
Archive ouverte UNIGE
https://archive-ouverte.unige.ch

Article scientifique Article 2010 Published version Open Access

This is the published version of the publication, made available in accordance with the publisher’s policy.

Integration of Similarity-based and Deductive Reasoning for Knowledge

Management

Mougouie, Babak

How to cite

MOUGOUIE, Babak. Integration of Similarity-based and Deductive Reasoning for Knowledge

Management. In: KI - Künstliche Intelligenz, 2010, vol. 24, n° 2, p. 169–173. doi: 10.1007/s13218-010-

0019-1

This publication URL: https://archive-ouverte.unige.ch//unige:115431

Publication DOI: 10.1007/s13218-010-0019-1

© This document is protected by copyright. Please refer to copyright holder(s) for terms of use.

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch//unige:115431
https://doi.org/10.1007/s13218-010-0019-1

Künstl Intell (2010) 24: 169–173
DOI 10.1007/s13218-010-0019-1

D I S S E RTAT I O N E N U N D H A B I L I TAT I O N E N

Integration of Similarity-based and Deductive Reasoning
for Knowledge Management

Babak Mougouie

Published online: 13 May 2010
© Springer-Verlag 2010

Abstract Many disciplines in computer science combine
similarity-based and logic-based reasoning. The problem
is that the disciplines combine these independently of
each other. For example in Case-Based Reasoning (CBR)
(Aamodt and Plaza, AI Commun. 7(1):39–59, 1994;
Bergmann et al., Künstl. Intell. 23(1):5–11, 2009; Bergmann,
Experience Management: Foundation, Development,
Methodology and Internet-based Applications, LNAI,
vol. 2432, Springer, Berlin, 2002), the combination is ap-
plied in a sequential manner and not systematically as fol-
lows: a set of solutions is retrieved from a case-base using a
similarity measure and then deductive reasoning is applied
to adapt the retrieved solutions to a query. The aim of this
dissertation (Mougouie, Ph.D. thesis, Trier University, Ger-
many, 2009) is to integrate similarity-based and deductive
reasoning in a unified manner within the context of Knowl-
edge Management (KM).

Keywords Case-based reasoning · Knowledge
management · Deductive reasoning

1 Introduction

Logic-based approaches for knowledge representation and
reasoning have a long tradition in Artificial Intelligence (AI)
and KM. However, recently the perspective of KM in real

The dissertation was done under the supervision of Prof. Dr. Ralph
Bergmann and Prof. Dr. Michael M. Richter at the Dept. of Business
Information Systems II, Trier University, Germany.

B. Mougouie (�)
Computer Science Dept., University of Geneva, Geneva,
Switzerland
e-mail: babak.mougouie@unige.ch

world problem solving scenarios is drastically extended in a
sense that the output of knowledge-based systems is not sim-
ply considered correct or incorrect [8]. This is mainly due to
the facts that first, ideal solutions of problems might not ex-
ist at all and second, the knowledge is often incomplete, im-
precise and even contradicting since distributed knowledge
gets expanded and changed very rapidly. Therefore the ba-
sic view on KM has already been shifted from pure logic-
oriented to similarity-based approach. It has been recog-
nized that knowledge-bases formalizing real world scenarios
should be equipped with utility functions, fuzzy sets, proba-
bilities or similarity measures to introduce approximation as
a new paradigm.

Many disciplines combine similarity-based and logic-
based reasoning. However these reasoning methods are
combined independently of each other, one after the other
and not systematically. Particularly in CBR [1–3], which is
of the interest of this dissertation, reasoning with cases is
usually done in a similarity-based manner. However it has
always been recognized that additional general knowledge
should be added to cases e.g. for the purpose of adapting
cases. This general knowledge is often represented in rules,
constraints or ontology definitions and is usually applied in a
deductive reasoning process after similarity-based retrieval.

The main purpose of the thesis [7] is to present a way
of combining similarity-based and deductive reasoning in a
unified manner. Hence, we introduce similarity-based rea-
soning as search for the most similar elements (to a query
w.r.t. some similarity measure) in the deductive closure of
a domain theory. We elaborate the approach, finding Most
Similar Deductive Consequences (MSDC), and introduce
several search algorithms [4].

Our basic idea is to view general knowledge and cases
together as a logical theory Σ of a domain. In Σ , cases are
usually encoded as facts. General knowledge is added to Σ

mailto:babak.mougouie@unige.ch

170 Künstl Intell (2010) 24: 169–173

in form of general logical sentences and possibly additional
facts. Σ must be constructed such that the deductive closure
represents the knowledge we know with certainty to be true
in that domain. Similarity-based reasoning is introduced as
follows: for a given query q and a similarity measure sim, we
search for the k most similar elements in the deductive clo-
sure and thus find the most similar deductive consequences.

Main Scientific Contributions (1) We provide a general-
ized view on several CBR approaches and integrate CBR
similarity-based and logic-based reasoning methods in a
unified manner. (2) We present search algorithms that in-
tegrate similarity-based search with well-known AI search
processes performed during deduction. Our search algo-
rithms show a different and unified way of performing
the case-based reasoning tasks from the earlier CBR ap-
proaches. The developed algorithms differ in the heuristics
used for pruning the huge overall search space. (3) Due to
similarities between Ontology-Based Knowledge Manage-
ment (OBKM) and Structural Case-Base Reasoning (SCBR)
(see [5]), we show that MSDC can be used as a general
framework for integrating OBKM and SCBR. (4) We com-
bine Optimization methods with the heuristic search algo-
rithms, extend approximation techniques of symbolic do-
mains and integrate them with deductive reasoning methods.

The paper is organized as follows. In Sect. 2, we de-
fine MSDC and mention the search algorithms with exper-
imental comparison. Section 3 is dedicated to the applica-
tion of MSDC in implementing and re-interpreting CBR
approaches and integrating SCBR and OBKM. Section 4
provides optimization algorithms to solve or approximate
MSDC and their experimental comparison.

2 Finding MSDC

First, we need as basis a logical system with an inference
calculus in which all knowledge, including cases, are repre-
sented. One can use predicate logic, Horn-logic, frame logic,
or description logic. The latter appears to be very promising
due to its use in ontology languages. However, for the scope
of the dissertation, we restrict ourselves to Horn logic with-
out recursive deductions.

Based on a domain theory Σ consisting of formulas of
the logic (a set of facts and rules in Horn logic) in which all
knowledge of the domain including cases are represented,
we look for the most similar case q ′ = p(t ′1, . . . , t ′n) that can
be deduced from Σ to a query q = p(t1, . . . , tn) (t1, . . . , tn,
t ′1, . . . , t ′n can be constants or variables) given a similarity
measure simp : AFp × AFp �→ [0,1] where AFp is the set
of all atomic formulas starting with the n-ary predicate sym-
bol p.

We further formalize the similarity measure
following the local-global principle: simp(q, q ′) =

Ω(sim1(t1, t
′
1), . . . , simn(tn, t

′
n)) such that Ω is an aggre-

gate function that is monotonous in every argument and
0 ≤ simi (ti , t

′
i) ≤ 1 for i = 1, . . . , n are local similarities.

Definition The most similar deductive consequence is de-
fined as follows:

MSDC(q) = arg max simp(q, q ′)

q ′ ∈ closurep(Σ)

s.t. q = p(t1, . . . , tn) and closurep(Σ) = {p(t ′1, . . . , t ′n)|Σ � p(t ′1, . . . , t ′n)} is the deductive closure of Σ restricted
to atomic formulas starting with the n-ary predicate sym-
bol p.

This is extended to k-MSDC which delivers the k-most
similar deductive consequences: k-MSDC(q) = {q1, . . . , qk}
⊆ closurep(Σ) such that simp(q, q ′) ≤ min{simp(q, qi)|i =
1, . . . , k} ∀q ′ ∈ closurep(Σ) − {q1, . . . , qk}.

Example Consider the following domain theory denoted in
traditional notation for Prolog:

q(X,Y) :- c(X,Y).
q(X,Y) :- c(X1,Y1), a(X,Y,X1,Y1).
c(2,5).
c(25,39).
a(X,Y,X1,Y1) :- D is X-X1, D>0, D<3,
Y is Y1+X-X1.

Consider the facts with the predicate c to be cases of a
case base, with the first argument representing the problem
and the second argument representing the solution. The first
clause represents the fact that a query can be answered di-
rectly by a case (without adaptation) while the second clause
describes that a case c(X1,Y1) is selected and then an
adaptation operator is applied such as in transformational
adaptation. The last clause represents the adaptation oper-
ator itself: if the difference in the problem is less than 3
then the solution is linearly adapted by the formula men-
tioned. Of course, a traditional Prolog interpreter, is able to
answer queries of the kind ?- q(3,Y) and in this case
would return the answer Y=6. However, it would not be
able to find an answer to the query ?- q(5,Y). An equiv-
alent CBR system in this case would use a similarity mea-
sure to find the most similar case, which could be c(2,5)
and apply the adaptation operator to this case and return
the result c(4,7). This is exactly what MSDC also does.
For this purpose, assume that the following similarity mea-
sure simq((q(X,Y), q(X1, Y1)) = 1 − (|X − X1|/100) is
given. As usual in CBR, this similarity measure assesses
the similarity of the problem attribute. With this similarity,
MSDC(q(5, Y)) = q(4,7).

Search Algorithms to Find MSDC We developed several
standard AI search methods and some of their varieties and

Künstl Intell (2010) 24: 169–173 171

combinations to compute or approximate k-MSDC or to
deliver its approximation. They integrate similarity-based
search with the search process performed during deduction
to compute the closure. They differ in the heuristics used for
pruning the huge search space. Our search space to find the
elements of closurep(Σ) is a state space in which each state
differs from its successor in one resolution step (we restrict
ourselves to domain theories with finite state spaces).

The first obvious search methods, which deliver the ex-
act solutions of k-MSDC, are complete search methods in
a depth first (dfs) or breadth first (bfs) order. Thereby, all
elements of the closure are constructed, evaluated w.r.t. the
similarity measure and ordered according to the similarity
value. These exhaustive search methods lead to high com-
putational cost.

To improve the search, we defined heuristics knowing
that the similarity measure can be used to decide whether
a branch in the search tree can still contribute to the com-
putation of k-MSDC. Therefore, we can apply the similarity
measure to a node in the search tree to compute an upper
bound of the similarity that can be achieved by the solutions
in the sub-tree.

dfs_MAS is a depth-first search that reduces the size of
the explored search space by introducing a minimum ac-
ceptable similarity value μ and prunes the solutions whose
similarities to q cannot anymore exceed μ. This algorithm
cuts the search space at the cost of not assuring to finding
the optimal solution of the k-MSDC problem. It only finds
up to k solutions with a similarity higher than μ. To use
this approach it is of course required to know in advance
a good value for μ. Therefore, we developed a method for
efficiently computing an approximation for μ by use of op-
timization methods (refer to Sect. 4).

The second algorithm implements a beam search main-
taining some states with the highest similarity.

The third algorithm, look-ahead pruning (lap), improves
the pruning approaches by introducing a branch-and-bound
technique. The idea is to find for each open state a lower and
an upper bound for its similarity to the query. Here we use
this information to prune states whose upper bound similar-
ities are lower than any lower bound similarity. This tech-
nique is combined with beam search, leading to the algo-
rithm called lap_beam.

Experimental Comparison of Search Algorithms To evalu-
ate the performance of the search algorithms with respect
to their computation time and similarity error caused by the
pruning heuristics, we implemented the algorithms in SWI-
Prolog.1 As test domains we employed: a case-based con-
figuration scenario and a car buying scenario in electronic
commerce.

1www.swi-prolog.org.

For the domain theories of both scenarios, the algorithms
showed more or less the same behavior in terms of execution
time and accuracy of the results although some small differ-
ences can not be overseen. dfs was the slowest algorithm in
the majority of experiments and beam and dfs_MAS were
the fastest, but at the cost of producing a much higher simi-
larity error. lap_beam and lap produced a fairly lower error
in average, but were significantly slower than beam. Both
lap_beam and lap were faster than dfs in the majority of
experiments. However, in some experiments, they got very
time-consuming, even worse than dfs.

3 Application

MSDC can be used to implement and re-interpret existing
CBR approaches and go even beyond CBR.

Completion Rules The formulation of completion rules is a
very straightforward use of general knowledge [2], which is
widely used in CBR applications. Rules are applied for in-
ferring additional properties not explicitly represented in the
cases or the query, but which are necessary for the similarity
assessment. Then each completion rule is transferred into a
Horn clause of the following schema:

c(X1, . . . ,Xk−1,XNewk,Xk+1, . . . ,Xn) :− c(X1, . . . ,Xn),

pre(X1, . . . ,Xn),XNewk is action(X1, . . . ,Xn).

The head of the clause represents the case that results
by the completion; the variable XNewk gets a new value.
pre represents the rule’s precondition defined over the val-
ues X1, . . . ,Xn of the attribute of the selected case. If the
precondition is fulfilled, the expression action computes the
new value. In a regular deduction process, several comple-
tion rules can be chained.

Transformational Adaptation As shown in the example be-
fore, transformational adaptation can be implemented in the
MSDC approach by encoding adaptation operators as Horn
rules. The general form of these clauses is as follows:

c(X1, . . . ,Xn) :− c(Y1, . . . , Yn),pre(Y1, . . . , Yn),

X1 is act1(Y1, . . . , Yn), . . . ,Xn is actn(Y1, . . . , Yn).

Again, the head of the clause represents the result of the
adaptation and pre is the operator’s precondition based upon
the selected case. Then the value of each attribute Xi is
adapted by a separate acti .

Generalized Cases In CBR, a generalized case (when a case
is not a point in the problem-solution space but a subspace
of it) can be represented by a set of constraints that specify
its subspace. Generalized cases are particularly useful to re-
duce the size of a case base, which can ease case authoring

http://www.swi-prolog.org

172 Künstl Intell (2010) 24: 169–173

and retrieval. Such generalized cases can be easily encoded
within the MSDC approach by a Horn rule:

c(X1, . . . ,Xn) :− cons1(X1, . . . ,Xn,Xn+1, . . . ,Xn+m), . . . ,

consk(X1, . . . ,Xn,Xn+1, . . . ,Xn+m).

In this schema consi are the constraints which relate the
variables in the case and possible local variables to one an-
other. Of course the used constraints must be specified in
Horn logic by additional clauses.

Configuration Recommender systems for configurable prod-
ucts can also be implemented using the MSDC approach.
Here, a product should be configured from several compo-
nents, while various constraints must be maintained. The
query represents the desired properties of the overall prod-
uct; the result will be some configurations as similar as pos-
sible to the query. This problem is encoded as a domain
theory as follows: Individual components are represented
as facts in the domain theory. Several components are then
combined to form a product or sub-product while the combi-
nations of components with related constraints are encoded
in Horn rules.

Integration of SCBR and OBKM with MSDC MSDC pro-
vides a general framework for integrating SCBR and
OBKM. An ontology can be represented as an SCBR system
and therefore as a domain theory in MSDC. Thus MSDC
can be interpreted as an OBKM system equipped with sim-
ilarity. The important point is that MSDC possesses many
of the characteristics of both SCBR and OBKM which are
missing in either of them. For example some important is-
sues are the notions of mapping, assignment and semantic
unification which can also be provided by MSDC (see [7]).

4 Optimization Methods

We proposed a formulation O P -MSDC(q) of MSDC in [6],
which is a mixed integer optimization problem. Although
such problems are exponentially solvable in general, our ex-
perimental results show that O P -MSDC(q) is solved sur-
prisingly faster than our heuristic algorithms. Based on this
observation, we provide several algorithms to find or ap-
proximate k-MSDC.

In order to apply optimization methods for real domain
theories with variables bound to symbols, it was necessary
to extend approximation techniques and transform symbols
of a domain theory into integer numbers by replacing each
symbol with a unique integer number. Furthermore, similar-
ity measures with symbols were transformed into numeri-
cal similarity functions. As a consequence, O P -MSDC(q)
was an approximation of MSDC. However, our experimen-
tal results show that the gaps between the results of O P -
MSDC(q) and MSDC are very small.

For solving O P -MSDC(q), we apply some preprocess-
ing techniques such as domain reduction and constraint gen-
eration (refer to [7] for discussion on this issue and our fur-
ther pruning and relaxation techniques).

We use the package lp_solve2 to solve optimization prob-
lems. Assuming that lp_solve(O P) is a program that pro-
vides an optimal solution of an optimization problem O P ,
we developed several algorithms to find or approximate k-
MSDC among them the following two.

O P -k-MSDC The idea of this algorithm is straightforward.
Given a query q , we first solve lp_solve(O P -MSDC(q)) and
retrieve the optimal solution of O P -MSDC(q). Then we add
a pruning constraint to O P -MSDC(q) to prune the retrieved
optimal solution and solve the new optimization problem.
Keeping a list k-MSDC of the retrieved optimal solutions,
we continue the same procedure until no further solution is
found or k-MSDC contains k solutions.

dfs_MAS_O P This algorithm is the same as dfs_MAS in
which μ is set to simp(q, q ′) − ε such that q ′ is found by
O P -k-MSDC with k = 1 and ε is a small deviation e.g. 2%,
4%, An upper bound for ε is retrieved using statistics,
e.g. applying several experiments and make ε bigger and
bigger until k solutions are found.

Comparison of Optimization Algorithms O P -k-MSDC is
the fastest algorithm among all implemented algorithms (the
ones in this section and those in Sect. 2) with very small
errors. dfs_MAS_O P is less precise and a bit slower than
O P -k-MSDC, but generates also small errors. Surprisingly,
its errors are a lot less than those of dfs_MAS. The reason
for this is the particular choice of the parameter μ which is
very close to the real similarity for the best solution. We can
conclude, this approach is useful in general if a good and
fast approximation algorithm to estimate μ is at hand.

The only disadvantage of O P -k-MSDC is that it should
be run until termination whereas the other algorithms can be
interrupted whenever a stopping criterion is satisfied.

References

1. Aamodt A, Plaza E (1994) Case-based reasoning: foundational is-
sues, methodological variations, and system approaches. AI Com-
mun 7(1):39–59

2. Bergmann R (2002) Experience management: foundation, devel-
opment, methodology and internet-based applications. LNAI, vol
2432. Springer, Berlin

3. Bergmann R, Althoff K-D, Minor M, Reichle M, Bach K
(2009) Case-based reasoning—introduction and recent develop-
ments. Künstl Intell 23(1):5–11

2lp_solve: http://tech.groups.yahoo.com/group/lp_solve/.

http://tech.groups.yahoo.com/group/lp_solve/

Künstl Intell (2010) 24: 169–173 173

4. Bergmann R, Mougouie B (2006) Finding similar deductive
consequences—a new search-based framework for unified reason-
ing from cases and general knowledge. In: Proceedings of the 8th
European conference, ECCBR 2006

5. Bergmann R, Schaaf M (2003) Structural case-based reasoning
and ontology-based knowledge management: a perfect match?
J Univers Comput Sci 9(7):608–626

6. Mougouie B (2008) Optimization algorithms to find most similar
deductive consequences (MSDC). In: The 9th European conference

on case-based reasoning, ECCBR 2008, Trier, Germany, September
2008

7. Mougouie B (2009) Integration of similarity-based and deductive
reasoning for knowledge management. PhD thesis, ISBN 978-3-
86853-091-9, Trier University, Germany

8. Richter MM (2004) Logic and approximation in knowledge based
systems. In: Lenski W (ed) Logic versus approximation. LNCS, vol
3075. Springer, Berlin, pp 33–42

	Integration of Similarity-based and Deductive Reasoning for Knowledge Management
	Abstract
	Introduction
	Finding MSDC
	Application
	Optimization Methods
	References

