Skip to main content
Log in

A Hybrid Big Bang–Big Crunch optimization algorithm for solving the different economic load dispatch problems

  • Original Article
  • Published:
International Journal of System Assurance Engineering and Management Aims and scope Submit manuscript

Abstract

In this paper, we applied a Hybrid Big Bang–Big Crunch optimization technique for solving the different types of economic load dispatch (ELD) problems in power systems. Many nonlinear characteristics of the generator, such as ramp rate limits, prohibited operating zone, and non-smooth cost functions are considered using the proposed method in practical generator operation. The proposed method is tested on three different systems (six-unit system considering losses, 15 units: ED considering transmission loss, large system: 40 generating units with valve-point loading effects). Furthermore, results are compared with other optimization approaches proposed in the recent literature, showing the feasibility of this technique to highly nonlinear and different ELD problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Al-Sumait JS, Al-Othman AK, Sykulski JK (2007) Application of pattern search method to power system valve-point ELD. Electr Power Syst 29:720–730

    Article  Google Scholar 

  • Amjady N, Nasiri-Rad H (2010) Solution of nonconvex and nonsmooth economic dispatch by a new adaptive real coded genetic Algorithm. Expert Syst Appl 37:5239–5245

    Article  Google Scholar 

  • Amjady N, Sharifzadeh H (2010) Solution of non-convex economic dispatch problem considering valve loading effect by a new modified differential evolution algorithm. Electr Power Energy Syst 32:893–903

    Article  Google Scholar 

  • Aragón VS, Esquivel SC, Coello Coello CA (2015) An immune algorithm with power redistribution for solving economic dispatch problems. Inf Sci 295:609–632

    Article  MathSciNet  Google Scholar 

  • Chen PH, Chang HC (1995) Large-scale economic dispatch by genetic algorithm. IEEE Trans Power Syst 10:1919–1926

    Article  Google Scholar 

  • Chen CL, Wang SC (1993) Branch and bound scheduling for thermal generating units. IEEE Trans Energy Convers 8(2):184–189

    Article  Google Scholar 

  • Choudhary BH, Rahman S (1990) A review of recent advances in economic dispatch. IEEE Trans Power Syst 5(4):1248–1259

    Article  Google Scholar 

  • Coelho LdS, Mariani VC (2006) Combining of chaotic differential evolution and quadratic programming for economic dispatch optimization with valve-point effect. IEEE Trans Power Syst 21:989–996

    Article  Google Scholar 

  • Erol OK, Eksin I (2006) New optimization method: Big Bang–Big Crunch. Adv Eng Softw 37:106–111

    Article  Google Scholar 

  • Fung CC, Chow SY, Wong KP (2000) Solving the economic dispatch problem with an integrated parallel genetic algorithm. Proc Power Con Int Conf 3:1257–1262

    Google Scholar 

  • Gaing Z-L (2003) Particle swarm optimization to solving the ED considering the generator constraints. IEEE Trans Power Syst 18:1187–1195

    Article  Google Scholar 

  • Giang Z-L (2003) Particle swarm optimization to solving the economic dispatch considering the generator constraints. IEEE Trans Power Syst 18(3):1187–2123

    Article  Google Scholar 

  • Jiejin C, Xiaoqian M, Lixiang L, Peng PH (2007) Chaotic particle swarm optimization for economic dispatch considering the generator constraints. Energy Convers Manag 48(2):645–653

    Article  Google Scholar 

  • Kaveh A, Talatahari S (2010) A discrete Big Bang–Big Crunch algorithm for optimal design of skeletal structure. Asian J Civil Eng 11(1):103–122

    Google Scholar 

  • Kaveha A, Talataharib S (2009) Size optimization of space trusses using Big Bang–Big Crunch algorithm. Comput Struct 87:1129–1140

    Article  Google Scholar 

  • Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks. IEEE Service Center, Piscataway, pp 1942–1948

  • Kennedy J, Eberhart R, Shi Y (2001) ‘Swarm intelligence. Morgan Kaufmann, Lost Altos

    Google Scholar 

  • Khamsawang S, Jiriwibhakorn S (2009) Solving the economic dispatch problem using novel particle swarm optimization. Int J Electr Electr Eng 3:41–46

    Google Scholar 

  • Labbi Y, Ben Attuos D (2010) Big Bang Big Crunch optimization algorithm for economic dispatch with valve-point effect. J Theor Appl Inf Technol 16(1):48–56

    Google Scholar 

  • Labbi Y, Ben Attuos D (2014) Environmental/economic power dispatch using a Hybrid Big Bang–Big Crunch optimization algorithm. Int J Syst Assur Eng Manag 5(4):602–610

    Article  Google Scholar 

  • Lee KY et al (1984) Fuel cost minimization for both real and reactive power dispatches. IEEE Proc C Gener Transm Distrib 131(3):85–93

    Article  Google Scholar 

  • Liu D, Cai Y (2005) Taguchi method for solving the economic dispatch problem with nonsmooth cost functions. IEEE Trans Power Syst 20:2006–2014

    Article  Google Scholar 

  • Lu H, Sriyanyong P, Song YH, Dillon T (2010) Experimental study of a new hybrid PSO with mutation for economic dispatch with non-smooth cost function. Electr Power Energy Syst 32:921–935

    Article  Google Scholar 

  • Niknam T (2010) A new fuzzy adaptive hybrid particle swarm optimization algorithm for non-linear, non-smooth and non-convex economic dispatch problem. Appl Energy 87:327–339

    Article  Google Scholar 

  • Panigrah BK, Yadav SR, Agrawal S, Tiwari MK (2006) A clonal algorithm to solve economic load dispatch. Electr Power Syst Res 77(10):1381–1389

    Article  Google Scholar 

  • Park JB, Lee KS, Shin JR, Lee KY (2005) A particle swarm optimization for ED with nonsmooth cost function. IEEE Trans Power Syst 20:34–42

    Article  Google Scholar 

  • Pothiya S, Ngamroo I, Kongprawechnon W (2007) Application of multiple tabu search algorithm to solve dynamic economic dispatch considering generator constraints. Energy Convers Manag 49:509–516

    Google Scholar 

  • Pothiya Saravuth, Ngamroo Issarachai, Kongprawechnon Waree (2008) Application of multiple tabu search algorithm to solve dynamic economic dispatch considering generator constraints. Energy Convers Manag 49:506–516

    Article  Google Scholar 

  • Pothiya S, Ngamroo I, Kongprawechnon W (2010) Ant colony optimisation for economic dispatch problem with non-smooth cost functions. Electr Power Energy Syst 32:478e-487

    Article  Google Scholar 

  • Selvakumar AI, Khanushkodi T (2007) A new particle swarm optimization solution to non-convex economic dispatch problems. IEEE Trans Power Syst 22:42–51

    Article  Google Scholar 

  • Sheble GB, Brittig K (1995) Refined genetic algorithm—economic dispatch example. IEEE Trans Power Syst 10:117–124

    Article  Google Scholar 

  • Sinha N, Chakrabarti R, Chattopadhyay PK (2003) Evolutionary programming techniques for economic load dispatch. IEEE Trans Evol Comput 7:83–94

    Article  Google Scholar 

  • Su CT, Chiou GJ (1997) A fast-computation hopfield method to economic dispatch of power systems. IEEE Trans Power Syst. 12:1759–1764

    Article  Google Scholar 

  • Victorie TAA, Jeyakumar AE (2004) Hybrid PSO-SQP for economic dispatch with valve-point effect. Electr Power Syst Res 71:51–59

    Article  Google Scholar 

  • Walters DC, Sheble GB (1993) Genetic algorithm solution of economic dispatch with valve point loading. IEEE Trans Power Syst 8:1325–1332

    Article  Google Scholar 

  • Wood AJ, Wollenberg BF (1984) Power generation, operation and control. Wiley, New York

    Google Scholar 

  • Yalcinoz T, Short MJ (1998) Neural networks approach for solving economic dispatch problem with transmission capacity constraints. IEEE Trans Power Syst 13:307–313

    Article  Google Scholar 

  • Yalcionoz T, Altun H, Uzam M (2001) Economic dispatch solution using a genetic algorithm based on arithmetic crossover. In Proceedings of IEEE Proto Power Tech Conf, Proto, Portugal

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yacine Labbi.

Ethics declarations

Conflict of interest

None.

Appendix

Appendix

β matrices of 15 generating units:

$$\begin{aligned} \beta_{ij} & = \left[ {\begin{array}{*{20}l} {0.0014} \hfill & {0.0012} \hfill & {0.0007} \hfill & { - 0.0001} \hfill & { - 0.0003} \hfill & { - 0.0001} \hfill & { - 0.0001} \hfill & { - 0.0001} \hfill & {0.0003} \hfill & {0.0005} \hfill & { - 0.0003} \hfill & { - 0.0002} \hfill & {0.0004} \hfill & {0.0003} \hfill & { - 0.0001} \hfill \\ {0.0012} \hfill & {0.0015} \hfill & {0.0013} \hfill & {0.0000} \hfill & { - 0.0005} \hfill & { - 0.0002} \hfill & {0.0000} \hfill & {0.0001} \hfill & { - 0.0002} \hfill & { - 0.0004} \hfill & { - 0.0004} \hfill & { - 0.0000} \hfill & {0.0004} \hfill & {0.0010} \hfill & { - 0.0002} \hfill \\ {0.0007} \hfill & {0.0013} \hfill & {0.0076} \hfill & { - 0.0001} \hfill & { - 0.0013} \hfill & { - 0.0009} \hfill & { - 0.0001} \hfill & {0.0000} \hfill & { - 0.0008} \hfill & { - 0.0012} \hfill & { - 0.0017} \hfill & { - 0.0000} \hfill & { - 0.0026} \hfill & {0.0111} \hfill & { - 0.0028} \hfill \\ { - 0.0001} \hfill & {0.0000} \hfill & { - 0.0001} \hfill & {0.0034} \hfill & { - 0.0007} \hfill & { - 0.0004} \hfill & {0.0011} \hfill & {0.0050} \hfill & {0.0029} \hfill & {0.0032} \hfill & { - 0.0011} \hfill & { - 0.0000} \hfill & {0.0001} \hfill & {0.0001} \hfill & { - 0.0026} \hfill \\ { - 0.0003} \hfill & { - 0.0005} \hfill & { - 0.0013} \hfill & { - 0.0007} \hfill & {0.0090} \hfill & {0.0014} \hfill & { - 0.0003} \hfill & { - 0.0012} \hfill & { - 0.0010} \hfill & { - 0.0013} \hfill & {0.0007} \hfill & { - 0.0002} \hfill & { - 0.0002} \hfill & { - 0.0024} \hfill & { - 0.0003} \hfill \\ { - 0.0001} \hfill & { - 0.0002} \hfill & { - 0.0009} \hfill & { - 0.0004} \hfill & {0.0014} \hfill & {0.0016} \hfill & { - 0.0000} \hfill & { - 0.0006} \hfill & { - 0.0005} \hfill & { - 0.0008} \hfill & {0.0011} \hfill & { - 0.0001} \hfill & { - 0.0002} \hfill & { - 0.0017} \hfill & {0.0003} \hfill \\ { - 0.0001} \hfill & {0.0000} \hfill & { - 0.0001} \hfill & {0.0011} \hfill & { - 0.0003} \hfill & { - 0.0000} \hfill & {0.0015} \hfill & {0.0017} \hfill & {0.0015} \hfill & {0.0009} \hfill & { - 0.0005} \hfill & {0.0007} \hfill & { - 0.0000} \hfill & { - 0.0002} \hfill & { - 0.0008} \hfill \\ { - 0.0001} \hfill & {0.0001} \hfill & {0.0000} \hfill & {0.0050} \hfill & { - 0.0012} \hfill & { - 0.0006} \hfill & {0.0017} \hfill & {0.0168} \hfill & {0.0082} \hfill & {0.0079} \hfill & { - 0.0023} \hfill & { - 0.00036} \hfill & {0.0001} \hfill & {0.0005} \hfill & { - 0.0078} \hfill \\ { - 0.0003} \hfill & { - 0.0002} \hfill & { - 0.0008} \hfill & {0.0029} \hfill & { - 0.0010} \hfill & { - 0.0005} \hfill & {0.0015} \hfill & {0.0082} \hfill & {0.0129} \hfill & {0.0116} \hfill & { - 0.0021} \hfill & { - 0.0025} \hfill & {0.0007} \hfill & { - 0.0012} \hfill & { - 0.0072} \hfill \\ { - 0.0005} \hfill & { - 0.0004} \hfill & { - 0.0012} \hfill & {0.0032} \hfill & { - 0.0013} \hfill & { - 0.0008} \hfill & {0.0009} \hfill & {0.0079} \hfill & {0.0116} \hfill & {0.0200} \hfill & { - 0.0027} \hfill & { - 0.0034} \hfill & {0.0009} \hfill & { - 0.0011} \hfill & { - 0.0088} \hfill \\ { - 0.0003} \hfill & { - 0.0004} \hfill & { - 0.0017} \hfill & { - 0.0011} \hfill & {0.0007} \hfill & {0.0011} \hfill & { - 0.0005} \hfill & { - 0.0023} \hfill & { - 0.0021} \hfill & { - 0.0027} \hfill & {0.0140} \hfill & {0.0001} \hfill & {0.0004} \hfill & { - 0.0038} \hfill & {0.0168} \hfill \\ { - 0.0002} \hfill & { - 0.0000} \hfill & { - 0.0000} \hfill & { - 0.0000} \hfill & { - 0.0002} \hfill & { - 0.0001} \hfill & {0.0007} \hfill & { - 0.0036} \hfill & { - 0.0025} \hfill & { - 0.0034} \hfill & {0.0001} \hfill & {0.0054} \hfill & { - 0.0001} \hfill & { - 0.0004} \hfill & {0.0028} \hfill \\ {0.0004} \hfill & {0.0004} \hfill & { - 0.0026} \hfill & {0.0001} \hfill & { - 0.0002} \hfill & { - 0.0002} \hfill & { - 0.0000} \hfill & {0.00001} \hfill & {0.0007} \hfill & {0.0009} \hfill & {0.0004} \hfill & { - 0.0001} \hfill & {0.0103} \hfill & { - 0.0101} \hfill & {0.028} \hfill \\ {0.0003} \hfill & {0.0010} \hfill & {0.0111} \hfill & {0.0001} \hfill & { - 0.0024} \hfill & { - 0.0017} \hfill & { - 0.0002} \hfill & {0.00005} \hfill & { - 0.0012} \hfill & { - 0.0011} \hfill & { - 0.0038} \hfill & { - 0.0004} \hfill & { - 0.0101} \hfill & {0.0578} \hfill & { - 0.0094} \hfill \\ { - 0.0001} \hfill & { - 0.00002} \hfill & { - 0.0028} \hfill & { - 0.0026} \hfill & { - 0.0003} \hfill & {0.0003} \hfill & { - 0.0008} \hfill & { - 0.0078} \hfill & { - 0.0072} \hfill & { - 0.0088} \hfill & {0.0168} \hfill & {0.0028} \hfill & {0.0028} \hfill & { - 0.0094} \hfill & {0.1283} \hfill \\ \end{array} } \right] \\ \beta_{oi} & = \left[ { - 0.0001 \, - 0.0002 \, 0.0028 \, - 0.0001 \, 0.0001 \, - 0.0003 \, - 0.0002 \, - 0.0002 \, 0.0006 \, 0.0039 \, - 0.0017 \, - 0.0000 \, - 0.0032 \, 0.0067 \, - 0.0064} \right] \\ \beta_{oo} & = \, 0.055. \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Labbi, Y., Attous, D.B. A Hybrid Big Bang–Big Crunch optimization algorithm for solving the different economic load dispatch problems. Int J Syst Assur Eng Manag 8, 275–286 (2017). https://doi.org/10.1007/s13198-016-0432-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13198-016-0432-4

Keywords

Navigation