Skip to main content
Log in

Abstract

The study proposes the exponentiated Perks distribution as a generalization of Perks distribution. This generalized distribution provides monotone nondecreasing and bathtub shaped hazard rate function. We study its mathematical properties including mode, median, quantile function and order statistics. The estimation of the model parameters is discussed both in classical and Bayesian setups. The maximum likelihood estimates along with their standard errors and confidence intervals have been obtained. For Bayesian estimation, we use independent gamma priors for the model parameters. The posterior densities of the parameters are simulated using Metropolis–Hastings algorithm to obtain sample-based estimates and highest posterior density intervals. Applications of the proposed distribution to three real data sets have been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Birnbaum ZW, Saunders SC (1969) Estimation for a family of life distributions with applications to fatigue. J Appl Probab 6:328–347

    Article  MathSciNet  MATH  Google Scholar 

  • Chaudhary AK, Kumar V (2013) A Bayesian analysis of Perks distribution via Markov Chain Monte Carlo simulation. Nepal J Sci Technol 14(1):153–166

    Article  MathSciNet  Google Scholar 

  • Chen MH, Shao QM (1999) Monte Carlo estimation of Bayesian credible intervals and HPD intervals. J Comput Graph Stat 8(1):69–92

    MathSciNet  Google Scholar 

  • Chib S, Greenberg E (1995) Understanding the metropolis-hastings algorithm. Am Stat 49(4):327–335

    Google Scholar 

  • Choulakian V, Stephens MA (2001) Goodness-of-fit for the generalized Pareto distribution. Technometrics 43:478–484

    Article  MathSciNet  Google Scholar 

  • Gelfand AE, Smith AFM (1990) Sampling based approach to calculating marginal densities. J Am Stat Assoc 85:398–409

    Article  MATH  Google Scholar 

  • Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian Restoration of images. IEEE Trans Pattern Anal Mach Intell 6:721–741

    Article  MATH  Google Scholar 

  • Ghitany ME, Alqallaf F, Al-Mutairi DK, Husain HA (2011) A two-parameter weighted Lindley distribution and its applications to survival data. Math Comput Simul 81:1190–1201

    Article  MathSciNet  MATH  Google Scholar 

  • Gilks WR, Roberts GO (1996) Improving MCMC mixing. In: Gilks WR, Richardson S, Spiegelhalter DJ (eds) Markov Chain Monte Carlo in practice. Chapman and Hall, London

    Google Scholar 

  • Gupta RD, Kundu D (2001) Exponentiated exponential family: an alternative to gamma and Weibull. Biom J 43:117–130

    Article  MathSciNet  MATH  Google Scholar 

  • Gupta RC, Gupta PL, Gupta RD (1998) Modeling failure time data by Lehmann alternatives. Commun Stat Theory Methods 27:887–904

    Article  MATH  Google Scholar 

  • Haberman S, Renshaw A (2011) A comparative study of parametric mortality projection models. Insur Math Econ 48:35–55

    Article  MathSciNet  Google Scholar 

  • Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57:97–109

    Article  MathSciNet  MATH  Google Scholar 

  • Kenney JF, Keeping ES (1962) Mathematics of statistics. Part 1, 3rd edn. Princeton, NJ, p 101–102

  • Metropolis N, Ulam S (1948) The monte carlo method. J Am Stat Assoc 44:335–341

    Article  MATH  Google Scholar 

  • Moors JJA (1998) A quantile alternative for kurtosis. J R Stat Soc D 37:25–32

    Google Scholar 

  • Mudholkar GS, Srivastava DK (1993) Exponentiated Weibull family for analyzing bathtub failure-real data. IEEE Trans Reliab 42(1993):299–302

    Article  MATH  Google Scholar 

  • Perks W (1932) On some experiments in the graduation of mortality statistics. J Inst Actuar 43:12–57

    Article  Google Scholar 

  • Richards SJ (2008) Applying survival models to pensioner mortality data. Br Actuar J 14:257–303

    Article  Google Scholar 

  • Richards SJ (2012) A handbook of parametric survival models for actuarial use. Scand Actuar J 2012(4):1–25

    Article  MathSciNet  MATH  Google Scholar 

  • Schafft HA, Staton TC, Mandel J, Shott JD (1989) Reproducibility of electro migration measurements. IEEE Trans Electron Devices ED 34(3):673–681

    Article  Google Scholar 

  • Singh B, Sharma KK, Rathi S, Singh G (2012) A generalized log-normal distribution and its goodness of fit to censored data. Comput Stat 27:51–67

    Article  MathSciNet  MATH  Google Scholar 

  • Smith AFM, Roberts GO (1993) Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods. J R Stat Soc Ser B 55:3–24

    MathSciNet  MATH  Google Scholar 

  • Surles JG, Padgett WJ (2001) Inference for reliability and stress-strength for a scaled Burr Type X distribution. Lifetime Data Anal 7(2001):187–200

    Article  MathSciNet  MATH  Google Scholar 

  • Tierney L (1994) Markov chains for exploring posterior distributions. Ann Stat 22:1701–1762

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors thankfully acknowledge the critical suggestions and comments from the learned referee which helped us in the improvement of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhupendra Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, B., Choudhary, N. The exponentiated Perks distribution. Int J Syst Assur Eng Manag 8, 468–478 (2017). https://doi.org/10.1007/s13198-016-0451-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13198-016-0451-1

Keywords

Navigation