISBP and statistical feature 
extraction functions with MUPTT to extract features with 
low time complexity at high and low levels.

– The model was tested on a 200-subject (148 MI and 52 
healthy) 12-lead ECG dataset with 49,235 analyzable 
ECG beats of 11 classes (10 MI and one healthy). Our 
model attained excellent MI accuracy rates (97.93% to 
99.85%) on lead-wise classification using a shallow 1NN 
classifier with a tenfold CV. Moreover, IMV was used 
to select the best ECG lead, which improved the model 
classification accuracy to 99.94%.

2  Dataset

We used an ECG heartbeat database downloaded from the 
Physiobank database [21]. This dataset comprises 12-lead 
ECGs of 200 subjects (52 normal and 148 MI patients) 
divided into 10 MI classes and one healthy class. Table 1 
shows the attributes of the study dataset by class and lead 
position. Example ECG beats of all classes are shown in 
Fig. 1.

As the ECG signals had been sampled at different rates, 
they were all re-sampled at 1000 Hz. Signal noise and base-
line shift were eliminated by applying wavelet transform. 
In addition, R peak detection was performed using the 

Pan-Tompkin’s algorithm [22]. Individual beats were seg-
mented by selecting 250 and 400 samples to the left and 
right of the R peak, respectively, to ensure adequate cover-
age of the QRS complex and the following ST-segment for 
each beat (total of 651 samples per beat). The total number 
of beats for every lead is identical (see last row in Table 1). 
As the model used IMV to select the best representative 
leads for classification, which required an identical number 
of beats in every lead, the lowest common denominator of 
49,235 individual beats where R peaks had been detected 
successfully in all 12 ECG leads (and were present in all 12 
leads at the same time) were selected for analysis (Table 2).

3  The proposed hand‑modeled ECG signal 
classification model

The proposed feature engineering model comprises four pri-
mary phases: multilevel hybrid handcrafted feature genera-
tion; feature selection using INCA; classification using kNN 
with ten-fold CV; and IMV (Fig. 2). In the first phase, hand-
crafted features of the ECG beats were generated using 
1D-ISBP, a statistical feature generator, and MUPTT. A six-
leveled MUPTT was used, where the number of levels was 
determined by the length of the ECG beat (651) and the size 
of the overlapping block used for feature extraction in 
1D-ISBP (9) as given by the formula 

⌊

log2

(

651

9

)

= 6
⌋

 . In 
the six-leveled MUPTT, six average pooling bands and six 
maximum pooling bands were generated. Both feature gen-
erators (1D-ISBP and statistical feature generator) extracted 
features from each input ECG beat and the wavelet subbands 
generated by the MUPTT. Hence, 13 feature vectors (1, 6, 
and 6 vectors generated from the ECG beat, average pooling 

Table 1  Attributes of the used ECG beat dataset

Class Leads Total

I II III aVR aVL aVF V1 V2 V3 V4 V5 V6

H 10,598 10,546 10,574 10,494 10,537 10,472 10,482 10,483 10,450 10,371 10,322 10,323 125,652
A 4902 4861 4993 4720 4882 4941 4742 4741 4743 4745 4743 4741 57,754
AL 6424 6467 6360 6579 6676 6520 6501 6538 6540 6397 6589 6514 78,105
AS 8146 8024 8260 8153 8146 8567 8152 8148 8238 8429 8151 8152 98,566
I 10,592 10,691 11,522 10,588 11,161 11,008 10,502 10,671 10,711 10,591 10,589 10,589 129,215
IL 5911 5888 5919 5911 5909 6047 5900 5932 5914 5912 5861 5882 70,986
IP 48 48 48 48 48 48 48 48 48 48 48 48 576
IPL 2516 2512 2517 2516 2518 2520 2515 2503 2516 2516 2516 2516 30,181
L 459 459 460 459 470 459 459 459 459 459 459 459 5520
P 460 460 459 460 460 460 460 461 463 460 460 460 5523
PL 777 772 777 778 779 778 779 778 777 777 777 777 9326
Total 50,833 50,728 51,889 50,706 51,586 51,820 50,540 50,762 50,859 50,705 50,515 50,461 611,404
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bands, and maximum pooling bands, respectively) were gen-
erated, each with a length equal to 72 (32 and 40 features 
generated by 1D-ISBP and statistical feature generator, 
respectively) for each input ECG beat. These feature vectors 
were concatenated to form a final feature vector of length 
936 (= 72 × 13). INCA, an iterative version of the distance-
based feature selector neighborhood component analysis 
(NCA), was employed to choose the top features from the 

final feature vector generated in the feature extraction phase. 
In this role, NCA can be viewed as the selection version of 
kNN. To improve NCA’s feature selection ability, INCA uses 
two additional parameters: loop range and misclassification/
loss rate calculator. The best features selected by INCA were 
then fed to the kNN classifier for classification using a ten-
fold CV, which yielded one lead-wise result. The results of 
all 12 leads corresponding to the same single beat on the 
source 12-lead ECG were collated. IMV algorithm was 
applied to generate 10 voted results, from which the best one 
was chosen to represent the general majority voting result.

The ECG signal of each lead is read, and wavelet sub-
bands are generated by deploying a MUPTT. Using MUPTT 
(average and maximum pooling functions with six levels), 
12 pooled bands (PB) are generated. The presented hybrid 
feature extractor (1D-ISBP + statistical feature generator) 
generates feature vectors (f) from each of the 12 subbands 
and the raw input ECG beat. The 13 feature vectors gen-
erated are merged to obtain the final feature vector. INCA 
chooses/selects the top valuable/useful features, which 
are then classified using the kNN classifier for lead-wise 
results (r). Finally, by deploying IMV, the voted results are 
calculated.

Our proposed ECG signal classification architec-
ture is illustrated in Fig. 2. More details and steps of the 

Fig. 1  Lead III waveforms on example ECG signals of different classes in the dataset

Table 2  Total number of ECG beats in all leads by myocardial infarct 
class

No. Class Number of beats

0 Healthy (H) 10,305
1 Anterior (A) 4659
2 Anterior lateral (AL) 6142
3 Anterior septal (AS) 7976
4 Inferior (I) 10,215
5 Inferior lateral (IL) 5822
6 Inferior posterior (IP) 48
7 Inferior posterior lateral (IPL) 2495
8 Lateral (L) 459
9 Posterior (P) 459
10 Posterior lateral (PL) 655
Total 49,235
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architecture of the HHF-MUPTT-based ECG classification 
are explained in the sections on the model’s feature extrac-
tion, feature selection, and classification phases below.

3.1  Feature extraction

Step 0: Read/load each ECG beats of each channel.
Step 1: Apply six-leveled 

⌊(

6 = log2

(

651

9

))⌋

 MUPTT to 
the ECG beat. In this decomposition, average pooling and 
maximum pooling are used to create child nodes of the cre-
ated unbalanced tree. Using a single pooling function, a rout-
ing problem will occur. By using two pooling functions, this 
problem is resolved with decomposition. The mathematical 
operations of the MUPTT are given below.

(1)A1 = AP(ECG),

where M and A are the decomposed signals/bands maxi-
mum, and average pooling, respectively; MP(.) is the maxi-
mum pooling function, AP(.) defines the average pooling 
function; and ECG represents the input ECG beat signal. 
Maximum and average pooling functions use non-overlap-
ping windows with a length of two. To better explain the 
used pooling function, pseudocodes of these functions are 
given below (see Algorithm 1 and Algorithm 2).

(2)M1 = MP(ECG),

(3)Ah = AP
(

Ah−1

)

, h ∈ {2, 3,… , 6},

(4)Mh = MP
(

Ah−1

)

,

Fig. 2  Schema of the proposed 
HHF-MUPTT-based ECG beats 
classification model
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Algorithm 1. Pseudocode of the used average pooling.

The other pooling function in our model is maximum 
pooling, and the pseudocode of the maximum pooling is 
defined in Algorithm 2.

Algorithm 2. Pseudocode of the used maximum pooling.

A pooling band (PB) data structure is created using the 
decomposed signals generated, as given below.

(5)PB2h−1 = Ah,
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The block diagram of the MUPTT with six levels is 
shown in Fig. 3.

Step 2: Generate handcrafted features by deploying a sta-
tistical feature generator and 1D-ISBP function.

where merge(.) , stg(.) , and BP(.) represent the feature merg-
ing function, statistical feature generation function, and 
1D-ISBP feature extraction function, respectively. By using 
the feature extraction functions ( stg(.) and BP(.) ), 13 feature 
vectors ( f  ) are generated, each of length 72 (= 40 + 32). The 
details of the feature extraction functions used are explained 
below.

The first feature generator used is the statistical extractor 
( stg(.) ). In this function, 20 features are extracted from the 
signal [23–28]. Thus,stg(.) extracts 40 (= 20 × 2) features. 
These features are: fuzzy, permutation, Shannon, Kolmogo-
rov–Sinai, Renyi, Tsallis, wavelet and log entropies. Nonlin-
ear features, namely largest Lyapunov exponent and fractal 
dimension. The linear features namely: average, median, 
maximum, minimum, variance, skewness, kurtosis, standard 
deviation, range and energy.

1D-ISBP, the second feature extractor, is used to generate 
textural features. 1D-ISBP is the improved one-dimensional 
version of the CSLBP. CSLBP is a good textural feature 
extraction function. It uses symmetric center values to 

(6)PB2h = Mh.

(7)f1 = merge(stg(ECG),BP(ECG)),

(8)fk+1 = merge
(

stg
(

PBk

)

,BP
(

PBk

))

, k ∈ {1, 2,… , 12},

extract features, and 16 (=  24) features have been generated 
by deploying CSLBP. To improve feature extraction ability, 
we used center symmetric and linear symmetric values in 
our proposed 1D-ISBP. In this function, overlapping win-
dows with a size of nine are used that are centered at the 
fifth value. Two-bit categories are generated by deploying 
a comparison function, and each bit category contains four 
bits since 1D-ISBP uses two patterns. The extracted bits 
are then converted to decimal values to obtain two map sig-
nals, the histogram of which constitutes the feature vector. 
Using 1D-ISBP, 32 features are extracted from each signal. 
The schematic illustration of the 1D-ISBP feature extraction 
function is shown in Fig. 4.

The steps of this model are;
1: Create overlapping windows with a length of nine.
2: Extract bits using the defined two patterns (see Fig. 4) 

and signum function.

where bit1 and bit2 are two bit categories generated and each 
bit category contains four bits. Equation (9) defines the first 
pattern, and Eq. (10) defines the second pattern.

3: Calculate two map signals using the created two-bit 
groups.

(9)bit1(j) = signum(w(j),w(5 + j)), j ∈ {1, 2, 3, 4},

(10)bit2(j) = signum(w(j),w(10 − j)),

(11)signum(x, y) =

{

0, x − y < 0

1, x − y ≥ 0
,

Fig. 3  Schema of the MUPTT. 
By using all A and M subbands, 
a pooling band structure has 
been created to extract features
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4: Extract histograms of the generated two maps 
( map1,map2).

Herein hg is the histogram of the  gth map signal with a length 
of 16, �(.) is the histogram extraction function.

5: Merge the generated two histograms to obtain the fea-
ture vector.

where fv defines the textural features generated with a length 
of 32.

The five steps above define the proposed 1D-ISBP feature 
extraction function ( BP(.)).

Step 3: Concatenate the extracted feature vectors ( f  ) to 
create the final feature vector ( ft).

(12)mapg(i) =
4
∑

j=1
bitg( j ) × 2j−1, g ∈ {1, 2}.

(13)hg = �(mapg), g ∈ {1, 2}.

(14)f ( j + 16 × (g − 1)) = hg(j), j ∈ {1, 2,… , 16},

The steps above define the proposed HHF-MUPTT, 
which extracts 936 (= 72 × 13) features per beat signal in a 
single ECG lead.

3.2  Feature selection

The primary purpose of this phase is to reduce the number 
of features without compromising downstream classification 
performance. For this purpose, we use the feature selection 
function INCA [29], which is designed to choose the most 
discriminative feature vectors based on minimal loss/error 
value calculations. As described by Tuncer et al. [29], INCA 
improves the feature selection ability of the standard NCA 
selector [24] by adding a loss function and a loop. In the 
current study, a feature range is used to decrease the time 
complexity of the INCA selector. Herein, the range is chosen 
from 1 to 100. Therefore, 100 feature vectors are selected 
using INCA, in which a 1NN classifier with ten-fold CV is 
deployed as the loss/error value calculator.

(15)ft ( j + 72 × (i − 1)) = fi(j), j ∈ {1, 2,… , 72}, i ∈ {1, 2,… , 13}.

Fig. 4  Schema of the fea-
ture extraction process using 
1D-ISBP. Here, v defines the 
values of the overlapping blocks 
to extract features, and the 
center defines the center value 
of the overlapping block
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Step 4: Choose the best feature vector for each lead using 
INCA.

3.3  Classification

The selected best feature vectors of each lead are classi-
fied using a simple distance-based kNN classifier [30], 1NN 
(hyperparameters: k is one; distance is L1-norm; voting is 
equal). In this study, 1NN is utilized both as a classifier and 
as a loss/error value generator of the INCA selector (see 
Sect. 3.2).

Step 5: Compute lead-wise results by deploying 1NN 
with a tenfold CV.

3.4  Iterative majority voting

IMV algorithm is used to determine the general classifica-
tion ability of the model [31]. Lead-wise result outputs in 
Step 5 for all 12 leads that correspond to the same single 
beat on the source 12-lead ECG are collated and input to 
the IMV algorithm, which uses a greedy technique to choose 
the best one that represents the general majority voting. The 
IMV algorithm used is given in Algorithm 3.

Algorithm 3. IMV algorithm.

Step 6: Calculate 10 voted results ( vr ) deploying 
Algorithm 1.

Step 7: Obtain the accuracy of each voted result using vr 
and actual output ( y).

Step 8: Choose the best accurate voted result as the gen-
eral classification result.

The eight steps above define our proposed HHF-based 
ECG beat classification model for MI classification.

4  Performance evaluation

The proposed HHF-MUPTT-based signal classification 
model is defined in Sect. 3 using eight steps. The experi-
mental setup, performance metrics used lead-wise results, 
and voted results using IMV are presented in this section.

4.1  Experimental setup

The HHF-based ECG classification model was implemented 
in MATLAB(2021b) environment on a desktop computer 
with an intel i9 9900 processor, 48 GB memory, 1 TB hard 
disk, and Windows 10.1 professional operating system 
without the use of any graphics card or parallel processing 
technique. We used the following programming functions: 
MAIN, BP, STG, INCA, KNN, and IMV. By executing the 
MAIN function, the results were obtained.

4.2  Validation

The study dataset comprised 12-lead ECGs that experts had 
labeled based on manual interpretation of signals from all 
12 leads. For classification in this study, these labels were 
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Table 3  Lead-wise results (%) 
and the number of features

The best results are shown in bold font
UAR  unweighted average recall, AP average precision

Lead Number of features Accuracy UAR AP Overall F1 Geometric mean

I 96 99.43 99.22 99.44 99.33 99.21
II 96 97.93 97.81 97.60 97.71 97.79
III 88 99.85 99.81 99.80 99.80 99.81
aVR 84 99.77 99.74 99.73 99.74 99.74
aVL 95 99.82 99.78 99.45 99.61 99.78
aVF 88 99.52 99.59 99.46 99.52 99.59
V1 95 99.59 99.63 99.39 99.51 99.63
V2 87 99.29 98.99 99.14 99.06 98.99
V3 85 99.51 99.43 99.56 99.49 99.42
V4 78 99.50 99.42 99.24 99.33 99.41
V5 100 98.75 98.46 98.35 98.40 98.44
V6 39 99.83 99.82 99.84 99.83 99.82
Overall 85.91 ± 16.08 99.40 ± 0.55 99.31 ± 0.62 99.25 ± 0.65 99.28 ± 0.63 99.30 ± 0.62

Fig. 5  Confusion matrix of 
Lead III classification results. 
The enumerated classes are: 
healthy (0), anterior (1), anterior 
lateral (2), anterior septal (3), 
inferior (4), inferior lateral (5), 
inferior posterior (6), inferior 
posterior lateral (7), lateral 
(8), posterior (9) and posterior 
lateral (10). In addition, the 
numbers of ECG beats in every 
myocardial infarct class are 
given in Table 2
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Fig. 6  Lead-wise classification 
accuracies using 75:25 split 
ratio
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calculated ten voted results
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also applied to individual leads of the ECGs. Lead-wise beat 
classification according to the class labels of individual ECG 
leads was performed using 1NN with a ten-fold CV. For 
MI classification based on input from all 12 leads, the best 
representation from among all 12 lead-wise results corre-
sponding to the same single beat was selected for classifica-
tion using IMV, with validation being performed using a 
tenfold CV.

4.3  Performance metrics

Standard performance metrics were used to evaluate model 
performance: accuracy, average recall (UAR), average pre-
cision (AP), overall F1 score, and geometric mean [32]. 
Accuracy is the most popular performance metric. To com-
pare results, we used overall accuracy. As the study data-
set is unbalanced, classification accuracy is not adequate 
for evaluating the performance of the classification model. 
Therefore, UAR was used. In biomedical datasets, precision 
is a very important metric for demonstrating the detection 
rate of disorders, as it represents the ratio of predicted true 
positives to all positives. Overall F1 score was calculated as 
the harmonic mean of UAR and AP. One of the important 
performance evaluation metrics for unbalanced datasets is 
the geometric mean. It is the geometric mean of the recall 
(class-wise accuracies) values. Thus, we used the geometric 
mean to show the performance of our proposal.

4.4  Lead‑wise results

Optimal feature vectors selected by INCA, which con-
tained a variable number of features (all ≤ 100 by design) 

Fig. 8  Confusion matrix of the 
best voted result
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Table 4  Computational complexity of the proposed HHF-MUPTT-
based ECG classification architecture

In Table 4, n is the length of the signal, d defines the number of ECG 
signals, k represents the time complexity multiplier of the NCA, and 
m is the number of validation prediction vectors

Layer Computa-
tion com-
plexity

Feature extraction O(ndlognd)

Feature selection O(kd)

Classification O(nd)

IMV O(m)

Total:O(nd log nd + kd + m)
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depending on the lead, were fed to 1NN for lead-wise beat 
classification using tenfold CV. The computed lead-wise 
results showed fair to excellent performance for MI clas-
sification (Table 3), despite the classification being based 
on single-lead ECG signal inputs. The most discriminative 
ECG leads were Leads III and V6. The confusion matrix 
of Lead III classification results (Fig. 5) shows very low 
misclassification rates.

To show high classification performance of our proposal, 
we used hold-out validation. Herein, split ratio is selected as 
75:25 (75% of the used data have been used for training and 
25% out of them have been used for testing). The calculated 
classification accuracies using hold-out validation have been 
demonstrated in Fig. 6.

Figure 6 demonstrates that the best lead is III like tenfold 
CV and our proposal is 99.85% using Lead III. The worst 
accurate lead per Fig. 6 is Lead II and 98.02% classification 
accuracy was reached using Lead II. Generally, hold-out 
validation results are better than tenfold CV results.

4.5  Voted results

For the classification of 12 lead-wise results correspond-
ing to the same single beat, IMV was deployed. Ten voted 
results were calculated, and the classification accuracies of 
these results are depicted in Fig. 7. Accuracy rates were at 
least 99.91% accuracy across all individual voted results. 
By considering the top 8 leads together and the best rep-
resentative lead within the group, all performance metrics 

(accuracy, geometric mean, average recall, average preci-
sion, overall F1-score, and geometric mean) were calculated 
as 99.94% (accuracy), 99.93% (UAR), 99.96% (AP), 99.94% 
(overall F1) and 99.93% (geometric mean) respectively. Fur-
thermore, the confusion matrix of the calculated best-voted 
result is shown in Fig. 8.

4.6  Time complexity analysis

The last evaluation metric is time complexity analysis, and 
we used big O notation to measure the computational com-
plexity of our proposed HHF-MUPTT ECG classification 
model. We mimicked deep learning models to propose the 
HHF-MUPTT model, but lightweight methods have been 
used in the proposed architecture. Thus, the time complex-
ity of the HHF-MUPTT ECG classification model is linear. 
This architecture has four layers, and the time burden was 
calculated layer by layer in Table 4.

5  Discussion

MI causes the death of heart muscle in different parts of the 
heart depending on the location and distribution of the cul-
prit occluded coronary vessel. In an emergency, the presence 
and location of MI are diagnosed using widely accessible 
12-lead ECGs. MI localization offers clues about the site 
of the occluded coronary artery and the extent of myocar-
dial involvement, which may inform the choice of approach 

Fig. 9  The informative feature 
rates for all couples by calculat-
ing the t-test
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during the acute percutaneous coronary intervention and be 
of prognostic significance, respectively. 

The interpretation of ECG for MI diagnosis requires 
manual interpretation by experts. The latter may not be 
readily available in rural medical centers or in ambulances. 
According to guidelines, emergency percutaneous coronary 
intervention should be performed within 120 min in ST-
elevation MI, as any delay significantly increases the risk 
of mortality and morbidity in MI patients. This leaves very 
little room for time delay due to difficulty in ECG interpreta-
tion. Automated ML-based computer-aided diagnostic tools 
can facilitate the diagnosis of MI in the emergency setting 
and are especially helpful for remote applications. With this 
consideration in mind, ML models that are computationally 
lightweight may offer the distinct advantage of easier imple-
mentation for real-time applications. 

This work proposed a new handcrafted ECG beat classi-
fication model that attained high classification performance 
with a low time burden. The proposed HHF-based model 
uses shallow learning methods and straightforward feature 
engineering with low time costs. The primary feature extrac-
tion functions and MUPTT have time complexities of O(n) 
and O(nlogn) , respectively, using big O notation. These 
were combined with the INCA feature selector function and 
1NN classifier to create the HHF-MUPTT-based model, 

which attained at least 97% MI classification accuracy rates 
on lead-wise beat classification for all 12 ECG leads. Fur-
thermore, our model achieved 99.94% classification accu-
racy and geometric mean using the IMV algorithm, which 
analyzed all 12 ECG lead signal inputs associated with the 
same single beat to output the most representative lead for 
classification. 

5.1  Statistical tests for the generated features

To show discriminative attributes of the generated features, 
a Student t test was performed by calculating the p values. 
The feature is informative if the p value rate is lower than 
0.05. Our dataset used has 11 classes. Therefore, there are 

5.5 
(

=

(

11

2

))

 couples to show the relationship of the 

classes. In this test, Lead III was used as it obtained the best 
performing lead and our model generated 88 features from 
this lead. Rate of features with a p-value smaller than 0.05 
and all features have been calculated for all couples, and the 
results of this analysis is shown in Fig. 9.

The maximum informative feature rate was calculated as 
0.9545 between 3rd (Anterior Septal) and 8th classes (Lat-
eral). All ratios were calculated were higher than 0.5. This 
analysis demonstrates the high classification abilities of the 
generated features.

5.2  Ablation of our work

In this section, we have presented an alternative model to 
show the classification performance of our proposal. The 
alternative model uses 1D-ISBP and statistical feature gen-
eration to get classification results. The overview of the 
alternative model has been demonstrated in Fig. 10 to better 
understand this model.

This model is applied to Lead III since this is the best 
performing lead. Our proposed model attained 99.85% clas-
sification accuracy using Lead III, but the alternative model 
(see Fig. 9) reached 81.35% classification accuracy. These 
results demonstrate that our proposed model reached 18.50% 
better classification accuracy than this alternative method.

5.3  Comparative results

The study dataset was based on the commonly used Phys-
iobank database [21]. We performed a non-systematic litera-
ture review of studies that have used this dataset for ECG 
beat analysis and compared their performance with our 
model. Our proposed HHF-MUPTT-based model attained 
the best classification result among these state-of-the-art 
models. (Table 5).

Fig. 10  Overview of the presented alternative model.
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As can be seen from Table 5, works [40, 44, 45, 51, 52, 
55–57, 60, 61] and [62] were used deep learning to achieve 
high classification ability on the used dataset. Using deep 
learning techniques Fu et al. [56] attained 99.93% classifi-
cation accuracy using the attention mechanism. Moreover, 
the time complexity of their model is exponential. We have 
proposed a lightweight model, and the time complexity of 
our model is linear, and we attained 99.94% classification 
accuracy using this model. Our HHF-MUPTT-based ECG 
classification model attained the best result for this data-
set (see Table 5). To attain high classification performance 
measurements on this dataset, deep networks were applied 

to this dataset. We attained satisfactory classification per-
formance by only using a lightweight model. Furthermore, 
we attained 99.94% classification accuracy by using fewer 
features (the number of features for each channel is smaller 
than 100). 

5.4  Findings

The salient points of our research are: 

• Two new methods have been proposed in this research: 
MUPTT and 1D-ISBP.

Table 5  Comparison of our developed model with other state-of-the-art methods using the same database

Study Method Validation Accuracy (%)

Han and Shi [33] Maximal overlap discrete wavelet packet transform Tenfold CV 99.81
Sridhar et al. [34] Pan-Tompkins algorithm, nonlinear features Tenfold CV 97.96
Halder et al. [35] Rule-based rough set method Fivefold CV 99.80
Zhang et al. [36] Gramian angular field, principal

component analysis network
Fivefold CV 99.49

Sharma and Sunkaria [37] Stationary wavelet transform, entropy Tenfold CV 99.76
Zhang et al. [38] Staked sparse autoencoder, bagged tree Tenfold CV 99.90
Adam et al. [39] Relative wavelet nonlinear features Tenfold CV 99.27
Prabhakararao and Dandapat [40] Attentional recurrent neural network 97.79
Sridhar et al. [41] Probabilistic neural network Tenfold CV 98.67
Acharya et al. [42] Discrete wavelet transform + entropies + feature selection Tenfold CV 98.80
Heo et al. [43] Pan-Tompkins algorithm Fivefold CV 96.37
Acharya et al. [44] Deep convolutional neural network Tenfold CV 95.22
Baloglu et al. [45] Convolutional neural network 70:15:15 99.78
Zhang et al. [46] Multi-dimensional association information analysis algorithm Tenfold CV 99.40
Wang et al. [47] Statistical feature calculation, entropy, principal component analysis Tenfold CV 99.71
Acharya et al. [48] Discrete wavelet transform, empirical mode decomposition, discrete cosine 

transform
Tenfold CV 98.50

Kumar et al. [49] Flexible analytic wavelet transform framework Tenfold CV 99.31
Acharya et al. [50] Continuous wavelet transform Tenfold CV 99.55
Rai and Chatterjee [51] Convolutional neural network, long short-term memory network 80:20 99.89
Xiong et al. [52] Densely connected convolutional network Tenfold CV 99.87
Savostin et al. [53] Entropy, statistical, probabilistic, and

spectral characteristics
Tenfold CV 97.03

Sadhukhan et al. [54] Discrete Fourier transforms Fivefold CV 95.60
Lih et al. [55] Convolutional neural network, long short-term memory Tenfold CV 98.51
Fu et al. [56] Multi-lead attention mechanism, convolutional neural network, bidirectional 

gated recurrent unit framework
Fivefold CV 99.93

Sugimoto et al. [57] Convolutional auto encoder Tenfold CV 99.87
Swain et al. [58] Stockwell transform, phase distribution pattern Unspecified 99.93
Cao et al. [59] Multichannel lightweight network model Tenfold CV 96.65
Liu et al. [60] Multiple-feature-branch convolutional bidirectional recurrent neural network Fivefold CV 93.08
He et al. [61] Convolutional neural networks, active

learning
Fivefold CV 99.63

Li et al. [62] Convolutional neural networks, generative adversarial networks Fivefold CV 99.06
Liu et al. [63] Evolving multi-branch networks Fivefold CV 97.11
Our method HHF-MUPTT-based ECG classification Tenfold CV 99.94
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• CSLBP feature creation function uses only symmetric 
center values to generate 16 features from a signal. In this 
work, we used center symmetric and linear symmetric 
values to comprehensively get textural features. Our pro-
posed 1D-ISBP also contains CSLBP features. Therefore, 
the advantages of the CSLBP features and linear sym-
metric features have been used in our proposed 1D-ISBP.

• HHF is a multilevel feature extraction method that com-
bines 1D-ISBP, statistical feature generator, and MUPTT 
to extract distinctive features from ECG beats for MI 
classification.

• HHF is combined with INCA feature selector and shal-
low 1NN classification with tenfold CV to output lead-
wise classification of MI. In addition, all 12 lead-wise 
results corresponding to the same ECG beat were fed to 
IMV algorithm to output the best representative results 
for MI classification.

• The HHF-MUPTT model is computationally lightweight, 
rendering it suitable for real-time computer-aided diag-
nostic applications for remote classification of MI on 
ECG beat signals in emergency settings.

• Lead-wise results for MI classification using a shallow 
1NN classifier. Furthermore, by feeding the lead-wise 
results of 12 leads associated with the same ECG best to 
the IMV, the classification accuracy of the HHF-based 
model was excellent.

• A comprehensive comparison table has been given in 
Table 4 to highlight the success of the recommended 
HHF-MUPTT-based ECG classification model.

• The HHF-MUPTT-based model outperforms other state-
of-art methods for MI classification using the same data-
set. This model also attained better performance than 
deep models in the literature.

6  Conclusions

In this research, a handcrafted MI classification method has 
been presented, which attained superior classification results 
that outperformed prior methods trained on the same dataset 
with 11 classes (one healthy and 10 MI categories). Two 
new methods have been presented in this research: MUPTT 
decomposition and 1D-ISBP feature extraction. The HHF-
MUPTT-based MI classification model attained excellent 
lead-wise results overall, with the best lead-wise classifi-
cation accuracy of 99.85% in Lead III. Moreover, 99.94% 
accuracy was attained using IMV algorithm. As the model 
is computationally lightweight, it can potentially be imple-
mented for remote real-time MI diagnosis.

This model is ready for implementation in medical cent-
ers since high classification results have been attained. Fur-
thermore, this model has a linear time burden, which makes 

it a lightweight ECG signal classification model. By using 
this model, intelligent ECG devices can be developed that 
can automatically detect MI and type of MI, potentially sav-
ing lives.
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