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Abstract
Artificial intelligence and deep learning-based techniques undoubtedly are the future of Advanced Driver-Assistance Systems 
(ADAS) technologies. In this article is presented a technique for detecting, recognizing and tracking pedestrians, vehicles 
and cyclists along a tramway infrastructure in a complex urban environment by Computer Vision, Deep Learning approaches 
and YOLOv3 algorithm. Experiments have been conducted in the tramway Line 2 “Borgonuovo –Notarbartolo” (Palermo, 
Italy) in correspondence of the tramway segments crossing a roundabout having an external diameter of 24 m. A survey 
vehicle equipped with a video camera was used in the study. The results of the research show that the proposed method is 
able to search and detect the position and the speed of road users near and over the rails in front of the tram in a very pre-
cise way as demonstrate by the estimated values of the Accuracy, Loss and Precision obtained during the neural networks 
training process. The implementation of this advanced detection method in ADAS systems may increase the safety of novel 
autonomous trams and autonomous rapid trams (ARTs).
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1  Introduction

Various types of Advanced Driver Assistance Systems 
(ADAS) have been developed for safe driving of different 
types of private and public vehicles. In 2014 the Society 
of Automotive Engineers International (SAE) classified 
6 levels of driving automation, from the most basic sys-
tems (level 0) to 100% autonomous driving one (level 6) 
[1]. Several research on the ADAS demonstrate that pas-
sive forward collision warning (FCW) and intelligent speed 
assistance (ISA) systems have been efficacious in reducing 
the number of pedestrian/vehicle collisions [1–3]. ADAS 
can be defined as a vehicle-based intelligent safety system 
which may well increase road safety in terms of crash avoid-
ance, crash severity mitigation and user’s protection during 
post incident phases. The most well-known ADAS systems 
include several technologies such as:

–	 Collision Warning (i.e.: Blind Spot Warning; Forward 
Collision Warning; Lane Departure Warning; Parking 
Collision Warning; Rear Cross Traffic Warning);

–	 Collision Intervention (i.e.: Automatic Emergency Brak-
ing; Automatic Emergency Steering; Reverse Automatic 
Emergency Braking (AEB));

–	 Driving Control Assistance (i.e.: Adaptive Cruise Con-
trol (ACC); Lane Keeping Assistance; Active Driving 
Assistance);

–	 Parking Assistance (i.e.: Active Parking Assistance; 
Remote Parking Assistance; Trailer Assistance);

–	 other driver assistance systems (Automatic High Beams; 
Driver Monitoring; Head-Up Display; Night Vision).

Currently ADAS systems are largely used in cars and 
trucks. Autonomous buses (or self-driving, driverless buses 
and automated shuttles) are in the experimental stage in 
numerous cities worldwide thanks to their high automation 
levels [2–4]. Experiments have been conducted in controlled 
zones such as the university campus, parking areas and small 
villages [4]. Autonomous vehicles can be classified as fol-
lows: (1) private autonomous cars, (2) shared autonomous 
cars/taxis, (3) autonomous buses and trucks; (4) autonomous 
Trams (5); autonomous-rail rapid tram (ART) [4–7].

 *	 Marco Guerrieri 
	 marco.guerrieri@unitn.it

	 Giuseppe Parla 
	 peppeparla@yahoo.it

1	 DICAM, University of Trento, Trento, Italy

/ Published online: 27 August 2022

International Journal of Intelligent Transportation Systems Research (2022) 20:745–758

http://orcid.org/0000-0002-0813-1799
http://crossmark.crossref.org/dialog/?doi=10.1007/s13177-022-00322-4&domain=pdf


1 3

The International Association of Public Transport (UITP) 
defines ATO, ATC, ATP as Grades of Automation (GoA). 
Each GoA is identified by the operational responsibilities 
of the train basic functions either to an automatic system 
or to man. In particular, the UITP identify the following 5 
GoA levels [8]:

According to [9, 10] the grade of automation (GoA) of 
metro lines can be categorized into four categories (Fig. 1):

–	 GoA1 (Operation with a driver). The driver of the Tram 
is actively involved in all the driving activity and the 
vehicles is equipped with an ATP (Automatic Train Pro-
tection system);

–	 GoA2 (Semi-automatic Train Operation (STO)). The 
driver is involved in driving only if a failure occurs, and 
is responsible for opening and closing the doors. The 
Tram is equipped with ATP and ATO (Automatic Train 
Operation system);

–	 GoA3 (Driverless Train Operation (DTO)). The Tram 
does not require a driver. An attendant is answerable for 
the opening and closing of the doors and intervenes in the 
event of failures. Tram is equipped with ATP and ATO 
systems.

–	 GoA4 (Unattended Train Operation (UTO)). The Tram 
does not require a driver and attendant; it is equipped 
with ATP and ATO systems.

Similar classification can be used in case of tramway sys-
tems. Consequently, trams operation can be assumed to be 
automatic if the vehicles are driverless (GoA4 and GoA3).

Driverless systems applied to public transport mode 
may improve capacity, efficiency and safety and decrease 
the operational costs (lower operation personnel cost) and 
the road congestion. In particular, the autonomous buses 
and autonomous-rail rapid trams could be characterized by 
demand-driven schedules and therefore could potentially 
dynamically regulate their trajectory, capacity and stopping 
in accordance with users demand. Several researches have 
shown positive attitudes of passengers towards autonomous 
buses [4, 11–13]. Some Adaptive Autonomous vehicles as 
ART use ACC in order to increase the transportation system 
capacity. In operating conditions ACC allows small distance 
between each vehicle pair of a fleet.

In general, the main purpose of autonomous systems is 
to safely drive a vehicle without human supervision. For 
long time, researchers have proposed several artificial vision 
algorithms for implementing automatic systems into private 
or public vehicles but many problems including changes in 
obstacles, lighting, background and speed turns this techni-
cal approach into a difficult task with no simple solution 
[14].

The main problem in the ADAS systems is the obstacle 
detection.

Fig. 1   Classification of grade of automation (adapted from [9, 10])
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Nowadays several obstacle detection technologies are 
used in this field, based on sensors that allow obtaining 
several information including the presence of pedestri-
ans, cyclists and vehicles along the way. The most com-
mon Detection systems can be classified as follows [15]: 1) 
Active detection that uses radar systems; 2) Passive detec-
tion founded on visual detection technology (the vehicle 
is equipped with a CCD camera in order to obtain a large 
amount of information directly from the environment).

In smart cities of the near future, there will be many types 
of autonomous vehicles, including trams. ADAS systems 
operating on trams will improve the safety of public trans-
port systems and thus the safety of the entire mobility system 
of the smart city.

Unlike the ADAS operating on cars, in tramway systems 
the ADAS should identify and classify only the anterior 
obstacles, this is because the trajectories of tram vehicles 
are imposed by the rails. In addition, for each time instant, 
ADAS should calculate the Emergency braking curve EBD 
that describes braking distance in function of the instanta-
neous speed of trams [16]. Over the years a large number 
of accidents resulting in many fatalities and a high social 
economic cost have occurred due to human factors-related 
problems [17].

After many decades of stagnation, traditional and innova-
tive tramway systems (i.e. catenary-free systems) are cur-
rently experiencing a period of strengthening with a notable 
expansion in new railway lines [18, 19]. In fact, since 2000, 
about 130 new tramway systems have been constructed in 
the world and many other existing systems have undergone 
deep renovations [1]. Nowadays, modern trams enjoy great 
popularity because they are characterized by low environ-
mental impact, adequate construction and maintenance costs, 
and high transport capacity. At the same time, the number of 
people using cycling and other types of micro-mobility sys-
tems is increasing in cities, which causes a greater number 
of dangerous situations [20]. In urban contexts walking is 
a fundamental mode of transportation. Nevertheless, more 
than 7000 pedestrians were killed each year in the European 
Union, equal to 27% of all traffic victims [21]. According to 
[18, 22] some of the most important hazards in tram traffic 
are: 1) Collision between trams, 2) Tram collision with other 
types of vehicles, cyclists or pedestrians, 3) Running into an 
obstacle on the tracks. In traditional tramway systems the 
train driver must scan the approaching physical environment 
for the presence of hazards, warnings and imposed speed 
limits [23]. In order to reduce such hazards are required sev-
eral actions both from the transportation system (operators, 
train drivers, infrastructure management, etc.) and the road 
users.

The introduction of Self-driving technologies could 
increase the quality of service, the system reliability and 
the safety of these transportation systems [24] both in 

traditional and smart cities. A Self-driving vehicle neces-
sitates of a multimodal suite of sensors (e.g. dual antenna 
GNSS-aided Inertial Navigation System (INS), Lidar, Radar 
and Cameras) to perform the localization, signal handling, 
and obstacle handling tasks [25]. In this direction, Bombar-
dier, Alstom, CRRC, Siemens and other Companies have 
already carried out practical experimentations [24, 25]. Nev-
ertheless, the complex traffic environment and the correlated 
hazards make the realization of unmanned vehicles problem-
atic in tramway systems. Many researches and experiments 
are required above all in the field of object recognition and 
tracking [26]. Presently, in-vehicle detection technology is 
widely applied to the smart car field and it is divided into 
active detection and passive detection [6].

This research describes a technique for pedestrians, vehi-
cles and cyclists recognition along a tramway infrastructure 
by Computer Vision and deep learning approaches. The pro-
posed technique guarantees high accuracy and precision in 
object detection and therefore could be used in advanced 
driver assistance systems or in autonomous trams and auton-
omous rapid trams (ARTs) in order to achieve a high level of 
safety. The paper is structured as follows. Section 2 presents 
an overview of relevant literature of object detection and 
recognition systems based on deep learning techniques and 
YOLOv3 system. Section 3 briefly explains the proposed 
technique applied to a case study in urban context. Section 4 
deals with the neural network training; Sect. 5 presents the 
model for the estimation of the distance between pedestrians 
and rails; instead the main results are presented in Sect. 6. 
Finally, conclusions are proposed in Sect. 7.

2 � Methodology for the Detection of Road 
Users

The detection of pedestrians, cyclists and other road 
users play a key role in automatic driving emerging tech-
nologies. In fact, errors in the detection of road users 
could threaten users' lives [27]. Therefore, the perfor-
mance of road users detection algorithms is of great 
importance in the field of autonomous vehicles.

This research presents a methodology based on 
computer vision, deep learning and Yolov3 algorithms 
applied to the recognition along a tramway infrastructure 
of pedestrians, vehicles and cyclists.

In accordance with the scientific literature, object 
detection algorithms are mainly subdivided into two 
classes: the one-stage method [8, 28, 29] and the two-
stage method [30, 31]. One-stage method classifies the 
object and renders a regression of the object location 
from the raw image. Instead, in the two-stage method 
the detection process requires the following phases: 1) 
extraction the region of interest (ROI) from an image 
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where the objects of interest may be, and 2) correction 
and recognition of the candidate region [32]. YOLO 
is a typical one-stage detection algorithm, which was 
originally proposed by Redmon [8, 28] to achieve end-
to-end target detection based on a single CNN model. 
Nowadays Object detection systems like YOLO (You 
Only Look Once), SSD (single-shot detector), and Faster 
R-CNN, not only classify images but also can locate 
and detect each object in images that contain multiple 
objects [33].

The structure of YOLO is composed of two different 
parts [8]: the first one is the feature extraction network 
that allows the general features of the researched object 
[34]. The second part of YOLO is a post-processing 
network which aims to evaluate the coordinates and the 
categories of the object under analysis. YOLOv3 is one 
of the latest versions of YOLO networks. It does not 
require a region proposal network (RPN) and directly 
performs regression to detect targets in the image [35].

The YOLOv3 algorithm uses a new network for 
extracting the object features. YOLOv3 includes 53 
convolutional layers (Darknet-53) and 23 residual lay-
ers as displayed in Figs 2. YOLOv3 is characterized by 
a remarkable advancement in real-time object detec-
tion, particularly in the detection of smaller objects. 
In addition, YOLOv3 uses a multi-label classification. 
Therefore, in this research YOLOv3 is chosen as the 
detection system for vehicles, pedestrians and other 
road users along the analysed tramway line. As well 
explained in [35], 1 × 1, 3 × 3/2, and 3 × 3 convolution 
kernels of three sizes are applied in the convolutional 
layers to sequentially extract image features, ensuring 

the model has remarkable classification and detection 
performances.

The remaining layers guarantee the convergence of 
the detection model [35]. For detecting the parts of the 
object of interest at the same time, YOLOv3 fuses three 
feature maps of different scales (52 × 52, 26 × 26, and 
13 × 13) by three times of downsampling. In conclusion, 
the YOLO algorithms family (i.e. YOLOv1, YOLOv2, 
YOLOv3) is a series of end-to-end deep learning models 
planned and designed for fast real-time object detection 
[33].

In YOLOv3 algorithm, the Loss function is composed 
by the following parts: classification loss, localization 
loss (errors between the predicted boundary box and the 
ground truth) and confidence loss (the objectness of the 
box) [37] as follows:

classification loss: if an object is detected, the clas-
sification loss at each cell is the squared error of the 
class conditional probabilities for each class [37]:

where
I
obj

ij
=1: if an object appears in the cell i, otherwise is 

0;
p̂i(c) : denotes the conditional class probability for 
class c in the cell i.
Localization loss: evaluates the errors in the predicted 
boundary box locations and sizes. It is only counted 
the box responsible for detecting the object [37]:

(1)
S2
∑

i=0

I
obj

ij

(

pi(c) − p̂i(c)
)2

Fig. 2   YOLOv3 Network structure (adapted from [36])
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where
I
obj

ij
 = 1: if in the jth boundary box in cell i is responsible 

for detecting the object, otherwise 0;
�coord : increase the weight for the loss in the boundary 
box coordinates.
Confidence loss: if an object is detected in the box, the 
confidence loss (measuring the objectness of the box) is 
[37]:

where
Ĉi : stands for the box confidence score of the box j, in 
the cell i.
I
obj

ij
=∶ if the jth boundary box in the cell i is responsible 

for detecting the object, otherwise 0.
If an object is not detected in the box, the confidence loss 
is [37]:

where�noobj : is the complement ofIobj
ij

;Ĉi : is the box con-
fidence score of the box j in the cell i;�noobj : weights down 
the loss when detecting background.

The final loss adds localization, confidence and classifica-
tion losses together [37], as follows:

In YOLO v3 the method for predicting the bounding box 
is given by Eqs. (6):

(2)

�coord
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In which tx, ty, tw, and th are the predicted outputs of the 
model, which denote the relative position coordinates of the 
center of the bounding box and the relative width and height 
of the bounding box. cx and cy denote the net, instead pw and 
ph are the width and height of the predicted front bounding 
box. Finally bx, by, bw, and bh are the true coordinates of the 
center of the bounding box, the true width and height of the 
bounding box obtained after prediction (Fig. 3).

The performance of a certain object detector can be meas-
ured mainly by the following metrics:

Frame per second (FPS) to measure detection speed 
(number of images processed every second);

Precision-recall curve (PR curve) in which Precision and 
Recall are calculated as follows:

The symbols TP, FN and FP stand for True Positive, False 
Negative and False Positive respectively.

(6)

⎧

⎪

⎨

⎪

⎩

bx = �
�

tx
�

+ cx
by = �

�

ty
�

+ cy
bw = pwetw
bh = pheth

(7)Re call =
TP

TP + FN

(8)Pre cision =
TP

TP + FP

(9)Accuracy =
TP + TN

TP + TN + FP + FN
⋅ 100

Fig. 3   Bounding Box with dimensions priors and location prediction 
(source: [8, 28])
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3 � The Case Study

The city of Palermo (Italy) covers a territory of 158.88 km2 
with a population of 666,992 inhabitants. Apart from the 
capital, the metropolitan area includes 26 towns, with a total 
population of around 1 million inhabitants. The following 
tramway lines have been running since 2015:

–	 Line 1 “Roccella”: about 5.5 km long, with double tracks;
–	 Line 2 “Borgonuovo –Notarbartolo”: 4.8 km, with double 

tracks;

–	 Line 3 “C.E.P. – Notarbartolo”: 5 km, with double tracks;
–	 Line 4 “Notarbartolo-Calatafimi-Notarbartolo”: 8 km 

with single track.

The municipality expects to extend the tramway system 
with seven new lines called “A, B, C, D, E, F, G”, with a 
total of more than 68 km.

The experiments of this research have been conducted 
into the tramway Line 2 “Borgonuovo –Notarbartolo” in the 
city of Palermo (Italy) and more precisely in the tree-arms 
roundabout of Fig. 4 crossed by different tramway sections. 
From the geometric point of view, the roundabout is charac-
terized as follows: external diameter: 24 m; width of circu-
lating carriageway: 6 m; entry lanes width: 3.50 m; exit lanes 
width: 3.50 m. In the first phase of the research, Deep learn-
ing and Yolov3 algorithms are used for detecting vehicles 
and pedestrians in the tramway track space (i.e. road users 
that cross or travel along the track). For this purpose several 
runs of a survey vehicle (Fig. 5) were made traveling in 
the roundabout, following the tramway track. The detection 
processes are investigated via a video camera installed in the 
survey vehicle (Fig. 6a). Traffic video recordings, with the 
resolution of 1280 × 720 pixels, were analyzed using a work-
station with Intel(R) Core(TM) i7-4510 CPU @ 2.00 Hz 
2.60 GHz – Memory RAM 20 Gb, Windows 10 Home. The 

Fig. 4   Roundabout analyzed (in red the tramway tracks)

Fig. 5   Hypothetical Tram sen-
sors and test vehicle used in the 
research

Fig. 6   Camera calibration procedure
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first research phase was the Camera calibration. Camera cali-
bration aims at establishing two sets of parameters: intrinsic and 
extrinsic. The intrinsic parameters are related to the focal length 
and optical center. The extrinsic parameters (pitch angle, yaw 
angle, and height above ground) determine the spatial offset of 
the camera. The Zhang algorithm [38] determines the extrinsic 
parameters of the system. For the calibration processes 64 dif-
ferent images of the chessboard of Fig. 6b have been considered 
using a set of different photos. Figure 6c shows the Extrinsic 
Parameters visualization obtained by the calibration processes. 
The calibrate model was then validated by several tests con-
cerning the comparison between estimated and measured val-
ues of tramway gauge (see Sect. 5.1).

4 � Training of the Neural Networks

As explained in previous Sect. 2 YOLOv3 includes 53 convo-
lutional layers, hence the name Darknet-53. In Darknet-53 the 
weights of the custom detector are saved for every 100 until 
1000 iterations, and it continues to be saved for every 10,000 
iterations until it reaches the maximum batches [39]. The pre-
existing road users dataset (including light and heavy vehicles, 
motorbikes, pedestrians and other road users) in Darknet-53 
was split into 75% for training and 25% for testing.

In the course of the training process phase, data augmen-
tation procedures (cropping, padding, flipping, etc.) were 
applied with the aim to prepare the large neural networks. 
Before, a bounding box labelling tool [40] has been applied 
to manually detect and recognize road users (vehicles and 
pedestrians) for the object to be detected [39] in the tramway 
track space. The outcomes of this phase and the class label 
consist of four points of the position coordinate. The label 
is converted into YOLO format and the tool changes the 
values to a format which the training algorithm YOLOv3 
can employ. Figure 7 shows the training process consisting 
of 2000 iterations. The Accuracy (cf. Equation 9 and Fig. 7), 

the Loss (cf. Equation 5) and the Precision (Eq. 8 and Fig. 8) 
values demonstrate that the proposed training model detects 
the pedestrian and the vehicles with high accuracy.

5 � Estimation of the Distance Between 
Pedestrians and Rails

5.1 � Tramway Track Detection

The rails boundaries detection and tracking are based on 
the algorithm carried out by Nieto [41] for the detection of 
lane markings in roads and highways. In addition, a Top-
hat filter was used to correct the non-uniform brightness 
of the original image [42].

Let I be the original image under analysis, the “Top-hat” 
algorithm can be written as follows:

Being ⨀ the binary morphology operator that denotes 
a morphological opening operation and B is the structured 
element, which is a matrix composed of binary values (0 or 
1) and It is the filtered image. In this research the structured 
element is a circle with a radius of a 5 pixel. After having 
determined the filtered image, the algorithm determines its 
complement. The difference is used as the pixel value in the 
output image. The following types of elements are taken into 
account within any plane image: Pavement, tramway rails, 
Objects (i.e. vehicles, pedestrians and other road users). 
The object segmentation is based on the Bayesian decision 
theory according to the conditions given below. Let S = {P, 
R, O, U} be the set of classes that characterize, respectively, 
the pavement, the rails of the tramway track, the objects (i.e. 
vehicles, pedestrians and other road users) and the unidenti-
fied elements.

(10)It = (I − I⊙ B)
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The main target of the classifier is to assign one of 
the classes {P, R, O, U} to each pixel of the image [42]. 
According with [41] we denote with Xi the event that a 
pixel whose coordinates are (x, y) and with an associ-
ated observation vector denoted as zxy is classified as 
belonging to the class i ∈ S. By means of the Bayesian 
decision theory, the classification is obtained by select-
ing the class that maximizes the a posteriori conditional 
probability P(Xi|zxy) as follows:

Being p
(

zxy|Xi

)

 the probability that a pixel belongs 
to class i; P

(

Xi

)

 the prior probability of each class and 
P
�

zxy
�

=
∑

i∈Sp
�

zxy�Xi

�

P
�

Xi

�

 a scale factor that ensures 
that the posteriors sum to unity. Then, it can be esti-
mated the probability that a pixel belongs to a certain 
class.

Therefore, adopting the Likelihood models and an 
Expectation–Maximization (EM) algorithm, the seg-
mented tramway rails (Boolean image) are obtained.

After the determination of the Boolean image of the 
tramway rails (Fig. 11d) the proposed procedure needs to 
match the estimated alignment of the rails with respect 
to the real alignment. In order to fit the model to the 
real geometric alignment of the track, the RANSAC 
“RANdom Sampling Consensus” model [43] was imple-
mented. RANSAC is an iterative technique used to esti-
mate the parameters of a mathematical model from a 
set of observed data that contains a large proportion of 
outliers in the input data. In short, RANSAC is a resa-
mpling technique that produces realistic solutions by 
means of the minimum number of observations which 
are required to estimate the underlying model param-
eters [44]. In RANSAC the number of iterations N is 
selected to ensure that the probability p (usually set to 
0.99) that at least one of the sets of random samples does 
not include an outlier:

In which v represents the probability of finding an 
inlier in any selected point, m is the minimum num-
ber of points required to estimate a model and they are 
selected independently. In case of a parabolic curve in 
the planimetric tramway alignment, the proposed algo-
rithm estimates the coefficients [a, b, c, d] of the tran-
sition curve whose equation is y = a·x3 + b·x2 + c·x + d 
from the candidate coordinates (input data). In addition 
this procedure allows validating the camera calibration 
phase. In fact, it can be estimated the Euler Angle of 

(11)P
(

Xi|zxy
)

=
p
(

zxy|Xi

)

P
(

zxy
)

(12)N =
log(1 − p)

log[1 − (1 − vm)]

the camera by comparing a sample of estimated values 
of gauge of the tramway track with respect to the real 
value (1435 mm). Through an iterative procedure, the 
Euler angles are modified until the difference between 
the estimated values and the real ones  becomes less than 
1 cm. Fig. 9 explains in a synthetic way the proposed 
process for camera calibration and validation.

5.2 � Top view Image Transformation

In each instant of time the methodology allows deter-
mining the distance of road users from the rails and 
therefore to identify the critical conditions that require 
emergency braking of the Tram. The distance considered 
is that of the users' centroid projected on the ground 
plane (road pavement surface) with respect to the near-
est rail [46]. The procedure for the distance estimation 
is specified below and it is founded on the inverse per-
spective mapping (IPM). Let {Fw} = {Xw, Yw,Zw} be 
the world frame centered at the camera optical center, 
{Fc} = {Xc, Yc,Zc} the camera frame and {Fi} = {u, v} 
an image frame (Fig. 10). It is assumed that the optical 
axis has no roll; in other words, the camera frame Xc 
axis stays in the world frame XwYw plane. The height 
of the camera frame with respect to the ground plane is 
h (Fig. 10).

Fig. 10   IPM coordinates. Left: coordinate axes (world). Right: defini-
tion of pitch and yaw angles

Fig. 9   Camera calibration and validation schematic procedure
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Using the following homogeneous transformation can 
be found the projection point on the road plane of each 
point iP = {u, v, 1, 1} in the image plane [46]:

In which:{fu, fv}: are the horizontal and vertical focal 
lengths;{cu, cv}: are the coordinates of the optical center;

c1 = cosα, c2 = cosβ, s1 = sinα, and s2 = sinβ.
On the contrary from a point on road plane gP = {xg, yg,-h, 

1} we can obtain its subpixel coordinates on the image frame 
by the relationship iP = giT ggP using the inverse of the 
transform [46]:

With the previous relationships, using the func-
tion “EstimateMonoCameraParameters” in MAT-
LAB environment the extrinsic parameters of the cam-
era ( EulerAngle = ⟨�����⟩ = ⟨pitch�yaw�roll⟩ ) can be 
calculated.

It is worth pointing out that varying the angles 
“pitch”, ”yaw” and”roll” in MATLAB the Bird’s eye view 
of the analyzed image changes accordingly. The Birds Eye 
View of the images is of fundamental interest for analyzing 
the distance between pedestrians and railway tracks. Fig-
ure 11 shows a schematic illustration of the top view image 
transformation [45].
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5.3 � Road Users Tracking

In the tracking phase of pedestrians, vehicles and cyclists, 
the Kalman filter was implemented with the purpose of 
tracking the projection on the pavement surface of the cen-
troid of the objects of interest (i. e. pedestrians, vehicles 
and cyclists).

Kalman filter [47] is a recursive predictive filter able to 
evaluate the state of a dynamic system. The Linear Kalman 
Filter is applied for the evaluation of the coordinate of the 
object of interest. The dynamic equation is [48, 49]:

Considering the error covariance [48, 49]:

in which xn is the state value (object coordinates) at step 
n, An is the state transition matrix, un is the measurement and 
the input and at step n. Qn is the white noise covariance [49]. 
This step is called the “prediction step” since it estimates 
the n + 1 state. Kalman gain value is given by the following 
relationship [49]:

where C is the measurement matrix and R is measurement 
noise.

Actual measurement value at the updated time and error 
covariance is [49]:

Being Kn the measurement value and H the mapping 
matrix from true state to observation.

The initial covariance matrix is a diagonal matrix hav-
ing high values since the centroids of the Bounding Boxes 

(15)xn+1 = Anxn + Bnun

(16)Pn+1 = AnPnAn
T + Qn

(17)Kn = PnC
T
(

CPnC
T + Rn

)−1

(18)Pn =
(

I − KnH
)

Pn

Fig. 11   a) Schematic illustration of the top view image transformation (adapted from [45]), (b) original image of pedestrians near the tramway 
track, (c) road-plane transformation, (d) Boolean image of the tramway track.
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that identify the pedestrians in many frames of the analyzed 
video sequences often are not always clearly distinguishable. 
The Kalman filter can be applied to different object motions 
(i.e. constant velocity and constant acceleration); the amount 
of deviation from the ideal motion model allows fitting the 
real motion conditions with respect to the real ones.

Figure 12 shows some examples of pedestrians and vehi-
cles detection near the tramway track under study, instead 
Fig. 13 gives an example of the Kalman filter application 
for the evaluation of pedestrians’ trajectories. It is worth 
pointing out that the Kalman filter is able to estimate the 
trajectory of a pedestrian even if it overlaps with another 
object in the scene.

6 � Results

Figure 11c shows an example of IPM: it can be noted the 
position of a pedestrian with respect to the rails of the tram-
way track. Therefore, the functions described in the previ-
ous sections allow to estimate the distances between the 
pedestrians and the rails and to evaluate the risk conditions 
that require emergency braking maneuvers even in situa-
tions in which prospectively the trajectories of pedestrians 
are arranged between them in partial or total occlusion. As 
shown in Figs. 14, 15, for the pedestrians, the procedure 
is capable of estimating the speed component orthogonal 
to the rails when they approach or cross the tramway track 
(Fig. 14). Similar results can be obtained in case of vehicles, 
bicyclists, animals, etc.

Fig. 12   Example of pedestrians and vehicles detection near the tramway track

Fig. 13   Results of the Kalman filter application

Fig. 14   Examples of detection, tracking and distances measurement of two pedestrians
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The results show the effectiveness of the proposed algo-
rithm in detecting with high accuracy and precision the 
tramway track, the road users (pedestrians) and their trajec-
tories and speeds and therefore this method could be used in 
advanced driver-assistance systems ADAS or in on autono-
mous trams and autonomous rapid trams (ARTs) in order to 
achieve a high level of safety.

The proposed method is able to detect and follow the 
position of each road user using the tracking algorithm.

However, some FP and FN were found during the detec-
tion phase of the algorithm [50, 51]. In general, detection 
errors are associated with a variety of causes, including the 
camera viewing angle, the test vehicle oscillations, other 
objects near the tramway line and many others [52]. Conse-
quently, to better appreciate the reliability of the proposed 
technique, an error analysis was performed by comparing the 
number of road users detected and the real one. Figure 16 
exemplifies the main results of the validation procedure: the 
correct detection rate ranges from 96.0% to 100% depending 
on the road user type.

The tracking phase permits the detection of the same 
vehicle or pedestrian in all the positions which may be 
shown in a sequence of consecutive video frames. The sys-
tem successfully identified pedestrians and vehicles in the 
lateral position with respect to the rails.

Therefore, the speed component of the users orthogonal 
to the rails can be estimated and by specific safety protection 
algorithm the collision warning function can be activated.

The implementation of this advanced detection method 
based on deep learning together to a collision warning sys-
tem in ADAS may increase the safety of novel autonomous 
trams and autonomous rapid trams (ARTs). For such novel 
types of transportation systems, a Safety Protection Frame-
work could be structured like the one shown in Fig. 17. The 
implementation of this advanced detection method based 
on deep learning together to a collision warning system in 
ADAS.

7 � Conclusions

Artificial intelligence and deep learning-based techniques 
are the future of Advanced Driver-Assistance Systems 
(ADAS) technologies. In this article is presented a technique 
for real-time pedestrians, vehicles and cyclists detection, 
tracking and recognition along a tramway infrastructure in 
a complex urban environment by Computer Vision and deep 
learning approaches. In particular, the YOLOv3 algorithm, 
RANSAC model and Kalman filter were used.

Experimental activities were conducted in the tramway 
Line 2 “Borgonuovo –Notarbartolo” in the city of Palermo 
(Italy) on the segment crossing a Tree-arms roundabout. A 
survey vehicle equipped with a video camera was used in 
the research. Traffic video recordings, with the resolution 
of 1280 × 720 pixels, were analyzed using a workstation 
with Intel(R) Core(TM) i7-4510 CPU @ 2.00 Hz 2.60 GHz 
– Memory RAM 20 Gb, Windows 10 Home.

The proposed method is able to search and detect the 
position of private vehicles, pedestrians and cyclists near 
and over the rails in front of the tram in a very precise way 
despite the detection and the tracking of obstacles in com-
plex urban environment have many complications due to the 
tram speed, the dissemination of forms (blurring) and the 
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Fig. 15   Speed of two pedestrians (cf. Fig. 14): a) pedestrian n. 1; b) 
pedestrian n. 2
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Fig. 16   Number of detected road users, total number of real road 
users and correct detection rate (A: cars, B: heavy vehicles; C: pedes-
trians, D: cyclists)
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changing of the background which can greatly complicates 
its accuracy.

In fact, the Accuracy, the Loss and the Precision values 
obtained with the YOLOv3, during the Neural networks 
training process prove that the proposed training model 
detects even the position of several obstacles (vehicles, 
pedestrians and cyclists) at the same time with high accu-
racy in each frame. In particular the pedestrian trajectories 
and the speeds component orthogonal to the rails can be 
estimated. This type of information is useful in the safety 
protection algorithm and in the collision warning function.

Although the proposed procedure needs to be validated 
with a greater number of tests, the first results demonstrate 
the effectiveness of the proposed algorithm with overall 
good outcomes (minimum correct detection rate: 96%).

Therefore, the proposed method guarantees high accu-
racy and precision in object detection and therefore could 
be used in advanced driver-assistance systems or in autono-
mous trams and autonomous rapid trams (ARTs) in order to 
achieve a high level of safety both in traditional and smart 
cities.
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