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Abstract
In semi-autonomous vehicles (SAE level 3) that requires drivers to takeover (TO) the control in critical situations, a system needs
to judge if the driver have enough situational awareness (SA) for manual driving. We previously developed a SA estimation
system that only used driver’s glance data. For deeper understanding of driver’s SA, the system needs to evaluate the relevancy
between driver’s glance and surrounding vehicle and obstacles. In this study, we thus developed a new SA estimation model
considering driving-relevant objects and investigated the relationship between parameters. We performed TO experiments in a
driving simulator to observe driver’s behavior in different position of surrounding vehicles and TO performance such as the
smoothness of steering control. We adopted support vector machine to classify obtained dataset into safe and dangerous TO, and
the result showed 83% accuracy in leave-one-out cross validation. We found that unscheduled TO led to maneuver error and
glance behavior differed from individuals.
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1 Introduction

Automated driving (AD) systems have the potential to achieve
safer car-society and to enhance the quality of life of people.
However, there are still many issues for achieving a fully AD
system. SAE International defines six levels of automation,
from level 0 (no automation) to level 5 (fully vehicle autono-
my) [1]. In level 3 systems, drivers are not required to monitor
the road environment and are allowed to engage in non-
driving related tasks (NDRTs), such as reading books. A

takeover request (TOR) will be issued when the AD system
reached functional limits, and then the drivers are required to
intervene the vehicle control (takeover: TO) and start manual
driving (MD) [2].

TO would be dangerous especially in ‘unscheduled situa-
tions’, in which the AD vehicles encounters unplanned road-
works or sudden accidents that cannot be dealt with the AD
system. Figure 1 shows an example of unscheduled TO,
where an obstacle (a crashed car) suddenly appears. The time
from when TOR is issued until the ego-vehicle collides with
the obstacle is called the time to collision (TTC). After TOR is
issued, the driver holds the steering wheel and places his/her
foot on the pedals. This is called physical engagement. Then
or simultaneously, the driver checks the surrounding traffic
situation and determines actions to be taken. This is called
cognitive engagement. AD vehicles have a human interface
(typically, a button) to enable the driver to approve the TOR.
After completing physical and cognitive engagement, the
driver approves the TOR by pressing the button to change
the driving mode from AD to MD [3].

However, drivers engaging in NDRTs are often distracted
and may have low or zero situational awareness (SA). The
related works have reported that drivers of a highly automated
vehicles are likely to perform NDRTs and this leads to
degrading drivers’ SA [4] and NDRTs do not influence
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physical engagement (can be performed on reflex) but cogni-
tive engagement [5]. These studies indicate that there is
a risk that the drivers approve the TOR without suffi-
cient cognitive engagement and this would lead to car
accidents. It is thus necessary to develop a system to
evaluate driver’s cognitive engagement and judge if the driver
is ready to start MD.

Psychophysiological approach using eye gaze was pro-
posed to estimate human’s cognitive engagement [6] and this
had been applied to drivers during AD (SAE level 2: drivers
must monitor the road) [7]. However, there are no effective
methods for estimating driver’s SA in unscheduled TO situa-
tion (SAE level 3). Thus, we previously proposed a SA esti-
mation model based on driver’s glance data [3]. We derived
the standard glance model including the glance area (mirrors
or windows where the driver looked) and glance time (how
long driver looked at each area) to estimate driver’s SA. We
then developed a SA assistant system to highlight areas where
was insufficiently looked. The experimental results revealed
that the assistant system improved the driving performance
and reduced the number of accidents during TO. The study
indicates that the driver’s glance behavior greatly affected
driver’s SA. However, it was a preliminary study of SA esti-
mation, that is, the SA estimation systemmust be improved in
terms of ‘considering the surrounding situation’ and ‘treating
glance features as combination’.

One is if a driver looks at glance areas to understand the
environment (Fig. 2). For example, the driver surely looked a
glance area, but if other vehicles to be checked were not ap-
peared in the glance area at the time, the driver would not
detect the vehicles. SA consists of the perception of elements
in current situation, comprehension of current situation, and
projection of future states [8]. Also, detecting driver inatten-
tion requires accurate real-time driver-gaze monitoring com-
bined with a vehicle and road scene state [9]. Thus, driving-
relevant objects in traffic environments are important to esti-
mate driver’s SA.

The other is how glance features relate to one another. For
example, if the driver checked behind via the side mirrors, the
driver could spend less time (or does not need) to check the
rearview mirror. Moreover, if the driver checked the front in
an enough time and then looked other areas in a few second,
the driver might not have sufficient information of the front
road. Thus, driver’s glance features should be treated as a total
glance behavior.

From the above, our hypothesis is that the SA estimation
model can be improved by ‘considering the surrounding situ-
ation’ and ‘treating glance features as combination’. In this
study, we developed a new SA estimation model considering
driving-relevant objects in traffic environments. To evaluate
the relationship among glance features, we created an explan-
atory variable set which was made by combinations of glance
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Checking surroundings

Automated driving (AD) Manual driving (MD) ADFig. 1 Flow of unscheduled
takeover. TOR stands for
takeover request. Drivers are
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is required
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features and introduced support vector machine (SVM) for
holistically analyzing these variables. This study contributes
to reveal that driver’s gaze on driving-relevant objects has
positive effect on SA estimation and to derive determining
variables which significantly influence the SA.

2 Methodology

In this section, we explain the proposed SA estimation model
including input and output information and classification
method (Fig. 3).

(d) Variable set genera n

Driver head image

(a) Gaze classifica n (b) Rela ve posi on calcula n (c) TO phase division
Objects areas TO phaseGlance areas

Training Contribu n rate calcula n

Remove of one variable which has the lowest contribu n rate

If accuracy declines

Posi nal coordinates of
ego-vehicle and objects

Opera n informa on
(Speed, Steering angle, TO bu on on/off)

SA es ma n (good or bad)

If accuracy stays or increases

Informa n 
detec n

Feature
extrac on

Es ma n

Variable set

Variable set with contribu n rate

Trained SVM model

In es ma nIn training

(f) SVM

Leave-one-out cross
valida n

(e) Driving performance evalua n
Driving performance

Fig. 3 Architecture of SA estimation model. a Driver’s gaze direction is
classified into eight glance areas. b Driving-relevant objects’ position is
classified into ten objects area. c Series of TO is classified into five
phases. d Extracted features are combined to generate explanatory vari-
able set. In training phase, e driving performance is evaluated for

predictor variable using TO phases 1–5. f Perform variable selection
and train the model based on support vector machine (SVM) using TO
phases 1–2. After offline training, the model can estimate driver situa-
tional awareness (good or bad) in phases 1–2
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2.1 Glance Area and Traffic Environment

As stated in Section 1, precise estimation of driver’s SA needs
to analyze driving-relevant objects in traffic environment. It is
important to know if the driver looked the objects and its
timing and duration time of the glance. To analyze them, we
estimate the driver’s gaze direction (Fig. 3a) and the position
of the objects (Fig. 3b).

As shown in Fig. 4a, driver’s gaze direction was classified
into eight areas, including left-front (LF), center-front (CF),
right-front (RF), right side mirror (RSM), rear view mirror
(RVM), left side mirror (LSM), right window (RW), and left
window (LF). These areas are known as the common areas
where drivers should check [10, 11].We divided the front area
into three according to the traffic lane, including CF (for ob-
jects in the same lane as ego-vehicle), RF (for objects in the
right lane), and LF (for object in the left lane). A gaze classi-
fication system is described in Section 3.1. Driving-relevant
objects in traffic environment include obstacles, other
vehicles, pedestrians, and traffic signals. In this paper,
we target a TO scenario where a driver is required to
change a lane (as described in Section 4), so we set
other vehicles and obstacles as the driving-relevant ob-
jects. We calculated the relative position of these objects
to ego-vehicle and classified them to ten objects areas based
on the glance areas (Fig. 4b). As blind spots where the drivers
cannot see, we added right blind spot (RBS) and left blind spot
(LBS).

If driver’s glance area is equal to an object area, we assume
that the driver looked the object and understood the attribute
of the vehicle such as the position and speed.

2.2 TO Phases for Lane Change

Throughout a TO for lane change, drivers behave differently
in different phases. In this paper, we thus divided a series of
TO into five phases (Fig. 3c). Definition of each phase is
shown in Fig. 5.

& Phase 1: From TOR is issued until the TO button is
pushed.

& Phase 2: From TO button is pushed until lane change is
started (steering angle >5°).

& Phase 3: From lane change is started until ego-vehicle
entered the next lane.

TOR TO Start lane 
change

Enter next 
lane

Pass 
obstacle

Finish

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

Fig. 5 Series of TO which has
five phases. Phases 1–5 were used
for evaluating driving perfor-
mance, and phases 1–2 were used
for SA estimation

Table 1 Explanatory variables and contribution rate

# Explanatory variables (time s) Weight *3 CR % *3

1 [Phase 1] Gaze on F *1 −207.5 1.35
2 [Phase 1] Gaze on RVM *1 −199.1 1.30
3 [Phase 1] Gaze on RSM *1 624.8 4.07
4 [Phase 1] Gaze on RW *1 −190.0 1.24
5 [Phase 1] Gaze on RVM (FV exists) *2 −398.8 2.60
6 [Phase 1] Gaze on RSM (FV exists) −9.3 0.06
7 [Phase 1] Gaze on RW (FV exists) 0 0.00
8 [Phase 1] Gaze on FV −408.1 2.66
9 [Phase 1] Gaze on CF (obstacle exists) *1 14.9 0.10
10 [Phase 2] Gaze on F 899.7 5.86
11 [Phase 2] Gaze on RVM 61.0 0.40
12 [Phase 2] Gaze on RSM 468.2 3.05
13 [Phase 2] Gaze on RW 367.9 2.40
14 [Phase 2] Gaze on RVM (FV exists) 173.7 1.13
15 [Phase 2] Gaze on RSM (FV exists) 447.9 2.92
16 [Phase 2] Gaze on RW (FV exists) −71.7 0.47
17 [Phase 2] Gaze on FV 549.9 3.58
18 [Phase 2] Gaze on CF (obstacle exists) 549.5 3.58
19 [Phase 1&2] Gaze on F 692.2 4.51
20 [Phase 1&2] Gaze on RVM −138.1 0.90
21 [Phase 1&2] Gaze on RSM 1093.0 7.12
22 [Phase 1&2] Gaze on RW 177.9 1.16
23 [Phase 1&2] Gaze on RVM (FV exists) −225.0 1.47
24 [Phase 1&2] Gaze on RSM (FV exists) 438.6 2.86
25 [Phase 1&2] Gaze on RW (FV exists) −71.68 0.47
26 [Phase 1&2] Gaze on FV 141.85 0.92
27 [Phase 1&2] Gaze on CF (obstacle exists) 564.4 3.68
28 From TOR–TO −1165.5 7.60
29 From TO–LC 720.5 4.70
30 From TOR to first look at F −1841.2 12.0
31 From last look at F–LC 341.6 2.23
32 From last look at RSM–LC −803.3 5.24
33 From last look at RW–LC −284.0 1.85
34 From last look at RVM–LC −1002.6 6.53

*1 F includes CF, LF and RF, each acronym is shown in Fig. 4

*2 FV: following vehicle, FV exists: driver looked at the glance area
while following vehicle was there

*3 These variables are described in Sections 2.5 and 5.2
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& Phase 4: From the ego-vehicle entered the next lane until
the ego-vehicle passed the crashed car.

& Phase 5: From the ego-vehicle passed the crashed car until
the ego-vehicle runs for a while (5–10 s).

To judge if the drivers could safely change the lane, SA
should be estimated before the ego-vehicle enters into the next
lane. Thus, we only used information within phases 1–2 for
SA estimation. To understand if the driver safely changed the
lane, information within phases 1–5 was used.

2.3 Explanatory Variables

There are generally two approaches to select explanatory var-
iables for classification.

& A small number of explanatory variables is set based on a
hypothesis for predictor variables. The purpose is to eval-
uate how much the hypothesis could explain the predictor
variable [12, 13]. However, other potential key variables
could be overlooked due to the limited explanatory
variables.

& Many available explanatory variables are introduced, and
necessary explanatory variables are extracted by variable
selection methods [14, 15]. The extracted explanatory var-
iables are called determining variables. The purpose is to
increase estimation accuracy. However, it cannot always
explain the relationship between the determining and pre-
dictor variables.

In this study, we adopted both of two approaches. We
extracted several important features that would be relat-
ed to SA and created an explanatory variable set that
combines them (Fig. 3d). We then extracted determining
variables by using a variable selection method. The ex-
planatory variable set was the combinations of the
driver’s glance, position of following vehicle and obsta-
cle, and phases of TO. As listed in Table 1, 34 explan-
atory variables in total were introduced.

& To know how drivers had glance behavior, the total time
that drivers gaze on each glance area in each phase was
introduced. Driving-relevant objects are not here consid-
ered, so for the simplicity, we combined LF, CF, and RF
as the front (F).

& To know if drivers were aware of following vehi-
cles and obstacles, the total time that the drivers
gazed on these objects was introduced. To know if
the driver checked the obstacle which can only be
seen in CF, we do not combine LF, CF, and RF
here.

& To know the time spent on each phase, and drivers’ reac-
tion time to TOR, the time from TOR until TO, from TO
until lane change starts, from TOR until drivers’ first look
at front were introduced.

& Traffic environments vary with the time, so drivers
should check the surroundings just before changing
the lane. The time from the last look at each
glance area until lane change starts was thus
introduced.

(b) C-SVM (c) RBF 
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Fig. 6 a SVM chooses support
vectors and makes a separating
hyperplane with the max margin.
bC-SVM tolerates a few points to
get misclassified. c RBF kernel
performs non-linear classification
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2.4 Predictor Variables

It is difficult to determine objectively if SA is good or bad.
Driving performance can be the most important criteria.
Drivers should drive smoothly and keep safe distances from
other vehicles. Thus, we used driver performance instead of
SA for the predictor variable (Fig. 3e). In this study, we de-
fined good driving performance when following two condi-
tions are satisfied.

& The driver kept more than 20 m away from other vehicles
and obstacles. This is because the vehicles’ speed in high-
way is limited as 22 m/s and 1 s is regarded as required
driver’s response time.

& The driver kept the derivative value of the steering angle θ̇
less than three times of baseline. We found from explor-

atory experiments that θ̇ related with SA and it was almost
more than three times of baseline when they rushed into
changing a lane. The baseline is the maximum value that
the driver performed at a simple lane change TO without
any other vehicles.

Driving performance was evaluated between phases 1–5. If
a driver had good performance, his/her SA can be assumed as
good, otherwise as bad.

2.5 Classification Using Support Vector Machine

Our SA estimation model requires a binary classification to
judge if a driver has good or bad SA, and we need to holisti-
cally analyze the effect of each related variable, so we intro-
duced support vector machine (SVM) (Fig. 3f) [16]. SVM is
attractive for classification with high flexibility and estimation
accuracy. Figure 6 shows how SVM works. SVM finds a
separating hyperplane that maximizes the margin (distance
between those closest points to the line) (Fig. 6a). The closest
points are called support vectors, and is given by

SVi ¼ ai; x
0
i;1; x

0
i;2; x

0
i;3;…; x

0
i;n

� �
; ð1Þ

where SVi is the i-th support vector, ai is the coefficient of SVi,
and xi, j is the coordinate of SVi, i.e. the value of explanatory
variables.

We adopted LIBSVM (ver. 3.14), which is a commonly
used SVM library [17]. Among several types of SVM, we
chose C-SVC since it was robust for uncertainty and ambigu-
ity of data by misclassification errors. C-SVM works by solv-
ing an optimization problem denoted in (2).

min
w; ξ

1

2
wk k2 þ c∑n

i¼1ξi

� �
; ð2Þ

Tablet

Autonomous driving Takeover

Indicator

Beep

Takeover bu�on

Fig. 8 Drivers engage on NDRTs
while AD working. AD system
issues TOR by indicator and
beep, and drivers push TO button
to approve TOR

Fig. 7 Simulator arrangement.
Four screens cover a field of view
as wide as an actual vehicle
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wj ¼ ∑n
i¼1aix

0
i; j; ð3Þ

where w is the weight on each explanatory variable of the
separating hyperplane and ‖w‖ is the size of w. ξi is the dis-
tance of misclassified samples to their correct region. c is the
coefficient and larger c gives solutions with less misclassifi-
cation but may lead to overfitting (Fig. 6b).

To examine the relative impact of explanatory variables,
we calculated the contribution rate (CR) of each explanatory
variable using w, and it is given by

CRj ¼
wj
�� ��

∑34
j¼1wj

: ð4Þ

LIBSVM contains several kernel functions, such as linear,
polynomial, radial basis function (RBF), and sigmoid. We
adopted RBF kernel since it could deal with non-linear prob-
lems and systems with the complexity. In RBF, the separating
hyperplane is defined by

y ¼ ∑N
i¼1ai � exp −γ x0i−xk k2

� �
; ð5Þ

where vector x is the test data, y is the estimation
result of the test data (good or bad), ‖x′i − x‖ is the
distance between the test data and each support vector.
γ is a coefficient to present the complexity of hyper-
plane (Fig. 6c).

The two coefficients γ and c directly influence the
performance of SVM. To achieve accurate classification,
we used a grid search to find the optimal hyper-
parameters for each training dataset. We explored the
determining variables and tested the final model by fol-
lowing steps.

1 Set all data as training data and find optimal parameter by
grid search. Use the optimal parameter to create a primary
SVM model.

2 Calculate the estimation accuracy with the primary SVM
model by leave-one-out cross validation (LOOCV) [18],
as primary accuracy.

3 Calculate w and CR of each variable by support vectors,
which can be obtained from the SVM model.

4 Remove one explanatory variable with the lowest CR, and
calculate the estimation accuracy by LOOCV. Then, re-
move one more variable with the lowest CR from the rest
and redo LOOCV. This step is repeated until the accuracy
starts to decline.

5 The combination of explanatory variables with the greatest
accuracy is defined as the determining variables and the
accuracy is the final accuracy.

3 Implementation

We set an unscheduled TO situation for developing the SA
estimation model. This section describes a gaze classification
system and a driving simulator (DS).

3.1 Gaze Classification

To obtain driver’s glance data, we used Smart Eye Pro with
three cameras to measure driver’s gaze direction [19]. To en-
sure the accuracy of glance data, we set another RGB camera
in front of the driver to record the driver’s face, and we man-
ually compared the recorded videos with the outputs of Smart

Following vehicle

Auto Manual

Ego-vehicle

Obstacle

Time to collision (TTC)
TOR

Fig. 9 Takeover scenarios. An
obstacle prevents the autonomous
system, so drivers must manually
change lane

(a) No following 
vehicle

(b) Far following 
vehicle

(c) Close following
vehicle

75 m 30 m
80 km/h

90 km/h 90 km/h

80 km/h 80 km/h

Fig. 10 Three patterns of following vehicle according to its existence and position. The distances and speeds are the ones at the time when TOR is issued.
a No following vehicle. b Far following vehicle. c Close following vehicle
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Eye Pro. If the outputs were clearly wrong, we fixed them. As
for implementing the system in real vehicles, we will intro-
duce a gaze classification system using convolution neural
networks [3].

3.2 Driving Simulator

The driving conditions must be the same among subjects, so
we performed experiments in a DS based on Unity [20]. The
dynamic behavior of vehicles can be autonomously con-
trolled. This study focuses on driver’s glance behavior, so
the driver’s eyes movement in the DS must be the same as
possible as that in real vehicles. The simulator consists of four
65-in. LED screens, and three of them arranged at the front
with a horizontal and vertical field of view of 240° and 40.6°,
respectively, and the fourth one is placed the back to show the
traffic environment behind the vehicle (Fig. 7). A rearview
mirror is also set to enable the driver to check behind the
vehicle like being in a real vehicle. Cameras for gaze classifi-
cation are located behind the steering wheel.

A tablet computer is set in the left side of the steering wheel
for NDRTs (Fig. 8). When the system issues TOR, the front
screen displays ‘manual driving’ and makes a beep, and then
driver pushes the TO button placed on the steering wheel. It
might be better that the system shows more information about
current traffic environment, but TTC is too short to convey the
amount of information.We also need to address efficient ways
to convey information to drivers when TOR. These issues will
be dealt in future. In this paper, to simply examine driver’s
behavior, we only used beep which contains the minimum
information.

4 Design of Experiments

This section describes the simulated TO scenarios, data acqui-
sition, subjects, and experimental procedure.

4.1 Unscheduled TO Scenario

We set a sudden car accident situation in a highway as an
unscheduled TO scenario in the DS (Fig. 9). A crashed vehicle
stopped on the first lane as an obstacle, so the ego-vehicle that
runs on the lane is required to move to the next lane. We set
six different TO patterns by changing TTC and other vehicles.
Considering that the TTC should be 7 s at least for safe TO, we
set the TTC to 7 s (shorter) and 10 s (longer) [21]. Three
patterns of other vehicles were set, and drivers were expected
to perform different driving behavior under the different pat-
terns (Fig. 10).

& No following vehicle. There is no other vehicle on the next
lane. After a driver checks the traffic environment, the
driver can perform lane change at any timing and with
any running speed.

& Far following vehicle. A vehicle far behind in the next
lane runs faster than the ego-vehicle. A driver is expected
to percept the vehicle, comprehend that it is faster than the
ego-vehicle, and speed up and move to the front of it. If
the driver enters the next lane with a low speed, a collision
will occur.

& Close following vehicle. A vehicle near behind in the next
lane runs faster than the ego-vehicle. A driver is expected
to percept the vehicle, comprehend that it will pass the
ego-vehicle, and speed down and move to behind it. If
the drive enters the next lane without speed down, a col-
lision will occur.

During AD system working, drivers engaged in the NDRT
until they received TOR. The time until TOR was issued was
3–5 min randomly. NDRT was a n-back cognitive task using
the tablet.

4.2 Data Acquisition, Subjects, and Procedure

We recorded vehicle’s telemetry including position, speed,
steering angle, and pedal position from the DS at 100 Hz.
Smart Eye Pro measured subjects glance area. Driver’s head
image was recorded in Full HD (1080p) at 16 Hz. Smart Eye
Pro was not connected to the DS. To synchronize their time

Table 3 Performance results
Subject No. S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 Rate %

P3 1 0 0 1 0 0 0 1 1 1 1 1 58

P4 0 1 1 1 0 1 1 1 1 1 0 1 75

P5 0 1 0 1 0 1 0 1 1 0 1 0 50

P6 1 0 1 1 0 1 0 1 0 1 0 0 50

1: Good Performance, 0: Bad Performance

Table 2 Pattern of TO
scenario No vehicle Far Close

TTC: 10 s P1 P3 P5

TTC: 7 s P2 P4 P6

Int. J. ITS Res. (2021) 19:167–181174



stamps as much as possible, we set a time flag on gaze data on
the point when TOR was issued and synchronized them after-
ward. A total of twelve subjects (11 males and 1 female, age
M: 23 years, SD: 1.1) participated in the experiments. All of
them had normal or corrected-to-normal vision. Before the
experiment, we explained them about the TO process and

how to make the TO. The subjects practiced driving in the
DS as much as they wanted until they have confidence. As
listed in Table 2, the subjects performed all six different TO
scenarios, respectively (one time). The order was randomized.
Subjects were provided with monetary compensation for their
contribution.

Glance                     Obstacle                   Following vehicle

(a) Good performance (S1 in P5)
0           2.5                     6.8          9.1               12.9 Time s

Phase    1               2              3             4              5        

(b) Bad performance (S2 in P6)
0               2.9   4.1       6.0        9.2

Phase      1        2  3      4                     5

Time s
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Fig. 11 Examples of glance
maps. The vertical axis represents
glance area. The blue bars show
the area where the driver looked.
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where the following vehicle
and the obstacle was,
respectively. When the blue bar
overlaps the pink or yellow bar,
we assume that the driver
understood the following vehicle
or the obstacle. The horizontal
axis represents time and the
sequence of glance is divided into
phases by vertical brown lines. a
Good performance (S1 in P5). b
Bad performance (S2 in P6)
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5 Results and Analysis

In this section, we describe the results of experiments and
SVM, and discuss the implications.

5.1 Takeover Performance and Glance Map

The driving performance is judged as good or bad by
the method described in Section 2.4. Table 3 lists the
evaluation results of performance in each subject in
each TO scenario. Here, P1 and P2 were used for the
baseline. Following analysis focuses on P3–P6. We
found that only 58% of participants safely performed
the TO. As stated in Section 1, drivers of a highly
automated vehicles are likely to have low or zero SA,
and which can be a reason for the above result. Using
obtained drivers’ glance areas and driving-relevant ob-
jects’ position, we made glance maps to visually show
drivers’ glance behavior. Figures 11a, b are for good
and bad performance, respectively. In Fig. 11a, S1
looked at the following vehicle several times through
RSM, and then safely made lane change after the fol-
lowing vehicle passing in P5. In contrast, in Fig. 11b,

S2 almost did not check surroundings, so S2 was not
aware of the following vehicle and made a collision in
P6. This suggests that the glance behavior has a signif-
icant impact on SA and the driving performance.

5.2 Determining Variables and Accuracy

As stated in Section 2.5, we explored the determining vari-
ables by following steps. At first, we calculated the CR of all
explanatory variables, and the result is listed in the right-side
two columns of Table 1. Then, we removed variables with a
low CR one by one. Figure 12 shows how the estimation
accuracy changed over the removal. The result shows
that the accuracy increases as the number of explanatory
variables decreases, and the accuracy reached the max-
imum 83% when the number of variables was 14. The
removed variables, such as the time driver gazed on F
(#1) in phase 1 and RVM (#2, #11), can be regarded as
no or negative impact on SA estimation. Instead of
RVM, as an example shown in Fig. 11a, many drivers
gazed on F (#10) and RSM (#12) to check surround-
ings. The remaining variables are defined as determin-
ing variables (Table 4). From the result, we could find
followings.

& The number of variables in phase 2 was greater than that in
phase 1, which indicates that glance in phase 2 is more
important for good SA. The traffic environment changes
over time, so drivers should keep attention to it. Moreover,
in unscheduled TO, drivers are suddenly imposed on large
burden. Even if drivers checked the surrounding in phase
1, they need to check the surrounding again in phase 2.

& w of determining variables #28, 30, 32, and 34 was a
negative value, which indicates that the shorter the time
spent, the better SA is. For example, drivers will have a
high probability of good SA if they start looking at F and
approve the TO fast.

& The determining variables #15, 18, and 27 show that the
awareness to following the vehicle and the obstacle is signif-
icant to SA estimation. This meets our hypothesis. However,
their CRswere smaller than the variables #10, 12, 17, and 21,
which did not consider driving-relevant objects. This indi-
cates that looking at glance areas is not only for checking if

Table 5 Result of leave-one-out cross validation (LOOCV)

: Incorrectly estimate good performance as bad

: Incorrectly estimate bad performance as good

Table 4 Determining variables

# Explanatory variables (time s) Weight CR %

3 [Phase 1] Gaze on RSM 0.1 0.01

10 [Phase 2] Gaze on F 128.0 6.51

12 [Phase 2] Gaze on RSM 144.6 7.36

15 [Phase 2] Gaze on RSM (FV exists) 125.2 6.37

17 [Phase 2] Gaze on FV 132.0 6.71

18 [Phase 2] Gaze on CF (obstacle exists) 70.6 3.59

19 [Phase 1&2] Gaze on F 69.1 3.51

21 [Phase 1&2] Gaze on RSM 144.7 7.36

27 [Phase 1&2] Gaze on CF (obstacle exists) 83.0 4.22

28 From TOR–TO −225.7 11.48

29 From TO–LC 195.9 9.96

30 From TOR–first look at F −282.6 14.38

32 From last look at RSM–LC −205.7 10.46

34 From last look at RVM–LC −158.7 8.07

Int. J. ITS Res. (2021) 19:167–181176



there is the object but also for understanding the state of ego-
vehicle, such as speed, direction, and position.

6 Discussion

6.1 Reason of Estimation Error

The estimation accuracy eventually came to 83% and left a 17%
error. The result of SA estimation is listed in Table 55. To prevent
accidents, the accuracy is expected to be near to 100%. Here, we
discuss about reasons of error.

6.1.1 False Estimation (Bad as Good)

From Table 5, S1 and S2 had bad performance in P5 and P6,
respectively. However, the model estimated them as good
performance.

& Figure 13a shows the glance map of S1 in P5. The glance
behavior looks good because S1 checked both the obstacle

and following vehicle several times. However, as Fig. 13b
shows, S1 entered the next lane at 0 km/h, which can be
regarded as mis-stepping on pedals, and then caused the
collision.

& Figure 14a shows the glance map of S2 in P6. S2 also
checked both the obstacle and following vehicle and this
seems good SA. However, as Fig. 14b shows, S2 moder-
ately controlled the steering wheel but found that the
amount was not enough, and then steeply controlled it,
which led to bad performance.

From the above, we found that unscheduled TOs likely
caused maneuver errors. This indicates that AD could make
drivers lose their sense of pedal and steering operation and the
sudden TOR stressed on drivers.

6.1.2 False Estimation (Good as Bad)

From Table 5, S2 had good performance in P5, but the model
estimated it as bad performance. Figure 15a shows the glance
map of S2 in P5. S2 checked the environment but S2 missed the
following vehicle. Thus, S2’s SA could be bad. However, as
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Fig. 15b, c show, S2 speeded up and started lane change fast, so
that the ego-vehicle successfully entered the next lane before the
following vehicle catches it. From the above, we found that the
driver could safely complete TO by chance, even if they did not
check surroundings well. However, in such case, the system
should estimate the driver’s SA as bad, and assist the SA or reject
the TO.

From the above analyses, we could find that the performance
estimation error was caused bymaneuver error under good SAor
occasional success under bad SA, not SA estimation error. A

steering and pedal control support would be necessary to make
drivers maneuver smoothly the vehicle and reduce their maneu-
ver effort.

6.2 Difference of Individual Glance Behavior

Here, we performed leave-one-subject-out cross validation
(LOSO-CV), which uses one subject’s data for testing and other
subjects’ data for training [22], to analyze individual differences
of glance behavior (i.e., generality of the model). If the accuracy
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of LOSO-CV is much lower than that of LOOCV, the glance
behavior differs individually, otherwise, the difference does not
exist. As a result, we obtained that the accuracy of LOSO-CVwas
52%, which was much lower than that of LOOCV (83%). The
result indicates that glance behavior surely differed individually.
Next, we discuss how individual glance behaviors are different.

6.2.1 Glance Behavior of Good Performance

From Table 5, S4 and S8 had good performance at all patterns,
while they had different glance behavior. Figure 16 shows the
glance maps of S1 and S8 in P5. Both two subjects checked
surrounding well and had good SA, but S4 checked surrounding
most in phase 1, while S8 almost checked surrounding in phase
2. Subjects should push the TO button when they understand the
surrounding traffic environment. However, some subjects forgot
this because of the long AD working time and the pressure of
TOR.

6.2.2 Glance Behavior of Bad Performance

From Table 3, S5 and S7 had bad performance at almost all
patterns, while they had different glance behavior. Figure 17

shows the glance maps of S5 and S7 in P4. From Table 4, we
found that the shorter the time between the last look at RSM and
lane change (#32), the better SAwas. However, the time S5’s last
look at RSM to lane change was long, so it led to bad perfor-
mance, On the other hand, S7 looked RSM just before lane
change, but the following vehicle was not already there, so S7
missed the following vehicle and had bad performance.

From the above analysis, we found that the determining var-
iables interacted with each other and affected on the performance
of SA. This meets our hypothesis. Moreover, a SA assistant
method should be designed according to ways led to bad perfor-
mance. These findings suggest that our proposal to use a combi-
nation of various explanatory variables are useful for SA
estimation.

6.3 Comparison with Previous Model

We compared the accuracy of proposed model with the previous
model [3]. We trained and evaluated the previous SA estimation
model and evaluated it using the data collected in this study.
Since the previous system only considers the glance time and
areas but driving-relevant objects, we extracted the time on the
three glance areas (F, RSM, and RVM) as input to derive
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standard glance model. If a driver looked all standard glance area
within the standard glance time range respectively, the driver’s
SA is good.We performed LOOCV. The result was 56%, which
was lower than the proposed model (83%). Moreover, to find
factors that improves the accuracy, we evaluated the accuracy of
SVM by using the same data as the previous model. The
LOOCV resulted in 69%, which was higher than the previous
model (56%) but lower than the proposed model (83%). We
confirm from the result that the proposed model could improve
the accuracy by ‘considering the surrounding situation’ and
‘treating variables as combination’.

7 Conclusion and Future Works

To estimate driver’s situational awareness (SA), it is important to
analyze how a driver percepts objects in the traffic environment
and consider the interactions between glance features. We thus
proposed a traffic environment considered SA estimation model.
We conducted a takeover experiment on a driving simulator, and
created an explanatory variable set that include not only driver’s
glance information, but also other vehicles and obstacles infor-
mation. We introduced support vector machine (SVM) to devel-
op the SA estimationmodel. After a data processing, determining
variables were obtained, and they indicate that the drivers gaze
on objects is important for estimating drivers SA. As a result of
SA estimation, SVM obtained 83% accuracy with the determin-
ing available and the awareness to driving-relevant objects was
significant to SA estimation. The comparison with the previous
model revealed that the accuracy of the proposed model was
improved by ‘considering the surrounding situation’ and ‘treating
variables as combination’.

In this paper, we only analyzed glance behavior after TOR,
so we will address estimating drivers’ SA before TOR (i.e.,
while AD). We will increase the data sample including differ-
ent genders and ages. Moreover, we will integrate the pro-
posed model to an assistant system, which can improve
driver’s SA or stop the vehicle depending on driver’s SA
level, and a driver workload estimation system [23], to pro-
vide assistant suitable the driver’s workload. Furthermore,
since unscheduled TO will lead to maneuver error, we will
analyze the impact of driver’s maneuver, and design an assis-
tant system for enhancing driver’s maneuver ability.

Acknowledgments This research was supported in part by the JST
PRESTO (JPMJPR1754), and the Research Institute for Science and
Engineering, Waseda University.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included

in the article's Creative Commons licence, unless indicated otherwise in a
credit line to the material. If material is not included in the article's
Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. SAE On-Road Automated Vehicle Standards Committee.
Taxonomy and Definitions for Terms Related to Driving
Automation Systems for On-Road Motor Vehicles (2016)

2. Kamezaki, K., Hayashi, H., Manawadu, U.E., Sugano, S.: Human-
centered intervention based on tactical-level input in unscheduled
takeover scenarios for highly-automated vehicles. Int. J. Intell.
Transp. Syst. Res. 18, 1–10 (2019)

3. Hayashi, H., Kamezaki, M., Manawadu, U. E., Kawano, T., Ema,
T., Tomita, T., Catherine, L., Sugano, S.: A driver situational
awareness estimation system based on standard glance model for
unscheduled takeover situations. In: Proc. IEEE Intell. Vehicles
Symposium, pp. 718–723 (2019)

4. Winter, J.C.F., Happee, R., Martens, M.H., Stantond, N.A.: Effects of
adaptive cruise control and highly automated driving on workload and
situation awareness: a review of the empirical evidence. Transp. Res.
Part F Traffic. Psychol. Behav. 27(Part B), 196–217 (2014)

5. Zeeb, K., Buchner, A., Schrauf, M.: Is take-over time all that matters?
The impact of visual-cognitive load on driver take-over quality after
conditionally automated driving. Accid. Anal. Prev. 92, 230–239 (2016)

6. Punitkumar, B., Babji, S., Rajagopalan, S.: Quantifying situation
awareness of control room operator using eye-gaze behavior.
Comput. Chem. Eng. 106(2), 191–201 (2017)

7. Tyron, L., Natasha, M.: Are you in the loop? Using gaze dispersion
to understand driver visual attention during vehicle automation.
Transp. Res. Part C Emerg. Technol. 76, 35–50 (2017)

8. Endsley, M.R.: Toward a theory of situation awareness in dynamic
system. Hum. Factors. 37(1), 33–64 (1995)

9. Fletcher, L., Zelinsky, A.: Driver inattention detection based on eye
gaze-road event correlation. Int. J. Rob. Res. 2(6), 774–801 (2009)

10. Tawari, A., Chen, K. H., Trivedi, M. M.: Where is the driver looking:
analysis of head, eye and iris for robust gaze zone estimation. in: Proc.
Int. Conf. Intelligent Transportation Systems, pp. 988–994 (2014)

11. Fridman, L., Toyoda, H., Seaman, S., Seppelt, B., Angell, L., Lee,
J., Mehler, B., Reimer, B.: What can be predicted from six seconds
of driver glances? In: Proc. Conf. Human Factors in Computing
Systems, pp. 2805–2813 (2017)

12. Trzcinski, T., Rokita, P.: Predicting popularity of online videos
using support vector regression. IEEE Trans. Multimedia. 19(11),
2561–2570 (2017)

13. Sanaeifar, A., Bakhshipour, A., Guardia, M.: Prediction of banana
quality indices from color features using support vector regression.
Talanta. 148(1), 54–61 (2016)

14. Kazutoshi, T., Bono, L., Dragan, A., Takio, K., Mikio, K., Natsuo,
O., Takahiro, S.: Prediction of carcinogenicity for diverse chemicals
based on substructure grouping and DVM modeling. Mol. Divers.
14(4), 789–802 (2010)

15. Shimofuji, S., Matsui, M., Muramoto, Y., Moriyama, H., Kato, R.,
Hoki, Y., Uehigashi, H.: Machine learning in analyses of the rela-
tionship between Japanese sake physicochemical features and com-
prehensive evaluations. Japan J. Food Eng. 21(1), 37–50 (2020)

16. Suykens, J.A.K., Vandewalle, J.: Least squares support vector ma-
chine classifiers. Neural. Process. Lett. 9, 193–300 (1999)

17. Chang, C. C., Lin, C. J.: LIBSVM—a Library for Support Vector
Machines, https://www.csie.ntu.tw/~cjlin/libsvm/, Last Accessed:
2020-06-01

Int. J. ITS Res. (2021) 19:167–181180

https://doi.org/
https://www.csie.ntu.tw/~cjlin/libsvm/


18. Tzu-Tsung, W.: Performance evaluation of classification algo-
rithms by k-fold and leave-one-out cross validation. Pattern
Recogn. 48(9), 2839–2846 (2015)

19. Smart eye, https://smarteye.se/research-instruments/se-pro/, Last
Accessed: 2020-06-01

20. Manawadu, U. E., Ishikawa, M., Kamezaki, M., Sugano, S.:
Analysis of individual driving experience in autonomous and
human-driven vehicles using a driving Simulator, in: Proc. IEEE/
ASME Int. Conf. Advanced Intelligent Mechatornics, pp. 299–304
(2015)

21. Eriksson, A., Stanton, N.A.: Takeover time in highly automated
vehicles: noncritical transitions to and from manual control. Hum.
Factors. 59(4), 689–705 (2017)

22. Scheurer, S., Tedesco, S., Brown, K. N., O’Flynn, B.: Sensor and
feature selection for an emergency first responders activity recog-
nition system, in: Proc. IEEE SENSORS, pp. 1–3 (2017)

23. Manawadu, U. E., Kawano T., Murata, S., Kamezaki, K., Muramatsu,
J., Sugano, S.: Multiclass classification of driver perceived workload
using long short-termmemory based recurrent neural network, in Proc.
IEEE Intell. Vehicles Symp., pp. 2009–2014 (2018)

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

Hiroaki Hayashi received the
B.S. and M.S., in Mechanical
Engineer ing f rom Waseda
University in 2017, and 2019, re-
spectively. Currently he is a
G r a d u a t e S t u d e n t i n t h e
D e p a r t m e n t o f M o d e r n
Mechanical Engineering in
Waseda University. His research
interests include human-machine
interface systems, driving simula-
tion, and driving automation sys-
tems. He received young fellow
award from the Japan Society of
Mechanical Engineers in 2020.

He is a member of the JSME.

Oka Naoki received the B.S. in
Mechanical Engineering from
Waseda University in 2018, and
currently is a Graduate Student
in the Department of Modern
Mechanical Engineering in
Waseda University. His research
interests include human-machine
interface systems, driving simula-
tion, and driving automation sys-
tems. He is a member of the
JSME

Mitsuhiro Kamezaki received
the B.S., M.S., and Dr. of
Engineering degrees in mechani-
cal engineering from Waseda
University, Japan, in 2005, 2007,
and 2010, respectively. Since
April 2010 to March 2013, he
was a Research Associate in the
D e p a r t m e n t o f M o r d e r n
Mechanical Engineering, Waseda
University. Since April 2013 to
March 2018, he was an Assistant
Professor in the Research institute
for Science and Engineering,
Waseda Univ. Since April 2018,

he has been an Associate Professor in the Research Institute for Science
and Engineering, Waseda Univ. His interests include intelligent machine
system, man-machine interface, and operator support system. Dr.
Kamezaki received the Young Investigation Excellence Award from
RSJ in 2016, the Best Paper Award from the IEEE/ASME AIM 2016,
and the Best Paper Awards from RSJ and SICE. He is a Member of the
JSAE, SICE, RSJ, JSME, and IEEE RAS.

Shigeki Sugano received the
B . S . , M . S . , a n d D r . o f
Engineering degrees in mechani-
cal engineering from Waseda
University, Japan, in 1981, 1983,
and 1989, respectively. From
1986 to 1990, he was a Research
Associate in Waseda University.
Since 1990, he has been a
F a c u l t y M em b e r i n t h e
Department of Mechanical
Engineering, Waseda University,
where he is currently a Professor.
From 1993 to 1994, he was a
Vi s i t i n g S c h o l a r i n t h e

Mechanical Engineering Department, Stanford University. He is a
Member of the Humanoid Robotics Institute, Waseda University. Since
2014, he serves the Dean of the School of Creative Science and
Engineering, Waseda University. His research interests include human-
symbiotic anthropomorphic robot design, dexterous and safety manipu-
lator, and human-robot communication. He served as the General Chair of
IROS2013 in Tokyo and SICE Annual Conference 2011. Dr. Sugano is a
fellow member of JSME, SICE, RSJ, and IEEE RAS.

Int. J. ITS Res. (2021) 19:167–181 181

https://smarteye.se/researchnstruments/se-ro/

	Development of a Situational Awareness Estimation Model Considering Traffic Environment for Unscheduled Takeover Situations
	Abstract
	Introduction
	Methodology
	Glance Area and Traffic Environment
	TO Phases for Lane Change
	Explanatory Variables
	Predictor Variables
	Classification Using Support Vector Machine

	Implementation
	Gaze Classification
	Driving Simulator

	Design of Experiments
	Unscheduled TO Scenario
	Data Acquisition, Subjects, and Procedure

	Results and Analysis
	Takeover Performance and Glance Map
	Determining Variables and Accuracy

	Discussion
	Reason of Estimation Error
	False Estimation (Bad as Good)
	False Estimation (Good as Bad)

	Difference of Individual Glance Behavior
	Glance Behavior of Good Performance
	Glance Behavior of Bad Performance

	Comparison with Previous Model

	Conclusion and Future Works
	References


