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Abstract
In data-driven travel-time prediction, previous studies have mainly used speed as the input. However, from a traffic engineer-
ing perspective, given that speed varies little in the free-flow regime, traffic density, which can accurately represent traffic 
conditions from the free-flow regime to the congested-flow regime, is preferable as an input. In this study, we compared the 
accuracy of traffic densities spatially interpolated using spatial statistical and machine learning methods, and validated their 
effectiveness as inputs for travel-time prediction. The results show that even traffic density interpolated by simple spatial inter-
polation contributes to the accuracy of travel-time prediction and is superior to speed for early detection of traffic congestion.

Keywords Traffic density interpolation · Travel time prediction · Spatial interpolation

1 Introduction

With the development of intelligent transport systems (ITS), 
data-driven travel-time prediction methods for large-scale 
networks have been actively developed. It was estimated that 
the time lost due to traffic congestion is equivalent to approx-
imately 2.8 million man-hours of labor per year in Japan [1]. 
Accurate travel-time prediction over a wide area is expected 
to contribute to reducing traffic congestion through traffic 
control by road administrators, for example by regulating 
the traffic flow into congested sections and helping drivers 
avoid congestion [2]. Conventional travel-time prediction is 
based on simulations using mathematical models based on 
the traffic-flow theory; however, it has been pointed out that 
it is difficult to predict traffic conditions on large networks 
[3, 4]. By contrast, data-driven methods have shown that 
prediction accuracy does not change significantly as net-
works become larger [5]. Furthermore, data-driven travel-
time prediction methods have been actively developed owing 

to the accumulation of wide-area and spatially continuous 
traffic data observed by the widespread use of global navi-
gation satellite system (GNSS) equipment and the improve-
ment of computer performance.

In most previous studies, time-series data on speed were 
used as the traffic state variable input for data-driven travel-
time prediction [6]. From a traffic engineering perspective, 
traffic density, which can accurately represent traffic con-
ditions from the free-flow regime to the congested-flow 
regime, is preferable as an input to speed, which changes 
less and has less expressiveness in the free-flow regime. 
While speed does not change significantly until traffic con-
gestion occurs, traffic density changes with the number of 
vehicles even when there is no traffic congestion. Therefore, 
it is expected that using traffic density as an input will allow 
more accurate detection of traffic congestion. According to 
a review of travel-time prediction using data-driven meth-
ods from 2010 to 2021, only three out of 115 studies used 
density as an input, and even when density was used as an 
input, the prediction target was limited to a single road [6]. 
This is because it is difficult to obtain wide-area observation 
data for traffic density because of the high maintenance cost 
of observation equipment, whereas it is easy to obtain wide-
area observation data for speed through mobile observations 
using GNSS.

Given that there is a correlation between speed and traf-
fic density, it is expected that traffic density can be spatially 
interpolated by combining the spatially sparse traffic density 
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observed by detectors and the spatially dense speed observed 
by GNSS. Although there have been studies estimating daily 
traffic volume using spatial statistical methods [7] and inter-
polating on GNSS and detector data for single roads, no study 
has estimated hourly traffic density for large-scale networks.

Therefore, in this study, using the density observed by 
detectors and the speed observed by GNSS, we performed 
spatial interpolation of traffic density using methods based 
on spatial statistics and machine learning, and compared and 
validated the accuracy of the interpolation. Furthermore, 
travel-time prediction was performed using interpolated den-
sities to confirm their validity. Because direct observation 
of traffic density is difficult in practical terms, we conducted 
microscopic simulations in which the density was observ-
able for validation.

2  Methods

This section describes the method used for spatial interpo-
lation of traffic density and the method used for travel-time 
prediction to validate the difference between observed and 
interpolated traffic density.

2.1  Density Interpolation Method

In this study, a road network was represented as a graph. 
Specifically, intersections, branches, mergers, and dead ends 
were considered as nodes, and roads connecting the nodes 
were considered as edges. The target of the interpolation was 
all edges of the graph. However, each interpolation method 
described below estimates the density at a point; therefore, a 
representative point was set at an edge, and the interpolated 
density at the representative point was used as the interpo-
lated density of the edge. In this study, the midpoint of the 
edge was set as the representative point. The target of the 
interpolation was edges whose density was unknown, and 
the density interpolation was performed at each time step.

Four density interpolation methods were considered: 
inverse distance weighting (IDW), ordinary kriging (OK) 
[8], cokriging, and extreme gradient boosting (XGBoost) 
[9]. IDW, OK, and cokriging are based on Tobler’s first law 
of geography [10], which states that the relationship between 
objects that are close to each other increases with distance. 
XGBoost, by contrast, is a machine learning method that 
uses decision trees. IDW is a method for interpolating the 
values of unknown points using a weighted average of 
weights that are the powers of the inverse of the distance 
between unknown points and known points. Compared with 
OK and cokriging, IDW has simpler weights and lower com-
putational complexity, but it does not consider the relative 
positions of the observed points. Compared with Kriging 
and cokriging, IDW has lower computational complexity 

owing to the simplicity of the weights, but it dose not 
consider the relative positions of the observation points. 
OK also interpolates the value of unknown points using a 
weighted average of the surrounding observations. First, the 
covariance of the error is modeled as a function of the dis-
tance from the observed values of known points. Next, the 
expected value of the variance is calculated on the basis of 
the covariance estimated from the covariance function, and 
the weights that minimize this expected value are calculated. 
Next, the expected value of the variance is calculated using 
the covariance estimated from the covariance function, and 
the weights that minimize this expected value are calculated. 
Although the computational complexity of kriging is greater 
than that of IDW, it considers the relative positions of the 
observed value points. It can also calculate the prediction 
error [11]. cokriging is a kriging method with an auxiliary 
variable that is correlated with the target variable. cokriging 
is effective when the observed values of the predictor are 
sparsely available; however, the observed values of another 
variable that is correlated with the predictor are densely 
available. XGBoost is a machine-learning method that uses 
gradient boosting to weight weak learners based on deci-
sion trees. XGBoost achieves high accuracy in interpolating 
spatially correlated targets by using latitude and longitude 
as inputs [12, 13]. XGBoost is characterized by its ability to 
add a variety of variables compared with the previous three 
methods. The coordinates of all edges and the densities of 
edges whose densities are known are used as inputs for IDW 
and OK. The coordinates and velocities of all edges and the 
densities of edges with known densities are used as inputs 
for cokriging and XGBoost.

2.2  Travel‑Time Prediction Method

The densities interpolated in the previous section were used 
to make travel-time predictions for all edges after a few time 
steps. Given that the edge distances are known, the travel 
time is calculated by dividing the distance by the velocity. 
Therefore, velocity was used as the prediction target. We 
used GCN-LSTM, a composite model of graph convolu-
tional network (GCN) and long short-term memory (LSTM), 
to validate the accuracy of the travel-time prediction. GCN 
extracts the spatial correlations of the input, whereas LSTM 
extracts the temporal correlations of the input. This model is 
available in the Python StellarGraph package [14].

3  Validation of Spatial Interpolation

The accuracy of the density interpolation was validated 
using data generated by microsimulation. Because density 
is difficult to observe in actual traffic, we generated data for 
validation using a simulation that can observe the density of 
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the entire network. The ability to observe the density over 
the entire network allows us to compare and validate the 
accuracy of travel-time predictions when the input is the 
interpolated density and also when the input is the observed 
density.

3.1  Simulation Overview

The true values of the density and velocity for validation 
were generated using microscopic simulations. We used 
Simulation of Urban Mobility (SUMO), an open-source 
micro traffic simulator developed by the German Aerospace 
Center. SUMO takes the network and demand as inputs to 
the simulation and provides density and velocity values for 
a cross section or region.

Network data for SUMO consist of nodes, which cor-
respond to intersections, and edges, which correspond to 
roads. Nodes store information, such as position coordinates 
and traffic signal control. Edges store information, such as 
adjacencies to nodes, number of lanes, and speed limits. The 
network used in this study is a simplified network of roads 
in Sioux Falls, South Dakota, USA [15]. These network data 
are widely used as validation data in transportation engineer-
ing research [16, 17].

3.1.1  Input of Simulation

SUMO requires information such as the connection rela-
tionship between nodes and edges, location coordinates of 
nodes, lanes within an intersection, traffic signal control, 
number of lanes at an edge, and the speed limit. These 
parameters are described in this section, but SUMO’s default 
settings are retained for settings that are not described here.

The latitude and longitude of the nodes, edge adjacencies, 
and demand between nodes were obtained from data pub-
lished by Transportation Networks for Research [18], with 
some modifications. The demand was given as the number of 
vehicles moving between arbitrary nodes per day; however, 
in order to reproduce daily and weekly changes in traffic 
volume in the simulation, the demand between nodes was 
varied hourly. Specifically, cross-sectional traffic volume 
data for arterial roads in Hyogo Prefecture in October 2021, 
published by the Japan Road Traffic Information Center, 
were aggregated on an hourly basis to obtain the ratio of 
traffic volume to daily traffic volume. The demand between 
nodes was calculated based on this ratio, rounded down to 
the nearest whole number.

Because SUMO does not allow vehicles to be generated 
and extinguished within an intersection, vehicles were gen-
erated and extinguished at the virtual edges near the inter-
section. Specifically, edges of approximately 30 m were 
set up near the intersection and connected to all the edges 
flowing into and out of the intersection. Vehicles that had a 

destination at the intersection diverged before the intersec-
tion and disappeared toward the virtual edges. By contrast, 
vehicles originating at the intersection were generated at the 
virtual edge and merged immediately after the intersection. 
The vehicle settings were not changed from their default 
values. Vehicles were randomly generated and traveled 
through the shortest route from the starting point to the des-
tination. Traffic signals were installed at intersections with-
out expressway connections. The number of lanes and speed 
limits were obtained using Google Maps Street View. The 
intersection settings vary depending on whether an express-
way is connected to an intersection. All intersections with 
expressway connections were set up as interchanges to match 
real roads in Sioux Falls. The intersection turn settings were 
not changed from the default settings, except that U-turns 
were prohibited at all intersections.

3.1.2  Output of Simulation

The simulations yielded true values of density and veloc-
ity for subsequent validation. The network was divided into 
300-m edges for each edge, and the density and velocity 
were obtained every 5 min for all 588 edges for one month 
from 00:00-04:59 on October 1, 2021, to 23:55-23:59 on 
October 31, 2021. The network was divided to validate the 
accuracy of the density interpolation by varying the intervals 
between the edges whose densities were known. However, 
because it is impossible to divide all the edges into 300-m 
edges, each edge was divided so that there are the greatest 
possible number of 300-m edges under the condition that the 
edges at both ends after the division had the same length and 
were longer than 150 m.

3.2  Validation

This section describes the conditions for data preprocess-
ing and density interpolation validation. In the simulation, 
edges where no vehicles passed during a 5-min period had 
missing values for density and speed. Missing values for 
density were set to zero, whereas missing values for speed 
were linearly interpolated in the time direction. However, if 
the period ended with a missing value, it was replaced by 
the end of the normally observed value. Given that krig-
ing interpolates the density and velocity after logarithmic 
transformation, 0.01 was added to the density and velocity 
to prevent them from diverging after the transformation. The 
densities and velocities with 0.01 added were treated as true 
values, and the accuracy was validated using these values.

The density interpolation was validated by varying the 
detector installation interval, and the interpolation accuracy 
was validated with five detector installation patterns: 1, 3, 5, 
7, and 9 edges apart. Each pattern corresponds to spacings of 
600 m, 1200 m, 1800 m, 2400 m, and 3000 m, respectively, 
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given that the edges were divided into approximately 300-m 
sections. To quantitatively investigate the effect of the detec-
tor installation intervals on the interpolation accuracy, the 
detectors were installed at equally spaced intervals. Because 
it is difficult to install detectors equally spaced throughout 
the entire network, they were installed equally spaced within 
the edge before segmentation. Specifically, when the instal-
lation interval was α, a detector was installed on the (α 
+ 1)-th post-division edge counting from the starting point 
of the pre-division edge, and detectors were installed every 
α edges thereafter until the end point. Density interpolation 
was applied to the edges where no detector was installed 
when the detector installation interval was 2. This is because 
no detectors were installed at these edges in the other detec-
tor installation patterns (Fig. 1).

To consider the influence of the time of day, 24 patterns 
were tested for each method and detector installation pattern. 
Specifically, the time period from 00:00 to 05:00 for each 
hour was selected as representative of each hour. The data 
on October 1, 2021 were used for the validation.

The density interpolation methods used in this study were 
IDW, OK, cokriging, and XGBoost. IDW, OK, and cokrig-
ing use the gstat package [19] in R, whereas XGBoost uses 
the xgboost package in Python. Concerning IDW, the inverse 
square of the distance was used as the weight. The inputs to 
XGBoost were the velocity, latitude, and longitude, and all 
parameters were set to default values. In OK, the density 
was log-transformed and used as an input to make the right-
skewed density distribution more symmetrical. In cokriging, 
log-transformed densities and velocities were used as inputs. 
This is because the correlation coefficient between the den-
sity and velocity after logarithmic transformation was higher 
than that before logarithmic transformation, in addition to 
making the right-skewed density distribution as symmetrical 

as that of OK. Given that OK and cokriging require that the 
density and velocity at the same coordinate have the same 
value, when there were multiple detectors at the same coor-
dinate, the average of the density and harmonic average of 
the velocity were taken as the representative values at that 
coordinate. The mean absolute error (MAE) and root mean 
square error (RMSE) were used as evaluation metrics for 
interpolation accuracy. RMSE and MAE are expressed as

where ŷi denotes the predicted value of sample i, yi denotes 
the true value, and N denotes the number of samples. We 
interpolated 20 patterns with different installation intervals 
of detectors and methods as described above.

3.3  Results

The interpolation accuracies aggregated over all edges and 
the time periods for each detector installation interval are 
listed in Table 1. From Table 1, it can be observed that both 
MAE and RMSE tend to increase as the detector interval 
increases. The difference in accuracy between the methods 
also increases as the detector interval increases. The method 
with the best interpolation accuracy varies with the detector 
interval. For narrower detector intervals, such as 2, 4, and 6, 
OK, cokriging, and IDW were the most accurate, whereas 
for wider detector intervals such as 8 and 10, cokriging was 
the most accurate.

(1)RMSE =

�

1

N

N∑

i=1

�
yi − ŷi

�2

(2)MAE =
1

N

N∑

i=1

��yi − ŷi
��,

Fig. 1  Detector installation 
pattern
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The interpolation accuracies aggregated over all time peri-
ods and all detector placement patterns are listed in Table 2. 
According to Table 2, cokriging has the best accuracy in terms 
of both MAE and RMSE. The difference in accuracy between 
cokriging and OK was as small as approximately 0.05 for both 
MAE and RMSE, indicating that OK is comparable to cokrig-
ing in terms of interpolation accuracy. The same is true for 
IDW.

4  Validation of Travel Time Prediction

The interpolated densities were used to predict travel-time, 
and whether the interpolated densities were accurate enough 
for travel-time prediction was validated by comparing them to 
the case in which the true densities or velocities were used as 
inputs for travel-time prediction.

Travel-time predictions were made using GCN-LSTM with 
different inputs such as speed, true density, and interpolated 
density. The period from 00:00, October 1, 2021, to 23:59, 
October 24, 2021, was used for training, and the period from 
00:00, October 25, 2021, to 23:59, October 31, 2021, was used 
for validation.

Using the last 10 time-steps as input, we predicted the 
velocity at all edges after 12 time-steps; namely, we predicted 
the velocity one hour later based on the last 50 min of informa-
tion. Therefore, a set of input and correct values was created 
with a width of 22 time-steps. The sets were created within 
the training and validation periods, shifting by one time step 
in each case. The 6891 sets created within the training period 
were used as the training data, whereas the 1995 sets created 
within the validation period were used as the validation data.

Although cokriging was the most accurate density inter-
polation method tested in the previous section, the difference 
in accuracy between OK and IDW was small. To select the 
interpolation method to use, we also considered the computa-
tional complexity of each method. Given that OK and cokrig-
ing require the inverse of the covariance matrix between the 
observed value points for each interpolated point, the time 
complexity of OK and cokriging is O(NpN

3
o
) , whereas that 

of IDW is O(NpNo) , where No is the number of observation 
points and Np is the number of points to be interpolated. 
Therefore, in this study, densities interpolated using IDW, 
which are computationally inexpensive and can be expected 
to provide high interpolation accuracy, were used as inputs 
for travel-time prediction. The input was normalized by [0,1].

The hyperparameters of GCN-LSTM were set to 16 and 
10 for the dimension of features that each node has in the 
output of the first and second layers of GCN, respectively, 
and 400 for the dimension of the LSTM output in both the 
first and second layers. The dropout ratio was set to 0.5. The 
optimization algorithm was Adam [20], the loss function 
was MAE, the number of training epochs was 200, and the 
batch size was 60.

MAE, RMSE, and MAPE were used as metrics for accu-
racy evaluation. MAPE is expressed as

where ŷi denotes the predicted value of sample i, yi denotes 
the true value and N denotes the number of samples.

4.1  Results

The accuracy of the travel-time predictions, validated with 
three patterns of input, namely, true density, interpolated 
density, and speed, is shown in Table 3. Regarding MAE 
and MAPE, the highest accuracy was achieved when the 
interpolated density was used, and for RMSE, the highest 
accuracy was achieved when the observed density was used.

The difference between the accuracy when the interpo-
lated density was used as input and the accuracy when the 
true density was used as input is very small, less than 0.01 
for both indices; therefore, it can be assumed that there is no 
significant difference in accuracy. By contrast, compared to 

(3)MAPE =
100

N

N∑

i=1

∣ yi − ŷi ∣

yi
,

Table 1  Accuracy of density interpolation by detector interval

metrics cokriging IDW OK XGBoost

2 MAE 1.6774 1.5726 1.5360 1.6531
RMSE 5.8695 5.7030 5.5885 6.1611

4 MAE 1.6994 1.6077 1.7033 1.6629
RMSE 5.6850 5.8477 5.7850 5.9027

6 MAE 2.0949 1.9096 1.8333 2.2675
RMSE 6.2415 6.4360 5.8748 6.2780

8 MAE 1.8506 2.1477 2.2157 2.1898
RMSE 5.9688 6.3955 6.3639 6.3576

10 MAE 2.0214 2.3460 2.2758 2.6960
RMSE 6.2155 6.6880 6.5648 6.9212

Table 2  Accuracy of density interpolation by method

methods cokriging IDW OK XGBoost

MAE 1.8687 1.9167 1.9128 2.0939
RMSE 5.9997 6.2253 6.0466 6.3330

Table 3  Accuracy of travel-time prediction by input

metrics density (true) density (interpo-
lated)

speed

MAE 2.2164 2.2107 2.2753
MAPE 3.3421 3.3370 3.4333
RMSE 3.9937 4.0076 4.2902
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Fig. 2  Results of travel-time prediction
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the case in which velocity was used as input, the prediction 
accuracy improved by approximately 0.06 for MAE, 0.1 for 
MAPE, and 0.3 for RMSE when interpolated density or true 
density was used as input.

Next, we compared and validated the differences in the 
prediction results for the three patterns: 1) using the inter-
polated density as the input; 2) using the observed density 
as the input; and 3) using the velocity as the input. Figure 2 
plots the predictions of the three patterns and the correct 
answers for the five edges with the largest changes in veloc-
ity for the first day of the validation period. The change in 
velocity was defined as the difference between the 20-th and 
80-th percentile values of the velocity.

In the free-flow regime, there is little difference in the 
prediction results as a function of the input; however, in the 
congested region, the prediction results change as a function 
of the input. Focusing on the sharp drop in speed between 7 
a.m. and 8 a.m., i.e., during the occurrence of traffic conges-
tion, the speed drop can be predicted when the true density 
is used as input or when the interpolated density is used as 
input, whereas when speed is used as input, the occurrence 
of traffic congestion is predicted with a delay of one hour, 
and the occurrence of traffic congestion is not predicted.

5  Discussion and Conclusion

To use traffic density as an input for travel-time prediction, 
we compared and validated the accuracy of spatial inter-
polation among four methods: IDW, OK, cokriging, and 
XGBoost. The results show that the difference in accuracy 
between the methods was small when the detectors were 
densely placed; however, the accuracy of cokriging was rela-
tively better when the detectors were sparsely placed. This 
may be due to the fact that cokriging interpolates the density 
using not only the traffic density observed at the detectors, 
but also the correlation between the density and the speed 
observed throughout the network.

A comparison of travel-time prediction using the true 
traffic density as input and the traffic density interpolated 
by the IDW as input show no significant difference in accu-
racy. This indicates that even traffic density interpolated by 
the simple IDW method can be interpolated with sufficient 
accuracy to be used as input for travel-time prediction.

The results of travel-time prediction using speed as input 
and traffic density as input show that the accuracy of prediction 
is better when density is used as input. In particular, the pre-
diction accuracy is better when traffic congestion occurs. This 
may be due to the fact that the density can accurately represent 
traffic conditions even in free-flow conditions, while speeds 
do not change significantly in free-flow conditions, and thus 
patterns that lead to congestion can be learned more efficiently.

To validate the accuracy of interpolating densities and 
the difference in accuracy of travel-time prediction between 
interpolated traffic density as input and true density observed 
throughout the network, experiments were conducted using 
simulation-generated data. However, the simulation-gener-
ated data were qualitatively different from the observed data 
of real traffic conditions; therefore, validation using actual 
observed data remains as a future challenge.
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