Skip to main content
Log in

Reliability prediction of fault tolerant machining system with reboot and recovery delay

  • Original Article
  • Published:
International Journal of System Assurance Engineering and Management Aims and scope Submit manuscript

Abstract

The present paper deals with the reliability analysis of fault tolerant multi-component machining system having multi-warm spares and reboot provisioning. The time-to-breakdown and repair of active/spare units and server are assumed to be exponentially distributed. The reboot process and recovery delay are also counterfeited exponentially distributed. The spectral method is adapted to compute the transient state probabilities of the system states. In order to predict the transient behavior of the system, various performance measures such as reliability function, mean-time-to-failure \(\left( {MTTF} \right)\), etc. have been established. To show the practicability of the developed model, we present numerical results by taking an illustration. The sensitivity of various system parameters on the reliability function and \(MTTF\) has also been examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amari SV, Dugan JB, Mishra RB (1999) Optimal reliability of systems subject to imperfect fault-coverage. IEEE Trans Reliab 48(3):275–284

    Article  Google Scholar 

  • Amari SV, Pham H, Dill G (2004) Optimal design of K-out-of-N:G subsystems subject to imperfect fault coverage. IEEE Trans Reliab 53(4):567–575

    Article  Google Scholar 

  • Dai YS, Levitin G, Wang X (2007) Optimal task partition and distribution in grid service system with common cause failure. Future Gener Comput Syst 23(2):209–218

    Article  Google Scholar 

  • Delia MC, Rafael PO (2016) A warm standby system under shocks and repair governed by MAPs. Reliab Eng Syst Saf 152:331–338

    Article  Google Scholar 

  • Hajeeh MA (2011) Reliability and availability of a standby system with common cause failure. Int J Oper Res 11(3):343–363

    Article  MathSciNet  MATH  Google Scholar 

  • Hsu YL, Lee SL, Ke JC (2008) A repairable system with imperfect fault coverage and reboot: Bayesian and asymptotic estimation. Math Comput Simul 79(7):2227–2239

    Article  MATH  Google Scholar 

  • Hsu YL, Ke JC, Liu TH (2011) Standby system with general repair, reboot delay, switching failure and unreliable repair facility—a statistical standpoint. Math Comput Simul 81(11):2400–2413

    Article  MathSciNet  MATH  Google Scholar 

  • Jain M, Rani S (2011) Availability of hardware–software systems with standbys, switching failures and reboot delay. Math Today 27:100–116

    Google Scholar 

  • Jain M, Agrawal SC, Naresh Preeti (2012) Fuzzy reliability evaluation of a repairable system with imperfect coverage, reboot and common-cause shock failure. Int J Eng 25(3):231–238

    Article  Google Scholar 

  • Jain M (2013) Availability prediction of imperfect fault coverage system with reboot and common cause failure. Int J Math Oper Res 17(3):374–397

    Article  MathSciNet  MATH  Google Scholar 

  • Jain M, Gupta R (2013) Optimal replacement policy for a repairable system with multiple vacations and imperfect fault coverage. Comput Ind Eng 66(4):710–719

    Article  Google Scholar 

  • Jain M, Preeti (2013) Performance analysis of a repairable reboot safety system with standby, imperfect coverage and reboot delay. Int J Eng Trans C: Aspects 26(9):1077–1088

    Google Scholar 

  • Jain M, Rani S (2013) Availability analysis for repairable system with warm standby, switching failure and reboot delay. Int J Math Oper Res 5(1):19–39

    Article  MathSciNet  Google Scholar 

  • Jain M, Shekhar C, Rani V (2014) N-policy for a multi-component machining system with imperfect coverage, reboot and unreliable server. Prod Manuf Res 2(1):457–476

    Google Scholar 

  • Ke JC, Wu CH (2012) Multi-server machine repair model with standbys and synchronous multiple vacation. Comput Ind Eng 62(1):296–305

    Article  Google Scholar 

  • Ke JC, Su ZL, Wang KH, Hsu YL (2010) Simulation inferences for an available system with general repair distribution and imperfect fault coverage. Simul Model, Pract Theory 18(3):336–347

    Article  Google Scholar 

  • Ke JB, Chen JW, Wang KH (2011) Reliability measures of a repairable system with standby switching failures and reboot delay. Qual Technol Quant Manag 8(1):15–26

    Article  Google Scholar 

  • Kumar A, Agarwal M (1980) A review of standby systems. IEEE Trans Reliab 29(4):290–294

    Article  MATH  Google Scholar 

  • Lewis EE (1996) Introduction to reliability engineering, 2nd edn. Wiley, New York

    Google Scholar 

  • Malhotra R, Taneja G (2014) Stochastic analysis of a two-unit cold standbys system wherein both units may become operative depending upon the demand. J Qual Reliab En. doi:http://doi.org/10.1155/2014/896379

    Google Scholar 

  • Mosleh A (1991) Common cause failure: an analysis methodology and examples. Reliab Eng Syst Saf 34(3):249–292

    Article  MathSciNet  Google Scholar 

  • Moustafa MS (1997) Reliability analysis of K-out-of-N:G systems with dependent failures and imperfect coverage. Reliab Eng Syst Saf 58(1):15–17

    Article  MathSciNet  Google Scholar 

  • Pan Z, Nonaka Y (1995) Importance analysis for the systems with common cause failures. Reliab Eng Syst Saf 50(3):297–300

    Article  Google Scholar 

  • Platz O (1984) A Markov model for common cause failure. Reliab Eng 9(1):25–31

    Article  Google Scholar 

  • Shekhar C, Jain M, Bhatia S (2014) Fuzzy analysis of machine repair problem with switching failure and reboot. J Reliab Stat Stud 7(1):41–55

    Google Scholar 

  • Shekhar C, Jain M, Raina AA (2016a) Transient analysis of machining system with spare provisioning and geometric reneging. Int J Math Oper Res 11(3):396–421

    Article  MathSciNet  Google Scholar 

  • Shekhar C, Raina AA, Kumar A (2016b) A brief review on retrial queue: progress in 2010–2015. Int J Appl Sci Eng Res 5(5):324–336

    Google Scholar 

  • Singh VV, Rawal DK (2014) Availability, MTTF and cost analysis of complex system under preemptive resume repair policy using copula distribution. Pak J Stat Oper Res 10(3):299–312

    Article  MathSciNet  Google Scholar 

  • Tang S, Guo X, Sun X, Xue H, Zhou Z (2014) Unavailability analysis for K-out-of-N:G system with multiple failure modes based on micro-Markov models. Math Prob Eng. doi:http://doi.org/10.1155/2014/740936

    MathSciNet  Google Scholar 

  • Trivedi KS (2002) Probability and statistics with reliability, queueing and computer science applications, 2nd edn. Wiley, New York

    Google Scholar 

  • Vijayashree KV, Janani B (2015) Transient analysis of an M/M/1 queue with multiple exponential vacation and N policy. Pak J Stat Oper Res 11(4):587–600

    Article  MathSciNet  Google Scholar 

  • Wang KH, Chen YJ (2009) Comparative analysis of availability between three systems with general repair times, reboot delay and switching failures. Appl Math Comput 215(1):384–394

    MathSciNet  MATH  Google Scholar 

  • Wang KH, Ke JC (2003) Probabilistic analysis of a repairable system with warm standbys plus balking and reneging. Appl Math Model 27(4):327–336

    Article  MATH  Google Scholar 

  • Wang KH, Sivazlian BD (1989) Reliability of a system with warm standbys and repairmen. Microelectr Reliab 29(5):849–860

    Article  Google Scholar 

  • Wang KH, Dong WL, Ke JB (2006) Comparing of reliability and the availability between four systems with warm standbys and switching failures. Appl Math Comput 183(2):1310–1322

    MathSciNet  MATH  Google Scholar 

  • Wang KH, Ke JB, Ke JC (2007a) Profit analysis of the M/M/R machine repair problem with balking, reneging, and standby switching failures. Comput Oper Res 34(3):835–847

    Article  MATH  Google Scholar 

  • Wang KH, Ke JB, Lee WC (2007b) Reliability and sensitivity analysis of a repairable system with warm standbys and R unreliable service station. Int J Adv Manuf Technol 31(11–12):1223–1232

    Article  Google Scholar 

  • Wang KH, Liou CD, Lin YH (2013) Comparative analysis of the machine repair problem with imperfect coverage and service pressure condition. Appl Math Model 37(5):2870–2880

    Article  MathSciNet  MATH  Google Scholar 

  • Wu W, Tang Y (2015) Transient analysis of a K-out-of-N:G system with N-Policy, repairmen’s multiple vacations and redundant dependency. Discr Dyn Nat Soc. doi:10.1155/2015/209653

    MathSciNet  Google Scholar 

  • Yang C, Zeng S, Guo J (2015) Reliability analysis of load sharing a K-out-of-N system considering component degradation. Math Prob Eng. doi:http://doi.org/10.1155/2015/726853

    Google Scholar 

  • Yen TC, Chen WL, Chen JC (2016) Reliability and sensitivity analysis of the controllable repair system with warm standbys and working breakdown. Comput Ind Eng 97:84–92

    Article  Google Scholar 

  • Zhang W, Xu D, Enjeti PN, Li H, Hawke JT, Krishnamoorthy HS (2014) Survey on fault-tolerant techniques for power electronic converters. IEEE Trans Power Electron 29(12):6319–6331

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the editorial board and anonymous referees for the valuable suggestions and critical comments which help a lot in improving the quality and clarity of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javid Iqbal.

Appendix 1

Appendix 1

$$\begin{aligned} {\mathbf{A}}_{{\mathbf{n}}} & = \left[ {\begin{array}{*{20}c} { - \left( {s + \sigma + n\gamma + \lambda_{c} } \right)} & {\lambda \left( {1 - c} \right)} & {\lambda \left( {1 - c} \right)} \\ 0 & { - \left( {s + \lambda + n\gamma + \alpha + \lambda_{c} } \right)} & \beta \\ 0 & \alpha & { - \left( {s + \lambda + n\gamma + \beta + \lambda_{c} } \right)} \\ \end{array} } \right] \\ {\mathbf{A}}_{{\mathbf{m}}} & = \left[ {\begin{array}{*{20}c} { - \left( {s + \sigma + m\gamma + \lambda_{c} } \right)} & {\lambda \left( {1 - c} \right)} & {\lambda \left( {1 - c} \right)} & {\lambda \left( {1 - c} \right)} \\ 0 & { - \left( {s + \lambda + m\gamma + \alpha + \mu + \lambda_{c} } \right)} & \beta & 0 \\ 0 & \alpha & { - \left( {s + \lambda + m\gamma + \beta + \lambda_{c} } \right)} & 0 \\ 0 & 0 & 0 & { - \left( {s + \lambda + m\gamma + \lambda_{c} } \right)} \\ \end{array} } \right];\quad 1 \le m \le n - 1 \\ {\mathbf{A}}_{{\mathbf{0}}} & = \left[ {\begin{array}{*{20}c} s & \lambda & \lambda & \lambda \\ 0 & { - \left( {s + \lambda + \alpha + \mu } \right)} & \beta & 0 \\ 0 & \alpha & { - \left( {s + \lambda + \beta } \right)} & 0 \\ 0 & 0 & 0 & { - \left( {s + \lambda } \right)} \\ \end{array} } \right] \\ \end{aligned}$$
$$\begin{aligned} {\mathbf{B}}_{{\mathbf{1}}} = \left[ {\begin{array}{*{20}c} 0 & 0 & 0 & 0 \\ 0 & \mu & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{array} } \right] \hfill \\ {\mathbf{B}}_{{\mathbf{0}}} = \left[ {\begin{array}{*{20}c} 0 & 0 & 0 & 0 \\ 0 & \mu & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{array} } \right] \hfill \\ \end{aligned}$$
$$\begin{aligned} {\mathbf{C}}_{{\mathbf{n}}} & = \left[ {\begin{array}{*{20}c} {n\gamma } & 0 & 0 \\ \sigma & {\lambda c + n\gamma C} & 0 \\ 0 & 0 & {\lambda c + n\gamma C} \\ 0 & {n\gamma \left( {1 - C} \right)} & {n\gamma \left( {1 - C} \right)} \\ \end{array} } \right] \\ {\mathbf{C}}_{{\mathbf{m}}} & = \left[ {\begin{array}{*{20}c} {m\gamma } & 0 & 0 & 0 \\ \sigma & {\lambda c + m\gamma C} & 0 & {\lambda c + m\gamma C} \\ 0 & 0 & {\lambda c + m\gamma C} & 0 \\ 0 & {m\gamma \left( {1 - C} \right)} & {m\gamma \left( {1 - C} \right)} & {m\gamma \left( {1 - C} \right)} \\ \end{array} } \right];\quad 1 \le m \le n - 1 \\ {\mathbf{C}}_{{\mathbf{1}}} & = \left[ {\begin{array}{*{20}c} {\lambda_{c} } & {\lambda_{c} } & {\lambda_{c} } & {\lambda_{c} } \\ \sigma & {\lambda c + \gamma C} & 0 & {\lambda c + \gamma C} \\ 0 & 0 & {\lambda c + \gamma C} & 0 \\ 0 & {\gamma \left( {1 - C} \right)} & {\gamma \left( {1 - C} \right)} & {\gamma \left( {1 - C} \right)} \\ \end{array} } \right] \\ \end{aligned}$$
$$\begin{aligned} {\mathbf{D}}_{{\mathbf{1}}} = \left[ {\begin{array}{*{20}c} {\lambda_{c} } & {\lambda_{c} } & {\lambda_{c} } \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{array} } \right] \hfill \\ {\mathbf{D}}_{{\mathbf{0}}} = \left[ {\begin{array}{*{20}c} {\lambda_{c} } & {\lambda_{c} } & {\lambda_{c} } & {\lambda_{c} } \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{array} } \right] \hfill \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shekhar, C., Jain, M., Raina, A.A. et al. Reliability prediction of fault tolerant machining system with reboot and recovery delay. Int J Syst Assur Eng Manag 9, 377–400 (2018). https://doi.org/10.1007/s13198-017-0680-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13198-017-0680-y

Keywords

Navigation