Skip to main content

Advertisement

Log in

Dynamic behavior analysis under a grid fault scenario of a 2 MW double fed induction generator-based wind turbine: comparative study of the reference frame orientation approach

  • Original Article
  • Published:
International Journal of System Assurance Engineering and Management Aims and scope Submit manuscript

Abstract

This paper investigates a comprehensive analysis of the dynamic behavior of a typical 2 mw grid-connected double fed induction generator-based wind turbine during a symmetrical grid voltage dip scenario. The stator flux dynamics and the induced rotor electromotive force have been investigated aiming to undertake an accurate assessment of the DFIG behavior. Furthermore, without any complication of the DFIG vector control scheme, the paper offers a comparative study between the use of the stator flux reference frame orientation approach and the grid voltage reference frame orientation approach, this, in order to accurately assess the appropriate choice regarding the stability of the vector control scheme and hence, to have a good background about the LVRT capability of the DFIG during the studied grid fault. The simulation results have been performed through Matlab/Simulink environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\text{V}}_{\text{g}}\) :

Grid rms value

\({\hat{\text{V}}}_{\text{g}}\) :

Grid maximum value

\(\uptheta_{\text{g}}\) :

Grid voltage angle

\(\uptheta_{\text{s}}\) :

Stator voltage angle

\(\uptheta_{\text{r}}\) :

Rotor voltage angle

\(\uptheta_{\text{m}}\) :

Rotor mechanical angle

\(\upsigma\) :

Leakage coefficient

s:

Slip

(s):

Stator reference frame

(r):

Rotor reference frame

\({\vec{\upphi }}_{\text{sn}}\) :

Natural stator flux

\({\vec{\upphi }}_{\text{sf}}\) :

Forced stator flux

EMF:

Electromotive force

GVO:

Grid voltage orientation

SFO:

Stator flux orientation

References

  • Abad G, Iwanski G, Lopez J (2011) Doubly fed induction machine: modeling and control for wind energy generation, 1st edn. Wiley, Hoboken

    Book  Google Scholar 

  • Abdelbasset MM, Drid S, Sid MA, Cheikh R (2017) Sliding mode control of grid connected brushless doubly fed induction generator driven by wind turbine in variable speed. Int J Syst Assur Eng Manag 8(2):788–798

    Google Scholar 

  • Akel F, Ghennam T, Berkouk EM, Laour M (2014) An improved sensorless decoupled power control scheme of grid connected variable speed wind turbine generator. Energy Convers Manag 78:584–594

    Article  Google Scholar 

  • Athanasios DG, Safacas N (2015) Quantitative and qualitative behavior analysis of a DFIG wind energy conversion system by a wind gust and converter faults. Wind Energy 19(3):527–546

    Google Scholar 

  • Bekakra Y, Attous DB (2014) Direct control of doubly fed induction generator fed by PWM converter with a variable structure control based on a sliding mode control. Int J Syst Assur Eng Manag 5(3):213–218

    Article  Google Scholar 

  • Boshell F (2017) Grid codes as enablers of energy transition. Scaling up variable renewable power. World future energy summit 2017, Abu Dhabi, UAE

  • Camblong H (2003) Minimisation de l’impact des perturbations d’origine éolienne dans la génération d’électricité par des aérogénérateurs à vitesse variable PhD Thesis, École Nationale Supérieure d’Arts et Métiers. Bordeaux, France

  • Datta R, Ranganathan VT (1999) Decoupled control of active and reactive power for a grid-connected doubly-fed wound rotor induction machine without position sensors. In: Proceedings of IEEE industry applications conference, vol 4. Phoenix, USA, pp 2623–28

  • Datta R, Ranganathan VT (2002) Variable-speed wind power generation using doubly fed wound rotor induction machine-a comparison with alternative schemes. IEEE Trans Energy Convers 17(3):414–421

    Article  Google Scholar 

  • Dida A, Attous DB (2017) Fuzzy logic control of grid connected DFIG system using back-to-back converters. Int J Syst Assur Eng Manag. https://doi.org/10.1007/s13198-014-0309-3

    Article  Google Scholar 

  • Dirksen J (2013) LVRT low voltage ride through. DEWI Mag 43:56–60

    Google Scholar 

  • Ekanayake JB, Holdsworth L, Xue Guang W, Jenkins N (2003) Dynamic modeling of doubly fed induction generator wind turbines. IEEE Trans Power Syst 18(2):803–809

    Article  Google Scholar 

  • El-Kharashi E, Farid AW (2015) Accurate assessment of the output energy from the doubly fed induction generators. Energy 93(Part 1):406–415

    Article  Google Scholar 

  • El-Sattar AA, Saad NH, Shams El-Dein MZ (2008) Dynamic response of doubly fed induction generator variable speed wind turbine under fault. Int J Electr Power Syst Res 78(3):1240–1246

    Article  Google Scholar 

  • Gayen PK, Chatterjee D, Goswami SK (2016) An improved low-voltage ride-through performance of DFIG based wind plant using stator dynamic composite fault current limiter. ISA Trans 62:333–348

    Article  Google Scholar 

  • Geng H, Yang G, Dewei X, Bin W (2011) Unified power control for PMSG based WECS during different grid situations. IEEE Trans Energy Convers 26(3):822–830

    Article  Google Scholar 

  • Geng H, Liu C, Yang G (2013) LVRT capability of DFIG-based WECS under asymmetrical grid fault condition. IEEE Trans Ind Electron 60(6):2495–2509

    Article  Google Scholar 

  • Global Wind Energy Council (GWEC) (2018) Global wind statistics. Report 2018. www.gwec.net. Accessed Apr 2019

  • Guediri AK, Attous DB (2017) Modeling and fuzzy control of a wind energy system based on double-fed asynchronous machine for supply of power to the electrical network. Int J Syst Assur Eng Manag 8(1):353–360

    Article  Google Scholar 

  • Jadhav HT, Ranjit Roy A (2013) Comprehensive review on the grid integration of doubly fed induction generator. Int J Electr Power Energy Syst 49:8–18

    Article  Google Scholar 

  • Justo JJ, Mwasilu F, Jung J-W (2015) Doubly-fed induction generator based wind turbines: a comprehensive review of fault ride-through strategies. Renew Sustain Energy Rev 45:447–467

    Article  Google Scholar 

  • Krause PC, Wasynczuk O, Sudhoff SD (2002) Analysis of electric machinery and drive systems, 2nd edn. Wiley, Hoboken

    Book  Google Scholar 

  • Lindholm FA, Fossum JG, Burgess EL (1979) Application of the superposition principle to solar-cell analysis. IEEE Trans Electron Dev 26(3):165–171

    Article  Google Scholar 

  • Lopez J, Pablo Sanchis P, Roboam X, Marroyo L (2007) Dynamic behavior of the doubly fed induction generator during three-phase voltage dips. IEEE Trans Energy Convers 22(3):709–717

    Article  Google Scholar 

  • Lopez J, Gubıa E, Sanchis P, Marroyo XRL (2008) Wind turbines based on DFIG under asymmetrical voltage dips. IEEE Trans Energy Convers 23(1):321–330

    Article  Google Scholar 

  • Nielsen JG (2004) Method for controlling a power-grid connected wind turbine generator during grid faults and apparatus for implementing said method. Vestas, worldwide patent no. WO2004070936

  • Özsoy EE, Golubovic E, Sabanovic A, Bogosyan S, Gokasan M (2016) Modeling and control of a doubly fed induction generator with a disturbance observer: a stator voltage oriented approach. Turk J Electr Eng Comput Sci 24:961–972

    Article  Google Scholar 

  • Pena R, Clare JC, Asher GM (1996) Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation. IEE Proc Electr Power Appl 143(3):231–241

    Article  Google Scholar 

  • Perdana A, Carlson O, Persson J (2004) Dynamic response of grid-connected wind turbine with doubly fed induction generator during disturbances. In Nordic workshop on power and industrial electronics. Trondheim, Norway

  • Petersson A, Harnefors L, Thiringer T (2004) Comparison between stator-flux and grid-flux-oriented rotor current control of doubly-fed induction generators. In: Proceedings of the 35th annual IEEE power electronics specialists conference. Aachen, Germany

  • Petersson A, Thiringer T, Harnefors L, Petru T (2005) Modeling and experimental verification of grid interaction of a DFIG wind turbine. IEEE Trans Energy Convers 20(4):878–886

    Article  Google Scholar 

  • Rahimi M, Parniani M (2010) Dynamic behavior analysis of doubly-fed induction generator wind turbines—the influence of rotor and speed controller parameters. Int J Electr Power Energy Syst 32(5):464–477

    Article  Google Scholar 

  • Rahimi M, Masoum Mohammad AS, Islam SM (2011) Low and high voltage ride-through of DFIG wind turbines using hybrid current controlled converters. Int J Electr Power Syst Res 81:1456–1465

    Article  Google Scholar 

  • Rodriguez M, Abad G, Sarasola I, Gilabert A (2005) Crowbar control algorithms for doubly fed induction generator during voltage dips. In European power electronics and applications conference. Dresden, Germany, pp 1–10

  • Shuai X, Hong Z (2013) An LVRT control strategy based on flux linkage tracking for DFIG-based WECS. IEEE Trans Ind Electron 60(7):2820–2832

    Article  Google Scholar 

  • Thiringer T, Petersson A, Petru T (2003) Grid disturbance response of wind turbines equipped with induction generator and doubly-fed induction generator. Power engineering society general meeting, vol 3. IEEE

  • Tohidi S, Mohammadi-ivatloo B (2016) A comprehensive review of low voltage ride through of doubly fed induction wind generators. Renew Sustain Energy Rev 57:412–419

    Article  Google Scholar 

  • Xiang D, Li Ran PJ, Tavner S Yang (2006) Control of a doubly fed induction generator in a wind turbine during grid fault ride through. IEEE Trans Energy Convers 21(3):652–662

    Article  Google Scholar 

  • Yu L, Cai Z (2013) Rotor current dynamics of doubly fed induction generators during grid voltage dip and rise. Int J Electr Power Energy Syst 44(1):17–24

    Article  Google Scholar 

  • Zou J, Peng C, Yan Y, Zheng H, Li Y (2014) A survey of dynamic equivalent modeling for wind farm. Renew Sustain Energy Rev 40:956–963

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ridha Cheikh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Table 1.

Table 1 Simulation data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheikh, R., Belmili, H., Menacer, A. et al. Dynamic behavior analysis under a grid fault scenario of a 2 MW double fed induction generator-based wind turbine: comparative study of the reference frame orientation approach. Int J Syst Assur Eng Manag 10, 632–643 (2019). https://doi.org/10.1007/s13198-019-00790-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13198-019-00790-0

Keywords

Navigation