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Abstract This paper proposes a method based on a 4-layer

deep neural network model by stacked denoising auto-en-

coders to analyze four types of power data: current (I),

voltage (U), active power (P) and reactive power (Q). We

collect 7 days of household power data. In the beginning,

the prediction accuracy rate can reach 82.45% when 1-h

historical data are used to predict the data for the following

5 min. In order to optimize the parameters of this model,

data over a 3-month period are collected. The prediction

accuracy rate is 95.52% when three-day historical data are

used to predict the data for the next hour. Finally, sup-

plemental experiments are added to verify that the current

change has a greater impact on the model. The 3-month

data set is used as the training set. Extract 2 weeks of data

from 3 months of data, and the 2-week data is divided into

two test sets. The effect of the model on the prediction

accuracy from 7:00 in the morning to 24:00 in the evening,

and from 0:00 in the evening to 7:00 in the morning is

studied. The accuracy rates are 95.05% and 99.02%,

respectively. It shows that the prediction accuracy of the

model is higher for the period with a lower frequency of

power consumption than the period with a higher fre-

quency of power consumption, and that the change of the

current has a greater impact on the prediction of the model.

Finally, we prove that the effect of the 4-layer network is

better than that of the 3-layer, 5-layer and 7-layer network

models.

Keywords Deep learning � Neural network � Stacked
denoising auto-encoder � Power prediction

1 Introduction

The methods of power forecasting can be divided into two

categories: short-term load forecasting methods, and mid-

and long-term load forecasting methods (Yalcinoz and

Eminoglu 2005; Santos et al. 2003). Common short-term

load forecasting methods include: multiple regression, time

series, artificial neural network (ANN), and expert system

analysis. Multivariate regression methods are divided into

linear and non-linear; multivariate linear regression is the

need to use two or more influencing factors as independent

variables to explain the dependent variable changes, and a

linear relationship develops between multiple independent

variables and dependent variables (Moghram and Rahman

2002; Han et al. 2015). The non-linearity between the

independent variable and the dependent variable is a

multiple nonlinear regression. This method can only
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calculate the development level of comprehensive elec-

tricity load, and cannot predict the development level of

load in each area (Wu et al. 2013; Adamowski et al. 2012).

The time series method is a method of predicting the future

using chronological data. This method only focuses on

fitting mathematical models through data, does not com-

bine deep neural networks, and does not deal with regu-

larity (Safari et al. 2017; Emmert-Streib and Dehmer

2007). Artificial neural network (ANN) is a mathematical

model that simulates neuronal activity and is an informa-

tion processing system based on the structure and function

of the brain neural network (Mohammadi et al. 2015;

Giorgi et al. 2011). However, the analyzed power types are

relatively simple. The method of Zhang et al. (2017) uses a

7-layer SAE based deep neural network for cerebral

microbleed detection. But for different research objects and

situations, not the more layers, the better the effect. The

classification of Jia W’s method has a good effect, but it

may take a long time, and the loss of data may affect the

generalization of the model (Jia et al. 2017). Based on the

above deficiencies, this study uses a stacked denoising

auto-encoder to construct a 4-layer deep neural network

and combines it with time series prediction methods to

analyze and predict four types of power. The cross-vali-

dation method was used to construct the training set and

verification set (Turney 1994; Allix et al. 2014). Using

sigmoid as the loss function (Shamir 2016; Rudin et al.

2011), this study is divided into three groups of experi-

ments. The data sets of the first two sets of experiments use

1 week of data and 3 months of data to study the prediction

accuracy of four kinds of power data: current (I), voltage

(U), active power (P), reactive power (Q). The third set of

experiments is based on 3 months of data to study the

impact of the frequency of electricity consumption on

power prediction.

2 Data collection and preprocessing

2.1 Collection of data

The data is collected electricity by using the power

equipment of Tianjin TransEnergy Technology Co., Ltd. It

is also can be expanded. And it is the electricity con-

sumption data for the average household from February

26th to March 5th, 2018, and for the 3 months from

December 2017 to February 2018. These two dataset

experiments are recorded as Experiment 1 and Experiment

2, respectively. The supplementary experiment was recor-

ded as Experiment 3, and the training data sets were based

on the 3-month data used in Experiment 2. In addition, the

data from January 5, 2018 to January 20, 2018 are

extracted and divided into two parts, which are from 7:00

am to 12:00 p.m. and 12 p.m. to 7:00 p.m. every day. The

two parts of the data are used as the test set of Experiment

3-1 and Experiment 3-2, respectively. The data types are

current (I), voltage (U), active power (P), and reactive

power (Q), and are recorded once every minute. Figure 1

shows a random sample of data for a given day. The

abscissa is time in minutes and the ordinate is the corre-

sponding value of the four type of power consumption data

measured. The figure shows that the amplitude of current

and active power change in different periods is relatively

large. The figure also shows that power frequency and

power consumption are varied among different periods.

2.2 Data preprocessing

The data is sorted by time series. After preparing the data,

experiment 1 has 10,037 samples, experiment 2 has 106,887,

experiment 3-1 has 122,095, and experiment 3-2 has 114,859.

The time represented by each sample can be adjusted by

altering the dimensions of the samples in the original data.

The data of experiment 1 is calculated as a new single

sample every 5 min, and 2005 samples are obtained. The

data is then normalized and replaced with data between 0

and 1. The dimension of each sample is transformed from

the previous 4-dimensional data to the 48-dimensional data

of each sample. The 4*12-dimensional representation of

time is 5*12 for 1 h, the second set of samples starts from

the following 5 min and ends at the 1-h mark. The number

of samples is 2005, using the cross-overlay method, take

the first to 48-dimensional data as a new single sample

dimension, that is, the first sample to the 12th sample are

superimposed together to form a new single sample. Then

from the second sample to the 13th sample together as a

new second sample, that is, cross-oversampling. As an

example, suppose the number of new samples is 1993, and

the each sample is 48 dimension . Finally, we used the first

1500 of the 1993 samples as the training set and the last

493 as the test set. Cross-sampling is shown in Fig. 2.

The rest of the experiments are averaged in 60 min.

Experiment 2 uses 48 h of historical data to predict the

Fig. 1 Single day data graph
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49th hour. After processing, the new sample size was 1733,

and each sample had 192 dimension . Take the first 1500

samples as the training set, and the remaining 233 samples

as the test set. Experiments 3-1 and 3-2 predict the 13th

hour with 12 h of historical data. The new sample sizes are

2022 and 1818 respectively, the training set is 1800 and

1700 samples respectively, and the test set is 222 and 118

samples respectively.

3 Deep neural network model of power prediction

This chapter will introduce the construction of the power

forecasting network model, including the relationship

between the input and output relations of the power pre-

diction model, the introduction of the training phase, and

the setting of the model parameters after optimization. The

overall structure of the DNN power prediction model

experiment is shown in Fig. 3.

The overall process of the model experiment is divided

into data collection, data preprocessing including changes

in dimension, establishment of DNN model and input of

sample data, and output layer output prediction data.

3.1 The relationship between the input and output

of power prediction model

In the training phase, the number of neural nodes in the

input layer is consistent with the dimension of the single

sample after the pretreatment phase, and the middle two

hidden layers are given optimal settings obtained through

continuous training optimization. The output layer corre-

sponds to the input layer, and the number of neuron nodes

is 4. This establishes a link in the time series of data.

During the test phase, the error between the predicted value

and the real value is reduced by iterative and fine-tuning.

3.2 Stacked denoising auto-encoder (SDAE)

3.2.1 Denoising autoencoder

The traditional auto-encoder trains the network by the

output value of the output layer and the error of the input

layer data. This way of training while it is possible to

obtain good training effect, but there is still a small error,

the existence of small errors in the system of data of the

study is not perfect, sometimes even contains the error of

the data itself, tiny fluctuation is more sensitive to data,

namely the poor robustness.

In this paper, on the basis of the previous research,

optimization, the stacked sparse since the encoder into

stack denoise auto-encoder (SDAE), the stack noise

reduction since the encoder is a kind of training to get the

encoder by way of special training. The specific method is

to add some noise to the input data to learn and train the

auto-encoder so as to generate anti-noise capability, thus

obtaining more robust data reconstruction effect. The

model is shown in Fig. 4.

Unlike the traditional auto-encoder, the input layer of

the de-noising self-encoder is not the original data I, but the

data that has been added to the noise, while the data of the

output layer is still I. This approach can force network

restore the original data from the defect data, from the error

data found in the stable characteristics of mode greatly

improves the robustness of the network, reduces the net-

work to the sensitivity of the tiny differences in the input

data.

3.2.2 InputZeroMaskedFraction is used to adjust the ratio

of hidden layer nodes

InputZeroMaskedFraction is used in the input layer to

adjust the noise ratio. In the hidden layer, it is similar to the

Fig. 2 Experimental sampling principle

Fig. 3 Experimental sampling principle

Fig. 4 A schematic diagram of noise reduction autoencoder structure
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role of dropout, but the difference between the dropout and

the dropout is that the dropout is to set the partial weight

bias parameter to zero, while inputZeroMaskedFraction is

to set a part of the data to zero. Both are anti-interference,

dropout is external interference, and

inputZeroMaskedFraction is internal anti-interference,

which can increase the robustness of the system.

3.3 Network parameter optimization

The number of input and output nodes, the structure of the

hidden layer, the number of layers and nodes of the hidden

layer, the learning rate, the number of trainings and the

batch quantity, and the number of iterations are all set. The

effect of the model has a great influence on the prediction

accuracy. In this study, a stacked denoising auto-encoder is

used in the network layer. After optimization, the param-

eter settings of the DNN power prediction model in the two

groups of experiments are summarized in Table 1.

In the experimental pre-training stage, we use the SDAE

to iteratively update to get a set of initial parameters. Then

the parameters are put into the neural network for training,

the parameters are updated, and finally a better gradient fit

is achieved. the activation function and noise coverage

were Sigmod and 100%, respectively. Numepochs, Lear-

ingrate1, and Batchsize1 are set to 50, 2, and 100,

respectively. In the fine-tuning phase the iterations,

Learningrate2, and Batchsize2 are 10, 1, and 100,

respectively.

4 Power prediction neural network model results
and analysis

4.1 Experiment 1 result

The overall test error of experiment 1 is 0.1755, i.e., the

accuracy rate is 82.45%. The error of each feature vector is

shown in Table 2.

Experiment 1 compares the predicted values of the

eigenvectors on the test set with the graphs of the true

values. The abscissa unit is time in minutes and the ordi-

nate is the unit value of each eigenvector as shown in

Fig. 5.

4.2 Experiment 2 results

The overall test error of experiment 1 is 0.0448, i.e., the

accuracy rate is 95.52%. Each error of each feature vector

is shown in Table 3.

Experiment 2 compares the predicted value of each

eigenvector on the test set with the graph of the true value.

The abscissa unit is time in minutes, and the ordinate is the

unit value of each eigenvector as shown in Fig. 6.

4.3 Experiment 3 result

In order to verify the impact of the electrical consumption

at different times of day on the model, the 3-month data set

is used as the training set. A total of 15 days of data from

January 5 to January 20, 2018 are collected. The test set is

taken from 7:00 am to 12:00 pm every day as test 3-2.

Separating the test set for experiment 3-2 that uses less

electricity from 0:00 to 7:00 in the morning, the results and

analyses of the two supplementary experiments will be

discussed separately.

4.3.1 Experiment 3-1 results

The overall error in Experiment 3-1 is 0.0495, which

means the accuracy rate is 95.05%. Each error type of the

feature vector is shown in Table 4.

Experiment 3-1 plots the predicted and true values, as

shown in Fig. 7.

4.3.2 Experiment 3-2 results

The overall error in Experiment 3-2 is 0.0098, the accuracy

rate is 99.02%. Each error type of the feature vector is

shown in Table 5.

Experiment 3-1 plots the predicted and true values, as

shown in Fig. 8.

4.4 Deep stacked denoising auto-encoder (SDAE)

experiment

In order to better explore the model, take the data of

experiment two as an example. we decrease and increase

the number of layers in the network, from one auto-en-

coders to three auto-encoders and five auto-encoders. The

Table 1 Model parameters

Experiment Input Hidden 1 Hidden 2 Output

One 48 13 11 4

Two 192 13 10 4

Three-1 48 13 10 4

Three-2 48 13 10 4

Table 2 The error of the E1 feature vector

Experiment 1 I U P Q

meanerror 0.0610 0.0692 0.0531 0.0704

varerror 0.0084 0.0026 0.0095 0.0041

maxerror 0.6532 0.3362 0.6239 0.3398

123

838 Int J Syst Assur Eng Manag (August 2020) 11(4):835–841



number of layers in the network is divided into three layers,

five layers and seven of neural networks.

4.4.1 3-layer deep stacked denoising auto-encoder

experiment 4-1

The overall error in experiment 4-1 is 0.4020, which means

the accuracy rate is 59.80%. Each error type of the feature

vector is shown in Table 6.

Experiment 4-1 plots the predicted and true values, as

shown in Fig. 9.

4.4.2 5-layer deep stacked denoising auto-encoder

experiment 4-2

The overall error in experiment 4-2 is 0.4041, the accuracy

rate is 59.59%. Each error type of the feature vector is

shown in Table 7.

Experiment 4-2 plots the predicted and true values, as

shown in Fig. 10.

4.4.3 7–layer deep stacked denoising auto-encoder

experiment4-3

The overall error in Experiment 4-3 is 0.4041, the accuracy

rate is 59.59%. Each error type of the feature vector is

shown in Table 8.

Experiment 4-3 plots the predicted and true values, as

shown in Fig. 11.

Fig. 5 Experiment 1 trends between predicted values and real values

Table 3 The error of the E2 feature vector

Experiment 2 I U P Q

meanerror 0.0530 0.0920 0.0595 0.1156

varerror 0.0020 0.0118 0.0019 0.0069

maxerror 0.3455 0.7800 0.3120 0.5659

Fig. 6 Experiment 2 trends between predicted values and real values

Table 4 The error of the E3-1 feature vector

Experiment 3-1 I U P Q

meanerror 0.0538 0.0711 0.0520 0.1132

varerror 0.0015 0.0107 0.0015 0.0072

maxerror 0.2965 0.7110 0.2842 0.4992

Fig. 7 Experiment 3-1 trends between predicted values and real

values

Table 5 The error of the E3-2 feature vector

Experiment 3-2 I U P Q

meanerror 0.0495 0.0118 0.0477 0.1158

varerror 0.0018 0.0001 0.0023 0.0101

maxerror 0.2606 0.0403 0.3096 0.5232

Fig. 8 Experiment 3-2 trends between predicted values and real

values
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Comparing the results of Experiments 2 and 1, we can

see that with the increase of data sets, all types of errors

have been reduced as a whole, and the accuracy rate has

greatly improved. The Experiment 3 shows that the pre-

diction effect of the model on peak hours of electricity

consumption is lower than that of the stable period of

electricity consumption, i.e., the change of current has a

great influence on the model. The fourth set of experiments

shows that for the different number of network layers.

Increasing or decreasing the number of layers in the net-

work does not necessarily achieve better results. We should

choose the most suitable number of structural layers and

parameters. Too few layers can result in insufficient feature

extraction. Too many layers can lead to over-abstraction of

high-order feature extraction, so finding the right number

of layers can achieve better results.

5 Conclusion

Based on previous research, we improve the optimization

model and add noise based on the stacked auto-encoder to

form a stacked denoising auto-encoder (SDAE). Using

auto-encoder can extract a large amount of information into

nonlinear features, and this structural information loss is

less. Combining the auto-encoder with the neural network

architecture can establish a higher degree of fitness, and the

information retention is higher after extracting features.

Using SDAE can improve the robustness of the model. For

the actual power collection process, special cases such as

incomplete data collection and partial missing data may be

encountered. SDAE can better predict and achieve better

results than SAE. One-week data sets use 1-h historical

data to predict the next 5 min. The prediction accuracy can

reach 82.45% using this setup. The 3-month dataset uses

2 days of historical data to predict the next 1 h. The

accuracy of prediction can reach 95.28% using this setup.

Compared with the first group of experiments, the overall

progression has been greatly improved. Supplementary

experiments, using the 3-month data as a training set,

Table 6 The error of the E4-1 feature vector

Experiment 4-1 I U P Q

meanerror 0.0211 0.1042 0.0165 0.0286

varerror 0.0018 0.0009 0.0015 0.0009

maxerror 0.3124 0.1937 0.3264 0.2607

Fig. 9 Experiment 4-1 trends between predicted values and real

values

Table 7 The error of the E4-2 feature vector

Experiment 4-2 I U P Q

meanerror 0.0222 0.0739 0.0277 0.0382

varerror 0.0027 0.0010 0.0030 0.0010

maxerror 0.3345 0.1676 0.3359 0.2653

Table 8 The error of the E4-3 feature vector

Experiment 4-2 I U P Q

meanerror 0.0325 0.0695 0.0287 0.0273

varerror 0.0027 0.0008 0.0030 0.0009

maxerror 0.3279 0.1560 0.3387 0.2493

Fig. 11 Experiment 4-3 trends between predicted values and real

values

Fig. 10 Experiment 4-2 trends between predicted values and real

values
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divided the 2-month data into two periods of frequent use

and relatively stable data, respectively, as a test set. It

verifies that the prediction effect of the model on peak

hours is lower than that of the stable period. It has been

proven that the change of the current has the greatest

impact on the training prediction effect in the entire power

prediction model. Then, we prove that the choice of the

network model should choose the most appropriate number

of network layers, not the larger or smaller the number of

layers, the better the effect. The experimental results show

that the DNN model based on stacked denoising auto-en-

coder (SDAE) is more scientific and accurate than the

traditional power prediction method and general deep

learning DNN model. In the output stage, we produce the

average error, error value and maximum error of each

feature vector based on the output of the overall prediction

accuracy. This provides effective information for home

users and the power supply sector. We still have no dis-

cussion about the generalization of the model. In the next

work, we will try to add other types of data, such as cli-

mate, temperature and humidity, in addition to power data,

in order to explore the generalization of rich models. With

the continuous improvement of this method, DNN based on

stacked denoising auto-encoder (SDAE) has a very high

practical application in today’s energy prediction demands.
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