
Robot Controllers for Highly Dynamic Environments
With Real-time Constraints

Von der Fakulẗat für Mathematik, Informatik und Naturwissenschaften der
Rheinisch-Westf̈alischen Technischen Hochschule Aachen zur Erlangung des

akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Diplom-Informatiker

Alexander Antoine Ferrein

aus Hilden

Berichter: Universiẗatsprofessor Gerhard Lakemeyer, Ph.D.
Universiẗatsprofessor Michael Beetz, Ph.D.

Tag der m̈undlichen Pr̈ufung: 20. Dezember 2007

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek verf̈ugbar.

TO MY FAMILY

Acknowledgements

First of all, I would like to thank my supervisor Gerhard Lakemeyer for several reasons. He
convinced me to start the quest on mobile robots and with this giving me this great opportunity and
experience of being part of the RoboCup project. During the recent years he always gave the right
advice at the right time in his very subtle way. His way of giving sublte (mostly) reinforcement
(positive as well as negative) very much enforced my scientific education and development, and
I would like to thank him for the trust that our efforts will come to some good end, and for his
patience and understanding that sometimes making things run in reality takes longer than expected.
In this context I have to underline that I am very grateful for his respect of the practical work we
have done during the last years. His passion to sit in early morning hours with the RoboCup team
to debug something at some tournament site is well remembered. Finally, I would like to thank
him for his valuable comments on earlier versions of this thesis, helping to make it a coherent and
hopefully (formally) sound document. I am grateful to Michael Beetz who kindly accepted the
task of the second reviewer of this thesis.

I’m indebted to many people supporting this work during the last years. It may sound a little
bit like an acceptance speech at the Grammys, but Ido owe a lot to the following people. I
have to thank the Knowledge-based Systems Group for the great support of our endevours, in
particular (in the order of appearance) Gero Iwan, Hendrik Grosskreutz, Günter Gans, Frank Dylla,
Christian Fritz, Vazha Amiranashvili, Jens Classen, Stefan Schiffer, and Daniel Beck; Dominik
Schmitz for listening to my complaints on many train rides, for his valuable comments and solution
ideas on several problems; and the whole group of people working at Computer Science V. I
have to thank all the members of the AllemaniACs RoboCup team. The members over the last
five years were (in alphabetical order): Daniel Beck, Florin Bley, Masrur Doostdar, FrankDylla,
Benjamin von Eicken, Christian Fritz, Carsten Gester, Claudia Gönner, Lutz Hermanns, Yuxio Hu,
Stefan Jacobs, Mirko Kohns, Savas Konur, Alexandros Matsikis, Christoph Mies, Tim Niemüller,
Martin Rous, Stefan Schiffer, Nils Springob, Andreas Strack, Pei Tang, Philipp Vorst, and Jost
Wunderlich. With such a long list of people one cannot pinpoint the reasons for my gratefulness
in detail. I just want to remark that some of these people I owe much and that these people
should know that I know! Thanks for the good times, but also for the hard times we went through
together. I was able to learn a lot from all of them in so many respects; the working together
(which was not always a pleasure) let me learn so much and will be well remembered. I would
also like to thank the AllemaniACs@Home team (Stefan and Tim and Masrur) explicitly for their
outstanding performance during last RoboCups showing that our robots are not only bulky but that
the approach works in practice!

Next, I want to thank the German Science Foundation (DFG) and the Ministry of Science and
Education (MSWF) of North-Rhine Wesfalia for the financial support of the RoboCup project.
Further, I’m also grateful for the financial support of Computer Science V, personified through
Mathias Jarke and Gerhard Lakemeyer, and the Bonn-Aachen Institute of Technology.

Thanks to Tom Waits and to Linkin Park for providing the right background atmosphere during
the long hours of the writing this document.

I am deeply indebted to Tessa Oliver inter alia for proof-reading the whole thesis. Her com-
ments and advice finally made this document ’human-readable’. I want to thank my family for
their support during recent years. In the end, I have to thank Tanja for her love and her sup-
port especially during the time of writing this thesis, always having understanding for “I’d like to
but, . . .”.

Abstract

The fields of mobile autonomous robotics and cognitive robotics are active research fields. In
the last decade progress has become more and more visible. The reason for this is that the sys-
tems became more affordable, there were side effects to automobile industries (driving assistance
systems) which make use of similar methods, and that activities like RoboCup (robotic soccer)
became more present in the media. Additionally, there are efforts to standardize software and
hardware components. In recent years several successful applications showed that mobile robots
can interact with their environment and fulfill meaningful and useful tasks. Nevertheless, many
questions on how to design autonomous mobile robots remain open and are subject to active re-
search in this field. For problems like navigation, collision avoidance, and localization, robust
approaches have been proposed which are widely used. The question of how such robots can act
intelligently, has wide-spread ideas and approaches.

In this thesis we propose an approach to the problem of intelligent decision making (delibera-
tion) for robots or agents which moreover have to decide under real-time constraints in adversarial
domains, i.e. multi-agent domains where opponents have contrary goals and try to foil the goals
of the opposing team. Agents can be seen as non-embodied robots acting in simulated environ-
ments. Our account is based on the logical agent high-level programming language Golog. Golog
is based on the situation calculus, a powerful logical calculus for reasoning about actions and
change. During recent years several extensions for integrating concurrency and sensing, dealing
with continuous change, and applying decision theory have been made. The question we are con-
cerned with in this thesis is how these different approaches can be put together in such a way that
an agent is enabled to come to intelligent decisions while acting in dynamic, adversarial real-time
domains. The crucial point is that deliberation in general is computationally expensive, but nev-
ertheless is needed to come to intelligent decisions. On the other hand, the robot must be able to
react quickly to changes in the environment, because otherwise an opponent might take advantage.

We propose the language READYLOG as an approach to intelligent decision making especially
in dynamic real-time domains. READYLOG is a GOLOG family language and combines features
known from other dialects in one framework. It is based on the situation calculus and offers proba-
bilistically projecting a given world situation into the future, dealing with a continuously changing
world, coming with an efficient implementation and a mechanism to progress the internal database.
READYLOG especially makes use of decision-theoretic planning as a means to intelligent decision
making. Several alternatives in the robot program are left open and READYLOG chooses the most
promising one against a background optimization theory. As decision-theoretic planning is com-
putationally costly, we are looking for ways to reduce the complexity of planning. One possibility
which we propose is to make use of options, which are macro-actions in the decision-theoretic
context.

We show several detailed applications of READYLOG in dynamic real-time domains. These
range from interactive computer games to robotic soccer, simulated as well as with real robots.
READYLOG has been successfully applied for several soccer agents which participated in the in-
ternational RoboCup world championships. As we are also dealing with real robots, we also
discuss several new approaches and extensions in the field of robotics, like a new robust laser-
based navigation algorithm. Finally, as READYLOG comes with a formal logical semantics it is
well-suited to model behavior in a general way. We started to develop a formal soccer theory for
robots based on human soccer knowledge. The formalization language we used is READYLOG.

Zusammenfassung

Die Forschungsfelder
”
Mobile Autonome Robotik“ und

”
Kognitive Robotik“ sind aktive Fel-

der und werden intensiv bearbeitet. Der Fortschritt auf diesen Gebieten ist besonders in den letzten
10 Jahren sichtbar geworden. Ein Grund für die versẗarkte Wahrnehmbarkeit dieser Forschungs-
gebiete ist, dass Robotersysteme günstiger in der Anschaffung und Entwicklung werden. Es
gibt vermehrt Querbeziehungen zur Automobilindustrie im Bereich von Fahrerassistenzsystemen,
wo ähnliche Methoden für ähnliche Problemstellungen eingesetzt werden. Davon profitiert die
Roboterforschung u.a., da durch die Massenproduktion in der Automobilindustrie z.B. Sensorik
billiger wird. Weiterhin sind Initiativen wieRoboCup, die Weltmeisterschaft der Fußballroboter,
sẗarker pr̈asent in den Medien. Darüber hinaus gibt es Bem̈uhungen, sowohl Robotik-Software als
auch Robotik-Hardware zu standardisieren und damit für eine breitere Basis verfügbar zu machen.
Anwendungen zeigen, dass mobile Roboter in der Lage sind, mit ihrer Umwelt zu interagieren und
Aufgaben erfolgreich zu erfüllen. Eine Vielzahl offener Probleme existiert, und nach Lösungen
wird intensiv geforscht. F̈ur Probleme wie Navigation, Kollisionsvermeidung oder Lokalisierung
gibt es mittlerweile robuste Algorithmen. Welche Methoden Agenten oder Roboter intelligent
handeln lassen, ist auf der anderen Seite noch nicht so offensichtlich.

In dieser Arbeit wird ein Ansatz zur intelligenten Entscheidungsfindung (Deliberation) für
Roboter oder Softwareagenten, die Entscheidungen unter Echtzeitbedingungen unter Einfluss von
Gegenspielern treffen m̈ussen, vorgeschlagen. Agenten sind hier als nicht-physikalische Roboter,
die in simulierten Umgebungen agieren, zu sehen. Der vorgestellte Ansatz fußt auf der logik-
basierten Hochsprache GOLOG. GOLOG selber basiert auf dem Situationenkalkül, ein m̈achtiges
logisches Kalk̈ul, um Schl̈usseüber Aktionen und deren Effekte zu ziehen. Für GOLOG wur-
den verschiedene Erweiterungen vorgeschlagen, die kontinuierliche Domänen betrachten, neben-
läufiges Ausf̈uhren von Aktionen erlauben oder entscheidungstheoretisches Planen unterstützen.
Eine Frage, der in dieser Arbeit nachgegangen wird, ist, wie man diese unterschiedlichen Er-
weiterungen integrieren kann, so dass ein Agent, der in einer Echtzeitdomäne, in der auch Gegen-
spieler agieren, zu intelligenten Entscheidungen kommen kann. Das Hauptproblem liegt darin,
dass Deliberation im Allgemeinen rechenintensiv ist. Sie wird jedoch benötigt, um zu intelligen-
ten Entscheidungen zu kommen. Auf der anderen Seite muss ein Agent oder Roboter in solchen
Domänen schnell reagieren, da der Gegner sonst jede Verzögerung ausnutzen könnte.

Wir schlagen mit dieser Arbeit die Sprache READYLOG als einen Ansatz zur intelligenten
Entscheidungsfindung in dynamischen Echtzeitdomänen vor. READYLOG geḧort der GOLOG-
Sprachfamilie an und vereint verschiedene Charakteristiken, die von anderen Dialekten bekannt
sind. Wie GOLOG beruht READYLOG auf dem Situationenkalk̈ul und bietet die M̈oglichkeit,
probabilistische Projektionen durchzuführen oder auf eine sich kontinuierlich verändernde Welt
zu reagieren. Das Laufzeitsystem von READYLOG implementiert dar̈uber hinaus einen Progres-
sionsmechanismus der internen Wissensbasis. Eines der Hauptmerkmale von READYLOG ist die
Möglichkeit zum entscheidungstheoretischen Planen. Das Agentenprogramm lässt verschiedene
Handlungsalternativen offen. Die Beste dieser Alternativen wird mittels einer Optimierungsthe-
orie von READYLOG zur Laufzeit ausgeẅahlt. Da entscheidungstheoretisches Planen rechen-
intensiv ist, suchen wir weiterhin nach Wegen, die Komplexität des Planens zu senken. Eine
Möglichkeit, von der Gebrauch gemacht wird, ist die Einführung von sogenannte Makroaktionen
oder Optionen.

x

Im weiteren Verlauf der Arbeit werden in verschiedenen detailliert beschriebenen Anwendun-
gen die M̈oglichkeiten des Einsatzes von READYLOG in dynamischen Echtzeitdom̈anen aufge-
zeigt. Die Anwendungen reichen von Agenten in interaktiven Computerspielen bis hin zu Roboter-
fußball, sowohl mit Softwareagenten als auch mit

’
echten‘ Robotern. READYLOG wurde erfolgre-

ich zur Implementierung von Fußballrobotern, die bei internationalen RoboCup-Meisterschaften
teilnehmen, genutzt. Da sich unsere Anwendungen auf Roboter beziehen und einige Beiträge
auf diesem Gebiet u.a. zur laser-basierten Navigation gemacht wurden, befasst sich ein Teil der
Arbeit mit mobilen Robotern. Ein anderer Teil beschreibt den Einsatz von READYLOG zur Ver-
haltensspezifikation. Wir haben READYLOG mit der zugrundeliegenden formalen Semantik dazu
benutzt, Fußballstrategien zu formalisieren, um diese dann auf dem Roboter einsetzen zu können
und dadurch das Verhalten der Roboter zu verbessern. READYLOG erwies sich hier als sehr aus-
drucksstark.

Contents

1 Introduction 1
1.1 Intelligent Robots and Agents: (Mobile) Autonomous Systems 1
1.2 Methods and Models for Making Them Behave Intelligently 4
1.3 Goals and Contributions of this Thesis . 5
1.4 Outline . 9

2 Related Work 11
2.1 Reasoning about Action and Change . 11

2.1.1 Hierarchical Task Networks . 11
2.1.2 Incorporating Uncertainty: Markov Decision Processes 12
2.1.3 The Situation Calculus . 14
2.1.4 ES: The Situation Calculus without Situations 15
2.1.5 Other Approaches to Reasoning about Action and Change 16

2.2 The Robot Programming Language Golog . 20
2.3 Robot Controllers . 24

2.3.1 Control Architectures . 24
2.3.2 Non-Logic-Based Robot Programming Languages 25
2.3.3 Recent (Cognitive) Robotics and Agent Applications 27

2.4 Discussion . 29

3 Mathematical Foundations 31
3.1 Markov Decision Processes . 31

3.1.1 Decision-theoretic Planning . 33
3.1.2 Reinforcement Learning and the Link to DT Planning 34

3.2 Bayes Filtering for Robot Localization . 36
3.2.1 Kalman Filter . 37
3.2.2 Particle Filter . 38

3.3 Reasoning about Action and Change . 40
3.3.1 Situation Calculus . 41
3.3.2 Golog . 45
3.3.3 The Transition Semantics and Guarded Action Theories 49
3.3.4 ccGolog and pGolog . 52
3.3.5 Off-line Decision-theoretic Golog . 56

3.4 Summary . 61

xi

xii CONTENTS

4 A Golog Dialect for Real-time Dynamic Domains 63

4.1 Readylog Semantics . 65

4.1.1 Overview . 65

4.1.2 Reifying Programs as Terms . 65

4.1.3 Trans and Final . 66

4.2 On-line DT Planning with Passive Sensing . 72

4.2.1 Discussion: Soutchanski’s On-line DTGolog 75

4.2.2 Extending Passive Sensing . 77

4.2.3 Execution Monitoring for Policies . 80

4.2.4 Extending Stochastic Action Models . 83

4.3 Speeding Up Planning . 93

4.3.1 Options . 94

4.3.2 Caching, Pruning and an Any-time Algorithm 105

4.4 The Readylog Interpreter . 109

4.5 Discussion . 121

5 Simulated Readylog Agents 123

5.1 Unreal Readylog Bots . 123

5.1.1 UNREAL TOURNAMENT 2004 . 123

5.1.2 Modeling UNREAL in READYLOG . 125

5.1.3 Experimental Results . 129

5.2 Robotic Soccer . 130

5.2.1 The RoboCup Initiative . 130

5.2.2 Action Selection in 2D Soccer Using Probabilistic Projections 135

5.3 Summary and Related Work . 139

6 Embodied Readylog Agents 143

6.1 Introduction . 143

6.2 Robot Control Software . 144

6.3 Laser-based Collision Avoidance on a Mobile Robot 147

6.4 Laser-based Localization with Many Distance Measurements 159

6.5 Fusing Sensor Values . 166

6.6 Robotic Soccer in the Middle-Size League . 172

6.7 A Service Robotics Application . 179

6.8 Discussion and Related Work . 181

CONTENTS xiii

7 Qualitative State Space Abstractions 185
7.1 Introduction . 185
7.2 Formalizing Soccer Strategies . 186

7.2.1 The Organization of Soccer Knowledge 186
7.2.2 Deriving the Specification of Soccer Tactics 190

7.3 A Qualitative World Model for the Robotic Soccer Domain 194
7.3.1 World Model Categories . 194
7.3.2 Modeling Relative Positional Information 197
7.3.3 Modeling Semantic Regions . 201
7.3.4 Reachability, Free Space, and More . 203

7.4 A DT Plan Library for Abstracted Plans . 205
7.4.1 Solving Decision-theoretic Plans in an Abstract Way 205
7.4.2 Generating a DT Plan Library . 207
7.4.3 Experimental Results from the Simulation League 209

7.5 Summary and Related Work . 212

8 Conclusion 215

Index 221

Bibliography 227

List of Figures

3.1 Decision tree search . 35
3.2 Relationships between learning, planning and acting 36

4.1 Overview of Readylog constructs . 68
4.2 The Maze Domain . 72
4.3 Decision Tree for the Maze Domain . 74
4.4 Optimal Policy for the Maze . 75
4.5 The Extended Architecture . 79
4.6 The Maze Domain with Macro-Actions . 94
4.7 Options for the Maze66 domain. 95
4.8 Run-time comparison between ordinary stochastic actions and options. 104
4.9 Pruning the decision tree . 107

5.1 A scene from the interactive computer game UNREAL TOURNAMENT 2004. . . 125
5.2 Double pass scenario . 136
5.3 Execution traces of the pass sender and receiver in the double pass situation . . . 140

6.1 The “AllemaniACs” System . 144
6.2 Examples of integrating obstacles in the occupancy grid map. 148
6.3 Derivation of solution . 151
6.4 Collision-free triangle . 152
6.5 Example traces . 154
6.6 Velocity distributions of ROBOCUP Middle-Size league games 156
6.7 Comparison of the DWA with our method . 158
6.8 Example run for global localization of MCL. 160
6.9 Sensor model for a single distance measurement. 161
6.10 Multi-map of the a local bank building . 162
6.11 Accuracy of MCL . 165
6.12 Fusion techniques . 167
6.13 Comparison of the methods . 170
6.14 Sample Trajectories with their estimates . 171
6.15 A scene from the RoboCup 2004 against the Osaka team (right-hand side). 173
6.16 Game situations . 177
6.17 Plan tree . 178
6.18 Technical Challenge at the RoboCup Championships 2004 in Lisbon. 180

xv

7.1 Top-level ontology according to (Lucchesi 2001). 187
7.2 Strategic Soccer Diagrams. 188
7.3 Three different ways to build up a play. 189
7.4 Tactical regions on the soccer pitch . 190
7.5 Extended diagram 21 from (Lucchesi 2001) . 192
7.6 Delaunay triangulation and Voronoi for the counter attack 194
7.7 Categories of world model representations. 195
7.8 Different levels of granularity for the orientation from (Hernández et al. 1995) . . 197
7.9 Different levels of granularity for the distance relation 199
7.10 Distance and orientation relation compared to polar coordinates. 200
7.11 The double-cross calculus by (Freksa and Zimmermann) 202
7.12 Semantic regions on the playing field. 203
7.13 Free space and pass-way vacancy. 204
7.14 The algorithm executed by a macro-action. 209
7.15 Outplay an Opponent. 210

List of Tables

4.1 Features of Golog Languages . 64

5.1 UNREAL deathmatch results. 129
5.2 UNREAL Capture the Flag results. 130

6.1 Position Losses . 166

xvi

QUOD QUALE SIT, NON EST MEUM DICERE, PROPTEREA QUOD MINIME
SIBI QUISQUE NOTUS EST ET DIFFICILLIME DE SE QUISQUE SENTIT.

Marcus Tullius Cicero,De Oratore, III, 33

What the difference might be is not for me to say, for the reason that everyone knows
themselves the least and it is the hardest to judge oneself.

Worin der Unterschied bestehe, kommt mir nicht zu, zu sagen, deshalb, weil jeder sich
am wenigsten kennt und am schwierigstenüber sich selbst urteilt.

Chapter 1

Introduction

Mobile robotics has been an active research field for the last four decades. One major application
for robots is in production plants. Robots solder and braze cars with high precision and also
varnish components. These robots raise the efficiency of automation. Besides possible negative
effects for the employment markets of current economies, it has the positive effect that robots can
fulfill tasks which are too dangerous or unsanitary for humans. The more interesting field, from
the Artificial Intelligence (AI) research perspective, is the field of mobile autonomous intelligent
robots. These are robots which act in natural environments and fulfill their tasks in an intelligent
way. In this thesis, we are concerned with controllers for autonomous mobile robots (or agents)
and ways how they can come to intelligent decisions in dynamic real-time domains. Before we
set the mission statement for this thesis, we define whatautonomous mobile robotsmean in our
understanding and briefly give an overview of what one can understand by the termintelligent
from an AI perspective.

1.1 Intelligent Robots and Agents: (Mobile) Autonomous Systems

The diversity in the developments of robotic systems nowadays and coupled with the widely spread
different software approaches to the control software of these systems, makes it hard to find a com-
mon denominator. The tasks for mobile robots are very specific, ranging from assembly robots in
production plants to soccer playing robots. Each task has specific demands, each robot therefore
has sensors and actuators adapted to the task. The control software must be highly integrated to
fulfill the real-time requirements of the environment. This makes it very difficult to establish stan-
dards in this field. One approach to create a common software platform is theMicrosoft Robotics
Studio(Microsoft 2006) which comes with driver sofware for many commonly used sensors and
actuators and a 3D simulation environment. Another interesting open source project is theOro-
cos Project(which stands for Open Robot Control Software). The European community funded
this joint project of the K.U.Leuven in Belgium, the LAAS Toulouse in France, and KTH Stock-
holm in Sweden. Within this short-term project an open source real-time toolkit, a kinematics,
and a Bayesian filtering library were implemented (Orocos 2007). Whether or not these advances
will be crowned by success or if the community will accept and use such tools, it nevertheless

1

2 CHAPTER 1. INTRODUCTION

shows that some efforts are being undertaken to provide standard software tools in this field. Be-
sides researchers and professionals, hobbyists are also building robot systems. Today, many web
sites exist which give useful hints on how to build motor controllers, how to derive odometry etc.
(e.g. (dmoz.org/Computers/Robotics 2007)). But research still deals with fundamental problems
like light-weight energy supply, motor devices, appropriate sensors and actuators on the engineer-
ing side. On the control software side some achievements have been made, like robust navigation,
and localization, at least with regard to wheeled robots. Research on humanoid robots is still in
its infancy though good progress is observable. When it comes to robots acting intelligently in an
autonomous way, even more unsolved problems exist.

Bekey (2005) defines autonomy as: “Autonomy refers to systems capable of operating in real-
world environments without any form of external control for extended periods of time”. In this
sense he concludes that living systems are autonomous systems, which “[...]survive in a dynamic
environment for extended periods, maintain their internal structures and processes, and exhibit a
variety of behaviors (such as feeding, foraging, and mating).” The difference with robots or agent
systems is that these are created by humans. Based on this he defines a robot as “a machine that
senses, thinks, and acts”. The term autonomous robot control seems contradictory as autonomy
implies the capability of something to take care of itself, and control is connoted with some form
of human intervention. Bekey states that control is needed on several layers in a robotic system
and that these control structures exhibit behavior as “foraging” which is connected to autonomy
(in the robotic context this could mean that the robot is aware of the fact that it needs to recharge
its batteries and returns to the charging station). High-level control “is required to ensure that the
robot does not harm any humans or equipment of other robots”.

According to Murphy (2000), who briefly reviews the history of robots, robots are perceived
as anthropomorphic, mechanical, and literal-minded servants. The acceptance of non-anthropo-
morphic creatures like robot systems existing today is due to the fact that robots are mechanical,
and thus wheeled robots are accepted as robots although they are not anthropomorphic. Murphy
(2000) defines an intelligent robot as “a mechanical creature which can function autonomously”,
where intelligent means that the robot does not perform tasks mindlessly which is seen as the
opposite of factory automation. Autonomy indicates “that the robot can operate, self-contained,
under all reasonable conditions without requiring recourse to a human operator” and “that a robot
can adapt to changes in its environment[...] or itself [...] and continue to reach its goal”.

We are aiming at mobile autonomous robotic systems which act in an “intelligent” way. The
field of research on mobile intelligent autonomous robots is also calledCognitive Robotics. Those
systems have been built for over 30 years. Beginning in the 70’s with the robotShakey(Nil-
son 1984) which was the first robotic system to which one can assign the attributes mobile, au-
tonomous, and intelligent, major improvements have been made. One successful application was
the Rhino project (Burgard et al. 1998). The robot Rhino was operating over several days in the
Deutsche Museum, Bonn, as a museum tour-guide. It operated safely in the very crowded mu-
seum, interacting with visitors. These kind of applications are calledservice roboticsapplications.
There are numerous other examples. Pineau et al. (2003) used robots to support elderly peo-
ple in nursing homes. The robot reminded the elderly to take their medicine and guided them to
their examinations. Another intriguing application for mobile autonomous systems is the DARPA

1.1. INTELLIGENT ROBOTS AND AGENTS: (MOBILE) AUTONOMOUS SYSTEMS 3

Grand Challenge (Buehler et al. 2007). In the 2006 competition an autonomous vehicle had to
drive about 200 miles through the Mojave Desert. DARPA advertised the Grand Challenge with
a prize money of 2 million USD. The team from Stanford was able to win the challenge (Thrun
2006; Montemerlo et al. 2006). For other examples of successful robotics applications we refer
to textbooks on robotics (e.g. (Arkin 1998; Kortenkamp et al. 1998; Murphy 2000; Bekey 2005;
Thrun et al. 2005)).

A bit less spectacular than driving through a desert (and with much less prize money), but
nevertheless very interesting and challenging, is the application of soccer playing robots (Kitano
et al. 1997; RoboCup 2006) which affords some form of intelligent behavior. The ambitious goal
is to be able to win against the FIFA soccer world champion with a team of humanoid robots
by 2050. To inspire research on robotics and Artificial Intelligence research there are annual
tournaments where research groups compete with their teams against each other. During these
competitions promising approaches are evident. The exchange of knowledge of the participating
research groups is further speeding up the development of these systems. The soccer application
is of special interest as the robots are facing an adversarial dynamic real-time domain. Different
leagues are organized in RoboCup which focus on different aspects of research on intelligent
robots or agent systems. (We will not go into details here and refer to Chapter 5.2 where we
discuss the soccer domain in detail.) Besides the soccer playing activities, other fields of mobile
robotics are covered. There areRescue Leagueswhere the goal is to seek injured people in an
urban disaster area, or the service robotics leagueRoboCup@Home, where the robot should fulfill
helper tasks in a household.

But the focus for intelligent systems is not restricted to robot systems. With respect to high-
level control and decision making of such systems, we also have to keep in mind agent systems in
general. Wooldridge and Jennings (1995) give a weak notion of an agent. According to this “[...]
the term agent is used to denote a hardware or (more usually) software-based computer system that
enjoys the following properties: autonomy[...]; social ability[...]; reactivity[...]; pro-activeness”.
The stronger notion they give addresses, besides the already mentioned attributes, properties that
are “[...] either conceptualised or implemented using concepts that are more usually applied
to humans” (Wooldridge and Jennings 1995) (see also (Wooldridge 2002)). Goodwin gives the
following properties of agents in (Goodwin 1995): (1)successful, i.e. the agent can accomplish
its tasks; (2) an agent is calledcapable, if it possesses all the effectors needed to fulfill the tasks;
(3) perceptive, which means it can distinguish the salient characteristics of the world it acts in,
(4) it is predictive, if its model of the world is accurate enough to correctly predict how it can
or cannot achieve the tasks; (5) agents are calledinterpretive if they can interpret their sensor
readings correctly; (6)rational if it chooses to perform commands that it predicts to achieve the
task; and (7)sound, if it is predictive, interpretive, and rational. Other characteristics assigned
to intelligent agents are mentalistic notions, such asknowledge, belief, intentionandobligation
(Shoham 1993),mobility (White 1999),veracity (Galliers 1988, pp. 159–164), orbenevolence
(Rosenschein and Genesereth 1988, p. 91). The rationality property of an agent or robot can be
seen as anaction selection problem. Maes (1989) formulates the action selection problem as “how
can an agent select ’the most appropriate’ or ’the most relevant’ next action to take at a particular
situation?”

4 CHAPTER 1. INTRODUCTION

This draws the picture of what we are concerned with in this thesis. We are dealing with mobile
autonomous robot (agent) systems which act in an intelligent way (mobility should not be taken
too literally regarding agent systems) in the sense given above and with ways in which intelligent
decisions for choosing appropriate actions can be made. There are many different approaches
to the action selection and decision making problem. They range fromBehavior-based AIto
Knowledge-based AI(we discuss the different approaches and paradigms in the next chapter).

1.2 Methods and Models for Making Them Behave Intelligently

How can we model intelligent behaviors for autonomous robots or agents? The classical approach
is from Knowledge-based AI, based on theorem proving (Green 1969). It makes use of asense-
plan-actcycle, that is, the robot gathers new sensory information, starts a planning process about
its future course of actions, and performs them. With this scheme the robot Shakey (Nilson 1984)
planned its tasks. The planner worked on a STRIPS representation (Fikes and Nilson 1971) (we
discuss this approach in the next chapter). The decision making works, roughly, as follows. The
robot has several actions each with a precondition and an effect. The task is, given an initial
state and a goal state, to find a sequence of actions which fulfills the preconditions of the goal
state. Again, there is a vast number of publications on planning methods. One such planning
approach ispartial order planningand its derivatives (Penberthy and Weld 1992; Weld 1994).
Another approach is to use task nets which are organized hierarchically instead of planning with
basic actions. This approach is calledhierarchical task network(HTN) planning (e.g. (Sacerdoti
1975; Tate 1977; Erol et al. 1994b; Erol et al. 1996; Firby 1996)). Other techniques are so-
calledpractical reasoningtechniques, where the knowledge is encoded in forms of procedures
(recipes) (e.g. (Georgeff and Lansky 1986; Myers 1996)). Relying on a sense-plan-act cycle bares
the risk of not being reactive enough (especially in the early times when computation power was
comparatively low). Once a plan was constructed it was performed regardless of the current state
of the world which might have changed due to long planning times.

To overcome this problem, the plan cycle was simply ignored. This lead to so-called behavior-
based systems. One prominent example of a huge number of approaches of Behavior-based AI is
the work of Brooks (1991). The behavior is exhibited directly from the sensor readings without an
explicit world model representation. The paradigm states that intelligent behavior emerges from
this sense-actscheme (see also (Arkin 1998) for a thorough treatment of this topic). While this
approach works adequately for tasks on lower levels (choosing between, say, localization and col-
lision avoidance) there is doubt that this approach alone is a suitable model for robots interacting
in a dynamic environment in an intelligent way as described above. The reactive paradigm clearly
has advantages in being able to react quickly to changes in the environment. To combine to pros
of both approaches numerous hybrid architectures were proposed thereafter. The idea is to per-
form theplan step asynchronously to asense-actcycle. Examples of hybrid architectures in the
literature are (Arkin 1989; Gat 1992; Simmons 1994; Bonasso et al. 1997; Konolige et al. 1997)

Learning techniques can also be deployed sucessfully. To give an example, we can look at
the robotic soccer domain. Here, work exists showing that these kind of techniques pay off for
the control problems of a mobile robot or agent. Looking at recent proceedings of theRoboCup

1.3. GOALS AND CONTRIBUTIONS OF THIS THESIS 5

Symposium(Polani et al. 2004; Nardi et al. 2005; Bredenfeld et al. 2006; Lakemeyer et al. 2007)
one notices that a lot of control problems are solved by applying learning techniques. One example
for a learning architecture can be found in (Stone 2000). On all layers (motion control, behaviors,
decision making) of the described control architecture of a soccer agent in the 2D Simulation
league, learning techniques are successfully deployed. Riedmiller and Merke (2002) describe
applications of reinforcement learning of autonomous (soccer) agents. While these applications
concentrate on the behavior level, some extensions exist to approximate the behavior policy for
a team of agents (e.g. (Lauer and Riedmiller 2000)). (Multi-agent reinforcement) learning is an
active research field, but to the best of our knowledge, learning methods are currently suited best
to learning single behaviors like intercepting a ball or avoiding collisions with other players.

For high-level decision making one problem with learning might be that, in general, these
techniques are not adaptive and flexible enough to adopt quickly to a new environmental situation.
Thus, like with hybrid robot system architectures, the most promising approach to high-level de-
cision making is probably to also use hybrid techniques here. Two such approaches which take
advantage of this idea are the high-level robot programming languages Golog (Levesque et al.
1997) and RPL (McDermott 1991; Beetz 1999). Golog and its descendants, for example, com-
bine the idea of robot programming with planning based on the formal logical language of the
situation calculus (McCarthy 1963). RPL follows more a reactive approach (although a projec-
tion mechanism for RPL programs exists) and in the latest version, combines programming with
learning (Beetz et al. 2004). (We discuss the related work on this field in the next chapter.) Other
techniques for decision making concentrate on the uncertainty of sensors, actuators and the envi-
ronment the robot interacts with. Techniques in this field are decision-theoretic planning (DTP,
e.g. (Puterman 1994; Boutilier et al. 1999)) and reinforcement learning (RL, e.g. (Kaelbling et al.
1996; Sutton and Barto 1998)). Based on a utility function and some notion of the uncertainty of
its own actions the agent or robot estimates (in the case of DTP) or tries out (in the case of RL) the
best course of action in each situation (more details about both techniques are given Chapter 3).

1.3 Goals and Contributions of this Thesis

To summarize, several methodologies, methods and techniques to the control problem of an au-
tonomous robot or agent interacting with its environment in an intelligent way, exist. They range
from explicit programming via learning approaches to complete deliberative planning techniques.
Of special interest areadversarial, highly dynamic real-time domains. A robot is faced with the
dynamics and real-time requirements of the world in each real world scenario it is operating in.
But the real-time and dynamic requirements we mean here refer to the high-level decision making
of the robot or agent. In those domains the robot is moving fast and decisions about which actions
to perform have to be taken in fractions of a second. Moreover, there are opponents that try to foil
its plans and have contrary goals.1

1We want to stress that we are not given hard real-time constraints, but real-time constraints. We are not dealing
with aircrafts or medical devices where a failure leads to a catastrophe. The time scale for the low-level system here
is about 40-50 Hz, high-level control runs at about 10 Hz and slower. See for example (Musliner et al. 1995) for a
discussion of real-time AI.

6 CHAPTER 1. INTRODUCTION

One such domain that we focus on and which inspired several design decisions is the already
mentioned soccer domain. It has the aforesaid characteristic. To give an example, a robot dribbling
with the ball means it is an adversarial real-time domain. It tries to reach its target position without
losing the ball. For the control modules this means that they always have to provide appropriate
actuator commands in the needed time frame. If the motion control, for example, cannot keep up
with its decision time, the robot might decelerate and lose the ball. As an example for the real-
time requirements of the high-level decision making think of a robot staying in front of the ball.
The robot deliberates what to do with the ball, evaluating sensor values where the opponent goal
keeper might be positioned, if it is possible to score directly, or it makes some complex plan about
passing the ball to a better positioned teammate. If all this takes too long, an opponent will simply
steal the ball rendering all efforts of the robot about its future actions useless.

This shows that the high-level control of a robot in such domains must be reactive enough
to avoid such situations. On the other hand, it seems advantageous to provide some form of
deliberation in order to analyze the current situation of the world, think about different alternatives
of what to do and choose one which, against the current knowledge background of the robot about
the world, is rational: i.e. exhibits intelligent behavior intentionally.

Between the two extremes of the reactive and the pure deliberative paradigm we are aiming at
a robot programming language which is capable of integrating the advantages from both worlds.
It must be able to react quickly to a new situation and reason about which future courses of actions
to take, for example in the soccer scenario, playing a deliberate attack over the left wing. Further-
more, the language for high-level robot controllers in these domains must be capable of providing
for some notion of uncertainty. The robot’s own perceptions and actions as well as the behavior of
the opponents are uncertain and there should be ways to incorporate this. We are thus aiming at a
middle ground between reaction, deliberation, including uncertainty of its own actions and being
able to account for continuous changes in the world.

Our approach to high-level controllers for robots acting in dynamic real-time domains is
founded on the robot programming language Golog (Levesque et al. 1997). During the last decade
since it was proposed, many extensions to the original language have been made. With these it is
a suitable language for programming the high-level control of robots. Especially in the Cognitive
Robotics community this language is accepted and Golog was used in several successful robotics
applications for implementing high-level control. One such example is the already mentioned
museum tour-guide Rhino (Burgard et al. 1998; Hähnel et al. 1998). The application domains
of Golog so far were mostly for service robotics. The typical applications for cognitive robots
in the literature are delivery tasks in office environments (e.g. (Simmons et al. 1997)) or similar
applications. With our work we want to show that with further modifications to the logic-based
approach with Golog it can be applied successfully to the kind of dynamic real-time domains we
introduced above, where it is state of the art to use reactive systems.

The crucial point is that logic-based approaches incorporating planning have the drawback
that they are computationally more demanding than associating an action to a situation. Regard-
ing deliberation we therefore also aim at a middle ground between full planning and programming.
What we propose is to endow the robot with a partially specified control program where the con-

1.3. GOALS AND CONTRIBUTIONS OF THIS THESIS 7

troller based on its background theory fills in the missing details and chooses between open action
alternatives. The method we chose is that of decision-theoretic planning in the Golog framework.
While the extensions we draw on are known from the literature (Levesque et al. 1997; De Gia-
como et al. 1997; De Giacomo and Levesque 1999; De Giacomo et al. 2000; Soutchanski 2001;
Boutilier et al. 2000; Grosskreutz and Lakemeyer 2000b; Grosskreutz and Lakemeyer 2001), it
is the integration of these extensions into a unified framework that is one of the contributions of
this work. We propose the Golog-based language READYLOG as a control language for robots or
agents acting in dynamic real-time domains in this thesis. Existing extensions like on-line exe-
cution, sensing, using probabilistic projections into the future, or dealing with continuous change
have been integrated into one framework. In order to equip the robot with a controller framework
allowing for reaction, deliberation (in the sense of projections into the future and decision-theoretic
planning) and execution of plans, several further extensions to the known approaches had to be
made. In particular, the contributions of this thesis are:

• Language definition ofREADYLOG

READYLOG integrates existing extensions for continuous change, probabilistic projections,
on-line execution, exogenous actions, (passive) sensing, and decision-theoretic planning.
We propose a new approach to on-line execution of policies generated with the decision-
theoretic forward search value iteration algorithm based on passive sensing. We extend
existing passive sensing approaches in the way that the READYLOG controller is equipped
with a world model where it can derive data directly without the need to regress fluent values.
This, on the other hand, demands an efficient method to progress the internal database. We
intregrated a method which is based on the theoretical work of Lin and Reiter (1997).

• On-line execution and monitoring for policies
For executing policies which were calculated by the decision-theoretic planning algorithm
it is very important to use execution monitoring. As the planning is done off-line, it might
be the case, especially in fast-paced domains, that the world changed in an unpredicted way.
The controller must be able to detect discrepancies between planning and real execution.
We analyze the approach by Soutchanski (2001) and show several drawbacks of this ap-
proach w.r.t. our application. The method we propose with on-line execution of policies
circumvents the problems of the former approach. Further, we extend the notion of stochas-
tic actions in our language to restricted stochastic programs that simplifies the specification
of the stochastic outcomes of an action and show that our models are correct w.r.t. models
known from literature (Reiter 2001).

• Macro-actions or options in theREADYLOG framework
As an further extension to decision-theoretic planning we define and introduce options in
the READYLOG framework. The idea of options is adopted from (Hauskrecht et al. 1998;
Precup et al. 1998; Sutton et al. 1999). Options are macro actions in the context of Markov
decision processes. With our extension macro actions can be used for decision-theoretic
planning in the READYLOG framework. We show an exponential speed up in the planning
times when using these macro actions. We propose some more extensions like using pruning
to further speed up the calculation of policies.

8 CHAPTER 1. INTRODUCTION

• A control architecture for mobile robots
As stated above, we want to show that READYLOG can be successfully applied to domains
where planning seems to be too demanding. This implies that we have to provide a robot
system where READYLOG can be used as the high-level control component. Therefore,
some parts of this thesis deals with robotics. The contributions made are a modification to a
well-known localization algorithm with proximity sensors. The modification allows a robot
to localize in environments with very sparse landmarks. Further, we propose an efficient and
robust navigation and collision avoidance algorithm which scales up to ground velocities of
over 10 km/h. Finally, as a precise world model is helpful from the viewpoint of high-
level decision making, we compare several sensor fusion methods using the problem of ball
position estimation in the soccer domain.

• State space abstractions using qualitative world models and an approach to formalize soc-
cer withREADYLOG

The expressiveness of READYLOG together with its reasoning capabilities allows for speci-
fying and executing complex behavioral patterns. Usually, soccer robots follow very simple
strategies likeintercept–dribble–shoot. Inspired by human soccer literature, we formalize
and adapt soccer strategies derived from human soccer theory in READYLOG (Dylla et al.
2007). One result from this work was that it turnes out that humans generally represent
space, distance, and positions on the field in a qualitative fashion.

Derived from this we developed a qualitative world model for our soccer robots which sim-
plifies the specification of the behavior for the soccer domain as it can be encoded in a more
natural (human-like) way. Moreover, the qualitative world model can be used for abstracting
the state space underlying the MDP when exerting decision-theoretic planning or options in
the soccer domain. As an extension to the options presented in Chapter 4 we present a DT
plan library. The idea is to store abstract policies, i.e. those policies where all choices can
still be taken, in a plan library. Later, the agent can draw on its plan library and simply pick
an existing abtract policy without the need to calculate it again. Such, the agent saves on-line
computation time. We show with two examples of the simualted soccer environment how
this plan library saves computation time, and, moreover, how macro actions can be encoded
this way.

We applied READYLOG to the soccer domain in simulations as well as with a real robot team.
At several RoboCup tournaments it showed its applicability and usefulness. Further, READYLOG

was applied for controlling game bots in the interactive computer game Unreal Tournament 2004.
The low-level control software we present in this thesis proved to be very suitable for soccerap-
plications as well as service robotics applications and showed flexibility and extendability. The
control software proved useful as framework for other robotics projects like multi-robot local-
ization (Amiranashvili and Lakemeyer 2005; Amiranashvili 2007) or sound-localization (Calmes
et al. 2007). Recently, it was used for a very successful application in the RoboCup service
robotics competition (Schiffer et al. 2006a)

1.4. OUTLINE 9

1.4 Outline

The rest of this thesis is organized as follows.

Chapter 2 overviews the related work on high-level robot/agent control. We discuss other action
formalisms and approaches to the problem of high-level decision making. Here we present
the big picture of related work on the fields of high-level robot control and similar areas.
Throughout the thesis we will discuss the more specific related work at the end of each
chapter.

Chapter 3 introduces the mathematical foundations for this work. We will introduce the model of
Markov Decision Processes which we will need throughout this thesis. One can distinguish
between model-based (decision-theoretic planning) and model-free approaches (reinforce-
ment learning). Then, we present a brief overview of reasoning with uncertainty, especially
Bayes Filter. These become relevant when we describe approaches to localize a mobile
robot in its environment. Finally, we give a detailed introduction into the situation calcu-
lus and GOLOG with some of its derivatives. This is the action formalism we found our
approach to high-level robot programming on.

Chapter 4 presents the language READYLOG, our proposal for a GOLOG-based robot program-
ming language. The focus of this thesis is on dynamic real-time domains. Thus, the lan-
guage READYLOG integrates aspects from different GOLOG derivatives. It offers features
like dealing with continuous change or decision theory. We first present READYLOG’s for-
mal semantics before we concentrate on decision theory. The policies (optimized programs)
can become invalid quite soon in highly dynamic domains. Therefore, one must be able to
detect when a policy becomes invalid. We propose an execution monitoring scheme. Fur-
ther, we introduce the concept of macro actions in the context of decision-theoretic GOLOG

which helps to drastically decrease the complexity of the planning task. Several other ex-
tensions are proposed which speed up the calculation of policies. Thereafter, we address the
implementation of READYLOG. We show how the READYLOG interpreter works in detail
and discuss the implementation of passive sensing, exogenous/sensing actions, and how the
high-level control can be connected to the rest of the robot/agent system. We sketch the im-
plementation of the method for progressing the initial database as well. Parts of the contents
of this chapter have been previously published in (Ferrein et al. 2003; Ferrein et al. 2004;
Ferrein et al. 2005b)

Chapter 5 shows application examples of READYLOG. We start with an READYLOG agent, also
called game bot, for the interactive computer game UNREAL TOURNAMENT 2004. We
concentrate especially on decision-theoretic optimizations and show the different modeling
possibilities within READYLOG with a study of the the “item pickup task”. Then we intro-
duce the robotic soccer domain and show why this application domain is of special interest
by giving the different characteristics of this domain. We show a READYLOG soccer agent
for simulated soccer. With the simulated soccer agents we demonstrate the possibility to

10 CHAPTER 1. INTRODUCTION

use probabilistic projections to come to a decision. Parts have been previously published in
(Dylla et al. 2003b; Jacobs et al. 2005a; Jacobs et al. 2005b).

Chapter 6 shows soccer applications of READYLOG with real robots. Besides the READYLOG

application, the focus of this chapter is on the robot system as a whole. In particular we
show that a well integrated software system is needed before one can think about high-level
control with READYLOG. First, we overview the hard- and software of our robot soccer
team “AllemaniACs”, before we describe our approach to navigation and localization in
detail. We also present an account to global sensor fusion to enhance the world model of the
robot here. At the end of this chapter, we briefly prospect the usefulness of READYLOG in
the cognitive robotics area with a small service robotics example. Previously, material from
this chapter were published in (Dylla et al. 2003b; Ferrein et al. 2004; Ferrein et al. 2005b;
Jacobs et al. 2005a; Jacobs et al. 2005b; Ferrein et al. 2006; Strack et al. 2006).

Chapter 7 presents an alternative approach to the problem of state space abstractions. For soccer
we investigated how humans represent strategies and how this could be helpful for the be-
havior specification of a robot. It turns out that READYLOG is very well suited to formalize
soccer strategies and that humans make extensively use of qualitative notions, for example
distances (near or far) or regions on the field (on the left front half of the field). From these
observations we derive a qualitative world model for the soccer domain which was applied
to our soccer robots. The behavior specification is simplified and much more “natural”. For
READYLOG this qualitative world model can be used to abstract from an infinite state space
and to make techniques presented in Chapter 4 applicable. We introduce a method where
policies are left in an abstract way rather than calculating the optimal values at once. These
stored policies form a library of already instantiated plans which the agent can draw on with
a dramatic saving in on-line computations. We present two examples from RoboCup’s sim-
ulation league. Parts of the material shown in this chapter were published before in (Ferrein
2004b; Dylla et al. 2005; Schiffer et al. 2006b; Dylla et al. 2007; Böhnstedt et al. 2007).

Chapter 8 concludes this thesis with a summary and an outlook on future work.

More material, especially on the robot soccer team “AllemaniACs” can be found on the web
(Schiffer et al. 2006), in (Ferrein 2004a; Fritz 2004; Ferrein and Lakemeyer 2005; Ferrein and
Lakemeyer 2006; Calmes et al. 2006), and in several official Team Description Papers for partic-
ipating at RoboCup tournaments (Dylla et al. 2003a; Ferrein et al. 2005a; Ferrein et al. 2006;
Ferrein et al. 2007a; Ferrein et al. 2007b). Some of the material covered here was also pub-
lished in several Diploma and Master’s Theses before: (Jansen 2002; Fritz 2003; Hermanns 2004;
Strack 2004; Schiffer 2005; Jacobs 2005; Böhnstedt 2007). I would like to thank explicitely for
the support and the contribution.

Chapter 2

Related Work

In this chapter we review approaches related to our work. Particularly, we discuss work in the
field of reasoning about actions, (Section 2.1), the robot programming language Golog and its
derivatives (Section 2.2) and control architectures for autonomous robots or agents in general
(Section 2.3). We conclude with justifying our approach against the context of related approaches
to reasoning about actions.

2.1 Reasoning about Action and Change

For deliberation several different approaches to the problem exist, likepractical reasoning, hier-
archical task nets, andreasoning about action approaches. In this section, we will review hier-
archical task networks and the model of Markov decision making, and several logical calculi for
reasoning about actions and change. As an example for a practical reasoning approach we discuss
the language 3APL.

2.1.1 Hierarchical Task Networks

In contrast to classical planning methods where a goal is to be achieved with a sequence of primi-
tive action, the idea of hierarchical task network (HTN) planning (Sacerdoti 1974) is to accomplish
a task, given a task network. This includes decomposing compound tasks and resolving conflicts
which might occur between different tasks. HTN planning can be seen as the practical approach
to letting a robot do something in reality, while in the early days, classical planning methods
(like STRIPS planning, cf. Section 2.1) were computationally prohibitive for practical applica-
tions. Another motivation for HTN planning was to close the gap between AI planning techniques,
project management and scheduling techniques known from operations research. Early HTN plan-
ning systems were NOAH (Sacerdoti 1975) or NONLIN (Tate 1977). While HTN planning was
used in practice for a long time, it was only until the mid 1990’s that a semantics for HTN was
defined (Erol et al. 1994a; Erol et al. 1994b). More recent HTN planning systems are SIPE-2
(Wilkins 1990) or SHOP and SHOP-2 (Nau et al. 2003).

Recent trends seem to go in the direction to combine HTN formalisms with machine learning.
In (Ilghami et al. 2002; Ilghami et al. 2005) the authors propose a learning system for HTNs,
where a domain expert solves task nets giving examples to the learner. The learner now generalizes
based on the training examples from the human expert and can solve similar tasks in a better way.

11

12 CHAPTER 2. RELATED WORK

Nejati et al. (2006) propose a similar approach. The difference is that they do not assume that the
HTN is given in advance. Another example is (Belker et al. 2003). Here, a robot learns navigation
tasks based on a HTN representation of sub-tasks. The sub-tasks or actions were of the kindturnTo
or moveForward, and compound tasks wereApproachPointandGoto. They tested this approach
on a Pioneer II and the B21 Rhino. They report on an increasing performance compared to the
original navigation software of Rhino with the Dynamic Window Approach (Fox et al. 1997).
One application example from robotic soccer is (Obst and Boedecker 2006). Team coordination
and strategy selection tasks are solved applying HTN techniques. The ideas of HTN were also
incorporated into other reasoning frameworks. Baral and Son (2000) define task nets and task
decomposition in the ConGolog framework which we describe in Section 2.2. A similar approach
is followed by Gabaldon (2006). He defined tactical and strategical tasks for military applications
in the form of HTNs in the ConGolog framework.

2.1.2 Incorporating Uncertainty: Markov Decision Processes

Markov decision processes (MDPs) (Bellman 1957; Bertsekas 1987; Puterman 1994) are a natural
formalism to describe stochastic dynamic systems. It is the underlying formalism to decision-
theoretic planning (DTP) and reinforcement learning (RL) (e.g. (Boutilier et al. 1999; Sutton
and Barto 1998; Kaelbling et al. 1996)). The world is described by discrete states. Performing
actions will lead an agent from one state to another with a certain probability. To each state a
real-valued reward is assigned. The planning problem is to find an optimal action for each state
which maximizes the long-term reward. Thus, a policy is generated which for each state provides
the optimal action w.r.t. to the optimization criterion. Solution techniques like value iteration and
policy iteration are well-studied for cases where the transition model between states is known. If
the transition model is not known in advance, learning techniques like Q-Learning can be applied
(Watkins 1989) to find an optimal policy by observing the outcomes of the deployed actions.

Standard techniques for solving MDPs require an explicit state representation. This has the
drawback that for solving real-world problems the standard techniques, which rely on dynamic
programming techniques (e.g. (Bellman 1957)), have to iterate over all states; the problem may
become computationally intractable (though there are modifications like asynchronous dynamic
programming algorithm or modified policy iteration that do not need to cover the whole state space
(cf. e.g. (Bertsekas 1987; Bertsekas and Tsitsiklis 1996; Puterman and Shin 1978)). To overcome
this problem several methods have been proposed to relax the original problem by abstracting the
state and/or action space, decomposing the problem into sub-tasks (Parr and Russell 1997; Precup
et al. 1998; Hauskrecht et al. 1998; Sutton et al. 1999), or use factored logical representations for
the state space (Boutilier et al. 1995; Dean and Givan 1997; Boutilier et al. 1999; Boutilier et al.
2000; Boutilier et al. 2001; Feng and Hansen 2002).

Among the approaches to decompose MDPs into smaller sub-problems one has to examine
the work by Precup et al. (1998). They propose options, sub-MDPs, with an initiation and a termi-
nation set of states. As long as the agent is in one of the initiation states it can perform the policy
calculated for the option. The agent now follows the policy which was calculated for the option
until the option terminates in one of the termination states. Applying options constitutes a semi-
Markov decision process (Sutton et al. 1999) as the duration of a primitive action and an option is
different. With a modified state transition and reward model, convergence is still guaranteed. Sim-
ilar to the option approach, (Hauskrecht et al. 1998) define hierarchical macro-actions for MDPs.

2.1. REASONING ABOUT ACTION AND CHANGE 13

For each macro the state space is decomposed into an entrance and exit periphery which is similar
to the initiation and termination states of options, though these peripheries are not defined over
the whole state space. A macro-action is formally defined as a sub-MDP. For solving the original
problem, both basic actions as well as macro-actions can be used together. Another hierarchical
approach to the decomposition of MDPs is the approach of Parr and Russell (1997). They propose
a nondeterministic finite-state machine, called hierarchical abstract machines (HAMs), which con-
trols what action shall be executed in which partition of the state space. The machine can take one
of four different type of states:action, which executes an action,call which calls another machine
as a subroutine,choicewhich nondeterministically selects the next machine state, andstopwhich
halts execution of the current state and returns to the previous one. HAMs can also be applied to
Q-learning with much faster learning rates. The MAXQ-Q-learning method (Dietterich 2000) as-
sumes that the programmer can identify useful sub-goals and sub-tasks for the application. Based
on these tasks and goals the original MDP is divided into sub-MDPs. Each sub-task ends when its
sub-goal is reached. Based on the task decomposition the value function of the original MDP is
divided as well. The solution of the original MDP is a hierarchical policy which consists of a set of
policies or actions, one for each sub-task. By this decomposition MAXQ learns a representation
of the value function and it turns out that this method learns faster than Q-learning.

Another approach is to factor the state space with a propositional representation and with it
the reward function. A survey of factored MDPs is given in (Boutilier et al. 1999). One such
representation is based on dynamic Bayes net (Dean and Kanazawa 1990). For two stages of the
MDP a Bayes net is constructed, the transition probabilities are stored in conditional probability
tables. Other representations proposed are for example, decision trees (Quinlan 1993), or algebraic
decision diagrams (ADDs, (Bahar et al. 1993)). Another representation is probabilistic STRIPS
(Kushmerick et al. 1995), which we describe below. A state-of-the-art MDP solver is SPUDD
(Hoey et al. 1999), which can solve MDPs with hundreds of millions of states representing the
value function with a logical description which involve only hundreds of distinct values. Interest-
ingly, Soutchanski (2003) comparedDTGOLOG (described below) with SPUDD and shows that
DTGOLOG can solve given examples problem instances faster than SPUDD. Soutchanski (2003)
notes that the policies on the reachable state space are identical though the values can be compared
only in a qualitative fashion.

Another representation is that of first-order MDPs (FOMDPs) instead of the propositional ap-
proaches discussed above. One such method for factoring the state space with first order logic is
proposed with DTGolog (Boutilier et al. 2000). An MDP is represented implicitly by a situation
calculus basic action theory and the MDP is solved by a forward search value iteration algorithm
which avoids state enumeration (see below for a detailed discussion of the situation calculus and
DTGolog). Another technique for solving FOMDPs was proposed by (Boutilier et al. 2001) as
an extension of the propositional decision-theoretic regression (DTR, (Boutilier et al. 2000)). The
advantage of the latter approach is that neither action nor state space have to be enumerated ex-
plicitly. DTR represents the value function of the MDP as a first-order formula and based on the
stochastic basic action theory of the situation calculus an optimal solution can be calculated with
thesymbolic dynamic programmingalgorithm proposed in (Boutilier et al. 2001). The problem
with this approach w.r.t. the applicability in real-world domains, is to efficiently simplify the
formulas at each stage of the dynamic programming. Between approaches like DTGolog or sym-
bolic dynamic programming which both are based on the situation calculus one has to mention
Poole’s independent choice logic (ICL, (Poole 1997)). Based on facts and a choice space rep-

14 CHAPTER 2. RELATED WORK

resenting the action alternatives he defines a selector function using a possible world semantics.
The consequences of the choices made by nature are represented as acyclic logic programs. In his
paper he shows how decision-theoretic problems can be formulated in ICL, either in the single or
multi-agent case. He further shows how other formalisms can be embedded.

For the sake of completeness, we briefly mention POMDPs. The generalization of MDPs
are partially observable MDPs (POMDPs). Here, the assumption that the agent can observe with
certainty the state it is in after performing an action, is dropped. Instead the agent has a belief
about the state it is in, represented by a probability distribution over possible successor states. A
survey on POMDPs is given in (Monahan 1982). As POMDPs are not relevant for this work, we
only give some references to related literature (e.g. (Sondik 1971; Sondik 1978; Lovejoy 1991;
Cassandra et al. 1994; Barto et al. 1995; Parr and Russell 1995; Boutilier and Poole 1996; Geffner
and Bonet 1998)).

2.1.3 The Situation Calculus

The situation calculus was proposed by McCarthy in 1963 and is the earliest approach to formally
reasoning about actions. It is a logical first-order language for representing dynamically changing
worlds. The world is represented by situations which can be changed by performing various
actions. Fluents, which are relations or functions with a situation term as last argument, describe
what is true or false in the world w.r.t. a situation. There a distinguished binary functiondo :
situation × action → situation exists which denotes the situation that results by performing
actions. A special constantS0 describes the world in the initial situation. For each action there
exists an axiomPoss(a(~x), s) ≡ Π(~x, s) which denotes the precondition of an action, i.e. when
the actiona is applicable, and an effect axiom, which describes how the action changes the world
in terms of fluents.

One of the problems with the causal laws (effects) in a domain description is that they do not
describe the non-effects of an action. For example, picking up an object does not change its color.
This problem is referred to as theframe problem. The number of frame axioms describing the
non-effects of an action is usually much larger than the axioms describing the effects. A general
solution to this problem was found by Reiter (1991). He proposes to derive from the effects of an
action so-calledsuccessor state axiomsfor each fluent which — with some further assumptions
like a completeness assumption and a unique names assumption for action — describe both, the
effects and the non-effects of the actions. In the next chapter we present his approach in detail.
Another problem in the context of reasoning about actions is known as thequalification problem.
It refers to the impossibility of listing all action preconditions required for a real-world action
to have its intended effect. Finally, in the context of reasoning about actions theramification
problemis known. It addresses the problem of taking also the indirect consequences of an action
into account. These problems are discussed in (McCarthy and Hayes 1969; Ginsberg and Smith
1988; Lin and Reiter 1994; Lin and Reiter 1994; Thielscher 2001).

In (Pinto and Reiter 1993; Pinto and Reiter 1995) Pinto and Reiter introduce a notion of time to
the situation calculus. A special fluentstart(s) exists which denotes the starting time of situation
s. With the formalization of a time line it renders easy to introduce durative actions. Each action
a is split into astart-a andend -a action. The duration of the action can then be determined as the
time differencestart(do([. . . , end -a]))− start(do[. . . , start-a, . . . , end -a]).

Another key for an expressive action logic is that it has to be able to deal with incomplete

2.1. REASONING ABOUT ACTION AND CHANGE 15

initial knowledge. To gather information, sensing must be incorporated. As sensing changes
the knowledge of a robot about the world, this issue is related to representing knowledge in the
situation calculus in general. To represent the knowledge of an agent Moore (1985) introduced a
special fluentK(s, s′) into the situation calculus. A solution to the frame problem for knowledge
is due to (Scherl and Levesque 1993; Scherl and Levesque 2003).K can be seen as an accessibility
relation between situations. So, an agent knowsϕ in situations if ϕ holds in alls′ accessible via

K(s′, s), i.e. Knows(ϕ(s))
def
= ∀s′.K(s′, s) ⊃ ϕ(s′). Other useful definitions w.r.t knowledge

areKWhether(P, s) denoting whether a fluentP is known or not, andKref (τ, s) denoting if an
instance ofτ is known. Specialsense fluent axiomsconnect fluents to be sensed to actions. To
express minimal knowledge of the agent, Lakemeyer (1996) and Lakemeyer and Levesque (1998)
introduced the concept ofonly knowinginto the situation calculus. It means that the agent knows a
a set of sentencesΦ and nothing more. To express only knowing, they enrich the situation calculus
with a possible-world semantics.

Especially when dealing with sensors which, in general, are imperfect, one needs to formulate
the belief of the agent or robot. Facts about the world gathered by sensors are not facts which are
unconditionally true or false, they can be only seen as beliefs. They are true or false to a certain
degree, depending on the quality of the sensors. Beliefs are thus associated with a likelihood
(or a probability). In (Bacchus et al. 1995; Bacchus et al. 1999) a formal account to deal with
the belief of an agent in the situation calculus is given. In a more recent work Gabaldon and
Lakemeyer (2007) develop the languageESP, an extension ofES. ESP is enriched with a notion
of belief and an account to noisy sensors. The advantage is that no second order definitions are
needed. We introduce the languageES in the next section. Similar to the fluentK they introduce
a fluentp which denotes the likelihood of a formulaϕ being true in a situations. The belief of
the agentBel(ϕ, s) thatϕ is true in situations is the weight of the possible worlds where the
agent thinks thatϕ holds normalized by the weight of all possible worlds. Other approaches like
(Pinto et al. 2000) take another direction to integrate probability theory into the situation calculus.
Here, the goal is not to formalize the belief of the agent but to express non-deterministic actions.
The approach is to assign non-determinstic effects to an action and associate it with a probability.
With a special transition function the different alternatives at non-deterministic choice points can
be evaluated and their successor situation can be determined.

A large body of work exists on the situation calculus. We therefore further refer to (Levesque
et al. 1998; Pirri and Reiter 1999) and the book of Reiter (Reiter 2001) for more information about
the situation calculus.

2.1.4 ES: The Situation Calculus without Situations

In (Lakemeyer and Levesque 2004; Lakemeyer and Levesque 2005) Lakemeyer and Levesque
present the logicES which can be seen as a situation calculus without situation terms. The justi-
fication for introducing another formalism is that proving mathematical properties of the calculus
becomes easier. The main reason for this is that the semantics ofES is not defined axiomatically
as is in the situation calculus but semantically. As the situation calculus,ES distinguishes be-
tween fluents and actions, but has no terms of sort situation. Additionally, it has standard names
(e.g. (Levesque and Lakemeyer 2001)) and it is distinguished between fluent and rigid predicate
symbols (rigid predicates correspond to situation-independent predicates in the terminology of
the situation calculus). As situation terms are dropped they introduce a� operator where[t]α

16 CHAPTER 2. RELATED WORK

means “α holds after actiont” and�α means “α holds after any sequence of actions”. Further,
Knows(α) means “α is known” andOKnows(α) means “α is all that is known”. The semantics
of ES is based on a possible-world semantics. There exists a worldw which determines which
fluents are true and an epistemic statee which determines what the agent knows initially. Fur-
ther, there exists aσ which represents an action sequence. Formulas are evaluated relative to a
modelM = 〈e, w〉. The semantics is defined w.r.t. modelM andσ. ES has an direct account
to incorporating sensing results, knowledge and only knowledge (the logicOL (Levesque 1990;
Levesque and Lakemeyer 2001) is contained inES and thus Lakemeyer and Levesque are able
to apply previous results like theRepresentation Theorem(Levesque and Lakemeyer 2001) also
to this logic). In (Claßen and Lakemeyer 2006) extensions (like ASK and TELL) of knowledge-
based Golog programs are proved. Lakemeyer and Levesque (2004) define the basic action theory
with the solution to the frame problem as proposed in (Reiter 1991) in the logicES and reprove
the Regression theorem in a very compact way. Lakemeyer and Levesque (2005) show with a
second-order extension forES that the semantics of this logic is expressive enough to handle ba-
sic action theories and theDo operator known from GOLOG (see below). This allows for defining
the language GOLOG in ES.

Recently, Ziegelmeyer (2006) defined a transition semantics and the semantics for the deci-
sion-theoretic extensions of GOLOG in ES and implemented a prototypical interpreter. Other
directions follow lines to integrate state of the art planning techniques into GOLOG based on the
ES semantics (Hu 2006; Claßen et al. 2007). The idea is to embed ADL subsets (Pednault 1989)
into GOLOG. These subsets are those defining the semantics of PDDL (Fox and Long 2003), a
language standard to define planning problems.

2.1.5 Other Approaches to Reasoning about Action and Change

STRIPS

The Stanford Research Institute Problem Solver (STRIPS) (Fikes and Nilson 1971) is nowadays
called the classical approach to problem solving. It was applied to the robot Shakey (Nilson 1984).
The idea of STRIPS is the following: “The task of the problem solver is to find some composition
of operators that transforms a given initial world model into one that satisfies some stated goal
condition” (Fikes and Nilson 1971). The operators denote the actions of the robot and are modeled
with preconditions which have to be fulfilled in order to be able to apply the action, and has several
effects on the world. The preconditions and effects are formalized in propositional logic. So-called
add- and delete lists keep track about which facts have to be added or deleted to or from the world
model, resp. A forward-chaining algorithm was used to fulfill the preconditions in the goal state
by applying operators such that no unsatisfied literals remain. The result is an action sequence
leading from the initial state to the goal state.

Representing a plan as an action sequence is in a sense a strong commitment. Often several
possibilities to reach a goal exist. Plans can be represented with partially ordered operators (Sac-
erdoti 1975; McAllester and Rosenblitt 1991). Each linearization of a partially ordered plan is a
solution to the planning problem. STRIPS-based partial order planners are for example UCPOP
(Penberthy and Weld 1992; Weld 1994), or BURIDAN (Kushmerick et al. 1995). These planners
use extensions of STRIPS. With ADL Pednault (1989) introduces conditional effects to STRIPS,
PSTRIPS (Kushmerick et al. 1995) allows for modeling stochastic effects. These systems use a
backward search strategy as opposed to the original approach. The so-called regression planners

2.1. REASONING ABOUT ACTION AND CHANGE 17

begin their search in the goal state and search backward to fulfill the effects of the initial state
(Waldinger 1977). Lin and Reiter (1995) formally account STRIPS and also discuss its relation
to the situation calculus. Some interesting working notes of John McCarthy about the relationship
between STRIPS and the situation calculus can be found in (McCarthy 1985).

The Event Calculus

The Event calculus was introduced by (Kowalski and Sergot 1986) for reasoning about events
and their effects and was originally used for database applications (Kowalski 1992). The basic
idea is to state that fluents are true at a particular point in time, if an action occurred at an earlier
time-point initiated it and did not terminate it in the meantime. The event calculus is said to be
narrative-based, which means that a time structure is assumed in which statements about when
actions occurred are incorporated (Shanahan 1997). Several axiomatizations in terms of classical,
modal or specialized logics exist. We refer here to the classical logic axiomatization given in
(Miller and Shanahan 1999).

According to Miller and Shanahan (1999) the event calculus is a sorted predicate calculus
with equality with sort action, sort fluents, sort time point, and domain-dependent objects. There
are the predicatesHappens, HoldsAt, Initiates, Terminates, and<. Happens describes at
which time point an action occurs,HoldsAt denotes that a fluent is true at a certain time point,
Initiates(A,F, T) andTerminates(A,F, T) are predicates which express that an actionA at
timeT initiates/terminates the fluentF . “<” is a standard order relation for time.

The formalism of the event calculus is able to express nondeterministic effects of actions. Fur-
ther, events can occur concurrently. It is distinguishes between cumulative and canceling effects.
Two or more effects are called cumulative if the simultaneous occurrence of events imposes an
effect which none of them has alone, and canceling if the effect of the occurrence of one event
prevents the second event to have the effect which it would have without the other event. This
results from the axiomatization as different actions may refer to the same time point to change a
fluent value. With the underlying time line durative actions can be modeled easily. Hierarchical
planning is achieved by compound actions (conditionals, loops, procedures). In (Shanahan 1990)
Shanahan extends the calculus to handle continuous change.

Planning in the event calculus is an abductive reasoning task. Circumscription is used to
explain the consequences (what holds at a certain time point) by means of the predicateHappens
(which action occurred) (see e.g. (Lifschitz 1994) for a detailed discussion on circumscription).
Circumscription as goal completion for Horn formulas yields a solution to the frame problem
(McCarthy 1980). By adding actions to the background theory, which are known to have happened
at a certain time point, a seamless integration of robot programming and planning can be achieved.
Planning can also be seen as partial order planning and in (Shanahan 2000) an algorithm similar
to UCPOP (Penberthy and Weld 1992) is given.

Shanahan and Witkowski (2001) give an example of how the event calculus can be used for
controlling a Khepera robot and how a robot is programmed with the calculus for a navigation
task. It is based on the abductive event calculus planner introduced in (Shanahan 2000). Planning
and sensor data assimilation can be regarded as abductive reasoning tasks. If the results of sensor
data assimilation conflict with the the current plan, re-planning is initiated. The use of compound
actions allow for hierarchical planning.

A recent textbook (Mueller 2006) treats the event calculus in-depth. There are some papers
which relate the event calculus to the situation calculus (see e.g. (Belleghem et al. 1997)).

18 CHAPTER 2. RELATED WORK

Fluent Calculus

The Fluent calculus is an approach to reasoning about actions and change similar to the situation
calculus. The fluent calculus is a sorted logical language with sorts actions, situations, fluents,
and states. Derived from the situation calculus, it deals with one of the obvious drawbacks of this
calculus.

The observations made in (Thielscher 1998) are that determining a fluent value by regressing
the action history up to the initial situation is not the most efficient way to derive a fluent value.
Instead, Thielscher proposes to represent what holds in the world by a world state instead of
implicitly by an action history. The application of a single state update axiom (Thielscher 1999) is
sufficient to infer how an action changed the world state. With this, he gives an elegant solution to
the inferential Frame Problem, i.e. the problem of inferring the non-effects of the action currently
applied. Central to his approach is thestate update axiomfor actions. In a nutshell, Thielscher
switches the roles of actions and fluents. While in the situation calculus a successor state axiom is
devised for each fluent, a state update axiom is devised for each action in the fluent calculus. This
requires that fluents are reified as terms in the logical language. With this approach to state update
axioms a world state can be described as the conjunction of positive and negative fluent formulas
w.r.t. a given situation term. To be able to handle incompletely described initial situations it is
required to reify also the conjunction of fluent terms. He therefore introduces the connective “◦”
with the properties of associativity, commutativity and unit element. His representation requires
the extension of the unique names assumption for fluents also to states. Thielscher (1999) points
out that introducing an equational theory AC1 and the extended unique names assumption at first
sight raises the complexity of the theorem proving task. But under the common assumption that
there are more fluents than actions in the domain description these extra costs pay off.

With FLUX (Thielscher 2002a; Thielscher 2002b; Thielscher 2005), which stands for FLUent
eXecutor, Thielscher introduces a kind of run-time system for the fluent calculus. Constrained
logic programs encode agents’ tasks based on the so-called FLUX kernel which implements the
state update axioms. The papers (Thielscher 2002a; Schiffel and Thielscher 2005; Schiffel and
Thielscher 2006) deal with the connection between GOLOG (see below) and FLUX and show
how the semantics of GOLOG programs can be transferred to the Fluent Calculus. Several other
extensions known from other calculi have been transferred to the Fluent calculus (e.g. (Thielscher
2000; Großmann et al. 2002; Fichtner et al. 2003; Martin 2003)).

At the 2006 AAAI General Games Playing Project Competition (Genesereth et al. 2005; GGP
2006) Schiffel and Thielscher demonstrated the strength of FLUX by winning the competition
(Schiffel and Thielscher 2007). The idea of General Game Playing is that from a description of a
game a computer program is derived which develops a winning strategy without human interac-
tion.

3APL

Hindriks et al. (1999) presented the agent programming language 3APL. They base their approach
explicitly on theintelligent agent metaphor: intelligent agents have a complex mental state, they
act pro-actively and reactively, and have reflexive or meta-level reasoning capabilities. Thus,
agents in their approach are equipped with a belief base which is represented in an arbitrary logical
language. In the line of BDI agent architectures (Bratman 1987) their model is based on an agent
having a set of beliefs, intentions, or desires to fulfill its goals. Formally, they do not distinguish

2.1. REASONING ABOUT ACTION AND CHANGE 19

between them. The basic ingredients of 3APL are basic actions, achievement goals, and test goals
which are classified as basic goals in the 3APL terminology. Complex goals are composed from
basic goals with sequential composition or are connected via nondeterministic choices including
loops and conditionals. They found their approach on logic programming, and the reasoning
paradigm is that of practical or means-end reasoning (e.g. (Georgeff and Lansky 1986)).

Thus, they introduce so-calledsemi-goalsfrom which the practical reasoning rules are derived.
These are constructed from basic actions, achievement goals, tests, complex goals, and first-order
formulas. Practical reasoning rules are of the formπ ← ϕ | π′ and mean that if the agent adopted
some goal or planπ and believesϕ it may consider to adoptπ′ as a new goal. This can be seen as
an extension to recursive procedures known from imperative programming languages. Hindriks
et al. distinguish between four types of rules,failure, reactive, plan, andoptimization ruleswhich
are applied in this priority. They formalizeintelligent agentsas agents consisting of a goal base, a
belief base, and a rule base.

These rules look like ordinary logic programs. The authors claim that an agent endowed with
these kind of rules must be seen differently. As the agent can modify its goals by means of the
rules given, it is self-modifying its code and this makes the difference to ordinary logic programs.
3APL has a formal operational transition semantics. Derivation rules define the semantics of the
execution of (composite) plans, basic actions, tests, and the application of practical reasoning rules.
As the agent, when executing actions, has to decide on a goal to achieve and which rules to apply,
the authors separate control structures from the object level on which plans are defined. They
therefore introduce a meta language which defines execution rules for action selection where they
distinguish between selecting goals and selecting rules. The actionselexselects a goal from the
goal base which is executable in the current mental state of the agent, whileselapchooses a rule
from the rule base. Further, they define the execution of as many goals as possible with the action
ex, and actionapplymeans to apply as many rules to as many goals as possible. Finally, they define
derivations forassignment for program and rule variables, tests for goal and rule terms, sequential
composition, nondeterministic action choice, andnondeterministic repetition. An embedding of
ConGolog (see below) in 3APL (Hindriks et al. 2000) shows the close relationship between both
languages.

(Some) Further Approaches to Reasoning about Actions

Gelfond and Lifschitz (1993) propose the languageA. It is a propositional language for reasoning
about actions and can be seen as a propositional fragment of Pednault’s ADL (Pednault 1989). The
ontology of the language is based on fluents and actions. It distinguishes between two kinds of
propositions namely value and effect propositions. The former specifies a fluent value at a specific
situation, the latter describes the effect of performing an action. The semantics of executing actions
is described by extended logic programs. Son and Baral (2001) introduce the notion of knowledge
into the language. Their extension distinguishes between ordinary and knowledge states where
an ordinary state consists of a set of fluents, and a knowledge state consists of a state and a set of
states. They introduce so-calledk-propositions that state which fluents become true after executing
a sensing action. A transition function defines the semantics of their dialect by mapping from
actions and knowledge states to knowledge states. They prove that their formalization is sound
w.r.t. the axiomatization of knowledge given in (Scherl and Levesque 1993). A probabilistic
extension is defined in (Baral et al. 2002). The successors ofA are the languagesB andC (Gelfond

20 CHAPTER 2. RELATED WORK

and Lifschitz 1998) (besides the languagesP-R presented in this paper, which deal with temporal
projections). New propositions about static and dynamic laws are introduced. In the latest variant
C+ Giunchiglia et al. (2004) distinguish betweenstatic lawsin the form ofcaused F if G,
which reads ifG holds thanF is true,dynamic action lawswhenF in the example above is an
action formula, anddynamic fluent lawsin the formcaused F if ⊤ after c. The latter means
thatF is true after actionc was executed. They further define abbreviations for exogenous events
and inertial laws to account for the frame problem. Sandewall proposes theCognitive Robotics
Logic (CRL) in (Sandewall 1998) based on earlier work in (Sandewall 1995). He presents a
meta-theory for reasoning about actions. The language allows for expressing durative actions,
composite actions, nondeterministic actions, nondeterministic timing of actions and their effects,
continuous time and piecewise continuous fluents, imprecise sensors and actuators, and action
failures. Similar to CRL, the temporal action logic TAL (Doherty et al. 1998; Kvarnström et al.
2000) makes use of a surface language representing narratives, and a base language allowing the
agent to reason about narratives. Logical entailment is based on circumscription. The language
TAL is also applied to deliberative tasks for unmanned aerial vehicles (see below).

2.2 The Robot Programming Language Golog

Golog. Golog stands for alGOL in lOGic. Levesque et al. (1997) proposed this robot or agent
programming language. The idea of Golog is to combine agent programming with reasoning in an
efficient way. Golog has its formal foundations in the situation calculus. It offers constructs known
from imperative programming languages like conditionals, loops, or recursive procedures. The
strength of Golog is, moreover, that it is capable to reason about action and change. The semantics
of Golog is defined via a macroDo(σ, s, s′). The programσ is translated by macro expansion
into a situation calculus formula. Program synthesis is done by proving that the situation calculus
basic action theory entails that the program reaches the specified goal situation. As a side-effect
this constructive proof yields an executable program where nondeterministic choices for actions
or arguments of actions are instantiated. It turned out that it can be applied successfully as a high-
level language for encoding robot controllers, as we show below. Nevertheless, the original Golog
lacks expressiveness for many problems arising in practice. During the last decade many useful
extensions have been proposed, most of which we will discuss next.

ConGolog. De Giacomo et al. (2000) propose an alternative formal semantics for Golog, a
transition semantics. They define a predicateTrans(σ, s, δ, s′) which transforms the ConColog
programσ in situations to a successor configuration〈δ, s′〉, the remaining program after the
execution of the first action inσ with the resulting situations′. A predicateFinal exists which
denotes if a program legally terminates. The transition semantics allows to define the concurrent
execution of programs. De Giacomo et al. introduce so-called high-level interrupts. Triggered
by a condition, the actual program execution is suspended and the program associated with the
condition is executed until the condition becomes false again. Then the suspended program is
continued. They further give a formal account of so-called exogenous actions, actions which are
beyond the control of the agent. These actions or events are imposed by the environment, and
the agent can properly react to these events. The transition semantics demands a reification of
programs, i.e. programs have to be defined as functions in the logical language of the situation
calculus.

2.2. THE ROBOT PROGRAMMING LANGUAGE GOLOG 21

sGolog. Lakemeyer (1999) proposes sGolog as an approach to deal with sensing results in the
Golog framework. sGolog, like Golog and ConGolog, is off-line, i.e. program synthesis is not
interleaved with program execution. Therefore, one needs a special treatment of possible results
of sensing actions. Similar to the idea of a policy known from MDP theory, Lakemeyer provides a
program branch for each possible sensing result, which reacts appropriately to the sensed value. He
introduces a statementbranch on(ϕ) which allows the user to define so-called condition action
trees (CAT) on the conditionϕ. CATs, formally defined in (Lakemeyer 1999), provide alternative
programs w.r.t. the sensing result ofϕ. For his formalization he draws on (Scherl and Levesque
1993; Levesque 1996) and defines CATs andbranch on in terms of the fluentKWhether and a
special functionSF (a, s) which represents the fluent value when the sensing actiona is executed
in situations. Note that sGolog is an off-line Golog dialect. It was the first approach to formally
introduce sensing in Golog. Later approaches to sensing are based on on-line interpretation of
Golog programs (Sardiña 2001).

Concurrent Temporal Golog. Finzi and Pirri (2004) propose a concurrent temporal Golog di-
alect suitable for constraint-based interval planning (see e.g. (Smith et al. 2000)). They integrate
temporal aspects from the situation calculus and interleaved concurrency similar to ConGolog
(but use an evaluation semantics). Several processes exist which need to be executed concurrently.
Each process has an execution time with a start and an end time on a continuous time line. Con-
straints are legal relations between processes, such asA beforeB, A afterB, or A meetsB (A
ends in the moment whenB starts). Golog now fills in the missing details of a partially specified
candidate plan, considering the process constraints. The motivation for constraint-based interval
planning is that a robot has to perform multiple tasks, many actions like controlling the camera
and actuating the motors have to be performed in parallel. Interval planning helps to order the
different activities of the robot to achieve the goal.

IndiGolog. IndiGolog (De Giacomo and Levesque 1999) overcomes one of the central draw-
backs of the original Golog approach w.r.t. the applicability for realistic scenarios. It makes use
of the transition semantics introduced by (De Giacomo et al. 2000) in the ConGolog derivative.
While ConGolog was still off-line, IndiGolog aims at on-line execution of robot programs. The
interpreter directly commits to action choices made, by executing them. This is a fundamen-
tal difference to Golog, where actions are executed only after the whole program/plan has been
synthesized. The incremental execution enables the agent to gather new world information. In
(De Giacomo et al. 2001) sensing histories are formally introduced, in (De Giacomo et al. 2002)
De Giacomo et al. introduce epistemically accurate theories and epistemically feasible determinis-
tic programs to theoretically underpin the incremental way of interpreting and executing programs.
To still be able to perform projection tasks, they introduce a search operatorΣ. Σ carries out the
projection while the execution of (exogenous) actions is suppressed.

ccGolog. Grosskreutz and Lakemeyer introduce continuous change into Golog (Grosskreutz
and Lakemeyer 2000a; Grosskreutz and Lakemeyer 2003). Based on ideas of (Pinto 1998; Shana-
han 1990) with a reified notion of time known from the temporal situation calculus (Pinto and
Reiter 1995), fluents can be evaluated on a continuous time scale, similar to (Firby 1994). Each
continuous fluent is associated with a function of time. Based on this function and a fluentstart

22 CHAPTER 2. RELATED WORK

which denotes the starting time of an action, fluents can be projected onto an arbitrary point of
time in the future. This notion also allows the introduction of a wait-for statement known from
RPL (Beetz 2001) into ccGolog which is useful for condition-bounded execution of actions w.r.t.
time. Grosskreutz and Lakemeyer (2001) treat the topic of on-line execution vs. off-line projec-
tions with the new type of continuous fluents. They propose a system architecture which allows for
passive sensing, i.e. sensing is done in the background without actively executing sensing actions.
A thorough treatment of ccGolog and the reified time notion can be found in (Grosskreutz 2002;
Grosskreutz and Lakemeyer 2003).

pGolog. Grosskreutz and Lakemeyer add the notion of probabilistic programs to Golog in their
pGolog dialect (Grosskreutz 2000; Grosskreutz and Lakemeyer 2000b). Programs can be assigned
a probability with a statementprob(p, σ1, σ2), wherep is a probability andσ1, σ2 are pGolog
programs. For calculating the probability of a future situation over a probabilistic program they
introduce a weighted transition semantics. The semantics is similar to that in ConGolog, though
the step semantics is defined as a function mapping pairs of configurations to probabilities (trans :
program × situation × program × situation → [0, 1]). Based on the belief representation
of Bacchus et al. (1999) they introduce probabilistic projections into the language. With this
extension it is possible to reason if a goal holds in some future situation and with which probability.
Further, several initial belief states can be handled with a probability distribution defined over
them.

DTGolog. DTGolog (Boutilier et al. 2000) is an approach to integrate decision theory into the
Golog framework. In addition to the basic action theory of Golog, an MDP optimization theory
is needed. Given a Golog program, DTGolog computes an optimal policy which maximizes the
agent’s cumulative reward. With the optimization theory DTGolog offers a version of nondeter-
ministic choice of actions and their arguments in an optimized way. DTGolog selects the actions
and arguments which lead to the maximal value. The Golog program is interpreted by a predicate
BestDo (a version ofDo which optimizes the program and calculates the policy). The algorithm
used for calculating the policy is a forward search value iteration. Further, DTGolog offers the
use of stochastic actions. Stochastic actions in the situation calculus are formalized in the fol-
lowing way. A deterministic action exists which has a number of deterministic outcomes which
are chosen by nature. To each outcome a probability is associated, which states the probability
with which nature will choose the respective outcome. The resulting policy is a conditional Golog
program which offers an optimal action for each of the possible outcomes. In the spirit of Golog,
DTGolog also offers to guide the search for an optimal policy by restricting the search space at
axiomatizer’s needs. Full MDP planning in a finite horizon MDP can be undertaken by using
solely nondeterministic action choices. If knowledge about the world exists it can be encoded
in the DTGolog program. DTGolog as such is off-line. Soutchanski (2001) proposes an on-line
DTGolog interpreter which we discuss in greater detail in Chapter 4.2.1.

GTGolog. GTGolog (Finzi and Lukasiewicz 2004) is an generalization of DTGolog to multi-
agent decision-theoretic planning. GT is an abbreviation for “game-theoretic”. Formally, multi-
player Markov or stochastic games (cf. e.g (von Neumann and Morgenstern 1947; Littman 1994),
are solved in their approach. Similar as in DTGolog a program is specified from which the optimal

2.2. THE ROBOT PROGRAMMING LANGUAGE GOLOG 23

policy is calculated. The optimization seeks at finding a Nash equilibrium for the program by
optimizing away nondeterministic choices. Currently, the language is restricted to two-player
zero sum Markov games. They give an example in a confined static soccer domain. Finzi and
Lukasiewicz (2005) extend their approach to partially observable games. Recently, Farinelli et al.
(2007) proposed a version of TeamGolog, a generalization of GTGolog. This dialect focuses
on integrating multi-agent decision-theoretic planning and introduces explicit communication and
synchronization states.

Applications of Golog

Jenkin et al. (1997) report on interfacing Golog with a Nomad200 and RWI B21 robot. The
first realistic large-scale application of Golog was the tour-guide robot in the Deutsches Museum
Bonn in the Rhino project (Burgard et al. 1998). Over several days a RWI B21 robot served as
museum tour-guide and explained the exhibits. Golog was used here for high-level control. It was
connected to the robot system with GOLEX (Hähnel et al. 1998) which interfaced Golog and the
rest of the robot control software.

Funge (Funge 1998; Funge 2000) makes use of Golog for modeling animated creatures in a
cognitive way. He argues that dealing with uncertainty is important for the animated creatures in
order to make it look as realistic as possible, though he does not give a formal approach to it. He
uses the possibility of nondeterminism in Golog for his creatures to fill in details in sketch plans
based on their background domain knowledge. In an extended example he shows how a merman
swims for cover to prevent a shark attack.

Levesque and Pagnucco (2000) report on Legolog, their implementation of Golog on a Lego
Mindstorm robot. They connected an IndiGolog interpreter implemented in Prolog to the Lego
Mindstorm Robotics Invention System (RIS). The Lego robot is equipped with a micro-controller
whose firmware has a C-like API. Further there is a communication protocol with which Prolog
and thus IndiGolog are able to communicate with the robot. Actions can be sent to the robot and
sensor values can be read. With their implementation, low-cost experiments with cognitive robots
can be conducted. This shows the importance of having an embodied physical robot in order
to conduct realistic experiments and learn more about the interdependencies between high-level
control and a robotic system which may not become apparent in simulations only.

McIlraith and Son (2002) aim at services for the semantic web. As a web agent has to perform
complex actions and needs to gather new information, McIlraith and Son chose ConGolog as the
specification language for their web agents. The services, encoded as Golog programs, are generic
in the sense that different users are able to use them, customizable in the sense that user prefer-
ences can be easily integrated, and usable in the sense that agents with different prior knowledge
can use them. They extend ConGolog with user constraints by a predicateDesirable to encode
user preferences and define self-sufficient programs (Davis 1994) in the situation calculus con-
text. Preferences constrain the search for a solution and self-sufficiency by means of the fluent
KWhether ensures that the agent is able to gather all information it needs to execute the program.
While McIlraith and Son (2002) make use of ConGolog’s nondeterministic choice over actions
to generate plans, Fritz and McIlraith (2005) compile qualitative preferences into DTGolog pro-
grams. They formally introduce a basic desire language and extend the semantics of DTGolog
to handle preference formulas. To ensure the forementioned knowledge gathering process of web
agents and to be able to synchronize several web agents working in parallel, they provide a transi-

24 CHAPTER 2. RELATED WORK

tion semantics for decision-theoretic Golog. In their paper they describe a successful application
for booking a business trip considering over 30.000 combinations of flights and hotels, and nearly
1000 queries to the web to gather the needed information.

Pham (2006) describes an interface between DTGolog and the Sony Aibo ERS-7. The inter-
face is based on the framework Tekkotsu (Tira-Thompson 2004). For example, an application that
the Aibo is used for is to fulfill navigation tasks for which an optimal policy was calculated.

Soutchanski et al. (2006) discuss the application of DTGolog for the London Ambulance
Service case study. The task in this domain is to dispatch an emergency call to an ambulance.
An incoming emergency call is taken with all important details. Depending on the location of the
request, the request is forwarded to one of three Resource Allocators (there are three as London is
separated into three districts). Then, an ambulance is mobilized, either from its home base or on
the road, and travels to the scene. At the location the ambulance crew notifies the control center
and takes the patients to a nearby hospital if needed. The goal is to minimize the mobilization time
to arrive at the scene. A time limit between the incoming request and the arrival at the location
is about 14 minutes. The authors show how DTGolog can be applied to this task and show some
results in a simulated environment. The results are notable because the state space for this domain
is huge.

2.3 Robot Controllers

In this section we briefly overview different control architectures for mobile robots or agents in
Section 2.3.1. In Section 2.3.2 we present non-logic-based robot programming languages as a
counterpoint to Golog which we discussed in detail before. In Section 2.3.3 we will talk about
recent applications (as opposed to those discussed in Section 2.3.1 which mirrors the different
paradigms from a more historical viewpoint) and ongoing projects about (cognitive) robotics ap-
plications.

2.3.1 Control Architectures

As already noted, the first approach to problem solving on a mobile robot was the STRIPS system
(Fikes and Nilson 1971) on the robot Shakey (Nilson 1984). The operation of this robot followed
thesense-plan-actscheme, where the robot first gathered new information from its sensors, started
a planning process to achieve a goal, and finally started to execute the planned sequence of actions.
It is the prototype for what was later called the deliberative or hierarchical paradigm. On each of
its hierarchical layers sub-goals were to be achieved. The top layer of this architecture, the camera
system of Shakey processed information of the world (sense). This information was handed over
to the STRIPS planner on the middle layer (plan). Control commands were passed over to the
motors on the bottom layer (act).

The drawback of this approach was that due to low computing power a lot of time could
pass by between sensing and acting. Thus, the robot could not react appropriately to changes
in the environment, as the motor commands were already outdated when they were executed.
One proposal to overcome this, was to simply leave out the plan step. In (Brooks 1986; Brooks
1991) Brooks proposed a behavior-based approach. Instead of a vertical hierarchy he proposed a
horizontal task composition. This means that several behaviors get the sensor readings as input.
The available behaviors like locomotion or collision avoidance had a vertical hierarchy and those

2.3. ROBOT CONTROLLERS 25

behaviors on a higher level subsumed those of a lower level. Therefore, his approach is also called
subsumption architecture. For the low-level control of a robot this is a good scheme, but from the
different available behaviors, goal-directed intelligent acting will merely emerge. In the following
times Brooks’ thesis that symbolic reasoning hinders the successful development of robots was
refuted (e.g. (Gat 1998)).

The solution seems to lie in the middle. In the aftermath, the hybrid paradigm, combining
both approaches, was successfully applied. One of the first hybrid architectures is the AuRA
architecture (Arkin 1986; Arkin 1987). The deliberative components in his architecture were a
mission task planner and a Cartographer. The latter encapsulates all map-building issues. The
former is divided into a Mission Planner, Navigator, and Pilot. The Mission Planner deals as
a human machine interface, the Navigator plans together with the Cartographer, paths the robot
should follow, and the Pilot selects the first sub-task and provides the reactive low-level control
(motor modules) with appropriate commands. The planning performed here is an HTN planning
approach. Another prominent example is the 3T architecture (Bonasso et al. 1997). It is a three-
layered architecture and merges aspects of the ATLANTIS architecture (Gat 1992) and the RAP
system (Firby et al. 1995). Three layers are distinguished, a reactive Skill Manager on the bottom
level, a deliberative task planner on the top layer, and a sequencer on the middle layer. The top
level layer consists of a mission planner which sets the goals to be achieved. These are passed
to the sequencer which decomposes the goals making use of HTN techniques. The sequencer
calls the low-level behaviors on the bottom layer. This design was deployed successfully for
planetary rovers or underwater vehicles at NASA. Simmons et al. proposed the Task Control
Architecture (TCA) (Simmons et al. 1997). It is a hybrid approach coming with a task scheduler
using PRODIGY (Veloso et al. 1995), a decision-theoretic path planner, and a navigation module
deploying POMDP techniques. Interestingly, these are seen as the deliberative layer in (Murphy
2000). The reactive layer consists of an obstacle avoidance scheme based on the curvature-velocity
method (Simmons 1996). The robot XAVIER (Simmons et al. 1997) used this architecture in a
successful office delivery application.

2.3.2 Non-Logic-Based Robot Programming Languages

PRS-Lite. PRS-Lite (Myers 1996) is a task-level controller for a mobile robot based on the
procedural knowledge description of actions by Georgeff and Lansky (1986). The objective was
to retain a mixture of goal-directed and reactive behavior in an computational efficient way. PRS-
Lite is used as the high-level controller for the robot Flakey from SRI, which uses the Saphira
control architecture (Konolige et al. 1997). The control architecture distinguishes between three
different control layers, aneffector level, a behavior level, and atask level. While the former
two deal with controlling sensors and actuators and provide basic behaviors like wall following,
the latter deals with the coordination of the control modules present and is implemented using
PRS-Lite. A task can be accomplished when all goals of agoal-setare satisfied. They distinguish
between two different goal modalities,action andsequencing. For action goals operators exist
like tests, execute, and wait-for, which waits for a condition to become true. Further, they can
switch on or off intentions and behaviors withintended/unintendedstatements which enables or
disables the hierarchical decomposition of goals. For sequencing they introduced operators for
conditionals, parallel goal execution, and branching. The task procedures are compiled into finite
state machines yielding activity schemes. These are launched by instantiating their parameters.

26 CHAPTER 2. RELATED WORK

Colbert. Later, PRS-Lite was exchanged by Colbert (Konolige 1997) in the Saphira architecture
(Konolige et al. 1997). Colbert is a subset of ANSI C and the semantics of programs is given by
finite state automatons (FSA), though the mapping between the FSA and the C program is not
formally defined. An input program in Colbert is translated to an FSA which is able to control
the robot. Colbert is very similar to PRS-Lite w.r.t. expressiveness. Colbert also makes use of
conditionals, wait-for, or goto statements, and allows for hierarchical procedures. Also, concurrent
execution of goals is supported.

RAP. The idea behind reactive action packages (RAPs, (Firby 1987; Firby 1994)) is to define
hierarchical task nets and expand the nets until only primitive actions remain. Partially specified
plans are stored in a plan library. For plan execution those plan skeletons have to be instantiated
and details are filled in. The reactive plan interpreter takes a set of tasks or goals and refines each
goal hierarchically until primitive actions are reached. This hierarchical refinement is achieved by
using RAPs from the plan library. The RAP system is able to handle concurrency and synchro-
nization (wait-for).

Reactive Plan Language, XFRM, and Structured Reactive Controllers. McDermott (1991,
McDermott (1992) proposed theReactive Plan Language(RPL). It follows the line of reactive
planning and elaborates many ideas of other approaches of reactive planning like RAP described
before. RPL is a robot control language coming with rich expressiveness. The language is imple-
mented in LISP, and the semantics of its statement is that of the LISP execution system.Plans
are understood as programs. RPL features standard imperative constructs like procedures (tasks
and sub-tasks), sequences, loops and conditionals, and non-standard constructs like condition-
and time-bounded statements likewait-for or wait-time.1 These non-standard constructs are based
on a notion offluents, which are time-varying variables which refer to sensor data. Fluents are
automatically updated when new sensor data arrive.wait-for andwait-time take a fluent as and
argument. RPL offers an account to true concurrency, that is, tasks are executed in parallel(as
opposed to interleaved concurrency as for example ConGolog makes use of). This parallelism can
be controlled by the programmer by assignedvalvesto a process. Valves are semaphores, and
processes competing for valves will not be executed in parallel. This model is also very useful
for controlling blocked processes making use of thewait-for statement, for example. These pro-
cesses are suspended until the fluent value becomes true which means that the respective process
waits until the associated valve becomes available. With this model of concurrency pure reactive
behavior can be modeled. For example, one can assign a process to a fluent with awith-policy
statement. An example is the behavior policy “whenever the gripper becomes empty, regrasp the
object” while other tasks are performed in parallel. Further, RPL introduced a notion for events,
where the beginning and the ending of a task can be queried.

It is important to note that the execution system of RPL supports two modes, areal mode,
where the control programs are executed in reality, and aprojection mode, where given a sim-
ulated time line, programs can be projected into the future. The projections are based on the
planning system XFRM (McDermott 1992; Beetz and McDermott 1994). A projected execution
is represented by a task network and a time line, where the task network is a tree of the tasks and

1Grosskreutz (2002) integrated several features from RPL in his Gologdialect giving them a formal Golog seman-
tics. As we found parts of our Golog language proposal on the work of (Grosskreutz 2002) we will explain some of
these statements in Chapter 4 again.

2.3. ROBOT CONTROLLERS 27

its sub-tasks, and the time line marks start and end points of robot actions. Possible execution
scenarios are probabilistically projected, resulting in success and failure cases (see (McDermott
1994) for details on the planning algorithm and the semantics of plans). XFRM offers failure
diagnosis for plans. A taxonomy for possible failures exists which might occur during planning.
Possible failure cases considered, are for example “object-disappears-after-goal-is-achieved” or
“never-achieved-subgoal”. For each failure case a plan revision method is stored which then re-
vises the plan. This methods makes the execution of plans more robust as appropriate behaviors
for contingencies are foreseen.

With (Beetz 1999; Beetz 2000; Beetz 2001), Beetz proposes Structured Reactive Controllers
(SRC), a control framework for robots which is based on RPL. The idea is to realize robust con-
trollers by concurrent percept-driven plans. The system consists of behavior modules, fluents,
reactive plans, and the RPL run-time system. Making use of RPL control constructs, likewith-
policy, a controller scheme is defined which allows for plan execution, plan monitoring, and plan
revision. Beetz (2001) shows the flexibility of the approach with an application of an office deliv-
ery task. The latest extension to RPL is RPLLEARN (Beetz et al. 2004). Following the lines of
SRC to formulate an explicit controller framework, Beetz et al. integrate support for learning tasks
into the language RPL, that is, the definition of a learning task, how to collect the data needed,
which external learning framework should be used, and how to abstract the experiences made dur-
ing data collection. In an example of a robot navigation tasks they show the usefulness of their
approach.

2.3.3 Recent (Cognitive) Robotics and Agent Applications

Cognitive Systems for Cognitive Assistants. (CoSy) is an ongoing integrated EU project of a
research consortium consisting of the Royal Institute of Technology (KTH), Sweden, University
of Birmingham, the German Research Center for Artificial Intelligence (DFKI), the University
of Ljubljana, the University of Freiburg, the University of Paris, and the Technical University
Darmstadt. The vision of this project is ”to construct physically instantiated[...] systems that
can perceive, understand[...] and interact with their environment, and evolve in order to achieve
human-like performance in activities requiring context-(situation and task) specific knowledge”
(CoSy 2007). The project comprises of work on architectures, environment representation, object
recognition, human-machine interaction and natural language understanding, planning, or action
representations (see e.g. (Burgard et al. 2005; Roth et al. 2005; Meier et al. 2006; Kelleher and
Kruijff 2006; Kelleher et al. 2006; Kruijff et al. 2006)). One of the key ideas of this project is to
integrate work on the different fields of AI and robotics research as well as the cognitive sciences.
We refer to the project homepage for more information about the effort and the publication list
(CoSy 2007).

The WITAS Project. A prominent example for an application in cognitive robotics is the
WITAS project (Doherty et al. 2000). The project’s objective is to control an unmanned aerial
vehicle (UVA). The UVA is a modified Yamaha RMAX helicopter which has a power of 16 kW
and a maximum take-off weight of 95 kg. It is equipped with three PC104 embedded comput-
ers and a CCD camera on a pan/tilt unit. Applications for this UVA are surveillance tasks or to
support rescue efforts from the air. An interesting feature in such intelligent UVA applications is
that the role of reactive control is predominant. A failing reactive behavior like motion control
for a wheeled robot leads to the robot driving on a wrong trajectory or colliding with objects, for

28 CHAPTER 2. RELATED WORK

an aerial vehicle such a failing control instance has hazardous effects as the helicopter can easily
crash. Therefore, Doherty et al. propose a reactive/deliberative architecture where reactive control
is of paramount importance. In (Doherty et al. 2004) they introduce a reactive three-layered con-
centric modular task architecture. The important aspect in this application is to use “deliberative
services in a reactive or contingent manner” on the one hand, and “traditional control services
in a reactive or contingent manner” on the other hand. The control modes of the UVA aretake-
off, landing via visual navigation, hovering, dynamic path following, as well asreactive flight
modes for tracking and interception. From these control modes, it becomes clear that reactive as
well as deliberative tasks have to be interwoven. Doherty (2005) describesDyKnow, a knowl-
edge processing middle-ware for the helicopter. For tasks like dynamic path following they state
that the autonomous system must be able to create qualitative knowledge and objects structures
to fulfill such tasks. These representations are a prerequisite for applying planning which “[...]
is an essential functionality in any intelligent agent system” (Doherty 2005). For planning they
make use of the task-based planner TAL (Kvarnström et al. 2000) and a motion planner. TAL is a
forward-chaining logical planner where a plan is viewed as a narrative and goals are temporal for-
mulas. Control knowledge can be incorporated by temporal logical formulas which constrain the
search. Many publications emanated from this project. We therefore refer to the project’s website
at (WITAS 2007) for an overview.

The Cognitive Controller. Qureshi et al. (2004) report on a space robotics application. The
task is to capture a satellite, transport it to a service bay, perform the service operations, and release
the satellite back into orbit. They propose a hybrid system architecture consisting of reactive and
deliberative control. The deliberative control guides the reactive one. The authors state that if
the satellite is docked, the remaining steps can be performed applying more primitive scripted
controllers. The reactive module is implemented as a behavior-based controller and has highest
priority to care for safety aspects during operation. There are six different basic behaviors:search,
monitor, approach, align, contact, andavoid. Their action selection behavior chooses one of the
basic actions that is relevant to achieve the current goal, but it heeds the advice of the deliberative
controller. The other low-level components are theperception center, which cares for vision
processing, and amemory centerwhich acts as a world model. For deliberation they make use
of a GOLOG planner which plans a sequence of actions from the current state to a predefined goal
state. The authors conducted a series of experiments in simulated environments.

Robotic Soccer Applications. One of our application domains for the Golog dialect READY-
LOG which we propose in Chapter 4 is the robotic soccer domain. A concise discussion of the
RoboCup initiative can be found in Chapter 5.2. Here, we want to give some examples for the
state of the art in the soccer domain w.r.t. high-level decision making. This overview is not
exhaustive, but shall give an impression on how other approaches advance the action selection
problem in this domain. One description language which is used by several RoboCup teams is the
language XABSL (L̈otzsch et al. 2004). XABSL is a XML-based description of hierarchical tasks.
The underlying semantics is that of a finite state automaton. Basically, a decision tree is encoded
which implements reactive behavior. Murray et al. (2001) make use of so-called statecharts, which
are UML-based state automata. The statecharts are implemented in Prolog. Murray et al. (2001)
as well as Stolzenburg and Arai (2003) point out that this reactive approach supports the behavior
specification in a multi-agent context. A hybrid approach is proposed in (Jensen and Veloso 1998).

2.4. DISCUSSION 29

Here, simulation league soccer agents also mix reactive and deliberative decision making. Among
other things, the authors propose that an agent switches from deliberation to reactive control when
an opponent moves too close to the agent. Jensen and Veloso use Prodigy (Veloso et al. 1995),
a nonlinear planner, which runs as a central deliberative service and which derives a multi-agent
plan for the whole team and then sends each agent its corresponding sub-plan. To make this work,
severe restrictions in the expressiveness of the plan language are necessary, like assuming that ev-
ery action takes the same unit of time. Kok and Vlassis (2006) tackle the problem of multi-agent
decision making for simulated soccer agents by so-called coordination graphs. Based on a utility
function, each agent selects its next action according to the possible next action of its neighboring
agent in this graph. This approach can be seen as a decision tree approach. With the utility function
in each situation an appropriate decision tree is selected. As mentioned in the introduction also a
range of learning approaches exist. Prominent examples are (Stone 2000; Lauer and Riedmiller
2000; Riedmiller and Merke 2002).

2.4 Discussion

Many different calculi, formalisms and approaches in the field of reasoning about actions and con-
trol architectures for mobile robots or agents exist. Each calculus focuses on a different aspect of
the reasoning problem. This diversity exists from the early days in these fields. As McCarthy states
in (McCarthy 1985) the STRIPS reasoning system was invented because in those days, planning
with the situation calculus was too slow for practical applications. An efficient implementation
(like with Golog or FLUX) was missing. Many different approaches were published. One could
get the impression that the one or the other approach could have been formulated in another logical
framework instead of creating a new one. But this, of course, is only partly true. Each formalism
has its pros where the aspects in focus can be described in a better, easier, or more appropriate
way. There are many papers which enrich one approach with features presented in another one.
This simply shows that this field is still under intense investigation. Further, it is remarkable that
the approaches from the very beginning (like the situation calculus or STRIPS) are under active
research which shows their generality. With the computing power of robots nowadays we are able
to implement the visionary ideas from the early days in this field.

With this diversity in the research producing many different approaches, it seems reasonable
to justify our approach against the background of other work and thus relating it to the context.
As we pointed out in the introduction, the research goals presented in this thesis are to develop
robot controllers for highly dynamic domains with real-time constraints. Previous works, mostly
theoretical based, gained expressiveness for agent languages. This allows for the modeling of the
environment and the behavior of a robot or agent acting in the real world in a more realistic way.
The title of this thesis pertains to real-time aspects in the decision making of a robot. This means
that, instead of developing an new appealing theoretical concept, we are aiming at showing that
existing approaches can — with accordant modifications — be applied to real-time domains. This
thesis can be seen in the spirit of gathering common ideas and combining them into one framework
rather than creating everything anew. We draw on previous proposals for extensions for the robot
programming language Golog and combine them into one dialect.

The first justification is about the question why we have chosen Golog and the situation calcu-
lus as basis. The idea of Golog is appealing. The middle ground between planning and program-
ming including temporal projections leaves choices open for modeling the behavior. One can make

30 CHAPTER 2. RELATED WORK

use of planning where it seems appropriate (and where it is applicable from a computational point
of view) and rely on programming techniques where necessary, partly because domain knowl-
edge exists, or because reactive decision making is needed or opportune. The different Golog
dialects we integrated in this work makes borrowing from other successful and necessary concepts
known, in other also non-logic-based robot programming languages. The language we propose in
Chapter 4 melds previous works on Golog which in turn draw on other approaches like reactive
planning (e.g. RPL), or decision theory. Concepts of HTN planning, for example, are also (at least
partly) contained in the Golog approach with completing hierarchical skeleton plans. Being able
to apply these means modeling the agent or robot behavior is one of the strengths of READYLOG.
As we will lay out in Chapter 5 where we also show some limitations w.r.t. applicability of the
planning capabilities due to the complexity of the application domain, one has nevertheless the
chance to successfully tackle complex domains and exhibit intelligent behavior. Again, this is one
of the advantages when choosing Golog as a programming language for robot controllers. Another
pro of Golog is that with its formal semantics it is well-suited to formulate agent behaviors in a
general way (cf. Chapter 7 where we present a general approach to formulate soccer behaviors).
Of course, this is also possible with other specification languages basing on a formal semantics.
Appealing for us is that this specification can (rather) easily be run on our robot platform (which
we present in Chapter 6).

Other concepts like the state representation of the fluent calculus FLUX or the integration of
progressing the initial database as shown inES are also needed with our approach and had to be
modeled in our framework. These papers are very recent, and there is work undertaken to compare,
integrate and amalgamate the advantages from both formalisms.

Chapter 3

Mathematical Foundations

In this chapter we will elucidate the mathematical background for this thesis. We start with in-
troducing Markov Decision Processes formally and overviewing standard solution algorithms for
decision-theoretic planning in Section 3.1. The sequel of Section 3.1 deals with reinforcement
learning as an alternative model to solve Markov Decision Processes under different assumptions
and show their relationship to planning techniques. In Section 3.2 we present another Markov
model, the hidden Markov model. Unlike in Section 3.1 we do not go into the theory of Hidden
Markov models but show Bayes filtering as a solution technique. In particular, we present the
Kalman filter and the Particle filter. As Hidden Markov models are used in this thesis for the local-
ization task of a mobile robot, we concentrate on this application for the Particle filter. Section 3.3
presents the formal background of the action formalism we make use of throughout this thesis:
the Situation calculus and GOLOG. We present several derivatives of the robot programming lan-
guage GOLOG which we found our language proposal READYLOG on. Section 3.4 summarizes
this chapter.

3.1 Markov Decision Processes

In this section we presentMarkov Decision Processes(MDPs). The class of MDPs is large and
different variations of the model exist. To keep things simple, we will focus on fully observable
MDPs. For a sound discussion of the different models and optimality criteria we refer to (Puterman
1994; Boutilier et al. 1999).

Markov Decision Processes are a model to describe stochastic dynamic systems. The environ-
ment is represented by states. At any time the system can be in one distinct state. The agent makes
decisions at certainstagesor decision epochs. One distinguishes between discrete or continuous
decision epochs. Here, we deal with discrete decision epochs. At each stage we assume that a
state transition occurs due to an action (even if the state remains the same) and therefore equate
stage and state transitions. The goal is to devise a conditional plan orpolicy that will maximize
the expected benefit of interacting with the environment.

Formally, an MDP is defined by the tupleM = 〈S,A, T,R〉 whereS is a set of states,A is a
set of actions,T is a transition function withT : S × A× S → [0, 1], whereT (si, a, sj) denotes
the probability of the system to take a transition from statesi to statesj by applying actiona. The

31

32 CHAPTER 3. MATHEMATICAL FOUNDATIONS

functionR : S → IR is called reward function, assigning a real value to states. The desirability of
a particular state is expressed with the reward assigned to it byR. The set of actions and the set of
states can be of infinite cardinality. Here, we only regard finite state and action sets. The transition
function must be defined in such a way that it satisfies the Markov property: the probability of the
next state depends on the current state and action only, and not on any of the previous states. It
means that

T (s, a, s′) = Pr(St+1 = s′|At = a, St = st, ..., S
1 = s1) = Pr(St+1 = s′|At = a, St = s),

wheret represents the stage of the system. A policyπ for an MDP assigns actions fromA to
states inS. It can be seen as a conditional plan which for each state gives advice as to which
action to perform. It is calledstationaryif the advice for performing an action in a particular state
is independent of the current stage of the system, otherwise it is callednon-stationary. Thus, a
stationary policyπ : S → A can be represented by a fixed matrix, where for non-stationary policy
π : S × {1, . . . , T} → A one such matrix for each stage1, . . . , T exists. One can distinguish
between MDPs having aninfinite number of decision epochs and those having afinite horizon.
MDP models which have a definite terminal stage, i.e. go into an absorbing state, but where the
number of stages to reach this absorbing state is not known in advance are calledindefinite-horizon
MDPs.

Further, one mainly distinguishes betweenfully observableandpartial observableproblems
(although there exist models which arenon-observable). In the former, by performing an action
the agent cannot predict the state which it will attain, but it can sense the state it is in with certainty.
In the latter case of partial observability, it has a probability distribution about a possible set of
states it might be in. Here, we deal with fully observable MDPs.

For a finite-horizon problem the value of a policy is the sum of the expected rewards the agent
receives following the policyπ:

V (s) = Eπ

[

T
∑

t=0

R(st|s0 = s)

]

, V (s) = Eπ

[

γ ·
∞
∑

t=0

R(st|s0 = s)

]

. (3.1)

wheret denotes the stage the system is in andγ, 0 ≤ γ < 1, is a factor which discounts the
rewards over the time for the finite and infinite-horizon problem, respectively. The discount factor
γ assures that the cumulated expected reward does not grow unboundedly. In the following we
regard discounted problems.

Now, the agent is interested in finding the optimal course of actions. The expectation in Eq. 3.1
can be rewritten as

V π(si) = R(si) + γ
∑

sj∈S

T (si, π(si), sj) · V π(sj) (3.2)

Eq. 3.2 is referred to as the Bellman equation (Bellman 1957). Each policyπ establishes a system
of |S| linear equations with|S| unknown variables. The equation states that the value of state
si under policyπ is the sum of the immediate reward received in statesi plus the discounted
expected reward of the successor states ofsi. Howard (1960) showed the existance of a unique
optimal value functionV ∗ resulting from any optimal policyπ∗. The optimal policy can be derived

3.1. MARKOV DECISION PROCESSES 33

from the equation system defined by Eq. 3.2 by choosing greedily the actiona in states which
maximizes the expected value of all successor states that are reachable by actiona.

In the next section we show three algorithms which derive the optimal policy. We want to
note again that there are several different MDP models (as well as semi-MDPs or POMDP models
which are also related). Several other optimality criteria exist. For an in-depth discussion of all the
subtleties of the different (PO)MDP models we refer to (Puterman 1994) and to (Boutilier et al.
1999) for a thorough overview.

3.1.1 Decision-theoretic Planning

Decision-theoretic (DT) planning is the process of deriving an optimal policy for an MDP. The
policy provides for each system state the optimal policy the agent should take in order to maximize
the value defined in terms of immediate rewards for a certain state and for the actions taken so far.
DT planning requires that the transition model of the system is known. In the next section we will
show some methods to derive a policy for the case that the model is not known in advance. Before
that, we present thevalue iteration, andpolicy iterationalgorithms, and a search based method to
derive optimal policies.

Value Iteration

Bellman (1957) shows that the expected value of a policy can be computed by

V π
t (si) = R(si) +

∑

sj∈S

T (si, π(si, t), sj) · V π
t−1(sj).

V π
t (s) is thet-stage-to-go value function. At decision epocht the value for a state is dependent

on the immediate reward given in the respective state plus the value of the states which lead the
agent to the current state weighted by the transition probability. A policy is called optimal iff
∀π′, s ∈ S : V π

T (s) ≥ V π′

T (s) at the final decision epoch. Thus, there is the following relationship
between the optimal value function at staget and the optimal value function at the previous stage:

V ∗
t (si) = R(si) + max

a∈A

∑

sj∈S

T (si, a, sj) · V ∗
t−1(sj). (3.3)

Bellman’s principle of optimality (Bellman 1957) which roughly states that every decision of an
optimal policy is optimal disregarding the initial state and the initial decisions, builds the basis for
dynamic programming techniques. Generalizing Eq 3.3 to discounted infinite-horizon problems
Howard (1960) showed that there is always a stationary policy for such problems. The optimal
value function satisfies

V ∗(si) = R(si) + max
a∈A

γ
∑

sj∈S

T (si, a, sj) · V ∗(sj).

These equations form the basis for value iteration. As the equations generate a definite equa-
tion systems, it can be solved iteratively (dynamic programming). The policy results from taking
the optimal action at each state. In the case of the infinite-horizon problem it has been shown that
Vt converges linearly to the true value functionV ∗.

34 CHAPTER 3. MATHEMATICAL FOUNDATIONS

Policy Iteration

The idea of thepolicy iteration algorithm(Howard 1960) for infinite-horizon problems is slightly
different. Instead of improving the value function and deriving the policy from the optimal choices,
it directly modifies the policies. The algorithm has two steps:policy evaluationandpolicy im-
provement. In the former step the value of the policyV πi(s) is calculated for eachs ∈ S based on
the policyπi. The algorithm starts with an arbitrary policyπ0. In the policy improvement step the
actiona∗ has to be found which maximizes the state-action function

Qi+1(si, a) = R(si) + γ
∑

sj∈S

T (si, a, sj) · V πi(sj). (3.4)

If Qi+1(si, a
∗) > V πi(si) then actiona∗ is selected, i.e.πi+1(si) = a∗, otherwiseπi+1(si) =

πi(si). Although the complexity of policy iteration is higher, in practice it turned out that it
converges in fewer iterations than the value iteration approach.

Decision Tree Search

Boutilier et al. (1999) describe a decision tree search algorithm to find an optimal policy for a
finite-horizon MDPM = 〈S,A, T,R〉 and horizonH. An example of a decision tree is depicted
in Figure 3.1. Decision Tree Search works as follows. From an initial situations0 ∈ S the
possible actionsa ∈ A are “executed”. As the actions are stochastic they lead to successor states
with certain probabilities. In the example actiona1 leads with probabilityp1 to s1 and withp2 to
s2, analogously for the actiona2 with resulting statess3 ands4. In the successor states, actions
are again executed, leading to a tree alternating action and situation nodes. Edges between action
and situation nodes are annotated with the probability to reach the particular successor state by
executing an action. The edges from situations to actions are annotated with valuesV . The value
at the leavesV (s,H) = R(s), i.e. leaves of the tree, are assigned the reward of the particular
state. The value of parent states calculates as the sum of the values of its children weighted by the
probability to reach that specific child. An example is given in Figure 3.1 forV2 = p3 ·V3 +p4 ·V4.
At each state the maximum value of all its sub-trees is taken. The action which leads to the
maximal value is the optimal action on that stage and will be part of the optimal behavior policy.

One problem with this approach is that the whole tree has to be expanded to be able to compute
the optimal policy. Further, the branching factor for realistic problems can be immense and can
become a problem. For infinite-horizon problems a tree has to be constructed which is deep
enough to ensure convergence of the value function. Another method which is search-based is
Real-time dynamic programming (Barto et al. 1995). A partial decision tree is expanded based
on a search heuristic. If the agent needs to take a decision the values are calculated. This method
approximates the value function, and the deeper the tree the more accurate the value function is
approximated. For more reading about search-based methods we refer to (Boutilier et al. 1999).

3.1.2 Reinforcement Learning and the Link to DT Planning

A different approach to find an optimal behavior policy for Markov Decision Processes is Rein-
forcement Learning (RL). The general difference to DT planning is that the transition model is

3.1. MARKOV DECISION PROCESSES 35

s0

s1 s2 s3 s4

a1 a2 a1a1a1

a1

a2a2a2

a2

p1 p2 p3 p4

V = max(V1, V2)

V2 = p3 · V3 + p4 · V4

V3 V4

Figure 3.1: Decision tree search (from (Boutilier et al. 1999))

not given for RL problem instances. Instead, the agent tries out actions in its environments and
observes the outcomes of its acting in terms of a reinforcement signal (reward).

Many different solution methods for approximating the value function exits, like Monte Carlo
approaches, Temporal Difference Learning, or learning with function approximation (cf. e.g. (Kael-
bling et al. 1996; Sutton and Barto 1998)). Here, as an exemplary approach, we show Q-
learning, a temporal difference technique. Watkins (1989) proposed Q-learning. The optimal
state-action function is approximated in terms of performing actions in the environment, observ-
ing the feed-back, and minimizing the approximation error from previous updates. It can be seen
as a model-free policy improvement (cf. Eq. 3.4). The new state-action value is updated ac-
cording to a learning rateα, i.e. Q(st, at) = (1 − α) · Q(st, at) + α · Q(st+1, at+1), and thus
Q(st, at) = Q(st, at) + α(Q(st+1, at+1) − Q(st, at)). Then, the basic update formula foroff-
policy one-step Q-Learningfollows as

Q(st, at) = Q(st, at) + α(rt+1 + γ ·max
a∈A

Q(st+1, a)−Q(st, at))

The state-action function is approximated by following a behavior policyπ. The value for the
state-action pair(at, st) is then updated by taking the reward for the observed situation and the
Q-value for the best action to be performed afterwards into account. The difference to DT methods
is that only one sample (Q(st+1, a)) is taken to update the current state-action value, instead of
the whole state update used in DT planning (

∑

T (s, a, s′)V (s)). α is the learning rate influencing
to which degree new experiences contribute to a state-action value,γ is a discount factor. It is
guaranteed that Q-learning converges to the optimal state-action functionQ∗ in the limit, i.e. each
state is visited infinitely often. This update scheme is called off-policy as the behavior policy is
not directly changed. In contrast to this the SARSA algorithm is anon-policymethod. The update
scheme looks very similar:

Q(st, at) = Q(st, at) + α(rt+1 + γ ·Q(st+1, at+1)−Q(st, at)).

The difference is that the policy is directly changed when new experiences are incorporated. Sum-
marizing, instead of calculating a behavior policy with a given transition model as in DT planning,

36 CHAPTER 3. MATHEMATICAL FOUNDATIONS

planning

value/policy

acting

model

model

experience

learning

direct RL

Figure 3.2: Relationships between learning, planning and acting (from (Sutton and Barto 1998))

RL methods make observations by executing actions in a trial-and-error fashion to approximate
the optimal value (state-action) function.

In (Sutton and Barto 1998, Chap. 9) Sutton and Barto give a good overview how decision-
theoretic planning, reinforcement learning and model learning are related to each other. It is given
in Figure 3.2. Having a policy and acting in the environments leads to making experiences. Direct
RL methods use these experiences to update the behavior policy. This can be seen as policy
improvement in model-free policy iteration methods. If these experiences are used to increase the
transition model one speaks of model learning. Having a model (learned or not) to generate a
behavior policy is the key to DT planning.

3.2 Bayes Filtering for Robot Localization

Another approach to deal with uncertainty is that of Bayes filtering. The general idea is to estimate
a hidden state variablex of a dynamical system from observations that can be made. The underly-
ing model for Bayes filters are Hidden Markov Models (HMM), which in this case can be seen as
simple Bayesian nets. These models enjoy the Markov property as it is assumed that the particular
statext at a timet of the system only depends onxt−1, that is,p(xt|x0 . . . , xt−1) = p(xt|xt−1).
Further, the observation made at timet is only dependent on the statext and is conditionally
independent of all other states, i.e.p(ot|x0, . . . , xt) = p(ot|xt).

The key idea of Bayes filtering is to estimate a probability density over the state space condi-
tioned on the observation made. It is an estimate as the true state is unknown (hidden). The belief
Bel(xt) of the system being in statext is defined by the posterior

Bel(xt) = P (xt|o1, . . . , ot)

A Bayes filter consists of the following two steps:

1. Prediction step:At each time step a prediction of the state is made:

Bel−(xt) =

∫

p(xt|xt−1) · Bel(xt−1)dxt−1.

p(xt|xt−1) describes the system dynamics and is also referred to as the motion model.

3.2. BAYES FILTERING FOR ROBOT LOCALIZATION 37

2. Correction step:Each time a new observation is made it is used to correct the predicted
belief

Bel(xt) = η · p(ot|xt) · Bel−(xt).

The likelihood of an observationot assumed that the system is in statext is expressed by
the perceptual modelp(ot|xt). η is a normalizing constant which ensures that the posterior
over the entire state space sums up to one.

Bayes filter have a wide application range. In our context it is used mainly for localizing a
robot in its environment (Chapter 5). The observations then can be seen as data coming from the
robot’s sensors. The state variablext = (x, y, θ)T represents the pose of the robot, with(x, y)

being the position, andθ the orientation of the robot. When localizing a robot with a Bayes filter,
Bel(x0) is initialized with prior knowledge about the position. Often, the initial pose in unknown
andBel(x0) is initialized with a uniform probability distribution, as all positions are equally likely.
To localize a robot with no information about the initial position, is calledglobal localization. If
the robot has a high belief about its position the process of localization is calledlocal localization
or position tracking.

In the following we briefly introduce two Bayes filters which we will use in Chapter 6.

3.2.1 Kalman Filter

The Kalman filter (Kalman 1960) is a linear Bayes filter with Gaussian distribution. The state
variablext ∈ IRn and the observationsot ∈ IRm are formulated by the equations

xt = Axt−1 +But−1 + wt−1 and ot = Hxt + vt.

Then× n matrixA is the transition model stating the relationship of the state variablex between
two time steps. With the termB · u an additional control input can be given.w andv are random
variables and are adding noise tox ando. They are assumed to be independent of each other
and normally distributed withp(w) ∼ N(0, Q) andp(v) ∼ N(0, R). Q is the process noise
covariance andR the measurement noise covariance matrix.1 The matrixH relates observable
components of the measurement and the state.

Letµ−t ∈ IRn be the prior, andµt ∈ IRn the posterior state estimate at stept, i.e.µ−t = E
[

x−t
]

andµt = E [xt]. The prior and posterior state estimation error can be defined ase−t ≡ xt − µ−t
andet ≡ xt−µt. The respective error covariances areΣ−

t = E
[

e−t e
−T
t

]

andΣt = E
[

ete
T
t

]

. The

posterior state estimateµt is calculated byµt = µ−t K(ot−Hµ−t), where the differenceot−Hµ−t
is called innovation and reflects the difference between the predicted measurementHµ−t and the
actual measurementot. K is called Kalman gain and is calculated by

Kt = Σ−
t H

T(HΣ−
t H

T +R)−1 =
Σ−

t H
T

HΣ−
t H

T +R
.

The Kalman gain is needed to calculate the posterior error covariance from the prior one (in the
correction step of the filter below). The idea is to minimize the mean-square error of a state given a

1Recall that the covariance of a random variables XΣ(X) = E [(X − E [X])].

38 CHAPTER 3. MATHEMATICAL FOUNDATIONS

state prediction of the previous step and new observations, i.e.E
[

(xt − µt)
2
]

is to be minimized.
This is equivalent to minimizing the posterior error covarianceΣt; the above formula is the result
of minimizing Σt. The derivations are given for example in (Thrun et al. 2005). Given these
equations, one can establish the both steps of a Bayes filter mathematically.

1. Prediction step:In the prediction step the a posteriori state estimate together with its error
covariance is calculated:

µ−t = Aµt−1 +But−1

Σ−
t = AΣt−1A

T +Q,

whereQ is the process noise covariance. It means that the a posteriori prediction error plus
the noise which is inherent to the whole process forms the next a priori error.

2. Correction step:The just calculated a priori error is minimized and with it the new state
estimate is established. Finally, we correct the a posteriori error needed for the next iteration
of the filter

Kt = Σ−
t H

T(HΣ−
t H

T +R)−1

µt = µ−t +Kt(ot −Hµ−t)

Σt = (I −KtH)Σ−
t

In the notation given in the introduction the respective density functions arep(xt|xt−1) =

N(Axt−1, Q), p(ot|xt) = N(Hxt, R), andp(xt−1|o0, . . . , ot−1) = N(µt−1,Σt−1), with N de-
noting the normal distributed probability density function.

The Kalman filter has a variety of applications. Each linear stochastic process with Gaussian
noise where the state of the system is only indirectly given through observations can be modeled by
Kalman filters. Kalman filters are optimal estimators. Extensions to deal with non-linear models
also exist (e.g. (Maybeck 1990)). Regarding the localization of a mobile robot one can say that
Kalman filters can only be used for position tracking. The reason is that the belief of the position is
represented by a uni-modal Gaussian and the filter is thus unable to represent multiple hypotheses.
An extension regarding this issue isMultiple Hypothesis Tracking(MHT) (Bar-Shalom and Li
1995) where for each single hypothesis a separate Kalman filter is used.

3.2.2 Particle Filter

Next, we briefly describe an approach to robot localization using Monte Carlo methods. For the
localization problem, these methods extend the so-calledMarkov localization. Markov localiza-
tion uses a grid-based state representation of the pose〈x, y, θ〉 of the robot. The environment map
is represented as a 3D occupancy grid (Moravec and Elfes 1985) where cells which are occupied
have a high occupancy value and free cells are assigned the occupancy value zero. The localization
of the robot is pursued relative to this map.

3.2. BAYES FILTERING FOR ROBOT LOCALIZATION 39

The Markov localization method is a recursive Bayes filter. The initial belief about the robot’s
pose is represented by a uniform distribution over the whole state space for the case of global lo-
calization, or by a Gaussian with a certain small mean and variance around a given initial position.
The recursive update equations are:

1. Prediction step:

Bel−(xt) =

∫

p(xt|xt−1, at−1, ot−1, . . . , a0, o0)p(xt−1|at−1, . . . , o0)dxt−1

=

∫

p(xt|xt−1, at−1)p(xt−1|at−1, . . . , o0)dxt−1

=

∫

p(xt|xt−1, at−1)Bel(xt−1)dxt−1

The derivation follows again from the Markov assumption. Theoi are as above the observa-
tions the robots made, i.e. the sensor inputs, theai are odometry updates. These are sensor
values for the wheel encoder of the robot and represent the actions (drive commands) of the
robot.

2. Correction step:In the correction step the Markov assumption is applied again. It is as-
sumed that the measurements only depend on the current position of the robot.

Bel(xt) = η · p(ot|xt, at−1, ot−1, . . . , a0, o0) ·Bel−(xt)

= η · p(ot|xt) ·Bel−(xt)

The belief distribution is updated by a discretized approximation ofBel(xt) according toxt.
Each grid cell in the occupancy grid must be touched for the update. Though extensions which only
update the most important regions at the current time step exist, there are more efficient methods
for approximating the belief distribution. Using sampling techniques for this approximation is far
more efficient. In the following we present the particle filter following the notation given in (Thrun
et al. 2000).Bel(x) is represented by set of weighted samples

Bel(x) ≈ {x(i), w(i)}i=1,...,m,

wherex(i) is one out ofm samples of the random variablex and represents one hypothesis, a
pose in the case of localization. The importance factorw(i) assigns a weight to this hypothesis,
the sum of all weights is to be one, i.e.

∑m
i=0w

(i) = 1. One Monte Carlo method is the SIS
(sequential importance sampling) filter. It is a bootstrap filter which means that from an initial
guess after several iterations the filter converges towards the real distribution. It is also called
bootstrap filtering, particle filter, or condensation algorithm. The recursive update is performed by
the following steps.

1. Prediction step:A number of samplesx(i)
t−1 from Bel(xt−1) and samplesx(i)

t according

to p(xt|xt−1, at−1) with i = 1, . . . ,m are drawn. The tuples〈x(i)
t , x

(i)
t−1 〉 are distributed

according toBel−(xt). Bel−(xt) restated for a sample pair〈x(i)
t , x

(i)
t−1 〉 is then

Bel−(x
(i)
t) = p(x

(i)
t |x

(i)
t−1, at−1)Bel(x

(i)
t−1)

40 CHAPTER 3. MATHEMATICAL FOUNDATIONS

The particles〈x(i)
t , x

(i)
t−1 〉 do not reflect the target distributionBel(x) at timet. The error is

corrected in the next step.

2. Correction step:Each sample is now weighted according toŵ(i) = p(ot|x(i)
t). The distri-

bution p(ot|xt) is the sensor model. In the localization context, it is easy to calculate the
probability of making a sensor readingot given the posext. A commonly used method to es-
timate the probability is to use ray-tracing methods on the environment map given. For each
single proximity measurement a probability is calculated with aid of the ray-tracing method.
The whole distribution forj single measurements is calculated byp(o|x) =

∏

j p(oj |x). ŵ
represents the target distribution except for a factor:

w
(i)
t =

ηp(ot|x(i)
t)p(x

(i)
t |x

(i)
t−1, at−1)Bel(x

(i)
t−1)

p(x
(i)
t |x

(i)
t−1, at−1)Bel(x

(i)
t−1)

=
ηp(ot|t(i)t)Bel−(x

(i)
t)

Bel−(x
(i)
t)

= ηŵ
(i)
t .

This means thatw = η · ŵ, the weightsŵ gained from the sensor model and the approxi-
mationw of the target distribution are proportional to each other. Normalizingŵ yield the
correctly distributed values to approximateBel(xt)

Bel(x
(i)
t) = η · ŵ(i) ·Bel−(x

(i)
t).

The sampling process is repeatedm times resulting in a set ofm weighted samplesx(i)
t .

Initially, thew(i)
0 are set to1/m.

Monte Carlo methods for localizing a robot are very successful. Many different approaches
and refinements exist for the class of Monte Carlo localization algorithms, like dual sampling, or
mixture MCL. For a thorough discussion we refer to (Thrun 2006; Montemerlo et al. 2006).

3.3 Reasoning about Action and Change

The formal foundation of READYLOG is the Situation calculus (McCarthy 1963; Levesque et al.
1998). We will introduce the Situation calculus in Section 3.3.1 and the language GOLOG in
Section 3.3.2. Section 3.3.3 introduces the on-line transition semantics and presents an account
to integrate sensing actions. In Section 3.3.4 we focus on extensions to deal with continuous
change and probabilistic programs. Finally, in Section 3.3.5 we present off-line decision-theoretic
GOLOG.

Notational Conventions

In the following logical formulas we use the standard logical notations and several abbreviations.
We use the logical connectives “¬” (negation), “∧” (conjunction), “∨” (disjunction), “⊃” (im-
plication), “≡” (equivalence), “∀” (universal quantification), and “∃” (existential quantification).
The scope of quantifiers is indicated with parentheses. Alternatively, we use the “dot” nota-
tion which indicates that the quantifier preceding the dot has maximum scope. So,∀x.P (x) ⊃
Q(x) stands for(∀x)[P (x) ⊃ Q(x)]. We often omit parentheses assuming that the connec-
tives have the following precedence ordered from high to low:¬, ∧, ∨, ⊃, ≡. ¬P ∧ Q ∨

3.3. REASONING ABOUT ACTION AND CHANGE 41

R ∧ S ⊃ T ≡ U ∧ V stands for(((¬P ∧ Q) ∨ (R ∧ S)) ⊃ T) ≡ (U ∧ V). We use the
abbreviation∃x1, . . . , xn.P (x1, . . . , xn) for the expression∃x1.∃x2.∃xn.P (x1, . . . xn), and
∀x1, . . . , xn.P (x1, . . . , xn) for ∀x1.∀x2.∀xn.P (x1, . . . , xn). Sometimes, we use~x for the
sequence of pairwise different variablesx1, . . . , xn and~x = ~y for x1 = y1 ∧ · · · ∧ xn = yn.
Moreover, we use the convention that all “free” variables in sentences are implicitly universally
quantified. Therefore∃y.y > x stands for∀x.∃y.y > x.

3.3.1 Situation Calculus

The situation calculus is a second order language with equality which allows for reasoning about
actions and their effects. The world evolves from an initial situation due to primitive actions. Pos-
sible world histories are represented by sequences of actions. The situation calculus distinguishes
three different sorts:actions, situations, and domain dependentobjects.

A special binary function symboldo : action × situation → situation exists, withdo(a, s)

denoting the situation which arises after performing actiona in the situations. The constantS0

denotes the initial situation, i.e. the situation where no actions have yet occurred. We abbreviate
the expressiondo(an, · · · do(a1, S0) · · ·) with do([a1, . . . , an], S0).

The state the world is in is characterized by functions and relations with a situation as their
last argument. They are calledfunctionaland relational fluents, resp. As an example consider
the position of a robot navigating in an office environment. One aspect of the world state is the
robot’s locationrobotLoc(s). Suppose the robot is in an office with room number 6214 in the
initial situationS0. The robot now travels to office 6215. The position of the robot then changes
to robotLoc(do(travel , S0)) = 6215. travel denotes the robot’s action of traveling from office
6214 to 6215. The situation the world is in is described bys1 = do(travel , S0). The value of the
functional fluentrobotLoc(s1) equals 6215.

The third sort of the situation calculus is the sortaction. Actions are characterized by unique
names. For each action one has to specify aprecondition axiomstating under which conditions it
is possible to perform the respective action and aneffect axiomformulating how the action changes
the world in terms of the specified fluents. An action precondition axiom has the form

Poss(a(~x), s) ≡ Φ(~x, s) (3.5)

where the binary predicatePoss : action × situation denotes when an action can be executed,
and~x stands for the arguments of actiona. For our travel action the precondition axiom may be
Poss(travel, s) ≡ robotLoc(s) = 6214. After having specified when it is physically possible
to perform an action it remains to state how the respective action changes the world. One has to
specify negative and positive effects in terms of the relational fluentF :

ϕ+(~x, s) ⊃ F (~x, do(a, s)) (3.6)

ϕ−(~x, s) ⊃ ¬F (~x, do(a, s)). (3.7)

The effect axiom for a functional fluentsf is

ϕf (~x, y, a, s) ⊃ f(~x, do(a, s)) = y.

42 CHAPTER 3. MATHEMATICAL FOUNDATIONS

Describing the positive and the negative effect says nothing about those effects which do not
change the fluent. With a completeness assumption all effects have to be modeled. Consider a
robot lifting a box. The effect of this action is that the robot is holding the box afterwards. But
there is no axiom which defines that the color of the box is not changed by the lift action. The
problem of describing the non-effects of an action is referred to as theframe problem. The number
of frame axioms is very large. For relational fluents there exist in the order of2 · A · F frame
axioms, whereA is the number of actions, andF the number of relational fluents. McCarthy and
Hayes (1969) were the first to mention this problem.

Reiter’s Solution to the Frame Problem

A solution to the problem was proposed by Reiter (1991). The solution is based on the idea to
collect all effect axioms about a given fluent. With a completeness assumption that the collected
effects are the only ways to change the fluent’s value asuccessor state axiomis derived for the
fluent which yields a solution to the frame problem. The positive and negative effects for a fluent
F are grouped together:

Φ
(1)
F ⊃ F (~x, do(a, s))

...

Φ
(k)
F ⊃ F (~x, do(a, s))

which can be logical equivalently written as
(

Φ
(1)
F ∨ · · · ∨ Φ

(k)
F

)

⊃ F (~x, do(a, s)).

Similarly, for the negative effects. This leads to the so-called positive and negative normal form
(Eq. 3.6 and 3.7). Now it is assumed that these axioms characterize all the conditions under which
actiona causesF to become true or false, resp., in the successor situation. Thus, the two sentences
Eq. 3.6 and 3.7 describe the causal laws forF . Now, explanation closure is applied:

F (~x, s) ∧ ¬F (~x, do(a, s)) ⊃ ϕ−
F (~x, a, s)

¬F (~x, s) ∧ F (~x, do(a, s)) ⊃ ϕ+
F (~x, a, s).

The idea behind these axioms is that if the truth value ofF changes from false to true from
situations to situationdo(a, s) thenϕ+

F (~x, a, s) must have been true. Similarly, for the second
axiom. Further, a unique names assumption for actions is needed. It states that for distinct action
namesA andB it holds thatA(~x) 6= B(~x) andA(~x) = A(~y) ⊃ ~x = ~y. Reiter shows that if a
first-order theory that entails¬∃~x, a, s.ϕ+

F (~x, a, s)∧ϕ−
F (~x, a, s), thenT entails that together with

the explanation closure axioms the normal form axioms for fluentF are logically equivalent to

F (~x, do(a, s)) ≡ ϕ+
F (~x, a, s) ∨ F (~x, s) ∧ ¬ϕ−

F (~x, a, s). (3.8)

The above formula is calledsuccessor state axiom for the relational fluentF . The successor state
axiom for the functional fluentf has the form (Reiter 2001):

f(~x, do(a, s)) = y ≡
ϕf (~x, y, do(a, s)) ∨ f(~x, s) = y ∧ ¬∃y′.ϕf (~x, y′, a, s) (3.9)

3.3. REASONING ABOUT ACTION AND CHANGE 43

The background theory must entail the consistency property

¬∃~x, y, y′, a, s.ϕf (~x, y, a, s) ∧ ϕf (~x, y′, a, s) ∧ y 6= y′. (3.10)

The number ofF successor state axiom together withA action precondition axiom plus the unique
names axioms is far less than the2 · F · A explicit frame axioms that would be needed otherwise.

Basic Action Theories

The background theory is a set of sentencesD consisting of

D = Σ ∪ Dssa ∪ Dap ∪ Duna ∪ DS0
,

where

• Σ is the set of foundational axioms for situations. The setΣ consists of the following
foundational axioms for situations:

do(a1, s1) = do(a2, s2) ⊃ a1 = a2 ∧ s1 = s2 (3.11)

∀P.P (S0) ∧ ∀a, s.(P (s) ⊃ P (do(a, s))) ⊃ ∀s.P (s) (3.12)

¬s ⊐ S0 (3.13)

s ⊐ do(a, s′) ≡ s ⊒ s′ with s ⊒ s′ is an abbreviation fors ⊐ s′ ∨ s = s′ (3.14)

The intuition about these axioms is that situations are axiomatized as finite sequences of
actions and that certain sequences are subsequences of others. Axiom 3.11 is a unique
names axiom for situations. Situation terms should thus be seen as action histories rather
than as world states. The second axiom 3.12 is a situation closure axiom limiting the sort
situationto the smallest set containingS0 which is closed under application of the function
do. Axiom 3.13 and 3.14 define an ordering on situations.

• Dssa is a set of successor state axioms for functional and relational fluents, one for each
fluent as given in Eq. 3.8 for relational fluents and in Eq. 3.9 for functional fluents (together
with the consistency property Eq. 3.10).

• Dap is a set of action precondition axioms, one for each action. The setDap is the set of
precondition axioms of the formPoss(a(~x), s) as described above.

• Duna is the set of unique names axioms for all actions.

• DS0
is a set of first order sentences that are uniform inS0 and describe the fluent values in

the initial situation.2

2Sentences uniform ins are sentences which do not quantify about situations, nor mentionPoss or⊐.

44 CHAPTER 3. MATHEMATICAL FOUNDATIONS

Regression

To address the so-called projection problem, i.e. determining if a sentence holds for some future
situations, a regression mechanism is used in the situation calculus. Basically, if one wants to
prove that a sentenceW is entailed by the basic action theory andW mentions a relational fluent
F (~t, do(a, σ)) (with F (~x, do(a, s)) ≡ ΦF (~x, a, s) beingF ’s successor state axiom) one deter-
mines a logically equivalent formulaW ′ by substitutingΦF (~t, α, σ) for F (~x, do(a, σ)). By this
substitution, the complex situation termdo(α, σ) has been eliminated fromW ′. By successively
applying regression untilW ′ is uniform inS0 the problem of proving ifW is entailed in some
complex situation reduces to a theorem proving task in the initial database. We use Reiter’s def-
inition for regressing relational fluents. A more general definition including functional fluents is
given in (Pirri and Reiter 1999).

Definition 1 (Regressable Formulas)A formulaW ofLsitcalc
3 is regressable iff

1. Each term of sort situation mentioned byW has the syntactic formdo([α1, . . . , αn], S0) for
somen ≥ 0, whereα1, . . . , αn are terms of sort action.

2. For each atom of the formPoss(α, σ) mentioned byW , α has the formA(t1, . . . , tn) for
somen-ary action function symbolA ofLsitcalc.

3. W does not quantify over situations.

4. W does not mention the predicate symbol⊏, nor does it mention any equality atomσ = σ′

for termsσ, σ′ of sort situation.

Definition 2 (The Regression Operator)LetW be a regressable formula,D a basic action the-
ory withD′

ssa ⊂ Dssa the set of successor state axioms for relational fluents andDap the set of
precondition axioms.~t is a tuple of terms,α is a term of sort action,σ a term of sort situation.
The regression operatorR is inductively defined over the structure ofW .

1. IfW is a situation-independent atom or a relational fluent atom of the formF (τ, S0), then

R[W] = W.

2. If W is a regressablePoss atom of the formPoss(A(~t), σ), there must exist a precondition
axiom of the formPoss(A(~x), s) ≡ ΠA(~x, s) in Dap. Then

R[W] = R[ΠA|~x,s
~t,σ

].

3. W is a relational fluent atom of the formF (~t, do(α, σ)). Then, inD′
ssa there exists an axiom

F (~x, do(a, s)) ≡ ΦF (~x, a, s). Then

R[W] = R[ΦF |~x,s
~t,σ

].

3We leave out the formal definition ofLsitcalc in this thesis referring to (Pirri and Reiter 1999; Reiter 2001).

3.3. REASONING ABOUT ACTION AND CHANGE 45

4. For formulas, regression is defined inductively as

R[¬W] ≡ ¬R[W]

R[W1 ∧W2] ≡ R[W1] ∧R[W2]

R[∃v.W] ≡ ∃v.R[W].

A complete definition of the regression operator including functional fluents is given in (Pirri
and Reiter 1999). Pirri and Reiter (1999) showed that

D |= W iff DS0
∪ Duna |= R[W],

with W a regressable sentence ofLsitcalc andD a basic action theory. This means that the eval-
uation of regressable sentences can be reduced to a theorem proving task in the initial theory
DS0

together with unique names axioms for actions. No successor state or precondition axioms
are needed for this task, no foundational axiomsΣ are needed. With this result at hand one can
compute whether a ground situation is executable with the regression operator. The executable
situations are defined as

executable(s)
def
= ∀a, s∗.do(a, s∗) ⊑ s ⊃ Poss(a, s∗).

It can be shown that

Σ |= ∀a1, . . . , an.executable(do[a1, . . . , an], S0) ≡
n
∧

i=1

Poss(ai, do([a1, . . . , ai−1], S0).

Further it was shown that

D |= executable(do([a1, . . . , an], S0))

iff (3.15)

DS0
∪ Duna |=

n
∧

i=1

R[Poss(αi, do([α1, . . . , αi−1], S0)).

3.3.2 Golog

The high-level programming language GOLOG (“alGOL in LOGic”) (Levesque et al. 1997) is
based on the situation calculus. As planning is known to be computationally very demanding and
impractical for deriving complex behaviors with hundreds of actions, GOLOG finds a compromise
between planning and programming. The robot or agent is equipped with a situation calculus
background theory. The programmer can specify the behavior just like in ordinary imperative
programming languages but also has the possibility to project actions into the future. The amount
of planning (projection) used is in the hand of the programmer. With this, one has a powerful
language for specifying the behaviors of a cognitive robot or agent. The semantics of GOLOG is
defined by situation calculus macros. Programs are expanded to situation calculus formulas with
the predicateDo. If the theory entails the behavior programδ

D |= (∃δ, s).Do(δ, S0, s) ∧Goals(s),

it is proven that programδ leads to the goal situations starting fromS0. As a side effect of the
constructive proof one yields an executable GOLOG program.

46 CHAPTER 3. MATHEMATICAL FOUNDATIONS

The Semantics of Golog

The semantics is defined as follows.

1. Primitive Action: Do(a, s, s′)
def
= Poss(a[s], s) ∧ s′ = do(a[s], s).

For a primitive action it is checked if it is possible to execute it in the current situation
(denoted by the predicatePoss). Note thata[s] denotes the action term with its situation
argument restored. The successor situation is thendo(a[s], s).

2. Test action: Do(ϕ?, s, s′)
def
= ϕ[s] ∧ s′ = s.

Similar to primitive actions in the formulaϕ[s] all situation arguments are restored. A test
does not change the situation.

3. Sequence:Do([δ1; δ2], s, s
′)

def
= ∃s′′.Do(δ1, s, s

′′) ∧Do(δ2, s
′′, s′).

4. Nondeterministic choice of actions: Do((δ1|δ2), s, s′)
def
= Do(δ1, s, s

′) ∨Do(δ2, s, s
′).

5. Nondeterministic choice of action argument:Do((πx)δ(x), s, s′)
def
= ∃x.Do(δ(x), s, s′).

6. Nondeterministic iteration:

Do(δ∗, s, s′)
def
= ∀P.(∀s1.P (s1, s1) ∧
∀s1, s2, s3.(P (s1, s2) ∧Do(δ, s2, s3) ⊃ P (s1, s3))) ⊃ P (s, s′)

7. Conditionals: Do(if ϕ then δ1 else δ2 endif , s, s′)
def
= Do([ϕ?; δ1|¬ϕ?; δ2], s, s

′).

8. Loops: Do(while ϕ do δ endwhile, s, s′)
def
= Do(((ϕ?; δ)∗;ϕ?), s, s′).

9. Recursive Procedures: To define recursive procedures one needs to define an auxiliary

macro definition. For any predicateP of arity n + 2 defineDo(P (t1, . . . , tn), s, s′)
def
=

P (t1[s], . . . , tn[s], s, s′). Expressions of the formP (t1, . . . , tn) serve as procedure calls.
Then, one has to define the situation calculus semantics for programs involving recursive
procedures making use of a standard block-structured programming style. A program will
have the form

proc P1(~ϑ1) δ1 endproc; · · · ;proc Pn(~ϑn) δn endproc; δ0,

whereP1, . . . , Pn with formal parameters~ϑi and procedure bodiesδ1, . . . , δn are proce-
dures. The result of evaluating a program is defined as

Do({proc P1(~ϑ1)δ1 endproc; · · · ;proc Pn(~ϑn)δn endproc}; δ0, s, s′)
def
=

∀P1, . . . , Pn.

[

n
∧

i=1

(∀s1, s2.~ϑi).Do(δi, s1, s2) ⊃ Pi(~ϑi, s1, s2)

]

⊃ Do(δ0, s1, s2)

3.3. REASONING ABOUT ACTION AND CHANGE 47

The Famous Elevator Example

The elevator example is famous in that it is usually a standard example for GOLOG and was often
adduced. We follow this by presenting the elevator program from (Reiter 2001).

The available actions areup(n), down(n), turnoff (n), open, andclose, which moves the
elevator up and down to floorn, turns off the call button at floorn, and opens or closes the
door, resp. The fluents needed arecurrentFloor(s) = n, andon(n, s), giving the current floor
and stating whether the call button on floorn is turned on or not. The action preconditions are
(1) Poss(up(n), s) ≡ currentFloor(s) < n, (2) Poss(down(n), s) ≡ currentFloor(s) > n,
(3) Poss(open, s) ≡ true, (4) Poss(close, s) ≡ true, and (5)Poss(turnoff (n), s) ≡ on(n, s).
The successor state axioms for the fluentscurrentFloor andon are

currentFloor(do(a, s)) = m ≡ a = up(m) ∨ a = down(m)∨
currentFloor(s) = m ∧ ¬∃n.a = up(n) ∧ ¬∃n.a = down(n)

on(m, do(a, s)) ≡ on(m, s) ∧ a 6= turnoff (m).

As an abbreviationnextFloor(n, s) is defined as

nextFloor(n, s)
def
= on(n, s)∧

∀m.on(m, s) ⊃ |m− currentFloor(s)| ≥ |n− currentFloor(s)|,

which is the nearest floor to the currently served floor. Further we need the procedures defined
below. The initial situation is given asDS0

= {currentFloor(S0) = 4, on(b, S0) ≡ b = 3 ∨ b =

5}.

proc serves(n)
goFloor(n); turnoff (n); open; close endproc

proc goFloor(n)
(currentFloor = n)? | up(n) | down(n) endproc

proc park(n)
if currentFloor = 0 then open else down(0); open endif

endproc

proc control

[while ∃n.on(n) do serveAFloor endwhile]; park

endproc

To run the programcontrol means to do theorem proving for the entailment

Axioms |= ∃s.Do(control , S0, s).

A successful “execution” returns the following binding fors:

s = do([down(3), turnoff (3), open,

close, up(5), turnoff (5), open, close, down(0), open], S0)).

48 CHAPTER 3. MATHEMATICAL FOUNDATIONS

A Golog Interpreter in Prolog

Next, we briefly address the Prolog implementation of GOLOG. We show the Toronto implemen-
tation of GOLOG from (Reiter 2001). The semantics is defined by a set of clausesdo/3 which
directly map theDo predicate to Prolog code:

do(E1 : E : 2, S, S1) :− do(E1, S, S2), do(E2, S2, S1).

do(?(P), S, S) :− holds(P, S).

do(E1 # E2, S, S1) :− do(E1, S, S1); do(E2, S,1).

do(if(P, E1, E2), S, S1) :− do(?(P) : E1 # ?(−P) : E2, S, S1).

do(star(E), S, S1) :− S1 = S; do(E : star(E), S, S1).

do(while(P, E), S, S1) :− do(star(?(P) : E) : ?(−P), S, S1).
do(pi(V, E), S, S1) :− sub(V, , E, E1), do(E1, S, S1).

do(E, S, S1) :− proc(E, E1), do(E1, S, S1).

do(E, S, do(E, S)) :− primitive action(E), poss(E, S).

Further, a predicatesub/4 is needed for term substitutions. These are for instance fluent values
which have to be instantiated:

sub(X1, X2, T1, T2) :− var(T1), T2 = T1.

sub(X1, X2, T1, T2) :− not var(T1), T1 = X1, T2 = X2.

sub(X1, X2, T1, T2) :− not T1 = X1, T1 = .. [F | L1], sub list(X1, X2, L1, L2), T2 = .. [F | L2].
sub list(X1, X2, [], []).

sub list(X1, X2, [T1 | L1], [T2 | L2]) :− sub(X1, X2, T1, T2), sub list(X1, X2, L1, L2).

Thedo clause for a test mentions the predicateholds/2. It is needed to evaluate logical formulas.
It is defined by the following set of clauses:

holds(P & Q, S) :− holds(P, S), holds(Q, S).

holds(P v Q, S) :− holds(P, S); holds(Q, S).

...

holds(−(−P), S) :− holds(P, S)

...

holds(−all(V, P), S) :− holds(some(V,−P), S).
holds(−some(V, P), S) :− not holds(some(V, P), S).

holds(−P, S) : −isAtom(P), not holds(P, S).
holds(all(V, P), S) :− holds(−some(V,−P), S).
holds(some(V, P), S) :− sub(V, , P, P1), holds(P1, S).

3.3. REASONING ABOUT ACTION AND CHANGE 49

Finally, for (test) actions one needs a predicate which restores the situation argument of an action
term, as well as a check if a formula is atomic.

holds(A, S) :− restoreSitArg(A, S, F), F;

not restoreSitArg(A, S, F)isAtom(A), A.

isAtom(A) :− not(A = −W; A = (W1 & W2); A = (W1 => W2);

A = (W1 <=> W2); A = (W1 v W2); A = some(X, W); A = all(X, W)).

restoreSitArg(poss(A), S, poss(A, S)).

These clauses suffice to implement a GOLOG interpreter in Prolog. Reiter thoroughly examines
the assumption for a correct Prolog implementation. One problem is how Prolog works on nega-
tions. With the “negation as finite failure” strategy, correctness depends on the ordering of Prolog
clauses. Negated facts should always ordered past non-negated ones.

This gives an impression of how compact the implementation of the agent programming lan-
guage GOLOG is. But many important features to control robots in dynamic domains are missing
in the language. Throughout the next sections we will present several extensions to the language
GOLOG, without regarding their implementation. In Chapter 4 we come back to the implementa-
tion issues of READYLOG. The implementation here shall be seen as a reference implementation
to the improvements made over recent years.

3.3.3 The Transition Semantics and Guarded Action Theories

While GOLOG is well-suited to reason about actions and their effects, it has the drawback that a
program has to be evaluated up to the end before the first action can be performed. It might be that
the world changed between plan generation and plan execution so that the plan is not appropriate
or is invalid. GOLOG interpreters based on the so-called evaluation semantics as shown above
are therefore called off-line interpreters. Another problem that arises is that the knowledge of the
agent must be complete. There are no actions which allow the agent to gather new knowledge
during operation, i.e. it is not able to deal with incomplete knowledge.4

To overcome the problems with the evaluation semantics inherent in GOLOG, De Giacomo
et al. (2000) proposed an incremental interpreter withCONGOLOG. The program is interpreted
in a step-by-step fashion where a transition relation defines the transformation from one step to
another. In this so-called transition semantics a program is interpreted from one configuration
〈σ, s〉, a programσ in a situations, to another configuration〈δ, s′〉 which results after executing
the first action ofσ, whereδ is the remaining program ands′ the situation resulting of the execution
of the first action ofσ. The one-step transition functionTrans defines the successor configuration
for each program construct, and thus the semantics of the language construct. Clearly, one needs
termination conditions for programs. Therefore, there is the existence of another predicateFinal

4Note that some extensions exists which integrate sensor actions into the evaluation semantics like (Lakemeyer
1999). But they do not overcome the problem of GOLOG being off-line.

50 CHAPTER 3. MATHEMATICAL FOUNDATIONS

which defines the final configuration, i.e. those configuration where no further transition can be
made and thus, the program terminates.

The definition ofTrans is given below.

Trans(nil, s, δ, s′) ≡ false

Trans(α, s, δ, s′) ≡ Poss(a[s], s) ∧ δ = nil ∧ s′ = do(a, s)

Trans(ϕ?, s, δ, s′) ≡ ϕ[s] ∧ δ = nil ∧ s′ = s

Trans([δ1; δ2], s, δ, s
′) ≡ Final(δ1, s)∧

Trans(δ2, s, δ, s
′) ∨ ∃δ′.δ = (δ′; δ2 ∧ Trans(δ1, s, δ′, s)

Trans(δ1 | δ2, s, δ, s′) ≡ Trans(δ1, s, δ, s′) ∨ Trans(δ2, s, δ, s′)
Trans(πv.δ, s, δ, s′) ≡ ∃x.Trans(δ|vx, s, δ, s′)
Trans(if ϕ then δ1 else δ2 endif , s, δ, s′) ≡

ϕ[s] ∧ Trans(δ1, s, δ, s′) ∨ ¬ϕ[s] ∧ Trans(δ2, s, δ, s′)
Trans(while ϕ do δ1 endwhile, s, δ, s′) ≡

ϕ[s] ∧ ∃δ′.δ = (δ′;while ϕ do δ1 endif) ∧ Trans(δ, s, δ′, s′)
Trans(σ1 ≫ σ2, s, δ, s

′) ≡
∃γ.δ = (γ ≫ σ2) ∧ Trans(σ1, s, γ, s

′) ∨
∃γ.δ = (σ1 ≫ γ) ∧ Trans(σ2, s, γ, s

′) ∧ ∀γ′, s′′.¬Trans(σ1, s, γ
′, s′′)

Trans(σ1 ||σ2, s, δ, s
′) ≡

∃γ.δ = (γ ||σ2) ∧ Trans(σ1, s, γ, s
′) ∨ ∃γ.δ(σ1 || γ) ∧ Trans(σ2, s, γ, s

′)

nil is the empty program, which can be seen as a termination action. Therefore, a transition is not
possible, but the empty program fulfills the final condition. As in GOLOG for a primitive actiona
it is tested if it is possible. The successor configuration is〈nil, do(a, s)〉 and the respective final
predicate does not hold. The semantics of the other predicates is similar to that of GOLOG. Note
that conditionals and loops inCONGOLOG are synchronized in contrast to GOLOG in the sense
that no other action between the test and the execution of the first action can happen.

The transition function allows for a semantics of concurrency. The first constructσ1 ≫ σ2

has the meaning thatσ1 is preferred overσ2; σ1 is executed whenever possible. Only if there
does not exist any successor transition forσ1, σ2 is executed. Both,σ1 andσ2 have to be final for
the prioritized execution to become final. The other form of concurrency is the statementσ1 ||σ2.
None of the two programs are preferred over the other. The actions are truly interleaved.

Final(nil, s) ≡ true

Final(α, s) ≡ false

Final(ϕ?, s) ≡ false

Final([δ1; δ2], s) ≡ Final(δ1, s) ∧ Final(δ2, s)
Final([δ1 | δ2], s) ≡ Final(δ1, s) ∨ Final(δ2, s)
Final(πv.δ, s) ≡ ∃x.F inal(δ|vx, s)
Final(δ∗, s) ≡ true

Final(if ϕ then δ1 else δ2 endif , s) ≡
ϕ[s] ∧ Final(δ1, s) ∨ ¬ϕ[s] ∧ Final(δ2,)s

3.3. REASONING ABOUT ACTION AND CHANGE 51

Final(while ϕ do σ endwhile, s) ≡ ϕ[s] ∧ Final(σ, s)
Final(σ1 ≫ σ2, s) ≡ Final(σ1, s) ∧ Final(σ2, s)

Final(σ1 ||σ2) ≡ Final(σ1, s) ∧ Final(σ2, s)

The predicateDo(σ, s, s′) defines the situations′ which is reachable froms by executing program
σ leading to a final configuration. It is defined in terms of the transitive closureTrans∗ over
Trans:

Do(σ, s, s′) ≡ ∃δ.Trans∗(σ, s, δ, s′) ∧ Final(δ, s′).

Thus, s′ is the situation where programσ reaches a final configuration by successively taking
transitions withTrans.

Trans∗(σ, s, δ, s′) ≡ ∀T (. . . ⊃ T (σ, s, δ, s′))

where the ellipsis stands for the universal closure of the conjunction of the following formulas:

T (σ, s, σ, s)

Trans(σ, s, σ∗, s∗) ∧ T (σ∗, s∗, δ, s′) ⊃ T (σ, s, δ, s′).

Unlike GOLOG, where the language constructs are defined as abbreviations of situation cal-
culus formulas, the transition semantics demands the encoding ofCONGOLOG programs as first-
order terms. A thorough treatment of this can be found in (De Giacomo et al. 2000).

De Giacomo et al. proposedINDI GOLOG, a GOLOG dialect whose semantics is also based on
the transition semantics (De Giacomo and Levesque 1999; De Giacomo et al. 2001). It accounts
for on-line execution and off-line projections and introduces a notion of sensing actions with so-
called guarded action theories.

The set of successor state axiomsDssa of in the basic action theory is replaced by two sets of
of axioms:

• DGSSA, a set of guarded successor state axioms of the formα(~x, a, s) ⊃ (F (~x, do(a, s)) ≡
γ(~x, a, s)), whereα is a fluent formula called guard of the axiom,F is a relational fluent
andγ is a fluent formula,

• DGSFA, a set of guarded sensed fluents axioms of the formβ(~x, s) ⊃ (F (~x, do(a, s)) ≡
ρ(~x, s).

To show the difference betweenGSSA andGSFA we reprint an example from (De Giacomo
et al. 2001). It is from the elevator domain which we introduced above. An example for aGSSA

formula is

ControllerOn(s) ⊃ (Light(x, do(a, s)) ≡ (a = on(x) ∨ Light(x, s) ∧ a 6= off (x)))

The antecedent is a guard for evaluating the successor state axiom. It corresponds toα(~x, a, s)

above. An example for aGSFA guard is the following axiom:

Floor(x, s) ⊃ (Light(x, s) ≡ sensor floor(s) > 50).

52 CHAPTER 3. MATHEMATICAL FOUNDATIONS

The idea is that if the sensor value for the fluentsensor floor is greater than50 one can conclude
that the light at floorx is on.5

To keep track of the sensed values, De Giacomo et al. introduce the notion ofhistories, a
sequence of(~µ0 · (a1, ~µ1) · · · · · (An, ~µn)) whereAi are ground action terms and the~µi =

(µi1, . . . , µim) is a vector of sensed values.µij can be seen as the value of thejth sensor after
the ith action. Letσ be history. Then the ground action termend[σ] is defined asend[~µ0] =

S0 and end[σ · (A, ~µ)] = do(A, end[σ]). A ground sensor formulaSensed[σ] is defined as
∧n

i=0

∧m
j=0 hj(end[σi]) = µij , whereσi is a sub-history up to actioni, σi = (~µ0) · · · (Ai, ~µi), and

hj is thejth sensor function.
An on-line execution of a programδ0 is a sequence(δ0, σ0), . . . , (δn, σn) such that fori =

0, . . . , n − 1 Axioms ∪ Sensed[σi] |= Trans(δi, end[σi], δi+1, end[σi+1]), with σi+1 = σi,
if end[σi+1] = end[σi], and otherwiseσi+1 = σi · (a, ~µ), if end[σi+1] = do(a, end[σi]) and
~µ is the sensor result aftera. The on-line execution is successful ifAxioms ∪ Sensed[σn] |=
Final(δn, end[σn]). It is unsuccessful ifAxioms ∪ Sensed[σn] 6|= Final(δn, end[σn]) and
there exists noδn+1 and s such thatAxioms ∪ Sensed[σn] |= Trans(δn, end[σn], δn+1, s).
Axioms denote the background theoryD plus the axioms definingTrans andFinal . A historyσ
is executable iff eitherσ = ~µ0, orσ = σ′·(A, ~µ), σ′ is an executable history, andD∪Sensed[σ′] |=
Poss(A, end[σ′]).

With the notion of executability for programs with active sensing we have a means to decide
whether a program mentioning active sensing actions can be prevented from being blocked due to
a missing sensor value with performing projections. We will not elaborate on this matter referring
to (De Giacomo et al. 2001). Important for our interpreter is that the implementation of these
action histories with sensing values which we also rely on are proved to be correct w.r.t. guarded
action theories (De Giacomo et al. 2001).

3.3.4 ccGolog and pGolog

Grosskreutz (2002) proposed the extensionsCCGOLOG andPGOLOG. CCGOLOG deals with con-
tinuous change, an extension to overcome the limitation of GOLOG that the world only evolves
from situation to situation and, especially for projections, continuous processes cannot be mod-
eled. PGOLOG extends GOLOG with a notion of probability. With this it is possible to assign a
probability to a program and with that reason with uncertainty. So, it can be projected if a formula
ϕ holds with a certain probability.

Continuous Change

In CCGOLOG a new type of fluent is introduced, so-called continuous fluents. As a motivating
example consider a navigation task of a robot. A fluentrobotLoc denotes the location of the robot.
When an actionstartGo(v) with v the speed of the robot is initiated the position of the robot
at each point in time can be characterized by the functionpos(t) = x0 + v · (t − t0). Fluents,
whose values can be characterized by a function of time, can be modeled as continuous fluents.

5We make use of these kind of guards in our implementation of READYLOG. In the implementation (Chapter 5)
these guards are encoded as side conditions to effect axioms.

3.3. REASONING ABOUT ACTION AND CHANGE 53

He therefore introduces a time line intoCCGOLOG and a new sortt-function, which are functions
of time. New axiomsval are added to the action theory defining the value of at-function:

val(constant(x0, . . . , xn), t) = 〈x0, . . . , xn〉
val(linear(x0, . . . , xn, v0, . . . , vn, t0), t) =

〈

x′0, . . . , x
′
n

〉

≡
x′0 = x0 + v0 · (t− t0) ∧ · · · ∧ x′n = xn + vn · (t− t0)

With these axioms and the time line it is possible to define condition-bounded actions. The new
action type is thewaitFor(τ) action. The argumentτ is calledt-form, a Boolean combination
of closed atomic formulas of the form(F op r) with F being a continuous fluent,op ∈ {<,=},
andr a real number.τ [s, t] denotes the evaluation of at-form in situations at time t. Every
occurrence of a continuous fluentF in the formulaτ is replaced byval(F (s), t). The fluent
formula is replaced by itst-function ons andt. The idea of thewaitFor action is that as soon as
the conditionτ holds the action terminates. To evaluate this point in time the notion of the least
time pointltp(τ, s, t) is needed. It is an abbreviation for the formula

τ [s, t] ∧ t ≥ start(s) ∧ ∀t′.start(s) ≤ t′ < t ⊃ ¬τ [s, t′], (3.16)

which is the earliest point in time where after the start ofs τ becomes true. With notion at hand,
one can define the precondition axiom forwaitFor(τ):

Poss(waitFor(τ), s) ≡ ∃t.ltp(τ, s, t).

The successor state axiom for the fluentstart mentioned in Eq. 3.16 is modeled as

Poss(a, s) ⊃ (start(do(a, s)) = t ≡
∃τ.a = waitFor(τ) ∧ ltp(τ, s, t) ∨ ∀τ.a 6= waitFor(τ) ∧ t = start(s))

With the notion of the least time point the semantics of concurrently executing programs
changes to

Trans((σ1 ||σ2), s, δ, s
′) ≡

¬Final(σ1, s) ∧ ¬Final(σ2, s) ∧
(∃δ1.T rans(σ1, s, δ1, s

′) ∧ δ = (δ1 ||σ2) ∧
(∀δ2, s2.T rans(σ2, s, δ2, s2) ⊃ start(s′) ≤ start(s2)) ∨

(∃δ2.T rans(σ2, s, δ2, s
′) ∧ δ = (σ1, δ2) ∧

(∀δ1, s1.T rans(σ1, s, δ1, s1) ⊃ start(s′) < start(s1)))

Final(σ1 ||σ2, s) ≡ Final(σ1, s) ∨ Final(σ2, s)

If a transition from〈σ1, s〉 to 〈δ1, s′〉 exists and no transition ofσ2 with an earlier start point,σ1

is executed. Clearly, the statement is final ifσ1 or σ2 is final. We omit the semantic definitions of
the other language constructs ofCCGOLOG here. We will come back to them in Chapter 4 as part
of the language READYLOG.

54 CHAPTER 3. MATHEMATICAL FOUNDATIONS

Further, Grosskreutz (2002) proposes a control architecture where the high-level GOLOG con-
troller settles commands via a special fluentregister by performing a specialsend action. By
this, the low-level task is invoked and runs asynchronously to the high-level controller. When the
low-level task is accomplished, it signals this by means of areply message. For example, when the
robot should navigate to a certain position, astartGo action is initiated. The high-level controller
can go on with other tasks, while the low-level system of the robot will control the navigation
task. When the robot reaches its destination it signals the completion of the navigation task. This
is modeled as an exogenous action.

The successor state axiom for the action register is

Poss(a, s) ⊃ [reg(id, do(a, s)) = val ≡
a = send(id, val) ∨ a = reply(id, val) ∨
reg(id, s) = val ∧ ¬∃v.(a = send(id, v) ∨ a = reply(id, v))]

This allows the high-level controller more flexibility. As a natural further step this architecture de-
mands that complex tasks have so-called low-level models. The high-level controller just invokes
low-level tasks which are conducted by the robot control system. Nevertheless, the high-level con-
troller must have an idea what the low-level system does. For projection tasks, where no action
is executed the high-level controller needs a model of the low-level tasks in order to predict the
results appropriately. A projection over a low-level module is defined as

Proj(s, σ, llmodel, s
′)

def
= Do(s, withPol(llmodel, σ, s

′)),

wherewithPol(llmodel, σ) is an abbreviation for((llmodel; false?) ||σ). σ is a high-level program,
andllmodel is a program which models the effects ofσ on the low-level system. The program and
the low-level task are executed concurrently. ThewithPol statement guarantees that both,σ and
llmodel, become final.

Two special actionssetOnline andclipOnline were added. They turn theCCGOLOG inter-
preter into an on-line mode, or into an off-line mode respectively. This is realized by the fluent
online. Its successor state axiom is

Poss(a, s) ⊃ (online(do(a, s) ≡ a = setOnline ∨ (online(s) ∧ ¬a = clipOnline)).

During off-line projections actions likewaitFor or continuous fluents are projected according to
their least point in time. In the on-line mode, thewaitFor becomes an ordinary test action, and
continuous fluents are evaluated according to the time that passed by during execution.

One needs a special treatment for updating continuous fluents. A special update action
ccUpdate has been introduced for this purpose. The value of a continuous fluent is set to the
latest estimate of a low-level process in projections and to the result of the real execution in the
on-line case.ccUpdate is realized as an exogenous action which returns the result of the contin-
uous fluent. The actionccUpdate is possible when it occurs after the earliest point in time of the
current situation:Poss(ccUpdate(~x, t), s) ≡ t ≥ start(s). With ccUpdate the successor state

3.3. REASONING ABOUT ACTION AND CHANGE 55

axiom of the fluentstart has to be modified:

Poss(a, s) ⊃ (start(do(a, s)) = t ≡
∃τ.a = waitFor(τ) ∧ ¬online(s) ∧ ltp(τ, s, t) ∨
∃~xu.a = ccUpdate(~xu, t) ∧ online(s) ∨
(∀τ.a 6= waitFor(τ) ∨ online(s)) ∧ (∀~x.a 6= ccUpdate(~x) ∨ ¬online(s)) ∧
t = start(s)).

To summarize,CCGOLOG introduces continuous fluents, together with a special fluent update
action, a notion of on-line and off-line modes of the interpreter, low-level models of complex
tasks, and a system architecture where, from the high-level control point of view, processes can be
started in the background.

Reasoning with uncertainty

PGOLOG allows for probabilistic projections over programs. In order to achieve this Grosskreutz
(2002) replaces theTrans predicates with functions over probabilities. In particular, he introduces
the statementprob(p, σ1, σ2) with the following semantics:

trans(prob(p, σ1, σ2), s, δ, s
′) = pr ≡

δ = σ1 ∧ s′ = do(tossHead, s) ∧ pr = p ∨
δ = σ2 ∧ s′ = do(tossTail, s) ∧ pr = (1− p) ∨
¬((δ = σ1 ∧ s′ = do(tossHead, s) ∨
δ = σ2 ∧ s′ = do(tossTail, s)) ∧ pr = 0.

This means that with probabilityp the programσ1 is executed;σ2 with probability1 − p. Note
thatTrans has been replaced by the functiontrans : prog× s× prog× s→ [0, 1]. It holds that

trans(σ, s, δ, s′) > 0 iff Trans(σ, s, δ, s′)

for all language constructs ofCCGOLOG not mentioningprob. tossHead and tossTail are
dummy actions which are needed to distinguish between the different branches induced by the
prob statement. In order to reason withPGOLOG one has to define the transitive closure oftrans

w.r.t. s:

trans∗(σ, s, δ, s′) = p ≡ ∀t[. . . ⊃ t(σ, s, δ, s′) = p)∨
p = 0 ∧ ¬∃p′.∀t(. . . ⊃ t(σ, s, δ, s′) = p′)

where the ellipsis stands for the universal closure of the conjunction of the following formulas:

t(σ, s, σ, s) = 1

(t(σ, s, σ∗, s∗) = p2 ∧ trans(σ∗, s∗, δ, s′) = p1 ∧ p1 > 0 ∧ p2 > 0)

⊃ t(σ, s, δ, s′) = p1 · p2

The formula states thattrans∗ is equal to the product of the transition probabilitiesp along its path
if there exists a path of at least one transition from configuration〈σ, s〉 to 〈δ, s′〉, or zero otherwise,

56 CHAPTER 3. MATHEMATICAL FOUNDATIONS

and that these weights are unique for each path. Grosskreutz (2002) proved that for every modelM

of the domain axiomatization:M |= trans∗(σ, s, δ, s′) > 0 iff there existσ1, s1, . . . , σn, sn such
thatσ1 = σ, s1 = s, σn = δ, sn = s′ andM |= trans(σi, si, σi+1, si+1) > 0 for i = 1, . . . , n−1.
To be able to probabilistically projectPGOLOG programs one has to define the probability that the
execution ofσ in s results in an execution traces′:

doPr(σ, s, s′) = p ≡
∃δ.trans(σ, s, δ, s′) > 0 ∧ Final(δ, s′) ∧ p = trans(σ, s, δ, s′) ∨
¬(∃δ.trans(σ, s, δ, s′) > 0 ∧ Final(δ, s′)) ∧ p = 0.

We will not define the whole semantics of the statement ofPGOLOG here, instead referring to
(Grosskreutz 2002). The definitions will be given also in Chapter 4 in the definition of the language
READYLOG.

To describe the belief of the agent about the world about a formulaϕ in a situations the
Bel(ϕ, s) = p is introduced as proposed by (Bacchus et al. 1995).Bel is is an abbreviation for
the second-order formula

∑

{s′|ϕ[s′]} p(s
′, s)

∑

s′ p(s
′, s)

= p.

The projected belief that a sentenceϕ will hold after a programσ and the low-level modelllmodel

of σ in situations is defined by

PBel(ϕ, s, σ, llmodel) = p
def
=

∑

{s′,s∗|ϕ[s∗]} p(s
′, s) · doPr(withPol(llmodel, σ), s, s∗)

∑

s′ p(s
′, s)

= p.

The result ofPBel(ϕ, s, σ, llmodel) represents the weight of all paths that reach a final configura-
tion 〈δ∗, s∗〉 whereϕ[s∗] holds normalized by all possible path froms to s′.

Summarizing,PGOLOG introduces a notion of uncertainty with theprob statement. With the
assignment of probabilities to programs, probabilistic projections can be defined which yield the
probability that a logical formulaϕ holds in some future situation given by a programσ and a
low-level modelllmodel. In Chapter 5.2.2 we will give an example how this can be used for the
decision making of a simulated soccer agent when planning a double pass.

3.3.5 Off-line Decision-theoretic Golog

DTGOLOG was proposed by Boutilier et al. (2000). It extends GOLOG with decision-theoretic
planning. Formally, with the domain axiomatization together with an optimization theory one
specifies a fully observable finite-horizon MDPM = 〈S,A, T,R〉 whereS is a final set of states,
A is a finite set of actions,T is a transition model, andR a real-valued reward function. The set of
states of the MDP is implicitly given by the situation terms from the situation calculus, the action
set is defined by the domain axiomatization, and the transition model is implicitly defined via the
successor state axioms. Additionally, a reward function must be specified.

3.3. REASONING ABOUT ACTION AND CHANGE 57

DTGOLOG then works as follows. It takes a GOLOG program as input and interprets it with
an evaluation semantics as given below. Decision-theoretic planning is modeled by nondetermin-
istic choices of actions. At a choice point,DTGOLOG evaluates all possible successor branches
according to the optimization theory and inserts the best one into the policy. The policy is a (con-
ditional) GOLOG program where all but the best (nondeterministic) agent choices are optimized
away. DTGOLOG implements a forward search value iteration algorithm (cf. Section 3.1.1). The
great advantage ofDTGOLOG over ordinary value iteration is that it does not rely on an explicit
state enumeration. The MDP is induced by the action theory of GOLOG. The reachable states are
induced by the successor state axioms. This theoretically allows it to solve MDPs with infinite
(continuous) state spaces as only the reachable states will be selected and iterated over.

DTGOLOG introduces a notion for stochastic actions. Reiter’s basic action theories do not
provide a notion for stochastic actions. It seems like a new sort for stochastic actions has to be
introduced. On the other hand, the character of a stochastic actions is such that the agent performs
the respective action and nature will choose among the possible outcomes of this action with a
certain probability. These outcomes can be regarded as deterministic actions and therefore the
basic action theories are extended by only introducing a new predicatechoice(A,n, s), whereA
is a stochastic action,n is one of the outcomes of actionA in situations which nature can choose
from. Assuming a finite numberm of possible outcomesN1, . . . , Nm for the stochastic actionA
under the condition that certain formulasϕ(s) hold, we can define

choice(A, a, s)
def
= ϕ1(s) ⊃ (a = N1

1 ∨ · · ·N1
m) ∧

...

ϕk(s) ⊃ (a = Nk
1 ∨ · · · ∨ a = Nk

m),

with ϕ1(s), . . . , ϕk(s) a set of mutually disjoint logical conditions which are situation calculus
formulas such thatϕ1(s) ∨ . . . ∨ ϕk(s) is true for anys. Further, we have to model the proba-
bility with which nature chooses a certain outcome. Letprob(n, a, s) denote this probability. For
simplicity of notion assume that the outcomes for actionA remain the same in each situation, i.e.

choice(A)
def
= {N1, . . . , Nm}. We add the following sentences to the domain axiomatization:

prob(N1, A, s) = p1, . . . , prob(Nm, A, s) = pm,

wherep1, . . . , pm are probabilities summing up to 1. If an outcomeNi is not possible in situa-
tion s the probabilityprob(Ni, A, s) must be zero as this outcome cannot occur according to the
background theory. Therefore the following must hold:

(Poss(N1, s) ∨ . . . ∨ Poss(Nm, s)) ⊃
Poss(Ni, s) ≡ prob(Ni, A, s) > 0, i = {1, . . . ,m},

(Poss(N1, s) ∨ · · · ∨ Poss(Nm, s)) ⊃
m
∑

i=1

prob(Ni, A, s) = 1.

To acquire the assumption of full observability for MDPs one has to extend the action theory
by defining formulassenseCond(n, ϕ) which define how the different outcomes of a stochastic
action can be discriminated. To sense the state, i.e. evaluate the conditionϕ in order to determine

58 CHAPTER 3. MATHEMATICAL FOUNDATIONS

which outcome has occurred, the sensing actionsenseEffect is introduced. The axiomatizer of
the domain has to take care thatϕ discriminates the different outcomes.

In the following we give the semantics ofDTGOLOG. The semantics is similarly to the evalu-
ation semantics of GOLOG defined as abbreviations of situation calculus formulas.

1. Zero horizon
This is a termination condition for the recursive “calls” ofBestDo. As DTGOLOG im-
plements a solution algorithm for finite-horizon MDPs, the search for the optimal policy
terminates if the remaining horizon reaches zero.

BestDo(p, s, h, π, v, pr)
def
=

h = 0 ∧ π = Nil ∧ v = reward(s) ∧ pr = 1.

2. The null program
If the input program from which the policy is calculated is thenil program, the recursion
terminates.

BestDo(Nil , s, h, π, v, pr)
def
=

π = Nil ∧ v = reward(s) ∧ pr = 1.

3. Deterministic Action
Similar to GOLOG, it is checked whether a primitive action is possible. If the action is not
possible, the policyπ is terminated with aStop action, the probability of successpr is set
to zero and the value of the policy equals the reward in the current state.6 If the action is
possible, the policy for the remaining program is calculated. The resulting policy is then
the primitive action in sequence with the policy for the remaining program, the value is the
reward in the actual situation plus the value of the remaining policy.

BestDo(a; p, s, h, π, v, pr)
def
=

¬Poss(a, s) ∧ π = Stop ∧ pr = 0 ∧ v = reward(s)

∨Poss(a, s) ∧ ∃(π′, v′, pr ′).BestDo(p, do(a, s), h− 1, π′, v′, pr ′)

∧π = a;π′ ∧ v = reward(s) + v′ ∧ pr = pr′

4. Stochastic action
In the case of a stochastic action, the predicateBestDoAux with the set of all outcomes for

this stochastic action is expanded. We use as Soutchanski (2003)choice′(a)
def
= {n1, . . . , nk}

as an abbreviation for the outcomes of the stochastic actiona.

BestDo(a; p, s, h, π, v, pr)
def
=

∃π′, v′.BestDoAux (choice′(a), a, p, s, h, π′, v′, pr) ∧
π′ = a; senseEffect(a);π′ ∧ v = reward(s) + v′

6Note that we use the terms state and situation synonymously. We specify when a distinction has to be made.

3.3. REASONING ABOUT ACTION AND CHANGE 59

The resulting policy isa; senseEffect(a);π′. The pseudo actionsenseEffect is introduced
to fulfill the requirement of full observability. The remainder policyπ′ branches over the
possible outcomes and the agent must be enabled to sense the state it is in after having
executed this action. The remainder policy is evaluated using the predicateBestDoAux .
The predicateBestDoAux for the (base) case that there is one outcome is defined as

BestDoAux ({nk}, a, δ, s, h, π, v, pr)
def
=

¬Poss(nk, s) ∧ π = Stop ∧ v = 0 ∧ pr = 0 ∨
Poss(nk, s) ∧ senseCond(nk, ϕk) ∧
∃π′, v′, pr ′.BestDo(δ, do(nk, s), h, π

′, v′, pr ′) ∧
π = ϕk?;π

′ ∧ v = v′ · prob(nk, a, s) ∧ pr = pr ′ · prob(nk, a, s)

If the outcome action is not possible, theStop action is inserted into the policy and no
further calculations are conducted. Otherwise, if the current outcome action is possible, the
remainder policyπ′ for the remaining program is calculated. The policyπ consists of a
test action on the conditionϕk from thesenseCond predicate with the remainder policyπ′

attached. The case for more than one remaining outcome action is defined as

BestDoAux ({n1, . . . , nk}, a, p, s, h, π, v, pr)
def
=

¬Poss(n1, s) ∧ BestDoAux ({n2, . . . , nk}, p, s, h, π, v, pr) ∨
Poss(n1, s) ∧ (∃π′, v′, pr ′).BestDoAux ({n2, . . . , nk}, p, s, h, π′, v′, pr ′) ∧
∃π1, v1, pr1.BestDo(p, do(n1, s), h− 1, π1, v1, pr1) ∧ senseCond(n1, ϕ1)

π = if ϕ1 then π1 else π′ endif ∧
v = v′ + v1 · prob(n1, a, s) ∧ pr = pr ′ + p1 · prob(n1, a, s)

The difference to the previousBestDoAux predicate is that the other outcomes are recur-
sively interpreted, and that the resulting policy now consists of a conditional instead of a
test action as in the previous case. The value for the outcome is clearly the value of the
remaining policy which hasn1 as prefix weighted by the probability of occurrence ofn1

plus the value gathered by the other possible outcomes. Similarly the probability of success
pr is calculated.

5. Test Action
A test action is similar to GOLOG despite thatπ, v, andpr have to be instantiated appropri-
ately. Similar to a deterministic action,Stop is inserted in the case that the test condition
does not hold and the calculation of the policy is terminated.

BestDo(a; p, s, h, π, v, pr)
def
=

φ[s] ∧ BestDo(p, s, h, π, v, pr) ∨
¬φ[s] ∧ π = Stop ∧ pr = 0 ∧ v = reward(s)

60 CHAPTER 3. MATHEMATICAL FOUNDATIONS

6. Nondeterministic Choice of Actions
Nondeterministic choices of actions allow for DT planning. For both choices the contin-
uation policiesπ1 andπ2 are calculated. A multi-criteria analysis over the values and the
probability of success is then done and the optimal policy is returned.

BestDo((p1|p2); p, s, h, π, v, pr)
def
=

∃π1, v1, pr1.BestDo(p1; p, s, h, π1, v1, pr1) ∧
∃π2, v2, pr2.BestDo(p2; p, s, h, π2, v2, pr2) ∧
((v1, p1) ≥ (v2, p2) ∧ π = π1 ∧ pr = pr1 ∧ v = v1) ∨
(v1, p1) < (v2, p2) ∧ π = π2 ∧ pr = pr2 ∧ v = v2)

7. Conditional
A conditional is like in GOLOG an abbreviation for a test action and the respective branches
of the conditional.

BestDo((if ϕ then p1 else p2 endif ; p), s, h, π, v, pr)
def
=

BestDo(((ϕ?; p1)|(¬φ?; p2); p), s, h, π, v, pr)

8. Nondeterministic Finite Choice of Arguments
DTGOLOG allows for optimal choices over action arguments. In the programp, all free
variablesx are substituted byτ . The domain ofτ = {v1, . . . , vn} must be finite. An
optimization is initiated for each substitution, the best argument is chosen for the policy.
We also refer to this statement aspickBest as a optimized version of the GOLOG “pick”
construct.7

BestDo((̟(x : τ)p); p′, s, h, π, v, pr)
def
=

BestDo(p|xc1 · · · p|
x
cn

); p′, s, h, π, v, pr)

9. Sequential Composition
Sequential composition is the same as in GOLOG.

BestDo((p1; p2); p3, s, h, π, v, pr)
def
=

BestDo(p1; (p2; p3), s, h, π, v, pr).

Loops and procedures are not given a formal semantics in Soutchanski (2003). He remarks
that these constructs require a second-order definition and refers to the implementation of his
DTGOLOG interpreter (Soutchanski 2003, Appendix C.1).

7In GOLOG the “pick” statement is abbreviated withπ. This should not be confused with the variableπ for policies
in the decision-theoretic context.

3.4. SUMMARY 61

To illustrate howDTGOLOG calculates an optimal policy we give an example in Chapter 4.2.
Boutilier et al. (2000) give an example from a service robotics domain. The robot’s objective
is to deliver mail in an office environment. The domain axiomatization comprises fluents like
hasMail(person, s),mailPresent(person,m, s), robotLoc(loc, s).

TheDTGOLOG program which calculates the optimal policy for delivering the mails is

proc Mail
while ∃p.¬attempted(p) ∧ ∃n.mailPerson(p, n)) do

̟(p, people,
(¬attempted(p) ∧ ∃n.mailPresent(p, n); deliverTo(p)))

endwhile

endproc

deliverTo is a complex procedure including picking up letters from the post box, moving to a
person’s office, handing over the letter, and returning to the post box. Each person in the domain
has a different priority for mail being delivered to them. The reward the robot receives for his
actions is discounted depending on the priority of the person and on the time it approximately
takes to deliver the mail. The condition¬attempted(p) serves as a guard condition here.

The state space of this domain havingP people,L locations andN letters is about2N · (6 ·
N + 6)P · L3. The authors state that a problem instance with 5 people and 7 locations would
demand 2.7 billion states for ordinary value iteration. InDTGOLOG this problem size can still be
handled.

In his Ph.D. thesis Soutchanski (2003) comparesDTGOLOG with the state-of-the-art MDP
solver SPUDD (Hoey et al. 1999). He shows thatDTGOLOG solves problem instances faster
than SPUDD. The reason lies in the forward search value iteration algorithm which is used by
DTGOLOG (by means ofBestDo). Only the relevant successor states are expanded instead of
SPUDD which has to iterate over all states of the MDP. The optimal policies on a given problem
instance are the same w.r.t. the states expanded byDTGOLOG (clearly,DTGOLOG cannot provide
an optimal action for states which where not visited; SPUDD on the other hand provides optimal
actions for all states) and the resulting values are qualitatively the same with both approaches.
This gives further evidence for the usefulness ofDTGOLOG as solver for MDPs.

3.4 Summary

In this section we illuminated the mathematical background for the methods we need throughout
this thesis. For one these are solution methods for Markov Decision Processes. We introduced
the mathematical model for MDPs and showed several solution methods. In our definition we
left out cost models. These can be easily integrated. A whole body of different models exist,
derived from the basic model we presented in Section 3.1 like POMDPs or semi-MDPs. There
are also other optimization criteria than the expected cumulated reward which is the optimization
criterion we showed here, like the average reward. We presented some core solution techniques for
finding optimal policies. These methods are called decision-theoretic planning methods. Finally,
we showed the relationship between reinforcement learning as a technique to find optimal policies

62 CHAPTER 3. MATHEMATICAL FOUNDATIONS

if the transition model is not known. Decision-theoretic planning will be a topic in Chapter 4.
A thorough mathematical treatment of MDPs and the different model variants can be found in
(Puterman 1994).

Bayes filter (Section 3.2) are probabilistic methods for solving hidden Markov models. In
the context of this thesis we regard Bayes filter for the localization problem of a mobile robot.
The state of the system cannot be observed directly. It has to be estimated by observations, i.e.
sensor values. We showed the mathematical background of the Kalman filter and a Monte Carlo
localization approach, which uses sampling techniques to estimate the pose of the robot. While
Kalman filter are Bayes filter with a uni-model Gaussian representation of the belief distribution,
Monte Carlo techniques have a multi-modal distribution. Hence, Kalman filter basically cannot
represent multiple hypothesis for the pose of the robot. We will use these models throughout
Chapter 6.

Finally in Section 3.3, we showed the important mathematical background the situation cal-
culus and GOLOG. Our approach with READYLOG is founded on these action formalisms. We
introduced the GOLOG derivatives which we integrated into READYLOG in detail. We want to
refer to Reiter’s textbook on the situation calculus and GOLOG (Reiter 2001) for further reading.

Chapter 4

A Golog Dialect for Real-time Dynamic
Domains

The aim of designing the language READYLOG is to create a GOLOG dialect which supports the
programming of the high-level control of agents or robots in dynamic real-time domains. The
primary application has been robotic soccer. The robotic soccer domain has some specific char-
acteristics which made the development of READYLOG necessary and influenced several design
decisions: the robotic soccer domain is an unpredictable adversarial dynamic real-time domain.
This means that decisions have to be taken quickly and making plans for future courses of actions
have a mid-term horizon. Planning ahead for the next minute does not make sense as the world
changes unpredictably due to the uncertainty of the outcomes of own actions and the behaviors of
the opposing players. The unpredictability of the actions of the agent calls for some notion of un-
certainty. Actions succeed with a certain probabilityp or fail with a probability of1− p. Further,
the soccer domain is a continuous domain, whereas the world in the situation calculus evolves from
situation to situation. The agent programming language has to support a continuously changing
world. The complexity of the domain also has an effect on the aspect of how to program the agents
in practice. The idea of GOLOG is to combine agent programming with planning. Usually this
means that a certain goal should be reached and it is proved that with the actions programmed the
goal can be reached. As it is generally not obvious to the programmer which series of actions will
end in scoring a goal, it seems helpful to use an optimization theory to evaluate different action
choices and execute the most promising one w.r.t. the success probability and the optimization
theory. Several other aspects influenced the language READYLOG. The knowledge the robot or
agent has about its environment is incomplete. This means that the robot has to use its sensors
permanently to gather knowledge about the environment. When the robot has to query its sensors
frequently it becomes an issue as to how the new knowledge can be integrated fast enough.

Several extensions of the original GOLOG dialect exist which cover specific areas. De Gia-
como and Levesque (1999), De Giacomo et al. (2002) proposed an incremental on-line GOLOG

interpreter (INDI GOLOG), where actions are directly executed in the real world. Grosskreutz and
Lakemeyer (2000b) and Grosskreutz (2000) proposedPGOLOG which extends GOLOG with prob-
abilistic programs. With a certain specified probabilityp a programσ succeeds, or fails with
probability 1 − p. A semantics to deal with continuous change was proposed withCCGOLOG

in (Grosskreutz and Lakemeyer 2000a), sensing was presented in (Grosskreutz and Lakemeyer

63

64 CHAPTER 4. A GOLOG DIALECT FOR REAL-TIME DYNAMIC DOMAINS

On-line Sensing Exog.
Actions

Conc.
Exec.

Projection Prob.
Actions

Cont.
Change

Decision
Theory

Golog − − − − − − − −
ConGolog − − − + − − − −
IndiGolog + + + + + − − −
ccGolog + + + + + − + −
pGolog + + + − + + − −

DTGolog − − − − + + − +
Readylog + + + + + + + +

Table 4.1: Features of Golog Languages

2001). Boutilier et al. (2000) proposedDTGOLOG, a decision-theoretic GOLOG dialect which
uses an MDP based optimization theory to find the optimal course of actions. Table 4.1 gives
an overview of the extensions of GOLOG. The achievement of READYLOG is to integrate those
aspects into one language and framework. In particular, these are the continuous fluents and the
model of concurrency fromCCGOLOG, the projection mechanism fromPGOLOG, and the integra-
tion of decision-theory fromDTGOLOG. Several modifications and extensions have been made:

• a novel on-line version of the decision-theoretic planning method proposed by Boutilier
et al. (2000), which allows for execution monitoring of policies;

• the introduction of macro actions, so-called options, for decision-theoretic planning after an
idea of Precup et al. (1998);

• an enhanced version of passive sensing which allows for update a whole world model in one
sweep;

• several speed-ups for policy generation as making use of caching previously computed re-
sults in the forward decision-theoretic search for an optimal policy,

• a useful any-time approach for decision-theoretic planning to overcome fixed horizons when
searching for a policy and by this to better exploit the computational resources of the agent
or robot, and

• a progression method after Lin and Reiter (1997).

The core language is presented in Section 4.1. Here, we give a brief overview of the semantics
of the language. We will not go into the details, as most of the material is presented in the literature
or in Chapter 3. We give pointers to the original resources. Section 4.2 presents our approach
to on-line decision-theoretic planning in detail. We relate our approach to another approach to
on-line DT planning by Soutchanski (2001) and show why his approach is not applicable for
the domains we are aiming at. In Section 4.3 we show our approach to use macro actions for
speeding up the computation of decision-theoretic planning. First, we illustrate the theoretical
background of macro actions in the context of Markov Decision Processes, before we present our
solution algorithm. Further, we show how some simple, but efficient techniques further speed up
the process of policy generation. Section 4.4 addresses implementation details of the interpreter
and shows the progression method. We conclude with a discussion in Section 4.5.

4.1. READYLOG SEMANTICS 65

4.1 Readylog Semantics

4.1.1 Overview

READYLOG borrows the approach to sensing and on-line execution fromINDI GOLOG. This means
that READYLOG uses the approach of (sensing) histories for active sensing actions. Sensed val-
ues are entered into the action history as described in Chapter 3.3.3. Besides this active sens-
ing approach, READYLOG makes use of the concept of passive sensing. This was proposed by
(Grosskreutz and Lakemeyer 2001) and was discussed in Chapter 3.3.4 as a feature ofCCGOLOG.
To recap, a world model update for continuous fluents is conducted not by an active sensing action,
but as an exogenous event that is raised when the specialccUpdate action is performed.

This concept was extended in READYLOG. When passive sensing updates come in frequently
it is more efficient to update all fluents at once. We discuss our extension in Section 4.2.2. This
brings us to the next feature of READYLOG: continuous change. For continuous domains like
robotic soccer we are aiming at the integration of continuous fluents is indispensable. Together
with these special fluents we also use the idea of the control architecture employing low-level
models and action registers as proposed in (Grosskreutz 2002) and discussed in Chapter 3.3.4.
Further, we integrated the possibility to use probabilistic projections fromPGOLOG. This also
requires us to make use of a weighted transition semantics which we will present in Section 4.1.3.

Finally, our READYLOG dialect integrates decision-theoretic planning. The foundations ofDT-
GOLOG and its semantics were given in Chapter 3.3.5. This also includes the notion of stochastic
actions which is different from the representation ofPGOLOG. To ease implementation of large
programs and complex effects we extend the notion of stochastic actions from the notion pre-
sented in Chapter 3.3.5 in such a way that it is possible to encode outcomes of a stochastic action
by sequences and conditionals over primitive actions. We introduce our extension in Section 4.2.4.

To make decision-theoretic planning available in the READYLOG framework we propose an
on-line execution system for policies which is also able to monitor when policies become invalid
due to unforeseen changes in the environment. Another feature of READYLOG are the so-called
options. These are macro-actions in the decision-theoretic context. We show how these are inte-
grated into the READYLOG framework and show their usefulness for discrete domains.

4.1.2 Reifying Programs as Terms

The language GOLOG is defined as abbreviations of situation calculus formulas. Each program
statement is expanded into a logical formula of the situation calculus. However, with the intro-
duction of the transition semantics the program statements can no longer be defined in terms of
abbreviations of the logic. They have to be defined as terms of logic itself. This requires to reify
programs in the language as terms.

For reifying programs as terms in the language of the situation calculus one has to formally
define formulas as terms. As we make use of continuous change and the notion of probabilistic
programs, we further have to introduce the sorts real, time, prob, formula, continuous formula,
tform.

We will not give the definitions of all sorts and how terms of the respective sorts are interpreted
in detail. Instead we sketch the ideas of these definitions and refer to (Grosskreutz 2002) for a
complete definition of the reification ofCCGOLOG andPGOLOG.

66 CHAPTER 4. A GOLOG DIALECT FOR REAL-TIME DYNAMIC DOMAINS

First of all, one has to define an index structure isomorphic to the natural numbers for referring
to arguments of terms. Then, one has to formally introduce the different sorts like situation,
object, or action into the language and define variables and functions on these sorts. An example
is the functionnameOfSort : Sort → PseudoSort , which is a mapping from situation calculus
sorts to the reified version of the sorts, which are calledPseudoSort . The functionvarSort :

Idx → PseudoSort defines a mapping from the index structure to a reified sort. It is used to
reference variables in arguments. For each functionf : Sort1 × · · · × Sortn → Sortn+1 of
the situation calculus a mappingf : PseudoSort1 × · · · × PseudoSortn → PseudoSortn+1

has to be defined to reference the reified versions of functions. For predicates of a particular
situation calculus sort a reified version is defined together with a set of domain closure and unique
names axioms. To relate functions of pseudo-sorts which do not mention pseudo variables to
real sorts a predicateClosed is defined. The closed terms areClosed(now), Closed(nameOf(x)),
¬Closed(zi), and for eachf Closed(f(x1, . . . , xn) ≡ Closed(x1) ∧ · · · ∧ Closed(xn). A function
decode : PseudoSort × Sit → Sort accomplishes this. For example,decode(now, s) = s,
decode(nameOf(x)) = x, or decode(f(x1, . . . , xn), s) = f(decode(x1, s), . . . , decode(xn, s)).

Next, one has to define a functional mapping for logical formulas. This mapping is induc-
tively defined over the structure of the logical formula, defining a mapping of the predicate it-
self to a function, conjunction, negation and existential quantification are also mapped. Vari-
able substitution is defined for the arguments of a predicate. Similar to thedecode function
a functionHolds : PseudoSit × Sit is defined to encode the truth value of a predicate. For
example,Holds(p(x1, . . . , xn), s) ≡ p(decode(x1, s), . . . , decode(xn, s)), or Holds(∃z.ρ, s) ≡
∃y.Holds(ρz

nameOf(y), s). A notation we use in the semantic definition of READYLOG is ϕ[s] and
denotesHolds(ϕ, s). Similarly, function mappings for continuous fluents, and probabilistic pro-
jections are defined to relate situation calculus sorts to their reified pseudo-sorts versions. Finally,
functional mappings for programs are defined by introducing a sortProg and a mapping from
program statements to the sort program. For example, a primitive action is defined byact :

PseudoAct → Prog, or a sequence of program statements byseq : PseudoFormula → Prog .
The notions introduced in the semantic definitions are therefore notions which denote the functions
of sortProg.

It was shown ((De Giacomo et al. 2000) forCONGOLOG; (Grosskreutz 2002) forCCGOLOG

andPGOLOG) that the above described encoding preserves consistency. We refer to (Grosskreutz
2002) for complete definition for reifying programs as terms of the logical language. Note that in
the following we use the logical notation ofSort . These must be seen as a notation for their reified
version as sketched above.

4.1.3 Trans and Final

In the following we define the semantics for the core language. We make use of the weighted
transition semantics introduced by (Grosskreutz 2002). We omit the somewhat lengthy second
order definition of the transition semantics with procedures and refer to (Grosskreutz 2002) for
details. Other resources for the definition of procedures in the transition semantics context are
(De Giacomo et al. 1997; De Giacomo et al. 2000)

Instead of using macro expansion as GOLOG does, we use a transition semantics introduced
by (De Giacomo et al. 2000). It defines program execution by a one step transition between

4.1. READYLOG SEMANTICS 67

program configurations. A configuration is a tuple〈γ, s〉, whereγ is a program ands a situation.
The special predicatetrans(γ, s, δ, s′) transforms programγ in the situations into the program
δ resulting in the situations′. To denote final configurations, i.e. such configuration where the
computation of a statement is finished, a predicateFinal(γ, s) exists. Originally, (De Giacomo
et al. 2000) definedtrans as a predicate. Grosskreutz (Grosskreutz 2002) extended program
transitions to return the probability of a step in program execution to account for probabilistic
program execution. He defined a weighted transition semantics forPGOLOG constructs. Thus,
trans : program × situation × program × situation → [0, 1] is a function which maps pairs
of configurations to probabilities. READYLOG integratesPGOLOG and the possibility to weight
programs with probabilities. Therefore, the semantics of the READYLOG constructs make also use
of the weighted transition semantics proposed in (Grosskreutz 2002). For readability, we write

f(~y) = if (∃~y).ϕ(~x, ~y) then g(~x, ~y) else h(~x)

as an abbreviation for

f(~x) = p ≡ (∃~y).ϕ(~x, ~y) ∧ p = g(~x, ~y) ∨ ¬(∃~y).ϕ(~x, ~y) ∧ p = h(~x)

whereϕ(~x, ~y) is a first-order formula with free variables among~x ∪ ~y, and similarlyg(~x, ~y) and
h(~x) are functions whose arguments range over~x ∪ ~y and~x, resp. Similarly,

f(~x) = if (∃~y1).ϕ1(~x, ~y1) then g1(~x, ~y1) elseif(∃~y2).ϕ2(~x, ~y2) then g2(~x, ~y2) else h(~x)

is an abbreviation for

f(~x) = p ≡ (∃~y1).ϕ1(~x, ~y1) ∧ p = g1(~x, ~y1) ∨ (∃~y2).ϕ2(~x~y2) ∧ p = g2(~x~y2)∨
¬((∃~y1.ϕ1(~x, ~y1) ∨ (∃~y2).ϕ2(~x, ~y2)) ∧ p = h(~x)

Figure 4.1 gives an overview of the READYLOG constructs which we will present in the fol-
lowing.

Empty Program

trans(nil , s, δ, s′) = 0

Final(nil , s) ≡ true

The empty program contributes a probability of 0 to the current total probability of the program
branch. Intuitively this means that no further transition is possible. At the same time the empty
program reaches a final configuration.

Primitive Action

trans(α, s, δ, s′) = if Poss(α[s], s) ∧ δ = nil ∧ s′ = do(α[s], s) then 1 else 0

Final(α, s) ≡ false

If the program consists of a primitive actionα, it is checked whether the action is possible w.r.t.
the background action theory denoted byPoss(α[s], s). If this holds, the program is transformed
to the successor configuration〈nil , do(α[s], s)〉. The probability for this transition is obviously1.
If the primitive actionα is not possible this transition gets the value0 which is equivalent to false.

68 CHAPTER 4. A GOLOG DIALECT FOR REAL-TIME DYNAMIC DOMAINS

nil empty program
α primitive action
ϕ? wait/test action
waitFor(τ) event-interrupt
[σ1;σ2] sequence
if ϕ then σ1 else σ2 endif conditional
while ϕ do σ endwhile loop
withCtrl ϕ do σ endwithCtrl guarded execution
σ1 ||σ2 prioritized execution
forever do σ endforever infinite loop
whenever(τ, σ) interrupt triggered by continuous function
withPol(σ1, σ2) prioritized execution untilσ2 ends
prob(p, σ1, σ2) probabilistic execution of eitherσ1 or σ2

interrupt interrupts
pproj(c, σ) probabilistic (off-line) projection
{procP1(~ϑ1)σ1 endproc; · · · ;procPn(~ϑn)σn endproc};σ0 procedures
solve(σ, h) initiate decision-theoretic optimization overσ
σ1 |σ2 nondeterministic (dt) choice of programs
pickBest(~x, σ, h) nondeterministic (dt) choice of arguments

Figure 4.1: Overview of Readylog constructs

Test Action

trans(ϕ?, s, δ, s′) = if ϕ[s] ∧ δ = nil ∧ s′ = s then 1 else 0

Final(ϕ?, s) ≡ false

Similar as for primitive actions, the remaining program isδ = nil . Note that unlike primitive
actions the successor situation remains the same as a test does not change the environment. The
transition returns the value 1 or 0, resp., depending on whether the test conditionϕ[s] holds. A
test action does not reach a final configuration.

Event-Interrupt
To achieve event-driven behavior a notion of time must be integrated into the language. This was
introduced by Grosskreutz (2002, Chpt. 4) and discussed in Chapter 3.3.4. To represent the value
of continuous fluents so-calledt-function have been introduced which represents functions of
time. These are needed to project the value of continuous fluents w.r.t. the time that has passed.
The argumentτ of awaitFor(τ) statement is restricted tot-forms. The idea behindwaitFor(τ)
is that actions should happen as soon as possible. Thus, the notion of a least time pointltp(τ, s, t)

is needed. It is an abbreviation for the formula

τ [s, t] ∧ t ≥ start(s) ∧ ∀t′.start(s) ≤ t′ < t ⊃ ¬[s, t′]

which means thatt in ltp(τ, s, t) is the least point in time after the start ofs whereτ becomes true.
To evaluate at-form in a situations at a timet we writeτ [s, t] which results in a formula which

4.1. READYLOG SEMANTICS 69

is like τ except that every continuous fluentF is replaced byval(F (s), t), which stands for the
t-function assigned to fluentF . trans andFinal is then defined as

trans(waitFor(τ), s, δ, s′) = p ≡
p = 1 ∧ (online[s] ∧ τ [s, t] ∧ s′ = s ∧ δ = nil ∨
¬online[s] ∧ ltp(τ, s, t) ∧ s′ = do(setT ime(t), s) ∧ δ = nil)

Final(waitFor(τ), s) ≡ false

This definition means that in the on-line case1 the t-form is evaluated. No further transition is
taken. Ifτ [s, t] does not hold, the interpreter will wait forever. In the off-line case (projection) the
least time point is calculated and the time is advanced accordingly.

Sequence

trans(σ1;σ2, s, δ, s
′) =

if (∃γ).δ = γ;σ1 ∧ trans(σ1, s, γ, s
′) > 0 then trans(σ1, s, γ, s

′)

elseif Final(σ1, s) ∧ trans(σ2, s, δ, s
′) > 0 then trans(σ2, s, δ, s) else 0

Final(σ1;σ2, s) ≡ Final(σ1, s) ∧ Final(σ2, s)

Sequences of actions are transformed in the following way: either there is a successor configura-
tion for σ1 (with positive weight) orσ1 has already become final. In the latter case the programσ2

must be further transformed. A sequence of programs is regarded as final if both programs reach
a final configuration.

Conditional

trans(if ϕ then σ1 else σ2 endif , s, δ, s′) =

if ϕ[s] then trans(σ1, s, δ, s
′) else trans(σ2, s, δ, s

′)

Final(if ϕ then σ1 else σ2 endif , s) ≡
ϕ[s] ∧ Final(σ1, s) ∨ ¬ϕ[s] ∧ Final(σ2, s)

Depending on the conditionϕ the remaining programσ1 or σ2, resp., is executed. The function
value (probability) of this transition depends on the return value of eitherσ1 or σ2. A conditional
is final when the respective branch to be executed reaches a final configuration.

Loop

trans(while ϕ do σ endwhile, s, δ, s′) =

if (∃γ).ϕ[s] ∧ δ = γ;while ϕ do σ endwhile then trans(σ, s, γ, s′) else 0

Final(while ϕ do σ endwhile, s) ≡ ¬ϕ[s] ∨ Final(σ, s)

1
online is a built-in fluent keeping track of the operation mode of the interpreter.

70 CHAPTER 4. A GOLOG DIALECT FOR REAL-TIME DYNAMIC DOMAINS

A loop is transformed by first testing the loop conditionϕ. If there is a configurationγ which
results from the successor configuration of the loop bodyσ, the remaining program to be further
transformed is the successor programγ with the loop attached. This ensures that the loop is being
executed as long as the conditionϕ holds. A loop reaches a final configuration if the condition
does not hold or the loop body reaches a final configuration.

Guarded Execution

trans(withCtrl ϕ do σ endwithCtrl, s, δ, s′) =

if (∃γ).ϕ[s] ∧ δ = withCtrl ϕ do γ endwithCtrl

then trans(σ, s, γ, s′) else 0

Final(withCtrl ϕ do σ endwithCtrl, s) ≡ ϕ[s] ∧ Final(σ, s)

The idea behind guarded execution is to execute programσ, the body of the guard, as long as the
guard conditionϕ holds. It is final when the body reaches a final condition and at the same time
the condition holds.

Prioritized Execution

trans(σ1 ||σ2, s, δ, s
′) =

if ¬Final(σ1, s) ∧ ¬Final(σ2, s) ∧ ∃γ1.trans(σ1, s, γ1, s
′) > 0 ∧ δ = γ1 ||σ2 ∧

(∀γ2, s2).trans(σ2, s, γ2, s2) > 0 ⊃ start(s′) ≤ start(s2)
then trans(σ1, s, γ1, s

′)

elseif ¬Final(σ1, s) ∧ ¬Final(σ2, s) ∧ (∃γ2).trans(σ2, s, γ2, s
′) > 0 ∧ δ = σ1 || γ2) ∧

(∀γ1, s1).trans(σ1, s, γ1, s1) > 0 ⊃ start(s′) < start(s)

then trans(σ2, s, γ2, s
′) else 0

Final(σ1 ||σ2, s) ≡ Final(σ1, s) ∨ Final(σ2, s)

The idea of prioritized execution is that programσ1 is executed with priority over programσ2 if
σ1 can be executed beforeσ2 (w.r.t. execution time). In the above definition the special fluent
start encodes when a program started to be executed. When bothσ1 andσ2 are not in a final
configuration andσ1 can be transformed into programγ1 and the execution ofσ1 can be started
before any of the possible successor configurations ofσ2, the remaining program isγ1 ||σ2, i.e.
the first step ofσ1 is prioritized overσ2. Otherwise,σ2 will be started first. A final configuration
is reached when eitherσ1 or σ2 becomes final.

Infinite Loop

forever do σ endforever
def
= while true do σ endwhile

forever is a useful abbreviation for an infinite loop.

4.1. READYLOG SEMANTICS 71

Interrupt Triggered by Continuous Function

whenever(τ, σ)
def
= forever([waitFor(τ, σ)])

Thewhenever statement is an abbreviation for a guarded infinite loop.

Prioritized Execution until σ2 ends

withPol(σ1, σ2)
def
= (σ1; false?) ||σ2

σ1 takes priority overσ2. The testfalse? averts thatσ1 becomes final. This means that the whole
construct can only become final ifσ1 was executed up to the end andσ2 became final.

Probabilistic Execution

trans(prob(p, σ1, σ2), s, δ, s
′) =

if δ = σ1 ∧ s′ = do(tossHead , s) then p

elseif δ = δ2 ∧ s′ = do(tossTail , s) then 1− p else 0

Final(prob(p, σ1, σ2), s) ≡ false

The prob constructs assigns a success probabilityp to the programσ1 (and1 − p to σ2). To
distinguish the two possible successor transitions the dummy actionstossHead andtossTail have
been introduced. The statementprob is only for off-line projections. Obviously, it is never final.

Probabilistic Projections
With introducing theprob statement it is possible to project over probabilistic programs. The
idea is to find out what the probability is that a formulaϕ holds after execution of programσ.
Therefore, a projection is started which ranges over all possible probabilistic traces. The overall
probability is weighted over all possible traces. To access the valuePBel of the belief of the agent
aboutϕ when simulatingσ, the fluentpproj is introduced:

PBel(ϕ, σ, s) = p ≡
∑

{s′,s∗|ϕ[s∗]} p(s
′, s) · doPr(withPol(llmodel, σ), s′, s∗)

∑

s′ p(s
′, s)

= p.

In the above formulap is a binary functional fluent with the meaning that “in situations the agent
thinks thats′ is possible with degree of likelihoodp(s, s′)”. This was introduced in the epistemic
situation calculus (cf. (Reiter 2001)).doPr was introduced in Chapter 3.3.4 on page 56 and
’returns’ the probability of a projection; in this case of the low-level modelllmodel with program
σ interleaved.

72 CHAPTER 4. A GOLOG DIALECT FOR REAL-TIME DYNAMIC DOMAINS

G

S

Room 1

Room 6

(2,2)

(7,5)

Figure 4.2: Maze66 from (Hauskrecht et al. 1998).

Procedures
As stated in the introduction of this section, we leave out the formal definition of procedures here.
It demands a second-order definition oftrans. The semantic of procedures is like those in common
programming languages.

This concludes our definition of the language READYLOG w.r.t. all non-decision-theoretic
extensions. These are given in the next section. Examples of applications of READYLOG are de-
scribed in Chapters 5 and 6. Next, we concentrate on the decision-theoretic extensions of READY-
LOG.

4.2 On-line DT Planning with Passive Sensing

In Section 3.3.5 we introducedDTGOLOG. Essentially, the basic action theory together with
the optimization theory defines an MDP which is solved applying a forward search value iteration
algorithm. TheDTGOLOG program is interpreted, choices in the program are resolved by choosing
the optimal alternative w.r.t. the given optimization theory.

A DT Planning Example

In the following we illustrate howDTGOLOG calculates the optimal policy from a program. A
robot should navigate from its start positionS to a goal positionG. It can perform one of the
actions from the setAbase = {go right , go left , go up, go down}. Each of the actions bring
the robot to one of its neighboring locations. The actions are stochastic, that is, a probability
distribution over the effects of the action exists. Each action takes the agent to the intended field
with probability ofp, with probability1 − p the robot will arrive at any other adjacent field. The
maze shown is the well-known Maze66 domain from (Hauskrecht et al. 1998). In our example
p = 0.7 which means that the actionright will succeed with probability0.7, and with probability
of 0.1 nature chooses one of the actionsgo left , go up, and go down. The robot cannot go
through the walls, if it tries, though, the effect is that it does not change its position at all. Figure 4.2
illustrates the scenario.

4.2. ON-LINE DT PLANNING WITH PASSIVE SENSING 73

Accordingly, the basic action theory consists of the fluentloc, and the situation independent
atomsstart and goal , and the stochastic actionsgo right , go left , go up, andgo down. As
these are stochastic actions we have to provide the predicateschoice(A, a, s) andprob(n, a, s).
This means that we have to define a set of deterministic actionsr, l, u, d from which nature
chooses when performing one of our navigation actions. For ease of exposition we assume
that the outcomes for each action remain the same in each situation, i.e.choice(go right) =

choice(go left) = choice(go up) = choice(go down)
def
= {r, l, u, d}. The probability for each

outcome is thenprob(r, go right) = prob(l, go left) = prob(u, go up) = prob(d, go down)
def
=

0.7 andprob(n,A, s)
def
= 0.1 for the remaining action pairs.2

The successor state axiom for the location fluent then is defined as

loc(do(a, s)) = (x, y) ≡
∃x′, y′.loc(s) = (x′, y′) ∧
((a = r ∧ x = x′ + 1 ∧ y = y′) ∨ (a = l ∧ x = x′ − 1 ∧ y = y′) ∨
(a = u ∧ x = x′ ∧ y = y′ + 1) ∨ (a = d ∧ x = x′ ∧ y = y′ − 1) ∨
(a 6= r ∧ a 6= l ∧ a 6= u ∧ a 6= d ∧ x = x′ ∧ y = y′)).

start andgoal are situation independent and encode only the position of the start and the
target position. In our examplestart = (1, 1) andgoal = (7, 5). The reward function is defined
as

reward(s) =

{

+1 loc(s) = goal(s)
−1 otherwise

To find the optimal path fromS toG the robot is equipped with the program

proc navigate
solve(while ¬loc = goal do

(go right | go left | go up | go down)
endwhile, h)

endproc

DTGOLOG now interprets the program via theBestDo predicates. As long as the robot is not
at the goal location (and the horizon is not reached)DTGOLOG loops over the nondeterministic
choice statement. At each iteration the interpreter expands a sub-tree for each of the actions inside
the choice statement. As each of the actions are stochastic ones, for each outcome of each action
the interpreter branches over the nature’s choices again. This goes on until either the agent is
located at the goal position or the horizon is reached. At the leaves of the computation tree over
BestDo (at the end of the recursion) the agent receives the reward for these final situations. Then,
“going up” the computation tree for nondeterministic choices, the best alternative is evaluated
and chosen for the policy. At nature’s choices a conditional is added to the policy. With this

2Again, for ease of exposition, we do not distinguish between different partitions of the state space. As all proba-
bilities have to sum up to1 for each action, the probability mass of a stochastic action has to be redistributed over the
possible outcomes. This means that at position(1, 1) only the actionsr andu are possible and thus the probability of
the outcome forr is 0.875 and for the outcomeu is 0.125

74 CHAPTER 4. A GOLOG DIALECT FOR REAL-TIME DYNAMIC DOMAINS

(2,2)

go_right

go_left

go_up

go_down

(3,2)

r

(1,2)

l

(2,3)
u

(2,1)

d

(3,2)

r

(1,2)

l

(2,3)
u

(2,1)

d

(3,2)
r

(1,2)
l

(2,3)

u

(2,1)

d

(3,2)
r

(1,2)
l

(2,3)

u

(2,1)

d

go_right

go_left

go_up

go_down

go_right

go_left

go_up

go_down

go_right

go_left

go_up

go_down

go_right

go_left

go_up

go_down

go_right

go_left

go_up

go_down

go_right

go_left

go_up

go_down

go_right

go_left

go_up

go_down

go_right

go_left
go_up

go_down

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

(2,4)

u

(2,1)
d

(3,3)
r

(2,2)

l

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

(3,3)

r (2,3)

l
(3,3)

u

(2,2)
d

. . .

. . .

. . .

. . .

. . .

. . .

. . .
go_right

go_left

go_up

go_down

. . .

Figure 4.3: The Decision Tree for the Maze Example

4.2. ON-LINE DT PLANNING WITH PASSIVE SENSING 75

u : senseEffect(u) : if(I_am_at(2, 1)) then
|- u : senseEffect(u) : if(I_am_at(1, 1)) then
| |- u : senseEffect(u) : if(I_am_at(2, 1)) then ...
|- if(I_am_at(1, 2)) then

|- r : senseEffect(e) : if(I_am_at(2, 2)) then
| |- u : senseEffect(u) : if(I_am_at(2, 1)) then
| | |- u : senseEffect(u) : if(I_am_at(1, 1))
| | | |- u : senseEffect(u) : ...

Figure 4.4: The Optimal Policy for the Maze Domain

conditional, later, when the policy is executed, it offers an action for each possible outcome of
the respective stochastic action. Coming up to the root node the computation terminates returning
the policy, the value for the policy, and its probability of success. Part of the computation tree is
shown in Figure 4.3. The resulting policy is depicted in Figure 4.4.

Note that with theBestDo computation of nondeterministic choice and stochastic actions

BestDo((p1|p2); p, s, h, π, v, pr)
def
=

. . .

((v1, p1) ≥ (v2, p2) ∧ π = π1 ∧ pr = pr1 ∧ v = v1) ∨
(v1, p1) < (v2, p2) ∧ π = π2 ∧ pr = pr2 ∧ v = v2)

BestDoAux ({n1, . . . , nk}, p, s, h, π, v, pr)
def
=

. . .

v = v′ + v1 · prob(n1, s) ∧ pr = pr ′ + p1 · prob(n1, s)

(Item 4 and 6 on page 60) and given here again the agent computes a policy following an expected
reward criterion as it weights the value according to its success probabilities, i.e.

V (π) = max E

(

H
∑

h=0

R(sh|π)

)

.

The robot is now endowed with a conditional program which tells it, for each of the positions
it can reach, which is the best action to advance to the goal position. One has to remark that the
policy only yields an action for the projected locations the robot reached during planning, and up
to the given fixed horizon. It does not have any idea which action to take at location, say(10, 4).
This might at first seem to be a disadvantage, but on second thoughts this turns out to be one of
the advantages ofDTGOLOG. With standard solution techniques to MDPs like value iteration one
would have a solution for each of the locations, but for the cost that value iteration has to iterate
several times over all states. WithDTGOLOG this can be avoided by only expanding the reachable
successor locations.

4.2.1 Discussion: Soutchanski’s On-line DTGolog

The strength of the forward search value iteration algorithm used inDTGOLOG is that the structure
of the MDP is induced while interpreting theDTGOLOG program. The successor state axiom for a

76 CHAPTER 4. A GOLOG DIALECT FOR REAL-TIME DYNAMIC DOMAINS

fluent induces the transition between states of the MDP. The next state of the MDP is the one that
is accessible from the current situation by executing the current action. Thus, only the accessible
situations are a successor state in the induced MDP. The advantage is that the state space of the
MDP does not need to be known explicitly in advance, it is implicitly defined by the basic action
theory.

The original version ofDTGOLOG operates in an off-line mode, that is, it first computes a pol-
icy for the whole program and only then initiates execution. As was observed already in (De Gia-
como and Levesque 1999), this is not practical for large programs and certainly not for applications
with tight real-time constraints such as robotic soccer. In the extreme one would only want to rea-
son about the next action of a program, execute it and then continue with the rest of the program.
This is the basic idea of an on-line interpretation of a GOLOG program (De Giacomo and Levesque
1999) as described in Chapter 3.3.3.

A nice feature of on-line interpretation is that the step-wise execution of a program can easily
be interleaved with other exogenous actions or events, which are supplied from outside.

With the basic transition mechanism in hand, it is in principle, not hard to reintroduce off-
line reasoning for parts of the program. In the case ofDTGOLOG, Soutchanski proposed for
that purpose an interleaving of off-line planning and on-line execution. We show an excerpt of
his interpreter implemented in Prolog. We only consider the case of executing deterministic and
sensing actions, leaving out stochastic actions:

online(E, S, H, Pol, U) :−
incrBestDo(E, S, ER, H, Pol1, U1, Prob1),

(final(ER, S, H, Pol1, U1), Pol = Pol1, U = U1;

reward(R, S), Pol1 = (A : Rest),

(agentAction(A), doReally(A), !, %% deterministic action

online(ER, do(A, S), H, PolFut, UFut),

Pol = (A : PolFut), UisR + UFut;

senseAction(A), doReally(A), !, %% sensing action

online(ER, do(A, S), H, PolFut, UFut),

Pol = (A : PolFut), UisR + UFut;

. . .

)

).

Basically, the interpreteronline calculates a policyπ for a given programe up to a given
horizonh, executes its first action (doReally(a)) and recursively calls the interpreter with the
remaining program again.

To control the search while optimizing Soutchanski proposes an operatoroptimize defined by

4.2. ON-LINE DT PLANNING WITH PASSIVE SENSING 77

the following macro:

IncrBestDo(optimize(p1); p2, s, pr, h, π, u, pr)
def
=

∃p′.IncrBestDo(p1;Nil, s, p
′, h, π, u, pr) ∧

(p′ 6= Nil ∧ pr = (optimize(p′); p2) ∨
p′ = Nil ∧ pr = p2).

This has the effect thatp1 is optimized and the resulting policy is executed beforep2 is even
considered. It has the advantage that the user can deal with explicit (active) sensing actions by re-
strictingoptimize to never go beyond the next sensing action. Note that the predicateIncrBestDo

does the same as theBestDo, namely calculating the policy for the given program.
Nevertheless the approach has a number of shortcomings. First note that, in the definition of

the interpreteronline, after executing only one action of a computed policy, the optimizer is called
again. This means that large parts of the program are re-optimized over and over again, which is
computationally too expensive for the kind of real-time decision making which we have in mind.
While it would not be that difficult to modify the interpreter so that a complete policy is executed
before computing the next one, the main problem has to do with sensing. Soutchanski’s approach
only addresses active sensing, where it is reasonable to assume that there usually are a number
of non-sensing actions happening between two sensing actions. With passive sensing, this might
not be the case. As shown in (Grosskreutz and Lakemeyer 2001), one way to deal with this kind
of ubiquitous sensing is to keep it in the background and not even refer to it in the robot control
program. Adopting this idea forDTGOLOG has two consequences. For one, policy generation
needs to work with a suitable model of how the world evolves. For another, during policy execution
it needs to be monitored whether the way the world actually evolves is compatible with the model
assumptions. This is what Soutchanski and, for that matter, the originalDTGOLOG neglected to
do. As an indication of this note that when Soutchanski’s interpreter executes an actiona from the
policy (doReally(a)), it is tacitly assumed thata is still executable, which may not be the case.
Perhaps more seriously, the whole policy may become obsolete due to unforeseen developments
in the world, and this needs to be detected as well.

4.2.2 Extending Passive Sensing

To deal with incomplete knowledge about the environment, GOLOG was extended with sensing
actions (Lakemeyer 1999; De Giacomo and Levesque 1999). These special actions allow an agent
to query its sensors so as to gather information about the environment. This approach has, under
certain circumstances, several drawbacks. When sensor values must be updated very frequently,
acquiring world information through sensing actions is not feasible. The agent is busy with execut-
ing sensing actions most of the time. Another problem occurs when off-line planning is interleaved
with on-line execution. If the plan relies on the on-line information, the result of planning might
be inconsistent due to wrong sensing results. It is generally not possible to plan ahead of sensing
actions when deploying an active sensing approach. As we discussed in the previous section this
is the main disadvantage of Soutchanski’s on-lineDTGOLOG approach.

What is needed is a passive sensing approach which performs updates of the sensor values in
the background. Proposals for passive sensing approaches are e.g. (Poole 1997; Grosskreutz and
Lakemeyer 2001).

78 CHAPTER 4. A GOLOG DIALECT FOR REAL-TIME DYNAMIC DOMAINS

Our approach to passive sensing is based on (Grosskreutz and Lakemeyer 2001). They propose
a system architecture where the high-level controller starts low-level processes via a so-called
action register. (We already discussed this issue; nevertheless we recap their system architecture
for a coherent presentation of the matter here). To initiate an action the high-level controller sends
a command to the register. This command is passed through to the execution module which in turn
takes care for executing of the action in the real world. From now on, the high-level controller is
no longer concerned with monitoring the execution of the action. This is done asynchronously by
the execution layer. When the execution of the action is finalized, the low-level control indicates
this by sending a reply message to the high-level controller via the action register. The high-
level controller can now react on this specific message. Between asend and areply message the
high-level controller is free for other tasks. The communication between high-level and low-level
system is realized through a special fluentregister and the two actionssend andreply . The high-
level controller invokes the low-level process with settling asend action, the low-level process
answers with areply message when the low-level process is finished (This becomes more evident
in Chapter 4.4 when discussing the implementation ofsend andreply).

With this form of communication one has to distinguish between two modes: The on-line
execution and the off-line projection task. During on-line execution the fluentregister simply
blocks until the low-level system has executed the command in the real world. Making use of
prioritized concurrency the high-level controller can go on with its program. When projecting, a
model of the low-level process is executed. Theregister fluent is also used to synchronize sensor
updates in the background. With a specialccUpdate action an exogenous event is raised which
does the sensor update. In the off-line mode the fluents are updated according to a low-level
process of the currently executed action, during on-line execution the real sensor value is used.

When dealing with a large amount of world-model information like in robotic soccer the inte-
gration of the update action takes longer than the decision cycle of the agent. Updating a complete
world model in the simulated soccer domain, for example, takes more than100mswhich is longer
than the decision cycle in the SIMULATION LEAGUE (cf. Chapter 5.2). To deal with this problem
we extended the system architecture proposed in (Grosskreutz and Lakemeyer 2001) by an explicit
world model. To access the data stored in the world model we introduce a new fluent type, the
so-calledon-line fluent. The difference to ordinary fluents is that they are directly connected to the
world model. They are initialized with the valueundefined . With a special actionexogfUpdate3

one can update the respective fluents. When the actionexogfUpdate is executed a copy of the real
sensor data at that specific moment in time is copied to the internal world model of the READY-
LOG agent. In Figure 4.5 we present the extended system architecture. As in (Grosskreutz and
Lakemeyer 2001) we use the specialregister fluent and the message passing between high-level
and low-level control. The presence of an explicit world model extends the architecture. The
special actionexogfUpdate which is sent via the register initiates an update of the world model
of the agent. The shaded arc “world” denotes the connection to the real world. One has to think
of this as a rather complex layered system architecture which has access to the actuators and can
gather data from the sensors.4 What is needed is that information taken from the real world can

3The idea behind this action is very similar to theccUpdate action proposed in (Grosskreutz and Lakemeyer 2001).
The difference is how this action is handled by the READYLOG interpreter (see Chapter 4.4).

4In Chapter 6 we show such a system when introducing our robot controlsoftware.

4.2. ON-LINE DT PLANNING WITH PASSIVE SENSING 79

send

reply

exogfUpdate

low−level
processes

high−level
controller

reg(dstRm)
reg(reached)
. . .

W
O

R
LD

world model

Figure 4.5: The Extended Architecture

be updated asynchronously on demand.5 The possibility to asynchronously update sensor values
allows for on-line passive sensing. In the on-line execution mode of the interpreter, sensor updates
arrive synchronously, or when they are explicitly triggered with anexogfUpdate action. Note that
there are no mechanisms provided to check consistency of the world model information. In the
domain implementation one has to check for consistency. In the off-line projection mode the last
world state is taken and projected with the low-level processes. This simple method provides the
interpreter with an efficient form of a passive sensing facility.

With this form of on-line passive sensing regression of on-line fluents is no longer possi-
ble. Regression is the process of reducing a formula with a complex situation term to a formula
mentioning onlyS0 for sort situation. But with on-line fluents which are updated with each occur-
rence of the actionexogfUpdate it is not possible to regress an action history over an occurrence
of exogfUpdate. Consider the following example. Letf1(do(a, s)) = v ≡ a = a1 ∧ v =

f2(s) + 1 ∨ a 6= a1 ∧ v = f1(s) be the successor state axiom of the fluentf1 with f1(S0) = 0,
and letf2 be an on-line fluent which is updated by theexogfUpdate action to take the value1,
i.e. f2(do([exogfUpdate], s0)) = 1. Now suppose the actiona1 has been performed. Then,
f1(do([a1, exogfUpdate], s0)) = 2. If another update action changes the fluent value off2 to, say
0, the result of regressing the fluent value forf1 should be be1 but in fact the value off1 is still 2.
The reason is that not the whole world model is stored for each update action. It takes only the ref-
erence to the last world model update. So, care has to be taken when using on-line fluents. When
only on-line fluents are used the problem does not exist when fluents are not regressed further as
the last update action. This yields a fast method to access values for on-line fluents, but in general
correctness cannot be guaranteed. To solve this problem, we have to use progression instead. With
progression a new initial database is computed. Progression is also indispensable for long-time
operations of a READYLOG interpreter and we discuss our approach to progression in Chapter 4.4.
So why does progression solve our problem here? When a new initial database is calculated each
time a world model update action is performed one can guarantee that no fluent refers to an old
on-line fluent value. For off-line projections or decision-theoretic planning which makes use of
regression to access fluent values this problem does not have an impact. TheexogfUpdate action is
an exogenous action which is ignored during projections anyway. This problem only occurs when
executing programs or policies on-line. We will discuss how exogenous actions are integrated
when introducing the implementation of the Readylog interpreter in Chapter 4.4.

5By ’on demand’ we mean that this feature can be turned off, for example in projections of READYLOG programs.

80 CHAPTER 4. A GOLOG DIALECT FOR REAL-TIME DYNAMIC DOMAINS

4.2.3 Execution Monitoring for Policies

As we have seen in the discussion of Soutchanski’s approach re-optimization of the remaining pro-
gram is generally not feasible in real-time domains.6 Our first modification of on-lineDTGOLOG

is to make sure that the whole policy and not just the first action is executed. For this purpose we
introduce the operatorsolve(p, h) for a programp and a fixed horizonh.

trans(solve(p, h), s, δ, s′) =

if ∃π, v, pr .BestDo(p, s, h, π, v, pr) ∧ δ = applyPol(π) ∧ s′ = s then 1

else 0

The predicateBestDo first calculates the policy for the whole programp. For now the reader
may assume the definition of Chapter 3.3.5, but we will see below that it needs to be modified. This
policy is then scheduled for execution as the remaining program. However, as discussed before,
the policy is generated using an abstract model of the world to avoid sensing, and we need to
monitor whetherπ remains valid during execution. To allow for this special treatment, we use the
special constructapplyPol , which is defined below. Note that thesolve statement never reaches a
final configuration as further transitions are needed to execute the calculated policy.

Final(solve(p, h), s, δ′, s′) ≡ false

To see why we need to modify the original definition ofBestDo and, for that matter, the one
used by Soutchanski, we need to consider, in a little more detail, the idea of using a model of
the world when planning vs. using sensor data during execution. The following fragment of the
control program of our soccer robots might help to illustrate the problem:

while game on do . . . ;

solve(. . . ;

if ∃x, y(ball pos(x, y) ∧ reachable(x, y))
then intercept

else . . . ; . . . , h)

endwhile

While the game is still on, the robots execute a loop where they determine an optimal policy
for the next few (typically less than six) actions, execute the policy and then continue the loop.
One of the choices is intercepting the ball which requires that the ball is reachable, which can be
defined as a clear trajectory between the robot and the ball. Now supposeBestDo determines that
the if-condition is true and thatintercept has the highest utility. In that case, sinceintercept
is a stochastic action, the resulting policyπ contains. . . intercept; senseEffect(intercept);
Note, in particular, that the if-condition of the original program is not part of the policy. And this
is where the problem lies. For during execution of the policy it may well be the case that the ball
is no longer reachable because an opponent is blocking the way. In that caseintercept will fail
and it makes sense to abort the policy and start planning for the next moves. Therefore, the if-
condition should be re-evaluated using the most up-to-date information about the world provided

6But see, for example, (Beetz et al. 2004) for an approach to re-optimization using learning techniques.

4.2. ON-LINE DT PLANNING WITH PASSIVE SENSING 81

by the sensors and compared to the old value. Hence we need to make sure that the if-condition
and the old truth value are remembered in the policy.

This means we need to modify the definition ofBestDo for those cases involving the evalua-
tion of logical formulas. First, we consider conditionals.

BestDo(if ϕ then p1 else p2 endif ; p,s, h, π, v, pr)
def
=

ϕ[s] ∧ ∃π1.BestDo(p1; p, s, h, π1, pr) ∧
π = M(ϕ, true);π1 ∨
¬ϕ[s] ∧ ∃π2.BestDo(p2; p, s, h, π2, v, pr) ∧
π = M(ϕ, false);π2

While-loops are treated in a similar way:

BestDo(while ϕ do p′ endwhile; p, s, h, π, v, pr
def
=

ϕ[s] ∧ ∃π1.BestDo(p′;while(ϕ, p′); p, s, h, π1, v, pr)

∧π = M(ϕ, true);π1 ∨
¬ϕ[s] ∧ ∃π2.BestDo(p; s, h, π2, v2, pr2)

∧π = M(ϕ, false);π2

The only difference compared to the originalBestDo is that we prefix the generated policy
with a markerM(ϕ, true) in caseϕ turned out to be true ins andM(ϕ, false) if it is false. The
treatment of a test actionϕ? is even simpler, since only the case whereϕ is true matters. Ifϕ is
false, the current branch of the policy is terminated, which is indicated by theStop action.

BestDo(ϕ?; p, s, h, π, v, pr)
def
=

ϕ[s] ∧ ∃π′.BestDo(p, s, h, π′, v, pr) ∧
π = M(ϕ, true);π′ ∨
¬ϕ[s] ∧ π = Stop ∧ pr = 0 ∧ v = reward(s)

Next, we will show how our annotations will allow us to check at execution time whether the
truth value of conditions in the program at planning time are still the same and what to do about
it when they are not. Before that, however, it should be mentioned that explicit tests are not the
only reason for a possible mismatch between planning and execution. To see that note that when
a primitive action is entered into a policy, the resp.BestDo predicate checks its precondition. Of
course, it could happen that the same action is no longer possible at execution time. It turns out
that this case can be handled without any special annotation.

Now that we have modifiedBestDo so that we can discover problems at execution time,
all that is left to do is to define the actual execution of a policy. Given our initial definition
of trans(solve(p, h), s, δ, s′), this means that we need to definetrans for the different cases of
applyPol(π). To keep the definitions simple, let us assume that every branch of a policy ends with

82 CHAPTER 4. A GOLOG DIALECT FOR REAL-TIME DYNAMIC DOMAINS

Stop orNil, whereNil represents the empty program.

trans(applyPol(Nil), s, δ, s′)

if s = s′ ∧ δ = Nil then 1 else 0

trans(applyPol(Stop), s, δ, s′) =

if s = s′ ∧ δ = Nil then 1 else 0

Given the fact that configurations withNil as the program are always final, i.e. execution may
legally terminate, this simply means that nothing needs to be done afterStop orNil.

In case a marker was inserted into the policy we have to check that the test performed at
planning time still yields the same result. If this is the case we are happy and continue executing
the policy, that is,applyPol remains in effect in the successor configuration. But what should we
do if the test turns out different? We have chosen to simply abort the policy, i.e. the successor
configuration hasNil as its program. While this may seem simplistic, it seems the right approach
for applications like robotic soccer. For example, consider the case of an intercept. If we find
out that the path is blocked, the intercept will likely fail and all subsequent actions in the policy
become meaningless. Moreover, a quick abort will enable immediate re-planning according to
the control program, which is not a bad idea under the circumstances. Another possibility to
handle policies which have become invalid is to try to repair them. In general, repairing a policy is
computationally as demanding as planning from scratch. Under certain circumstances re-planning
may be to be possible. We discuss this issue in Chapter 8 as future work.

trans(applyPol(M(ϕ, v);π), s, δ, s′) =

if s = s′ ∧ (v = true ∧ ϕ[s] ∧ δ = applyPol(π) ∨
v = false ∧ ¬ϕ[s] ∧ δ = applyPol(π) ∨
v = true ∧ ¬ϕ[s] ∧ δ = Nil ∨ v = false ∧ ϕ[s] ∧ δ = Nil) then 1 else 0

If the next construct in the policy is a primitive action other than a stochastic action or a
senseEffect , then we execute the action and continue executing the rest of the policy. As discussed
above, due to changes in the world it may be the case thata has become impossible to execute. In
this case we again abort the rest of the policy with the successor configuration〈Nil, s〉.

trans(applyPol(a;π), s, δ, s′) =

if ∃δ′.trans(a;π, s, δ′, s′) > 0 ∧ δ′ = applyPol(δ′) ∨
¬Poss(a[s], s) ∧ δ = Nil ∧ s′ = s then 1 else 0

If a is a stochastic action as presented in Chapter 3.3.5, we obtain

trans(applyPol(a; senseEffect(a);π), s, δ, s′) =

if ∃δ′.trans(senseEffect(a);π, s, δ′, s′) > 0 ∧ δ = applyPol(δ′)) then 1 else 0

Note the subtlety thata is ignored bytrans. This has to do with the fact that stochastic ac-
tions have no direct effects according to the way they are modeled inDTGOLOG. Instead one
needs to performsenseEffect to find out about the actual effects. ThereforesenseEffect is han-
dled separately as case (3) of theicpxeq predicate in our interpreter (cf. Chapter 4.4). The ac-
tion a is executed (execute(Act)). Then the interpreter waits until new sensor updates arrive
(wait for next update) to determine the outcome of actiona which was chosen by nature.

4.2. ON-LINE DT PLANNING WITH PASSIVE SENSING 83

Finally, if we encounter an if-construct, which was inserted into the policy due to a stochastic
action, we determine which branch of the policy to choose and go on with the execution of that
branch.

trans(applyPol(if ϕ then π1 else π2 endif), s, δ, s′) =

if ϕ[s] ∧ trans(applyPol(π1), s, δ, s
′) > 0 ∨

¬ϕ[s] ∧ trans(applyPol(π2), s, δ, s
′) > 0 then 1 else 0

If we reach the horizon we have to stop the execution of the policy, which, if nothing went
wrong, has reached a final configuration by then.

Final(applyPol(p, h), s) ≡ Final(p, s) ∨ h = 0

With these definitions we are able to detect when a policy becomes invalid during execution.
As stated above we currently handle invalid policies by simply invoke re-planning. Other possi-
bilities to handle this are left to future work.

4.2.4 Extending Stochastic Action Models

The decision-theoretic extension of GOLOG makes use of a notion of stochastic actions as intro-
duced in Chapter 3.3.5. A stochastic action is described by two deterministic actions, one referring
to the name of the stochastic action with no effect, and a number of deterministic actions denoting

the outcomes of the stochastic action. Formally, the predicatechoice(A, a, s)
def
= ψ1 ⊃ (a =

N1
1 ∨ · · · ∨ a = Nn

1) ∧ · · · ∧ ψm ⊃ (a = N1
m ∨ · · · ∨ a = Nn

m) defines the different outcomes
N1, . . . , Nk of the stochastic actionA. For ease of presentation we use the simplified, situation-

independent versionchoice′(A)
def
= {N1, . . . , Nk}, as defined in (Soutchanski 2003). Associated

with this is a probability of the occurrence of the respective outcome, defined by a set of predicates
prob(Ni, A, s) = pi with pi a probability, one for each outcome. Finally, one needs a predicate
senseCond(Ni, ϕ) which states that the outcomeNi occurred ifϕ is true.

An outcome is described by a primitive action whose effects changes the respective fluents.
Consider the example of a stochastic action withn outcomes. For each of these outcomes one
distinct primitive action has to be modeled in the domain description. Further, for each outcome
action which changes a fluent value a separate case in the successor state axiom of that fluent
has to be modeled. In larger domain descriptions with many fluents and many stochastic actions,
many different outcome actions have to be modeled and many cases in the definition of succes-
sor state axioms have to be regarded. An easier way to define an outcome of an action is to
simply state how this outcome changes a fluent value without the need to define a new primitive
action. With a simple actionset(f, v) which sets fluentf to respective valuesv the tasks could
be done.7 Thus, one can avoid a separate case for each outcome in the successor state axiom of
the respective fluent which is changed. If more than one fluent should be changed, one must allow
sequences ofsetactions. This means that an outcome then can be described by the action sequence
set(f1, v1); set(f2, v2); . . . ; set(fn, vn). The effect is the same as encoding this sequence by a sin-
gle primitive action. The advantage is, though, that the implementor can keep the overview which

7Note thatf refers to the reified version of the fluentf (cf. Section 4.1.2). This allows to take the fluent term as
argument of an action term.

84 CHAPTER 4. A GOLOG DIALECT FOR REAL-TIME DYNAMIC DOMAINS

fluents are changed without the need to remember all outcome actions. While this is an argument
from a practical point of view (which is nevertheless important when dealing with large domain
descriptions), it also means that in successor state axioms less cases have to be distinguished. The
drawback, on the other side, is that we restrict ourselves to finite domains. Implicit effects cannot
expressed with this form of setting fluent values. For example, we cannot implicitly formulate
that everything is broken in the vicinity of an exploding bomb. Instead, we must make all effects
explicit. But for practical applications this limitation did not turn out to be too restrictive.

We now alter the notion of a stochastic action to so-called stochastic procedure models in this
spirit. The idea is similar to the idea of using low-level processes to describe a model of a real-
world process and making use of theprob statement to describe probabilistic programs. We want
to stress again that the reason for introducing these special kind of model is mainly that with the
notion of stochastic models the encoding of the outcomes of a stochastic action for large domain
descriptions is simplified. In the following we define stochastic procedures and show that they are
at least as expressive as the stochastic actions introduced in Chapter 3.3.5.

A stochastic modelprocmodel is a special procedure which encodes the outcomes of a
stochastic action. An example for a stochastic procedure is

procmodel A
a; b; ϕ?; c; if ψ then δ1 else δ2 endif ;
sprob({(nsuccess), p1, ϕ1), (nfailure , 1− p1, ϕ2)})

endprocmodel

We refer to the body of a stochastic procedure asσ, the part before thesprob statement we refer
to as the preamble̺ of σ. So, the effect of a stochastic actionA can be defined by a program
which describes the outcomes of the stochastic action in terms ofσ. In the above example we
define a success case which is chosen by nature with probabilityp1, and a failure case with the
counter probability ofp1. Theϕ’s are used to distinguish which case occurred in reality later, when
the action is executed. Theϕ’s have to be mutually exclusive to distinguish the different cases.8

A stochastic action can be modeled using restricted READYLOG programs which are defined as
follows.

Definition 3 A READYLOG programσ is called restricted when the following holds:

1. σ = nil (the empty program) is restricted;

2. σ = ϕ? is restricted;

3. σ = a with a being a primitive action is restricted;

4. if σ1 andσ2 are restricted thenσ = if ϕ then σ1 else σ2 endif is restricted;

5. if σ1 andσ2 are restricted thenσ = σ1;σ2 is restricted;

6. if σ′ is restricted and does not mentionsprob then σ = σ′; sprob({(n1, p1, φ1), . . . ,

(nk, pk, φk)}) wheren1, . . . , nk are restricted programs withoutsprob, p1, . . . , pk ∈ [0, 1]

and
∑

i pi = 1.

8Note that the same applies with Reiter’s approach to stochastic actions.

4.2. ON-LINE DT PLANNING WITH PASSIVE SENSING 85

A stochastic action model may only mention tests, primitive actions, conditionals, sequences,
and a special statementsprob. sprob corresponds to theprob statement known fromPGOLOG

(cf. Chapter 3.3.4). The effect of the action can be modeled by a restricted READYLOG program.
Thesprob statement, basically, defines the same as the predicateschoice, prob, andsenseCond,
encoding a description how the world changes by an outcome chosen by nature, the probability
that nature will choose it, and a condition with which the agent is able to sense which of the
possible outcomes were chosen. The difference tochoice is that instead of referring to an action
term, we describe the effects directly by a restricted program.

For the case of a stochastic action we have to change the respectiveBestDo predicate in our
semantic definition.

BestDo(A; p, s, h, π, v, pr)
def
=

∃P.procmodel(A,P) ∧ Poss(A, s) ∧
∃π′, v′, pr ′.BestDoAux(P, p, s, h− 1, π′, v′, pr ′) (4.1)

π = a;π′ ∧ v = reward(s) + v′ ∧ pr = pr ′ ∨
¬Poss(a, s) ∧ π = Stop ∧ v = 0 ∧ pr = 0

From the definition of the procedure model for the stochastic actionA we take the procedure
body and process it with a predicateBestDoAux. For primitive actions, test, and conditionals the
definition ofBestDoAux is the same as forBestDo. We therefore omit it here. The interesting
case is thesprob statement which finally encodes the stochastic outcomes.

BestDoAux(sprob({(n1, p1, ϕ1), . . . , (nk, pk, ϕk)}, p, s, h, π, v, pr)
def
=

∃δ, s′.trans∗(n1, s, δ, s
′) > 0 ∧ Final(δ, s′) ∧

∃π′, v′, pr ′.BestDo(p, s′, h, π′, v′, pr ′) ∧
∃π′′, v′′, pr ′′.BestDoAux({(n2, p2, ϕ2), . . . , (nk, pk, ϕk)}, p, s, h, π′′, v′′, pr ′′) ∧
π = if ϕ1 then π′ else π′′ endif ∧
v = v′′ + p1 · v′ ∧ pr = pr ′′ + p1 · pr ′ ∨
∀δ, s′.¬(trans∗(n1, s, δ, s

′) > 0 ∧ Final(δ, s′)) ∧
BestDoAux({(n2, p2, ϕ2), . . . , (nk, pk, ϕk)}, p, s, h, π, v, pr)

BestDoAux(sprob({(n1, p1, ϕ1)}), p, s, h, π, v, pr)
def
=

∃δ, s′.trans∗(n1, s, δ, s
′) > 0 ∧ Final(δ, s′) ∧

∃π′, v′, pr′.BestDo(p, s′, h, π′, v′, pr ′) ∧ π =?ϕ1; pi
′ ∧ v = v′ · p1 ∧ pr = pr ′ · p1 ∨

¬(∃δ, s′.trans∗(n1, s, δ, s
′) > 0 ∧ Final(δ, s′)) ∧

π = Stop ∧ v = 0 ∧ pr = 0

We are interested in the appropriate continuation of the remaining policy in the situations′.
s′ is the situation which describes the world after the projection ofn1. The projection can be
done with the predicatetrans∗ asn mentions only primitive (deterministic) actions, tests, and
conditionals. The remaining policy is computed withBestDo over programp (the rest program)
in situations′. Similar toDTGOLOG we have, for each outcome mentioned bysprob, to introduce

86 CHAPTER 4. A GOLOG DIALECT FOR REAL-TIME DYNAMIC DOMAINS

a conditional into the policyπ. The value of the remaining policy is appropriately weighted with
the probabilitypi of the occurrence of the outcomeni.

So what do we obtain from this form of stochastic action models? The implementation of
models is more intuitive for the implementor, she does not have to model many primitive actions
which describe the effect of an outcome, and she does not need to keep them in mind when mod-
eling a stochastic action. This is an advantage for the practitioner implementing large domains.
We give an example of such a stochastic procedure model on page 178 in Chapter 6.6 where we
describe an “intercept ball” action in the context of the robotic soccer domain.

The next question concerns correctness of our approach w.r.t. the policies calculated with our
stochastic action models in comparison to the original approach used inDTGOLOG. If, our new
approach calculates the same policies for the same stochastic actions, then it calculates the correct
result. First note the difference in the semantic definition ofsprob andchoice. In the original
approach the outcomes of a stochastic action were modeled by primitive actions. Our extension,
though, allows for restricted programs as models for the outcomes of an stochastic action. What
we show in the following is that the newsprob statement when applied to primitive actions yields
the same policies than the original approach to stochastic actions inDTGOLOG, and thus our
approach yields correct results. We further show that each restricted READYLOG program can be
expressed by a new program consisting of a primitive action only, which together with a new basic
action theory models the effect of the restricted program. We start with some Lemmas showing
that sequences of primitive actions, test action, and conditionals, can be simulated by primitive
actions. The results of these are summarized in Theorem 2. Finally, we show that both semantics
calculate the same policies. But first, we need the following theorem form Pirri and Reiter which
states that the regression operator does not change the validity of formula.

Theorem 1 (Pirri and Reiter 1999) LetD be a basic action theory,α a situation calculus for-
mula, andR be the regression operator introduced in Definition 2 on page 44. Then,D |= α ≡
R[α].

Now, we are able to show that the effects of an arbitrary long sequence of actions can also be
imparted to the world by a single primitive action. Of course, the new action may only be possible
iff the original sequence is possible. Therefore, we also have to care for the precondition axioms
of the action. In an earlier paper, Gu (2003) used the same idea to model stochastic macro actions.
In her paper though, the claim that a sequence of actions can be simulated by a single primitive
action was not proved. Moreover, from the proof below we yield a construction method for a new
basic action theoryD′ which entails our new action.

Lemma 1 Letσ = a1; . . . ; an be a sequence of primitive actions. LetD be a basic action theory
with Dap the set of precondition axioms andDssa the set of successor state axioms. Letα be a
new action with the precondition axiomPoss(α, s) ≡ Πα with

Πα
def
= R

[

Poss(a1, s) ∧
(

n
∧

i=2

Poss (ai, do ([a1; · · · ; ai−1] , s))

)]

, (4.2)

Dα
ap = Dap ∪ {Πα} be the new set of precondition axiom for actionα, and the effects of actionα

4.2. ON-LINE DT PLANNING WITH PASSIVE SENSING 87

are such that the setDα
ssa of successor state axioms for fluentsF can be derived as:

F (~x, do(a, s)) ≡ (a 6= α) ∧ [F (~x, s) ∧ ¬γ−F (~x, a, s) ∨ γ+
F (~x, a, s)] ∨ (a = α) ∧ Φσ

F

with

Φσ
F

def
= R

[

F (~x, s) ∧
n
∧

i=1

¬γ−F (~x, ai, do([a1, . . . , ai−1], s))∨ (4.3)

n
∨

i=1

γ+
F (~x, ai, do([a1, . . . , ai−1], s) ∧

n
∧

j=i+1

¬γ−F (~x, aj , do([a1, . . . , aj−1], s))

LetDα = D ∪Dα
ap ∪ Dα

ssa, then,

1. Dα |= Poss(α, s) iff D |= Poss([a1, . . . , an], s)9, and

2. Dα |= F (~x, do(α, s)) iff D |= F (~x, do([a1, . . . , an], s)).

When a sequence of actions is to be executed, each single action must be possible in that
sequence given that the previous action was also possible. This is exactly what the formula
Poss(α, s) in Eq. 4.2 above describes. It means in order to simulate a sequence of actions by
one single new action, each precondition axiom of the original action sequence must be satisfied.
Similarly, the successor state axioms must describe the outcome of the whole action sequence.Φσ

F

is a formula which describes the successor state axiom formula for sequences of actions. In the
new successor state axiom we distinguish between the new action and the old ones. In the former
case we make use of the new effect formula for the action sequence with Eq. 4.3, otherwise we
apply the ’old’ successor state axiom.

Proof of Lemma 1. Assume for now that the formulasΠα andΦσ
F are correct and describe the

precondition as well as the sucessor state of a sequence of actions.

1. (a) We start with the propositionDα |= Poss(α, s) if D |= Poss([a1, . . . , an], s). Equation 4.2
states thatPoss(α, s) ≡ R[Poss(a1, s)∧

∧n
i=2 Poss(ai, do([a1, . . . , ai−1], s) by construc-

tion ofDα. If D |= Poss([a1, . . . , an], s) ≡ Poss(a1, s)∧
∧n

i=2 Poss(ai, do([a1, . . . , ai−1], s)

it follows from the fact thatD ⊂ Dα and from Theorem 1 that alsoDα |= Poss(α, s).

1. (b) D |= Poss([a1, . . . , an], s) if Dα |= Poss(α, s). LetM be a model andν be a variable
assignment fors such thatM,ν |= D, and letM ′ be a model identical toM except forM ′ |=
Πα. M andM ′ assign the same truth value to all formulas except forΠα. It follows that
M ′, ν |= Dα. This follows directly from the proposition, Theorem 1, the UNA for actions,
and the fact thatDα = D ∪ Dα

ap ∪ Dα
ssa. Now suppose thatM ′, ν 6|= Poss([a1, . . . , ai], s)

for somei. Then it must follow thatM ′, ν 6|= Poss(α, s) which contradicts the antecedent
of the proposition. Thus, the propositionD |= Poss([a1, . . . , an], s) if Dα |= Poss(α, s)

follows.

Analogously, we show the second proposition from Lemma 1.

9Poss([a1, . . . , an], s) is an abbreviation forPoss(a1, s) ∧
Vn

i=2
Poss(ai, do([a1, . . . , ai−1], s)).

88 CHAPTER 4. A GOLOG DIALECT FOR REAL-TIME DYNAMIC DOMAINS

2. (a) Dα |= F (~x, do(α, s)) if D |= F (~x, do([a1, . . . , an], s)). Similar to the precondition axiom
in case 1 we argue that assumed that Eq. 4.3 is correct,Dα |= F (~x, do(α, s)) asD ⊂
Dα. If D entailsF (~x, do([a1, . . . , an], s)) then, by construction ofDα and Theorem 1,
F (~x, do(α, s)) is entailed byDα.

2. (b) D |= F (~x, do([a1, . . . , an], s)) if Dα |= F (~x, do(α, s)). Again, letM be a model andν be
a variable assignment fors such thatM,ν |= D, letM ′ be likeM except forM ′, ν |= Φσ

F .
It follows that alsoM ′, ν |= Dα. Suppose thatM ′, ν 6|= F (~x, do([a1, . . . , ai], s) for somei.
Assuming that Eq. 4.3 describes the successor state axiom for an action sequence correctly,
then it also must follow thatM ′, ν 6|= F (~x, do(α, s)). This leads again to a contradiction
from which the proposition follows. �

What remains to be shown is that Eq. 4.3 describes the successor state axiom for a sequence
of actions in a correct way.

Lemma 2 Let σ = a1; . . . ; an be sequence of primitive actions and letΦσ
F (s) be as given in

Eq. 4.3 in Lemma 1. Then,F (~x, do([a1, . . . , an], s)) ≡ Φσ
F (s) describes the successor state

axiom forσ.

Proof. We show the proposition by induction over the action length.l = 0: It follows from Eq. 4.3
thatF (~x, s) ≡ F (~x, s) which is obviously true.l = 1: From Eq. 4.3 it follows that

F (~x, do(a1, s)) ≡ F (~x, s) ∧ ¬γ−F (~x, a1, s) ∨ γ+
F (~x, a1, s)

which is the normal form for successor state axioms.l = n + 1 : Assume that Eq. 4.3 describes
the successor state axiom forF mentioning the action sequencea1; . . . ; an. According to Eq. 4.3

Φσ
F (~x, do([a1, . . . , an], s)) ≡
R[F (~x, s) ∧ ¬γ−F (~x, a1, s) ∧ · · · ∧ ¬γ−F (~x, an, do([a1, . . . , an−1], s)) ∨
γ+

F (~x, a1, s) ∧ ¬γ−F (~x, a2, do(a1, s)) ∧ ¬γ−F (~x, a3, do([a1, a2], s)) ∧ · · · ∨ (4.4)

γ+
F (~x, an−1, do([a1, . . . , an−2], s)) ∧ ¬γ−F (~x, an, do([a1, . . . , an−1], s)) ∨

γ+
F (~x, an, do([a1, . . . , an−1], s))].

Now suppose the actionan+1 is executed after the sequencea1; . . . ; an. According to the normal
form for successor state axioms the fluentF has the value

F (~x, do([a1, . . . , an, an+1], s)) ≡
F (~x, do([a1, . . . , an], s)) ∧ ¬γ−F (~x, an+1, do([a1, . . . , an], s)) ∨ γ+

F (~x, an+1, do([a1, . . . , an], s))

Substituting the right-hand side of the equivalence in Eq. 4.4 forF (~x, do([a1, . . . , an], s)) yields

F (~x, do([a1, . . . , an, an+1], s)) ≡
[

R[F (~x, s)) ∧ ¬γ−F (~x, a1, s) ∧ · · · ∧ ¬γ−F (~x, an, do([a1, . . . , an−1], s))∨
γ+

F (~x, a1, s) ∧ ¬γ−F (~x, a2, do(a1, s)) ∧ · · · ∨
γ+

F (~x, an−1, do([a1, . . . , an−2, s])) ∧ ¬γ−F (~x, an, do([a1, . . . , an−1], s))∨
γ+

F (~x, an, do([a1, . . . , an−1], s))]
]

∧
¬γ−F (~x, an+1, do([a1, . . . , an], s)) ∨ γ+

F (~x, an+1, do([a1, . . . , an], s)) (∗)

4.2. ON-LINE DT PLANNING WITH PASSIVE SENSING 89

Distributing the formula¬γ−F (~x, an+1, do([a1, . . . , an], s)) (∗) over the disjunction yields Eq. 4.3
for the action sequencea1, . . . , an+1. Thus, by induction it is shown that Eq. 4.3 describes the
effects of an action sequence w.r.t.F ’s value.

�

Corollary 1 Let σ = a1; . . . ; an be a sequence of primitive actions, and letα be a new action
with precondition axioms and effect axioms as in Lemma 1. ThenDα |= ∃s′′.Do(α, s, s′′) iff
D |= ∃s′.Do(a1; . . . ; an, s, s

′).

As a direct consequence of Lemma 1 and Lemma 2 it follows that sequences of actions can
be modeled by a primitive action having the same effects and equivalent preconditions. Next, we
consider the case of how a test action can be simulated by a single primitive action.

Lemma 3 Letσ = ϕ? be a test action. Letα be new primitive action with a precondition axiom
Poss(α, s) ≡ ϕ and no effects, i.e.F (~x, do(α, s)) ≡ F (~x, s). LetDα = D∪{Poss(α, s)}. Then
Dα |= ∃s′′.Do(α, s, s′′) iff D |= ∃s′.Do(ϕ?, s, s′).

Proof. The semantic definition of a test action yields that a test succeeds ifD |= ∃s.Do(ϕ?, s, s) ≡
ϕ[s]. From the construction ofDα it follows thatDα |= (Poss(α, s) ≡ ϕ[s]) iff D |= ϕ[s]. As
the actionα has no effects, it follows that for all fluentsF and all actionsa: D |= F (~x, do(a, s))

iff Dα |= F (~x, do(α, s)). �

Lemma 4 Letσ = (if ϕ then a1 else a2 endif) be a conditional,a1, a2 be primitive actions,
Φa1

(s) ≡ R[F (~x, do(a1, s))] andΦa2
(s) ≡ R[F (~x, do(a2, s))]. Further, letα be a new primitive

action withPoss(α, s) ≡ R[ϕ[s] ∧ Poss(a1, s) ∨ ¬ϕ[s] ∧ Poss(a2, s)] its precondition axiom
andDα

ssa a set of successor state axioms

F (~x, do(a, s)) ≡ (a 6= α) ∧ [F (~x, s) ∧ ¬γ−F (~x, a, s) ∨ γ+
F (~x, a, s)] ∨

(a = α) ∧ (ϕ[s] ∧ Φa1
(s) ∨ ¬ϕ[s] ∧ Φa2

(s)).

LetDα = D∪{Poss(α, s)}∪Dα
ssa. Then,Dα |= ∃s′′.Do(α, s, s′′) iff D |= ∃s′.Do(if ϕ then a1

else a2 endif , s, s′).

Proof. For the conditional, we can derive

D |= ∃s′.Do(if ϕ then a1 else a2 endif , s, s′)
def
= Do([ϕ?; a1]|[¬ϕ?; a2], s, s

′) ≡ Do(ϕ; a1, s, s
′) ∨Do(¬ϕ; a2, s, s

′)

≡ ∃s′′.Do(ϕ?, s, s′′) ∧Do(a1, s
′′, s′) ∨ ∃s′′.Do(¬ϕ?, s, s′′) ∧Do(as, s

′′, s′)

≡ ∃s′′.ϕ[s] ∧ s′′ = s ∧ Poss(a1, s
′′) ∧ s′ = do(a, s) ∨

∃s′′.¬ϕ[s] ∧ s′′ = s ∧ Poss(a2, s
′′) ∧ s′ = do(a2, s)

This means that eitherD |= ∃s.ϕ[s] ∧ Poss(a1, s) or D |= ∃s.¬ϕ[s] ∧ Poss(a2, s). Regarding
the logical formula derived from executing the actionα

Dα |= ∃s′′.Do(α, s, s′′)
def
= ∃s′′.Poss(α, s) ∧ s′′ = do(α, s)

≡ R[ϕ[s] ∧ Poss(a1, s) ∨ ¬ϕ[s] ∧ Poss(a2, s)] ∧ s′′ = do(α, s)

90 CHAPTER 4. A GOLOG DIALECT FOR REAL-TIME DYNAMIC DOMAINS

it is apparent that eitherϕ[s] ∧ Poss(a1, s) or ¬ϕ[s] ∧ Poss(a2, s) is entailed byDα. As Dα

is constructed fromD it follows thatD |= ∃s.ϕ[s] ∧ Poss(a1, s) ∨ ¬ϕ[s] ∧ Poss(a2, s) iff
Dα |= ∃s.Poss(α, s).

The effects of the conditional are either the effects of actiona1 or of actiona2 depending on
ϕ, i.e.D |= ∃s.ϕ[s]∧ [F (~x, do(a1, s)) ≡ Φa1

(s)] orD |= ∃s.¬ϕ[s]∧ [F (~x, do(a2, s)) ≡ Φa2
(s)].

For the new action it holds thatDα |= F (~x, do(α, s)) ≡ (ϕ[s] ∧Φa1
(s) ∨ ¬ϕ[s] ∧Φa2

). Thus,D
andDα entail the same effects for the conditional and for the new primitive action, resp. The other
direction is trivial as ifDα exists and entails the effects for actionα then there must also existsD
entailing either the effects of actiona1 or a2 depending onϕ. Hence, the proposition follows.�

We have shown that sequences of primitive actions, conditionals mentioning primitive and test
actions can be modeled by a new primitive action with equivalent effects and preconditions. Next,
we show that we can model restricted programs withoutsprob’s by a single primitive action.

Theorem 2 For every restricted programσ without sprob there is an augmented basic action
theoryDσ and a primitive actionα such that for all fluentsF

Dσ |= ∀~x, s′.Do(σ, s, s′) ⊃ [Poss(α, s) ∧ F (~x, s′) ≡ F (~x, do(α, s))]

Proof. We show the proposition by induction over the program structure ofσ.

1. Let σ = a be a single primitive action. The proposition follows from Corollary 1 with
α being constructed as in Lemma 1. Ifs′ exists thena is executable ands′ = do(a, s)

(cf. also Eq. 3.15 on page 45). Letα be a new action constructed froma as in Lemma 1
and sequence length1. From the construction ofα it follows that (disregarding unique
names)F (~x, s′) ⊃ F (~x, do(α, s)) for eachF in Dα. The antecedent of the implication in
the proposition assures that the situations′ is executable, i.e.Poss(a, s) holds; therefore
alsoPoss(α, s) holds by the construction given in Lemma 1. The other direction directly
follows from Lemma 1 and Corollary 1.

2. Letσ = ϕ?. Letα be a primitive action constructed as in Lemma 3. In this cases′ = s iff
ϕ[s] holds. Thus,F (~x, s′) = F (~x, s). From the construction of the actionα according to
Lemma 3 we get thatPoss(α, s) ≡ ϕ[s], further, actionα does not changeF ’s successor
state axiom. This means that ifϕ holds, the right-hand side of both equivalences hold, and
with this the proposition follows.

3. Letσ = if ϕ then a1 else a2 endif with a1 anda2 being primitive actions. We construct
a primitive actionα as stated in Lemma 4. Eithers′ = do(a1, s) or s′ = do(a2, s). From
the existence ofs′ we know that eithera1 or a2 is executable depending on the truth value of
ϕ[s]. This means that eitherDα |= ∃~x, s′.ϕ[s]∧s′ = do(a1, s) orDα |= ∃~x, s′.¬ϕ[s]∧s′ =

do(a2, s). From this follows that eitherF (~x, do(a1, s)) is true (or false), orF (~x, do(a2, s))

is true (or false), resp. IfDα |= ϕ[s] thenF (~x, do(α, s)) ≡ F (~x, do(a1, s)), otherwise
F (~x, do(α, s)) ≡ F (~x, do(a2, s)). Finally, from the construction ofα given in Lemma 4
it follows that Poss(α, s) ≡ ϕ[s] ∧ Poss(a1, s) ∨ ¬ϕ[s] ∧ Poss(a2, s). Thus, ifDα |=
∀~x, s.ϕ[s] ∧ s′ = do(a1, s) ⊃ F (~x, s′) ≡ F (~x, do(α, s)) then alsoDα |= ∀~x, s.ϕ[s] ∧ s′ =

do(a1, s) ⊃ F (~x, s′) ≡ Poss(α, s) ∧ F (~x, do(α, s)).

4.2. ON-LINE DT PLANNING WITH PASSIVE SENSING 91

In the induction step we have to distinguish the same cases. We begin with the case of a
primitive action.

1. Now letσ = a; ̺. Assume that the induction hypothesis holds, that is, an augmented basic
action theoryDα and a new primitive actionα for the program̺ exists. According to
Lemma 1 there is an augmented action theoryDσ which entails a new actionβ having the
same preconditions and effects as the action sequence. Hence, the proposition follows.

2. Letσ = ϕ?; ̺. Assuming that the induction hypothesis holds we have a primitive actionα

and basic action theoryDα which models the preconditions and effects of̺. With Lemma 3
we yield a new primitive actionβ with Dβ |= ∃s.Do(ϕ?, s, s′). According to the previous
case for primitive actions, we now can construct another actionγ and a basic action theory
Dγ with: Dγ |= ∀~x, s′.Do(σ, s, s′) ⊃ [Poss(γ, s) ∧ F (~x, s′) ≡ F (~x, do(γ, s))].

3. Let σ = if ϕ then ̺1 else ̺2 endif . Assume that the induction hypothesis holds, i.e.
that we have two primitive actionsα1 andα2 together with their basic action theoriesDα1

andDα2 . α1 is a new primitive action for̺ 1, α2 for ̺2. We now construct, according
to Lemma 4, a new primitive actionβ. As has been shown in Lemma 4, constructing a
primitive action from a conditional consisting of primitive actions is correct. Therefore,
Dβ |= ∀~x, s′.Do(σ, s, s′) ⊃ [Poss(β, s) ∧ F (~x, s′) ≡ F (~x, do(β, s))].

�

The above theorem shows that each restricted program withoutsprob can be simulated by
a single primitive action. Now, we have the prerequisites to see that thechoice, prob, and
senseCond predicates as used in Reiter’s approach to stochastic action models can be equiva-
lently expressed with our newsprob statement.

Theorem 3 Let D be a basic action theory, letn1, . . . , nk be primitive actions,p1, . . . , pk be
probabilities withpi ∈ [0, 1] and

∑

i pi = 1, andϕ1(s), . . . , ϕk(s) situation-dependent logi-

cal formulas. Further, letchoice(A, a, s)
def
= ϕ1(s) ⊃ (a = n1) ∧ · · · ∧ ϕk(s) ⊃ (a = nk)

andprob(n1, a, s) = p1, . . . , prob(nk, a, s) = pk, andprocmodel A sprob({(n1, p1, ϕ1), . . . ,

(nk, pk, ϕk)}) endprocmodel be a stochastic procedure model. Then,

D |= ∃(π′, π′′, v′, v′′, pr ′, pr ′′).
BestDoAux(sprob({(n1, p1, ϕi), . . . , (nk, pk, ϕk)}), a, p, s, h, π′, v′, pr′) ∧

BestDoAux({n1, . . . , nk}, a, p, s, h, π′′, v′′, pr′′) ⊃
π′ = π′′ ∧ v′ = v′′ ∧ pr′ = pr′′

Proof. In the following we show that the policies, values, and success probabilities are the same,
regardless if we calculate the policy with the original approach or with stochastic procedures,
given the premises above. This result then shows the correctness of our stochastic procedure
model when applied the same way as Reiter’s stochastic action approach. (1) Assume that the
respective outcome action is not possible. Then,

BestDoAux ({nk}, a, p, s, h, π, v, pr)
def
=

¬Poss(nk, s) ∧ π = Stop ∧ v = 0 ∧ pr = 0 (4.5)

92 CHAPTER 4. A GOLOG DIALECT FOR REAL-TIME DYNAMIC DOMAINS

for the original stochastic action, and

BestDoAux(sprob({(nk, pk, ϕk)}), a, p, s, h, π, v, pr)
def
=

¬(∃δ, s′.trans∗(nk, s, δ, s
′) > 0 ∧ Final(δ, s′)) ∧ π = Stop ∧ v = 0 ∧ pr = 0 (4.6)

It was shown by De Giacomo et al. (2000) and Grosskreutz (2002) thatD |= Do(̺, s, s′) ≡
trans(̺, δ, s′, δ′) > 0∧Final(̺, s′). As,D |= ∀s.¬Poss(nk, s) ≡ ¬(∃δ.trans(nk, s, δ, do(nk, s)) >

0∧Final(δ, s′)), the same policies, values, and success probabilities are generated in the case that
the single primitive actionnk is not possible. Thus, both right-hand sides of Eq. 4.5 and 4.6 are
equivalent. Now, assumenk is possible. Then, with the original approach, the formula

BestDoAux ({nk}, a, p, s, h, π, v, pr)
def
=

Poss(nk, s) ∧ senseCond(nk, ϕk) ∧ ∃π′, v′, pr ′.BestDo(p, do(nk, s), h, π
′, v′, pr ′) ∧

π = ϕk?;π
′ ∧ v = v′ · prob(nk, a, s) ∧ pr = pr ′ · prob(nk, a, s)

is expanded, while our approach expands

BestDoAux(sprob({(nk, pk, ϕk)}), p, s, h, π, v, pr)
def
=

∃δ, s′.trans∗(n1, s, δ, s
′) > 0 ∧ Final(δ, s′) ∧

∃π′, v′, pr′.BestDo(p, s′, h, π′, v′, pr ′) ∧ π = ϕk?;π
′ ∧ v = v′ · pk ∧ pr = pr ′ · pk

As s′ in the latter case iss′ = do(nk, s) andprob(nk, s, a) = pk, it is obvious that both formulas
calculate the same policies, values, and success probabilities.

Now assume that there is more than one possible outcome action given, and assume that the
induction hypothesis holds, i.e. both models generate the same policies, values, and probabilities
up to the current action. Now, we take a next primitive outcome actionnk+1 into account. Again,
we first review bothBestDo formulas. The original approach yields:

BestDoAux ({nk, nk+1}, a, p, s, h, π, v, pr)
def
=

Poss(nk, s) ∧ (∃π′, v′, pr ′).BestDoAux ({nk, nk+1}, p, s, h, π′, v′, pr ′) ∧
∃πk, vk, prk.BestDo(p, do(nk, s), h− 1, πk, vk, prk) ∧ senseCond(nk, ϕk)

π = if ϕk then πk else π′ endif ∧
v = v′ + vk · prob(nk, a, s) ∧ pr = pr ′ + pk · prob(nk, a, s).

With the novel approach one gets the formula

BestDoAux(sprob({(nk, pk, ϕk), (nk+1,pk+1, ϕk+1)}, p, s, h, π, v, pr)
def
=

∃δ, s′.trans∗(nk, s, δ, s
′) > 0 ∧ Final(δ, s′) ∧

∃π′′, v′′, pr ′′.BestDoAux({(nk+1, pk+1, ϕk+1)}, p, s, h, π′′, v′′, pr ′′) ∧
∃π′, v′, pr ′.BestDo(p, s′, h− 1, π′, v′, pr ′) ∧
π = if ϕk then π′ else π′′ endif ∧
v = v′′ + pk · v′ ∧ pr = pr ′′ + pk · pr ′

As in the latter cases′ = do(nk, s) both formulas are equivalent and yield the same policy, value,
and probability of success. In the next recursion the already shown case of a single primitive action

4.3. SPEEDING UP PLANNING 93

occurs showing that both formulas are equivalent. The case thatnk is not possible is similar to the
case of a single non-possible outcome action and is therefore omitted here. Hence, for primitive
actions, our stochastic procedure approach yields the same results as the original one. �

From the previous results it is obvious that we can use our stochastic procedure model ba-
sically the same way as the original stochastic action model. As a real extension to the original
model note that our definition of restricted programs also allowssprob statements to appear inside
conditionals. With this we have the possibility to formulate conditional stochastic models with
several sets of outcomes. Consider the following model:

procmodel A

if ψ then sprob((n1, p1, ϕ1), . . . , (nk, pk, ϕk))

else sprob((nk+1, pk+1, ϕk+1), . . . , (nk+m, pk+m, ϕk+m))

endprocmodel

Depending onψ either the outcomesn1, . . . , nk are chosen, or the outcomesnk+1, . . . , nk+m for
the case that¬ψ holds. Thus, at a time always one outcome set is ’active’. With this, prerequisites
like

∑

i pi = 1 are satisfied when executing the policy. To formally satisfy these properties, one
has to transform such action models in the following way: (1) For each different set of outcomes
introduce a new stochastic actionAi containing only onesprob statement each; (2) rewrite the
original procedure model such that it contains the conditional in the form

procmodel A

if ψ then A1 else A2 endif

endprocmodel

This yields a number of stochastic actions with only onesprob statement for which thechoice
andprob statements can be easily established. In the interpretation of the stochastic procedure the
last mentioned transformation is opaque asprocmodel’s have a similar semantics as procedures
in GOLOG. The name of the procedure is expanded to its body and the body is further interpreted.
Therefore, the conditional in the procedure model ofA is interpreted as if it would appear in the
DTGOLOG code.

4.3 Speeding Up Planning

So far we showed the semantics of the READYLOG constructs and the integration of decision-
theoretic planning̀a la DTGOLOG in the READYLOG framework. We are interested in designing
a robot programming language which supports the development of controller programs for robots
acting in dynamic real-time domains. The aspect of the real-time ability is very important for fast
robots in dynamic domains. Therefore, we must think about how computation times for policy
generation could be further reduced in practice.

In the following we present several extensions which speed up the calculation of an optimal
policy. The first extension, the macro actions or options, is an approach to reduce the action
space for solving MDPs. The second extension, caching, reduces the computation time of the

94 CHAPTER 4. A GOLOG DIALECT FOR REAL-TIME DYNAMIC DOMAINS

��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������

G

S

��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������

S

Figure 4.6: The Maze Domain with Macro-Actions (after (Hauskrecht et al. 1998)).

forward search planning algorithm by exploiting the fact that states of the MDP to be solved are
represented by multiple different action histories. Further, we present some ideas to prune the
tree while calculating a policy. While optimality cannot be guaranteed any longer it saves a lot of
computation time. Finally, we extend the forward search value iteration algorithm to an any-time
algorithm. With this extension it is possible to set a time bound instead of a horizon. A policy is
then calculated until the bound for the computation is reached.

4.3.1 Options

When solving an MDP in READYLOG one uses nondeterministic choices of actions for expressing
the choice points of the agents where the different choices are optimized away, and stochastic
action outcomes to describe the uncertainty of the agent about the success of its actions. For
the forward search value iteration algorithm this means that it must branch at every agent choice
point and at every point where nature can choose the current outcome of an action. Thus, the
computation tree grows exponentially in the number of choices. To reduce the complexity the
concept of macro actions from classical AI planning is adapted to the MDP context. In classical
planning, a macro is defined by a sequence of actions. This sequence builds a more complex action
which can be used for planning. By this hierarchy of actions, the complexity of the planning task
can be reduced.

For decision-theoretic planning with stochastic action outcomes the idea of building macros as
in classical planning does not apply. Instead, one has to represent macros over MDPs or options
as conditional sub-plans. To illustrate the idea of options we start with a simple example.

An Example

In our grid world example we have seen that in the full planning approach the agent can choose
between four actions which have four possible outcomes each. Thus, at each stage of the algorithm
16 nodes have to be expanded. Solving the navigation task for large domains becomes infeasible,
even with the forward search value iteration approach fromDTGOLOG. Therefore one has to
identify appropriate sub-tasks to reduce the complexity of the task.

Sub-tasks for finding the way to the goal are to leave certain rooms and enter other ones.
Accordingly, to reach the goal from the start state “S” one possibility is to execute the action

4.3. SPEEDING UP PLANNING 95

��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������

G

S

Figure 4.7: Options for the Maze66 domain from (Hauskrecht et al. 1998).

sequence

leaveroom 1 north; leaveroom 2 east; leaveroom 4 east.

Figure 4.6 depicts the situation. There are two possibilities to leave room 1: leave it through
the northern entrance or through the eastern one. The blue spots in Figure 4.6 depict the two
possibilities. The other entrance fields are marked with the gray circles. This example shows that
only three actions are needed to reach the goal, instead of minimal 8 actions when using the basic
actions from the setAbase (defined on page 72 where we introduced the maze domain). We can
obviously reduce the number of expanded nodes in the calculation tree with these actions, when
we are searching for the optimal policy for the navigation problem.

Clearly, one could define basic actions for leaving a room. Then, one additionally has to
specify the behavior the agent should take when it is located inside a room. But this is not needed
as we can make use of decision-theoretic planning. This, moreover, yields optimal behavior for
leaving a room. We can relax the original problem to the problem of leaving Room 1, solve this
problem and save the policy, the value, and the probability of success. Later, when solving the
original problem we could use the results of solving the MDP which leaves room 1. Figure 4.7
shows the solution of one of the identified sub-tasks for Room 6. The arrows represent the optimal
policy for leaving Room 6.

As Room 1 has two different doors to neighboring rooms we have to define two different
options, one for leaving through the northern door, and one for leaving the room through the
eastern door.

Why do we have to distinguish between both doors? The reason is even if we want to leave
the room through the northern door, it might be the case that the agent ends up in room 3 due
to failing basic actions. Consider the agent being located on position(3, 2). The optimal policy
should take the agent to position(3, 3) with a go up action. But if the action fails and nature
chooses ago right action we end up in room 3. This is obviously not what we wanted. Therefore,
this case should be declared as a failure case for the macro actionleaveroom 1 north.

For each room we have to identify one macro action for each door, solve the MDP of the sub-
task and store the result. The results can then be re-used for solving the task of reaching the goal
position.

96 CHAPTER 4. A GOLOG DIALECT FOR REAL-TIME DYNAMIC DOMAINS

Theoretical Background

The idea of using macro actions is not new, and also in the context of MDPs some work on that
matter exists. For example Sutton et al. (1999) investigate macro action, so-called options, in the
reinforcement learning context in a similar domain.

Definition 4 (Options (Sutton et al. 1999))An optionO is defined as the triple〈I, π, β〉, over
an MDPM = 〈S,A, T,R〉, where

• I ⊆ S the initiation set,

• π : S ×A→ [0, 1] a policy, and

• β : S+ → [0, 1] a termination condition.

If the agent is in a state from the initiation set, the option is applicable. If the agent decides
to execute the option, actions are selected according to the policyπ until the option terminates
stochastically according toβ. A natural assumption is that for all statess with β(s) < 1: s ∈ I.
Thus, all statess′ with s′ ∈ S\I have a termination probability of1 and it suffices to defineπ over
states inI. Sutton et al. (1999) prove that an option equipped with an appropriate transition model
and a reward function can be used together with primitive actions to generate an optimal policy
for the original problem.

The work of (Hauskrecht et al. 1998) also bases on Sutton et al. (1999). They define a macro-
action as a policy for a certain region of the state space. Theregion-based decompositionof an
MDP is a partitioningΠ = {S1, . . . , Sn} where theSi are calledregion. Each region has a set
of entry statesEPer(Si) and ofexit statesXPer(Si) (the marked fields in Figure 4.7). Similarly,
they define the termination condition as

β(s) =

{

0.0, s ∈ I
1.0, otherwise

and the policy as

π : I ×A→ {0, 1} and thus asπ : I → A.

With this definition of a policy one can define the transition model of an MDP over policies. This
allows for using options the same way like primitive actions.

Definition 5 (Discounted Transition Model (Hauskrecht et al. 1998))A discounted transition
modelTr i(·, πi, ·) for a macro actionπi defined on regionSi is a mappingTr i : Si×XPer(si)→
[0, 1] such that

Tr i(s, πi, s
′) = E

[

γt−1Pr(sτ = s′|s0 = s, πi)
]

=
∞
∑

t=1

γt−1Pr(τ = t, st = s′|s0 = s, πi)

whereτ denotes the time of termination ofπi. A discounted reward modelRi(·, πi) for πi is a
mappingRi : Si → IR such that

Ri(s, πi) = Eτ

[

τ
∑

t=0

R(sτ , πi(s
t)|s0 = s, π)

]

4.3. SPEEDING UP PLANNING 97

For each states ∈ Si the probability of leaving this region through an exit states′ ∈ XPer(Si)

is defined by this model. Note that the model is discounted by the expected time until leaving the
region. Also note that the transition model is defined over a policy not over actions. Precup
et al. (1998) showed in their Composition Theorem that it is possible to solve a discounted MDP
optimally also if macro actions are used.

For each states ∈ S, s′ ∈ XPer(s) the discounted probability for macroπi satisfies

Tr i(s, πi(s), s
′) = Tr(s, πi(s), s

′) + γ
∑

s′′∈Si

Tr(s, πi(s), s
′′)Tr i(s

′′, πi, s
′),

defining a system of|Si| linear equations for each exit states′. Tr is the transition model for the
global MDP, whileTr i is the model for the macroπi.

So, the idea of using macro actions in the MDP context is to define local MDPs for partitions
of the state space together with their peripheral states, calculate the solution for the local MDP
and use it again when solving the global MDP. LetSi be a region of MDPM = 〈S,A,Tr , R〉 and
let σ : XPer(Si) → IR be a seed function forSi. The local MDPMi(σ) associated withSi and
σ consists of (1) the state spaceSi ∪ XPer(Si) ∪ {α} whereα is a new reward-free absorbing
state, (2) actions, dynamics, and rewards associated withSi in M , (3) a rewardσ(s) associated
with eachs ∈ XPer(Si), (4) an extra single cost-free action applicable at eachs ∈ XPer(Si) that
leads with certainty toα.

For assigning the local reward function usually one assumes that the agent always wants to
leave the regionSi via an exit state. Therefore, one assigns a high reward to these states to
achieve goal-directed behavior. When the option is used to solve the global MDP the policy of
the macro is taken and the value for the policy is calculated based on the original value function.
With the previous definitions and the definition of an abstract MDP given below, we have set all
preliminaries to define options in the READYLOG context.

Definition 6 (Abstract MDP (Hauskrecht et al. 1998)) Let Π = {Si, . . . , Sk} be a decomposi-
tion of MDPM = 〈S,A, Tr,R〉, and letA = {Ai | i ≤ n} be a collection of macro action
sets, whereAi = {π1

i , . . . , π
ni

i } is a set of macros for regionSi. The abstract MDPM ′ =

〈S′, A′, T r′, R′〉 induced byΠ andA is defined by:

• S′ = PerΠ(S) =
⋃

i≤nEPer(Si)

• A′ =
⋃

iAi with πk
i ∈ Ai feasible only at statess ∈ EPer(Si)

• T ′(s, πk
i , s

′) is given by the discounted transition model forπk
i (Def. 5), for anys ∈

EPer(Si) ands′ ∈ XPer(Si); T ′(s, πk
i , s

′) = 0 for anys′ 6∈ XPer(Si)

• R′(s, πk
i) is given by the discounted reward model forπk

i , for anys ∈ EPer(Si)

Summarizing, for using options one first has to identify suitable sub-tasks and define partitions
of the state space of the MDP including the peripheral states, i.e. the states where the option is
applicable and the states where the option terminates. Further one has to provide a discounted
transition model for the option as well as a discounted reward model. In an abstract MDP basic
actions as well as macros which are defined over partitions of the state space, can be used to solve
the planning problem.

98 CHAPTER 4. A GOLOG DIALECT FOR REAL-TIME DYNAMIC DOMAINS

Options in Readylog

Our approach to using options in READYLOG is similar to the approach of Hauskrecht et al. (1998)
and incorporates ideas of Sutton et al. (1999). We also define and solve local MDPs which
describe a sub-problem of the global task. The solution of the sub-problem then can be used
to solve the original problem instance. Similar to ’classical’ solution strategies for MDPs, the
restriction of options in READYLOG is that the method relies on enumerable state spaces. This is
in contrast to the forward search value iteration known fromDTGOLOG which can handle infinite
state spaces. The restriction is contributed to the fact that convergence (and thus optimality) can
only be guaranteed for discounted MDPs.

In the following we formally define options in the READYLOG context and present a modified
version of the value iteration algorithm which is based on the action theories of the situation
calculus.

Definition 7 (READYLOG Option) An optiono is the triple〈ϕ(s), π, β〉 whereϕ(s) is a logical
formula describing the initiation set. An option is applicable iffϕ(s) holds. π is a READYLOG

policy, andβ is a logical formula denoting the termination of an option. An option is said to be of
level1 iff its respective policyπ only contains primitive or stochastic actions. An option is of level
n iff its respective policy programπ only contains options of leveln− 1.

This definition yields a hierarchy over options. The policy for an option may only mention
primitive actions or options of a lower level. How do we obtain the policy programπ? Similar
to the forward search algorithm inDTGOLOG, a READYLOG program must be specified for the
option from which the optimal policy is calculated. We call this programoption skeleton.

Definition 8 (Option Skeleton) An option skeleton programσ of leveln is a READYLOG pro-
gram which may only mention

• options of level less thann,

• nondeterministic choices over option skeletons of level less thann

• conditionalsif ϕ then σ1 else σ2 endif , whereσ1 andσ2 are option skeletons of level
less thann.

An option skeleton gives the solution strategy for finding a policy for the sub-task. We have
to restrict an option skeleton because we have to solve the sub-MDP induced by the option opti-
mally as a discounted problem. In particular, no sequences of actions are allowed to conserve the
Markov property.10 In the previous section we mentioned the Composition Theorem (Precup et al.
1998) which shows that optimizing over sub-policies converges. Therefore, we have to define a
discounted fully observable MDP. To be able to solve an option skeleton with ordinary value itera-
tion techniques, we have to map situations from the situation calculus to states of the MDP, states
to situations, and states tosenseEffectconditions for conserving the full observability property:

10Note that we do allow macro actions of a lower level.

4.3. SPEEDING UP PLANNING 99

• In general, a state representation can be arbitrary but it is suggestive to use a factored repre-
sentation (Boutilier et al. 1999) based on variables. Without loss of generality, we assume a
factored representation of the state space. The factoring gives us a means to map situations
into the state representation. In the situation calculus fluents describe the state of the world.
Each world state can be described by the values of all fluents in a respective situation. Thus,
sitstate : S → F1×· · ·×Fn, where theFi are fluent values for the situations, describes the
mapping from situation to states. Note that with defining this mapping we restrict ourselves
to a finite number of fluents here.

• The value iteration algorithm works on states. To be able to describe the outcome of an
option model in the situation calculus and hence use it for solving larger problems, we have
to re-transform state representations into situations. As, in general, infinitely many situa-
tions describe a state, we cannot find a surjective mapping from states to situations. With
assuming a factored representation of states which depends on discriminative variables, we
can though restore a situation term from these. We use the specialset(f, v) action which
sets the corresponding fluentf to valuev. A state can then be described by the situation
termdo(set(fi, vi), do(· · · , do(set(f1, v1), s) · · ·).

• As the solution to an option (as we will see below) consists of a decision tree (conditional
program) where each state of the local MDP is associated with the optimal action, we have
to explicitly define the mapping between a state of the MDP and a formula how a state can
be distinguished from other states.

To define an optiono one has to specify the following predicates.

1. the initiation set. This is done with the predicateoption init(o, ϕ), whereo is the name of
the option, andϕ is a logical formula which describes when the option is applicable. It is
analogous to the predicatePoss.

2. The option skeletonoption skeleton(o, p, γ). o refers to the name of the option,p is an
option skeleton.γ is the discounting factor.

3. The termination statesoption beta(o, ϕ, v), whereo names the option,ϕ is a logical for-
mula which describes the terminating states, andv is a pseudo-reward. The pseudo-reward
is used to create goal-directed behavior.

4. The mapping between states and situations (and vice versa) is defined by the predicate
option mapping(o, σ, p, ϕ), whereo refers to the option name,σ describes the state of
the MDP,ϕ is a condition which holds when the MDP is in stateσ, andp is a program
which transfers the current situation to the one described byσ.

5. A sense conditionoption sense(o, a). Again, o refers to the option name,a is a sensing
action. This sensing action is required to assure full observability of the MDP.

6. The convergence thresholdoption epsilon(e). The value iteration algorithm runs as long
as the difference of values are belowe.

100 CHAPTER 4. A GOLOG DIALECT FOR REAL-TIME DYNAMIC DOMAINS

To illustrate the specification of an option we give an example from our grid world domain.
We give the Prolog specification for an option which takes the agent to leave the first room through
the northern door.

option init(leave room 1 n,

and([pos = [X, Y], domain(X, [0..5]), domain(Y, [0..10]), inRoom(1)])

This denotes that the optionleave room 1 is applicable if the values of the position fluentpos

takes values(x, y) with 0 ≤ x ≤ 5 and0 ≤ y ≤ 10 (i.e. the whole maze world) and moreover the
x andy take values from room 1.

option beta(leave room 1 n, inRoom(2), 100).

option beta(leave room 1 n, and(not(inRoom(1)), not(inRoom(2))),−100).

Here, we have two clauses which describe the termination condition of this option together with
their pseudo-rewards. If we leave the room through the northern door (i.e. we are in room 2) the
agent receives a positive rewards, if it is neither in room 1 nor in room 2 it receives a negative
reward.

option mapping(leave room 1 n,[(pos, [X, Y])], [set(pos, [X, Y])], pos = [X, Y]).

The state variable for the maze MDP is the fluentpos. The state of the MDP can be sensed with
the conditionpos = [X, Y] which corresponds toϕ in Item 4 above. What we further need is a
program which, for a given state, creates an appropriate action historys (situation term) which
assures that the conditionϕ holds on situations. As described in Section 4.2.4 the easiest way to
ensure that a fluent holds, is to useset actions which explicitly set a fluent to a value.

option sense(leave room 1 n, exogfUpdate).

TheexogfUpdate action is the sensing action which ensures that the position fluent in our exam-
ple can be evaluated when the policy is executed on-line.option epsilon(0.00001) sets the
convergence thresholds of the value iteration to1 · 10−5.

With these predicates at hand we can solve sub-MDPs by interpreting the option skeleton.
Similar to the previously describedBestDo predicate we define a predicateBestDoOpt which
recursively calculates the solution to the MDP of the option skeleton.

The value iteration algorithm given below takes a set of initiation statesI, the option skeleton, a
discount factorγ, the exit statesβ with their pseudo-rewardsv, a sense actiona which assures that
the states can be discriminated, and a convergence thresholdε as input. The initiation set is con-
structed from the predicateoption init. Together with the mapping from situations to states, we
can generate the list of states from the conditionϕ. CalculateOption(o, I, σ, γ, β, a, ε) starts the
calculation of the behavior policy forσ by means of theBestDoOpt predicate which we introduce
below. That is,σ is interpreted byBestDoOpt until convergence in the values is reached, i.e. the
difference in the values for a states is smaller than the thresholdε. BestDoOpt yields the optimal
policy π, the corresponding valuev, and the probability of successpr together with the transition
probabilityΠ. Π keeps track of the transition probabilities between states in the underlying MDP.
After the values of the behavior policy converged for all statess ∈ I, we build the run-time model

4.3. SPEEDING UP PLANNING 101

Input : Option nameo, set of init statesI, option skeletonσ, discount factorγ, set of exit
statesβ together with their pseudo-rewardsv, sense actiona, convergence threshold
ε

Output : option modelm
forall s ∈ I do

while |vprev (s)− v(s)| > ε do
(π, v,Π) := calculateOption(o, I, σ, γ, β, a, ε)
updateStateTransitions(π(s), v(s), r(s),Π)
vprev (s)← v(s)

end
end
m := generateModel(o, π, v, pr,Π)

of the option. In the notation of the above algorithm this is denoted the functiongenerateModel

which makes use of the option name, the behavior policy as calculated withBestDoOpt, the op-
timal value, and the state transition model. In each iteration,updateStateTransitions takes the
optimal action for the current state denoted byπ(s), the value, the rewardr(s) for the current
state, and the transition probability of the actual state transition as arguments. The underlying
data structure stores the transition probability as well as the value and the reward for the cur-
rent situation for each state and each action. The data structure is similar to a Q-table known
from reinforcement learning (cf. Chapter 3.1.2). In each iteration the table is updated calling the
updateStateTransitions function. This table is also used to calculate the transition probabilities
to the exit statesβ of the option. That is, we calculate the probability to reach an exit statet for
eachs ∈ I with

T ∗
π (s, t) = Tπ(s, t) +

∑

s′∈I

Tπ(s, s′) · T ∗
π (s′, t), (4.7)

whereTπ(s, t) is the one step transition model for the local MDP.11 Solving the set of equations
yields the transition probability for each state of the local MDP to an exit state.

Primitive Action
If the current action in the option skeleton is a primitive (deterministic) action, it is checked
whether it is executable or not. In the former case, the algorithm goes on with interpreting the
option skeleton in the successor situation, the reward for the current situation is calculated as well
as the value. Note that unlike in the definition ofBestDo, the value of the previous state is dis-
counted byγ. In the case the action is not possible, the policy for this state is set toNil. As
mentioned before we have to maintain a set of probability values (as defined in Definition 5) given
for calculating the outcome probabilities for exit states when generating the model. In the case of

11The one step transition model is given by the state-action table gained by theupdateStateTransition function.

102 CHAPTER 4. A GOLOG DIALECT FOR REAL-TIME DYNAMIC DOMAINS

an impossible action, the successor statessuc (which is in this cases) gets the probability of 1.

BestDoOpt(o, a, p, s, h, r,Π, d, π, v)
def
=

ssuc = sitstates(s) ∧ h ≥ 0

(Poss(a, s) ∧ ∃r′, v′.BestDoOpt(o, a, p, do(a, s), h− 1, r′,Π, 0, π, v′) ∧
r = reward(s) + r′ ∧ v = r′ + γ · v′ ∨
¬Poss(a, s) ∧ r = reward(s) ∧ π = Nil ∧ v = 0) ∧Π = {(ssuc , 1.0)})

The predicateupdate is used to keep a table of states, values and probabilities. In a later step these
are needed to build the model of the local MDP. Note the argumentd of BestDoOpt. It is used
as a program counter for remembering the current option skeleton executed. This is needed as we
allow to use options hierarchically.

Stochastic Action
If the current statement is a stochastic action, it must first also be checked if the action is possible.
If so, the outcomes are expanded via theBestDoOptAux predicate, otherwise the policy is set to
Nil, the value for this situation is0. Note that differently to primitive actions the probability set
Π is set to the empty set.

BestDoOpt(o, a, p, s, h, r,Π, d, π, v, h)
def
=

(h ≥ 0 ∧ Poss(a, s) ∧ ∃r′, π′, v′, P.procmodel(a, P) ∧
BestDoOptAux(P, p, s, h, r,Π, d, π′, v) ∧

r = reward(s) + r′ ∧ v = reward(s) + γ · v′ ∧ π = a ∨
¬Poss(a, s) ∧ r = reward(s) ∧ π = Nil ∧ v = 0 ∧Π = {})

The outcomes of an stochastic action are expanded with an auxiliary predicate. From our
stochastic action model we get the list of programs describing the effect of the action, the entry
probability and the sensing conditionψ which is needed to identify which outcome occurred.
The predicate first expands the other possible outcomes. Then, for the first outcome in the set of
outcomes for the stochastic action we distinguish the successor situations′ with trans∗, or assume
the current situation if the successor situation does not exist. For this situation the statessuc of
the MDP is determined. In situations′ we start with the next iteration. The reward and the value
for the actual outcome is calculated. The probability setΠ is updated for the successor state with
probabilityp1. This is done by addingp1 to the probability which is kept forssuc.

BestDoOptAux(o, {(n1, p1, ψ1), . . . , (nk, pk, ψk)}, p, s, h, r,Π, d, π, v)
def
=

∃r′,Π′, π′, v′.BestDoOptAux({(n2, p2, ψ2) . . . , (nk, pk, ψk)}, p, s, h, r′,Π′, d, π′, v′) ∧
(∃̺, s′.trans∗(n1, s, ̺, s

′) ∨ ¬∃̺, s′.trans∗(n1, s, ̺, s
′) ∧ s = s′) ∧

ssuc = sitstates(s′) ∧
∃r∗,Π∗, π∗, v∗.BestDoOpt(o, p, p, s′, h− 1, r∗,Π∗, d, π∗, v∗) ∧
r = r∗ + p1 · r′ ∧ v = v∗ + p1 · v′ ∧Π = Π∗ + (ssuc , p1)

4.3. SPEEDING UP PLANNING 103

Conditionals
Handling conditionals is the same as inDTGOLOG; if the condition holds, the if-branchp1 is
further expanded, otherwisep2 will be followed.

BestDoOpt(o, if ϕ then p1 else p2 endif , s, h, r,Π, d, π, v)
def
=

ϕ[s] ∧ BestDoOpt(o, p1, s, h, r,Π, d, π, v) ∨
¬ϕ[s] ∧ BestDoOpt(o, p2, s, h, r,Π, d, π, v)

Nondeterministic Choice of Action
Nondeterministic choices of actions are handled the same way as inDTGOLOG.

BestDoOpt(o, (p1|p2), s, h, r,Π, d, π, v)
def
=

(∃v1,Π1, r1, π1.BestDoOpt(o, p1, s, h, r1,Π1, d+ 1, π1, v1) ∧
∃v2,Π2, r2, π2.BestDoOpt(o, p2, s, h, r2,Π2, d+ 1, π2, v2) ∧
(v1 ≥ v2 ∧Π = Π1 ∧ r = r1 ∧ π = π1 ∧ v = v1 ∨
v1 < v2 ∧Π = Π2 ∧ r = r2 ∧ π = π2 ∧ v = v2))

For the projection task, we model the outcomes of an option as a stochastic action. The
precondition is derived from the initiation set of the option, the outcomes are modeled inside the
procedure model with ansprob statement. For the on-line execution of an option we must provide
the optimal policy generated by the algorithm. For each option we generate a procedure as given
in the procedureoption below. The actionsenseState is a placeholder for readability reasons. It

proc option
senseState;
while ϕ0 do

if ϕ1 then πi else if . . . else if ϕn endif ;
senseState

endwhile

endproc

stands for the sensing program which was specified withoption sense(o, σ). After it is executed,
the truth values for the sensing conditions in the current state can be determined. The condition
ϕ0 is the condition specified withoption init(o, ϕ0). Theϕi are conditions which discriminate
the current state the system is in. These are specified with the predicateoption mapping. To
illustrate the procedure we come back to the example of leaving room 1 through the northern door.
The procedure which was generated by the READYLOG interpreter is given below.

Using our running example we conducted a number of experiments, the goal being at different
distances from the initial position (Fig. 4.2 shows the special case of distance 8). The results are
shown in Figure 4.8. Thex-axis depicts the initial distance to the goal, they-axis the running time.
We compared three different approaches:

(A) calculating the optimal policy nondeterministically choosing only from the primitive ac-
tions,

104 CHAPTER 4. A GOLOG DIALECT FOR REAL-TIME DYNAMIC DOMAINS

proc(leave room 1 n,
[exogfUpdate,
while(is possible(leave room 1 n), [
if(pos = [0, 0], go right, if(pos = [0, 1], go right, if(pos = [0, 2], go up,
if(pos = [1, 0], go right, if(pos = [1, 1], go right, if(pos = [1, 2], go right,
if(pos = [2, 0], go down, if(pos = [2, 1], go right, if(pos = [2, 2], go up

))))))))), exogfUpdate])]).

manhattan distance from start to goal

0.02

10596.50

2396.72

276.97

0.31

0.05

3.76

53.60

769.08

1.10

11.40

3 4 5 6 7 8 9 10 11

A

B

C

se
co

nd
s

Figure 4.8: Run-time comparison between ordinary stochastic actions and options.

(B) using a set of procedures for leaving each room towards a certain neighboring room, choos-
ing from primitive actions only in the goal room, and

(C) using options in the form of abstract stochastic actions, choosing from primitive actions only
in the goal room.

Note that they-axis of the diagram has a logarithmic scale. The speed-up from (A) to (B)
shows the benefit usingDTGOLOG to constrain the search space by providing fixed programs for
certain sub-tasks. Interestingly, (C), that is, using abstract actions clearly outperforms (B).This is
because each abstract action has only two outcomes, whereas the corresponding program provides
a very fine-grained view with a huge number of outcomes that need to be considered. (We remark
that while method (A) guarantees optimality, this is not necessarily so for (B) and (C). Certainly
in the case of (C), this price seems worth the computational gain.)

Taking the time of calculation of all options into account (10.51 seconds in our test scenario)
the use of options pays off at horizons greater than 5. Also, calculating options can be done off-line
and the computation time can be neglected in case of frequent reuse.

4.3. SPEEDING UP PLANNING 105

4.3.2 Caching, Pruning and an Any-time Algorithm

Caching of Intermediate Results

To improve the interpreter’s performance one has to analyze where the interpreter consumes most
of its computation time. In the case of decision-theoretic solving of MDPs, the interpreter con-
sumes most computation time in exploring the state space and calculating the values of all visited
states. Calculating the value means to assign the reward function to the state, calculating the state’s
reward, and multiplying this reward with the probability to reach the state. The most expensive
part herein from a computational point of view lies in regressing the fluents to the initial state.
This is necessary to compute their current values and to complete the final reward of the current
state.

Here, the idea of caching comes into play. Caching means to save and reuse the calculation
of intermediate results to speed up the computation. It comes without losing expressiveness or
accuracy in the numerical values and results.

Before we describe the implemented method we again point out the fine difference between
the notion of state and situation. A situation is defined by the history of actions. A state is defined
by the values of all fluents in it. Here, the difference becomes obvious. Different situations can
describe the same state. For example, going to the right and then up describes the same state as
going first up and then to the right, but the action histories are different.

The method we implemented saves the complete transition table for each state. The transition
table is a way to represent the functionT (s, a, s′). Performing actiona in states leads to states′.
We extend the function by associating the valuevT (s,a,s′) to it. Every time we have computed a
value for one transition we store it along with the according transition. The states are saved as the
values of each fluent ofs ands′. Keep in mind that each state is completely described by all the
values assigned to all fluents in the current situation. If the same transitionT (s, a, s′) is expanded
again at a later point of time the value is already known. It is read from the cache and reused
without performing the same calculation again.

Why is this reasonable? The value of a state only depends on the previous action and the
previous state because of the Markov assumption. Saving exactly this transition relation associated
with its value is the well grounded reason which allows us to cache the transition.

The advantage of the caching idea is intuitive. In simple, discrete domains like the maze world,
the execution times are much faster and the calculated values are often reused. The program gains
execution time from a higher memory consumption. The resulting policy is equivalent to the one
generated using the original approach.

The disadvantages are the following: instead of calculating the value of a state each time the
whole state description and its associated values are saved. This results in high memory usage
because each fluent has to be saved with its value. In the domain of UNREAL TOURNAMENT

2004 (see Chapter 5.1) for example, this means to save about a hundred fluents where only a
small subset of them is changed from state to state. Worse is that in continuous worlds the caching
method fails completely in general because only a small finite subset of the state space is visited.
In this set caching succeeds only rarely.12 In Chapter 7 we report on a qualitative abstraction

12This depends, of course, on the modeling of the domain but in general caching of arbitrary states fails in continuous
worlds.

106 CHAPTER 4. A GOLOG DIALECT FOR REAL-TIME DYNAMIC DOMAINS

for the soccer domain. With this state space abstraction caching becomes available also in the
continuous domain of soccer.13

Heuristic Pruning

Another way to reduce the computation times of the DT planning algorithm, especially when deal-
ing with dynamic real-time domains, is that of applying heuristics and that of pruning. Pruning
means to remove branches from computation, heuristics are for guiding the search through the
search space by simple formulas or hints on where the solution is expected. In general, a heuris-
tic is not always correct in its decision, although for some problems good and efficient heuristics
are known. Here, we want to describe a method of pruning the decision-theoretic search tree by
applying a simple heuristic. We can no longer guarantee an optimal solution. However this is
reasonable due to the savings in computational complexity. The main observation we are basing
this approach on is that branches with a very low probability have the same computational effort as
branches with high probability. The underlying idea to save computation time is simple. Because
low probable branches are occurring seldom during the real execution we do not consider them
during policy generation. It seems more reasonable to generate a policy which does not handle all
improbable cases in a more time efficient fashion. If in a rare occasion one of these improbable
events occurs it seems more promising to generate a new policy in an efficient way than to always
generate the complete and correct policy which is in general more expensive. Therefore we intro-
duce a small boundpmin which represents the minimal probability of branches which is reasoned
with.

In the grid world we have to find an adequatepmin. For examplepmin = p2
fail represents the

fact to forget all branches which fail two times or more often. In a complete stochastic decision
tree for the grid world the fail cases of actions have huge impact on the size of the tree. Recall
that associated with each action there is one successful outcome and three outcomes represent the
action to fail.
In a small MDP induced by the program

solve(depth, forever do (up | down | left | right) endforever)

we generate all16 outcomes atDepth = 1. At Depth = 2 the first branches are pruned and
only 112 outcomes are generated.14 In the rare case where two actions fail while executing the
computed policy a re-planning step takes place and a new policy is generated.

To visualize the increase in performance and the resulting consequences for the success of
the computed policy see Figure 4.9(a) and Figure 4.9(b). The scenario is based on the task for
the agent to move four squares in the Maze66 domain. The different lines depict different values
for the minimal probability to prune with.pmin = 0.0 represents the normal policy generation
without pruning. In contrast to that standspmin = 0.03 which does not even tolerate one failing
action. The generated policy assumes that no failing case occurs and therefore only those states

13The savings in computation time are around 1/3 in the maze domain.
14On level one of the tree four actions succeed and twelve fail. With each previously failing action at depth two of

the tree a succeeding action is associated and not pruned. That are12 · 4 many. With each succeeding action at depth
one all outcomes of depth two are more probable thanpmin. This are4 · 16 many and the complete number is due to
that12 · 4 + 4 · 16 = 112.

4.3. SPEEDING UP PLANNING 107

 0.01

 0.1

 1

 10

 100

 1000

 0 2 4 6 8 10 12

pmin = 0.03
pmin = 0.005

pmin = 0.0004
pmin = 0.00001

pmin = 0.0

Horizon

T
im

e
[s

]

Maze66 example: Time usage to generate a policy up to a specific horizon.

(a) Time usage for computing policies

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12

pmin = 0.03
pmin = 0.005

pmin = 0.0004
pmin = 0.00001

pmin = 0.0

Horizon

P
ro

ba
bi

lit
y

Maze66 example: Probability of success of generated policy for a specific horizon.

(b) Success Probabilities resulting from pruning

Figure 4.9: This figure depicts the probabilities of the resulting policies with a given horizon. The
task was to search for a policy which has to use at least four actions to be able to finish in the goal
state. Lines which end are no longer computable with 1 GB of memory.

are handled which lie on the optimal path. One can see that the generation time is fast for small
horizons, but the probability of success is small compared to all other test cases.pmin = 0.005

tolerates and compensates one failing action of the agent. The probabilities of succeeding in

108 CHAPTER 4. A GOLOG DIALECT FOR REAL-TIME DYNAMIC DOMAINS

reaching the target increases as does the computation time to generate the policy. In Figure 4.9(a)
you can see how much time a specific horizon takes to compute a policy for specific values of
pmin. Note that they-axis is scaled logarithmically. In Figure 4.9(b) one can see the success
probability of the generated policy. The success probability is at the same time the value of the
policy because a reward of1.0 was given only in the target state. All other states were rewarded
by 0.0 and no action costs were associated.

Nevertheless, this approach has two drawbacks. The first one was mentioned previously and is
found in losing the optimality of the MDP’s solution. Because we prune branches of the tree, we
lose impacts from the reward function on the value function. The other drawback lies in the border
pmin. If the horizon grows larger even actions with a relative high probability are endangered to
be pruned away. This is because executing them sequentially may result in probabilities smaller
thanpmin. The designer has to take care of the relation between the maximum planning horizon
and the minimal probability where to prune. Actions which succeed only with low probability are
also endangered to be pruned away.

The benefits lie in the savings of computational effort. The explicit value of what is saved at
computation time on the one hand depends on the modeling of the domain, and on the other hand
it depends on the choice ofpmin. In the example shown above wherepmin corresponds to ignoring
branches which contains two or more failing actions there is no gain in case the depth is one. With
a depth of two only43% of the outcomes are generated. In depth three only640 outcomes of the
original 4096 (which are only15% of the original outcomes) have to be generated and checked.
If one is able to find a suitablepmin for the given domain this seems to be a reasonable approach.
It saves huge amounts of computation time, because it ignores improbable branches by pruning
them. Nevertheless, the exponential growth in the size of the tree still remains.

Any-Time Algorithm

The need for real-time decision making in dynamic real-time domains is indispensable. Therefore
we investigated possibilities to extend READYLOG to an any-time algorithm. Instead of specifying
a horizon it takes a maximum run-time as argument up to which the algorithm is able to search for
a solution. Afterwards the results and the best policy found so far is returned.

We adopt the idea of any-time algorithms from Boddy (1991). He describes methods concern-
ing planning with problems which depend on time. Any-time algorithms are described there as
algorithms which always present a solution when interrupted. The more time is invested in this
algorithm the better is the resulting solution. In the DT planning context this means that the best
current solution is returned.

The search algorithm currently used is a depth-first search of Prolog implemented by the reso-
lution strategy. A complete action sequence to a given horizon is generated and saved to compare
its value to other generated action sequences. To create an any-time algorithm there are two pos-
sibilities to modify the above search algorithm. The first possibility is to implement a breadth
first search (BFS). But following this method one sees rapidly the drawbacks of BFS: it consumes
much more memory than depth-first search. In general, the memory consumption of depth-first
search is linear in the size of the solution. Breadth-first search consumes memory exponentially
in the size of the solution. Even small tasks in the grid world with a horizon of five cause memory
stack overflows when applied to a machine with 1 GB of memory.

4.4. THE READYLOG INTERPRETER 109

The other possibility is to tweak the decision-theoretic optimization search of READYLOG

such that it is able to handle a given time-bound. The idea we applied is to use iterative deepening
depth-first search (IDS). It combines the benefits of depth-first search and breadth-first search.
Its memory requirements are linear in the size of the given depth and the branching factor of the
problem. It is also complete in cases where the branching factor is finite. Iterative deepening
may seem wanton first, because same states are generated multiple times. Surprisingly, this fact
is nearly negligible. Actually iterative deepening isfasterthan breadth-first search where several
nodes of the next search level are generated. Iterative deepening does ignore the next level at first.

Another important point to be mentioned is the average branching factor of an arbitrary READY-
LOG program. For example, the branching of a nondeterministic choice is not only up to speci-
fied program which is to be solved, it is also influenced by the stochastic outcomes of all ac-
tions occurring in the program. In the grid world domain, for example, a program of the form
(up | down | left | right) has a branching factor of 16 because each action has 4 outcomes.

The procedure for solving a decision-theoretic problem was given assolve(horizon, σ, freward)

whereσ is an arbitrary READYLOG program,horizon is the number of actions to apply in one
branch, and thefreward is an arbitrary READYLOG function which assigns numerical values to
states. This procedure was reformulated to fit the any-time idea by defining a new procedure
solve(time, σ, freward) where thehorizon argument was exchanged with atime representing a
time in seconds how long the calculations may last. Iterative deepening is started to search for a
policy. If the time bound was or is going to be violated, the best policy found so far is returned.

The advantage of this approach is straight-forward. Instead of giving the program a fixed
horizon on a computer with unknown capabilities, the programmer is able to define a time frame
for the program. After this time the best policy generated up to this time point is returned and
executed. Most importantly this is independent of the underlying hardware or READYLOG imple-
mentation. In cases of UNREAL or ROBOCUP (see Chapter 5) where fast decisions are necessary
this is a major improvement to adapt to the dynamics of the game by adjusting the length of the
decision cycle.

4.4 The Readylog Interpreter

In the following we get into details of the Prolog implementation of the READYLOG interpreter.
First, we briefly show the domain axiomatization in Prolog, how the top-level loop of READYLOG

works on a program, and describe how actions are executed within the framework. We describe
how exogenous and sensing actions are integrated, show how fluents are evaluated applying re-
gression, and give details about the implementation of passive sensing and action registers. At
the end of this section we show the progression method integrated into the framework. The im-
plementation follows a method proposed by (Lin and Reiter 1997). We assume that the reader is,
in general, familiar with Prolog. Particularities of the Prolog implementation ECLiPSe (Apt and
Wallace 2006) we use are indicated and explained in greater detail where needed. As usual we use
the ’!’ as a symbol for a cut. We write conditionals as ’a→ b; c’.

110 CHAPTER 4. A GOLOG DIALECT FOR REAL-TIME DYNAMIC DOMAINS

Domain Description in Brief

A domain description consists of the definition of primitive, exogenous, and sensing actions to-
gether with their effect axioms for each action. Further, fluents with their initial value have to be
specified. These are implemented by the following set of facts:

prim action(action). (4.8)

poss(action, condition). (4.9)

causes val(action, fluent, value, condition). (4.10)

senses action(action, fluent). (4.11)

exog action(action). (4.12)

prim fluent(fluent). (4.13)

initial val(fluent, value). (4.14)

exog fluent(fluent). (4.15)

function(functor, value, condition). (4.16)

In the above facts,action stands for an action term, possibly with arguments,condition for
logical formula,value describes a formula which specifies the value of a fluent. For exogenous
fluents one has to specify a clause which describes how the exogenous value can be achieved.
This basically describes besides the agent program what has to be specified. What is missing is
the connection to the execution system. In the following we will also describe these interfaces in
detail.

The Mainloop

The mainloop of the READYLOG interpreter is implemented by a predicateicpgo(E, H), where
E is a READYLOG program andH is the current action history. Initially,H = s0. The interpreter
works onE in the following way, distinguishing between four cases:

1. Exogenous Actions. It is checked whether an exogenous action in the exogenous action
queue which we describe below exists. If so, this action is inserted in front of the action
history which means that it will be the next action to be performed in Step 2. Suppose the
action queue before this step isH = [an, . . . , a1, s0] and the exogenous actione occurs. The
new action history then isH1 = [e, an, . . . , a1, s0]. The predicateexog occurs is defined
below and checks if there is a new exogenous action in the queue. Theexog action pred-
icate checks if the actionAct is defined as an exogenous action. If not, the clause fails and
the next clause oficpgo is tried, otherwise the action is inserted into the action history as
described above. Finally,icpgo(E, H1) is called recursively, and the interpreter goes on with
Step 2. The ordering of theicpgo predicates in the Prolog implementation ensures that in
the next step a transition is taken, if possible.

icpgo(E, H) :−
exog occurrs(Act, H), exog action(Act),H1 = [Act|H], !, icpgo(E, H1).

4.4. THE READYLOG INTERPRETER 111

2. Transition of the Program. A transition on programE is performed calling thetrans pred-
icate resulting in the transformed programE1 on the action historyH1. The actiona is
executed by calling a predicateicpxeq, which we describe below. Finally, the predicate
icpgo(E1, H1) is called.

icpgo(E, H) :−
trans(E, H, E1, H1, P), icpxeq(H, H1, H2), !, icpgo(E1, H2).

3. Final Condition Check. At this step it is checked, whether a final configuration of the
programE is reached by checking the predicatefinal(E, H). The interpreter terminates
if the final predicate evaluates to true onE andH.

icpgo(E, H) :− final(E, H).

4. Waiting for Exogenous Events. If no exogenous event occurred, no further transition of
the program was possible, and the program is not in a final configuration, the interpreter
waits for an exogenous action to become available from outside. The interpreter blocks
until it receives a signal from the execution sub-system that a pending action command is
completed.

icpgo(E, H) :−
printf(”icpgo(4) : WAITING FOR EXOGENOUS ACTION ...”, []),

wait for exog occurs, !, icpgo(E, H).

The predicatewait for exog occurs is defined below.

Executing Actions with and without Sensing, and the Execution Transformer

Step 2 of the top-level interpreter predicateicpgo mentions the predicateicpxeq. This predicate
defines the interface to executing action in the real world.

There are three cases to distinguish:

1. No actionwhich changed the action history occurred. This can be seen as executing the nil
action.

icpxeq(H, H, H).

2. Primitive Action. A primitive action is performed by an appropriate call to the low-level
control, which is interfaced by the predicateexecute(Act, , H). The second argument of
this predicate is ignored, because the action was not a sensing action.

icpxeq(H, [Act|H], H1) :− not senses(Act,), execute(Act, , H), H1 = [Act|H].

112 CHAPTER 4. A GOLOG DIALECT FOR REAL-TIME DYNAMIC DOMAINS

3. Active Sensing Action.If the currently performed action is an active sensing action, the
sensing result is inserted into the action historyH1 = [e(F, v), . . .], whereF is the fluent
which is associated to the sensing action, andv its respective sensing result. Note that
this is exactly implements the sensing action histories fromINDI GOLOG as described in
Chapter 3.3.3.

icqxeq(H, [Act|H], H1) :−
senses(Act, F), execute(Act, Sr, H), H1 = [e(F, Sr), Act|H].

The predicateexecute is the interface to the on-line execution system. With the predicate
holds(online = true, H) it is evaluated if the built-in fluentonline in the current situationH
holds. If so, the predicatexTra is called which will transform the actionA into low-level com-
mands of the robot or agent, otherwise the predicate evaluates to true, which means that the execu-
tion of the action is ignored. This will be the case, when the interpreter is in an off-line projection
mode where no actions are performed in the real world.

execute(A, Sense val, H) :− !, (4.17)

holds(online = true, H)→ xTra(A, H); true.

The case of executing actions on-line, we call another predicatexTra which finally interfaces the
Prolog system with the rest of the low-level system that controls the robot or agent. In Chapter 6
we will discuss our robot low-level control system in detail. For now, it is sufficient to know
that another system which takes care of executing the action in the real world, or gather sensor
information through its sensors exists. xTra stands for “execution transformer” and performs
for appropriate low-level system calls. These have to be specified for the particular application
domain. But to give a better understanding of what we mean with interfacing the low-level system
we give an example from the soccer domain, which we will describe in the next section in detail.
In Section 4.2.2 we discussed the use of action registers. These mean that actions are sent to
the low-level system with a specialsend action, and the high-level controller will wait until it
receives a message from the low-level process if it accomplished its task. The following example
of anxTra predicate refers to such a send action of an action register callednextSkill:

xTra(send(nextSkill(PlayerNumber), Skill), H) :−
(holds(ownNumber = PlayerNumber, H)→ set actuator skill(Skill); (4.18)

exoEnQueue(reply(nextSkill(PlayerNumber), nil))), !.

If the action sent via the action register is meant for the agent itself (denoted byownNumber =

PlayerNumber), the action is sent to the actuators, otherwise a reply message as described in
Section 4.2.2 is sent back. Note that this reply message is scheduled as an exogenous event (with
theexoEnQueue predicate). As we will lay out in our application examples the distinction between
actions meant for the agent itself or for other agents gives an easy approach for executing multi-
agent plans. Next, we discuss the integration of exogenous actions.

4.4. THE READYLOG INTERPRETER 113

Exogenous Actions, Passive Sensing and Action Register

Other than primitive actions exogenous actions are not under control of the agent. They are im-
posed by the environment. Nevertheless, to be able to handle these kind of events, the axiomatizer
needs for define all such events the agent should be able to react on. To store exogenous actions
until they are processed, an action queue is introduced into the interpreter.

Step 1 of the top-level predicateicpgo looks for new exogenous actions viaexog occurs.
The current available exogenous actions is popped from the queue. Note that for implementing
action queues the non-logical predicatesassert (which stores a current action in the queue) and
retract (which deletes the current action from the queue) are needed.

exog occurs(A, H) :− getExoAction(A, H).

getExoAction(A) :− exoDeQueue(A).

exoEnQueue(A) :− assert(exoQueue(A)).

exoDeQueue(A) :− exoQueue(A), retract(exoQueue(A)).

In Clause 4 of the top-level predicateicpgo the case when all other calls toicpgo failed, is
handled. The behavior is to wait until an exogenous event occurs. In a non-blocking fashion it
is checked if the predicateexoQueue succeeds, i.e. a new exogenous action was enqueued in the
meantime. The non-blocking behavior is implemented by a loop over a sleep command. Note that
repeat loops in Prolog are evaluated such that if the predicate in the loop body fails a backtracking
up to therepeat statement is initiated. Thus, if the last predicateexoQueue(Act) succeeds the
loop terminates, and with it the predicatewait for exog occurs, and in turn Clause 4 oficpgo,
which then leads to another call oficpgo.

wait for exog occurs :− cylcetime(CycleTime),

(exoQueue(Act); repeat, sleep(CycleTime), exoQueue(Act)), !.

Next we address passive sensing. Passive sensing is the process of updating the agent’s world
model in the background without performing active sensing actions. Passive sensing can be im-
plemented making use of ECLiPSe Prolog’s event queues. Their meaning is that the Prolog engine
schedules goals within a given time interval. The clauseevent is scheduled after the time specified
with cycletime by making use of the Prolog predicateevent after every(event, cycletime).
Unlike hardware interrupts the interval is not fixed but the event is scheduled as an intermediate
goal in the backtrack tree. This means that the clauseevent is called aftercycletime if addition-
ally the current intermediate goal in the backtrack tree has succeeded. We connect the event with
the exogenous update actionexogfUpdate which we described in Section 4.2.2. As the update
action is an exogenous event it is inserted into the action queue in Case 1 of the main loop above
and executed with the next call to thetrans in Clause 2 oficpgo. This yields the world model
update. Note that during off-line projections world model updates are not necessary and wanted.
This behavior is implicitly given by the fact that during off-line projections exogenous actions are
not executed (the fluent value ofonline is set to false and thusxTra is not called in Clause 4.17),
which means that the update action is inserted into the action history but not executed in real.

114 CHAPTER 4. A GOLOG DIALECT FOR REAL-TIME DYNAMIC DOMAINS

Evaluating Fluents and Regression

In previous examples we several times used the predicateholds(F, H), which evaluates if a fluent
F in the current situationH holds. In the semantic definition of a test action this exactly refers to the
formulaϕ[s] for test actions or loop conditions (cf. Section 4.1). What is needed to evaluate the
predicateholds is regression to evaluate the fluent.15 First, the fluent term has to be substituted
by the value which it takes in the current situation.

To substitute terms the predicatesubf/3 exists. It substitutes fluent terms by their value or
evaluates simple arithmetic formulas in tests. We therefore test if the term to be substituted is a
variable, a number, or a constant by the three clausessubf(P, P, H) :− !, var(P),
subf(P, P, H) :− !, number(P), andsubf(P, P, H) :− const(P). Simple arithmetic expressions
are substituted with

subf(A + B, C, H) :− !, subf arithm(A + B, C, H).

subf(A− B, C, H) :− !, subf arithm(A− B, C, H).

subf(A ∗ B, C, H) :− !, subf arithm(A ∗ B, C, H).
subf(A/B, C, H) :− !, subf arithm(A/B, C, H).

We omit the somewhat lengthy definition of thesubf arithm predicate here. In a nutshell, it
checks the operands of the expression whether it is at-form, or if it is a list, or numbers. In case
of a t-form, i.e. the operand must be a continuous fluent, the fluentstart is evaluated and inserted
into the appropriatet-function given in the fluent definition. If the operands are lists over values,
the arithmetic operation is conducted component-wise, and finally, in the case that the operands
are numbers, the operation is conducted and the results are returned.

Next we regard the case that the first argument ofsubf is a fluent. This respective case is
implemented by:

subf(P1, P2, H) :− fluent(P1), !

(special fluent(P1)→ P3 = P1; P1 = .. [F|L1], subfl(L1, L2, H), P3 = .. [F|L2]),
(register(P1)→ has val(eval registers, E, H),

E→ has val(P3, P2, H); not(E)→ P2 = P3); has val(P3, P2, H).

In our implementation some special fluents like the fluentpproj for probabilistic projections, or
the fluentltp which encodes the least time point needed forwaitFor statements and continuous
fluents exist. These fluents are not substituted by their value because this is done later in another
case of regression. If theP1 is an ordinary fluent it is recursively substituted. Note that the
operator= .. constructs a Prolog list of a predicate beginning with its functor followed by its
arguments. With the predicatesubfl, which we will not give here, the list of arguments which
also may contain fluent terms is parsed and substituted. Finally, another case is checked, namely
if a special fluent register is given withP1. If so, it is evaluated if the respective fluent register has
been evaluated before on the situationH, and if the variableP3 is bound accordingly. This special
treatment is needed because the fluent register may only be evaluated once in a given situation.
Finally, as the fluentP1 now is a ground term with all parameters substituted by their values, the

15We come back to the predicateholds when speaking about the implementation of progression.

4.4. THE READYLOG INTERPRETER 115

value of the fluent can be assigned with aid of thehas val predicate which we will describe next.
Other clauses ofsubf treat ordinary functions (for example, the reward function needed for DT
planning), or the special actionset(f, v) (cf. Section 4.2.4) which sets the fluentf to valuev (here,
the argumentf and must be substituted before its value can be obtained by callinghas val).

The predicatehas val/3 evaluates the value of a ground fluent term. There are again sev-
eral cases to be distinguished. The first case considers the initial situation. With the clause
has val(F, V, [s0]) :− initial val(F, V) the fluentF will be assigned the valueV which was
stated in the domain axiomatization for the situationS0. For each fluent one has to define its ini-
tial value by the predicateinitial val, as described in the beginning of this section. The second
case addresses progressed fluent values. A fluent will take its progressed value, encoded by the
clausehas val(F, V, [S]) : −current val(F, V, S), !. Progression is subject to the next section,
and we discuss it in detail there. The third case deals with fluent values which must be evaluated
with regression.

has val(F, V, [Act|H]) :−
(nonground(F)→ Cut = fail; Cut = true), sets val(Act, F, V, H), (Cut→!; true);

has val(F, V, H), not sets val(Act, F, V1, H).

has val recursively steps through the action history untilS0 is reached and then successively
applies the effect of actionActwith calling the predicatesets val which we show next. Note that
the construction with the cut is important to avoid several calls ofsets val when backtracking
over the predicate in case the fluent has free variables. The disjunction is needed to distinguish
between the cases that the current action’s effect axiom does not mention the fluentF.

Now we come to thesets val predicate. The normal case is that the effect axiom (axioma-
tized withcauses val(Act, F, V1, P), whereAct is the current action,F the current fluent,V1 the
effect on fluentF, andP a side condition which states when this effect is applicable) is applied if
the side conditionP holds on the current action history. Note that the effect formula has also to be
substituted by its value.

sets val(Act, F, V, H) :− causes val(Act, F, V1, P)

Of course, there are again several other cases that have to be considered. The clause for a sensing
action is

sets val(e(F, V1), F, V, H) : −!, subf(V1, V, H).

which simply sets the fluentF to the sensing resultV1. Similarly, the case of our specialset(f, v)
action.

sets val(set(F, V), F, V,) : −!.

Finally, we must regard our special update action which allows to update the whole world model
in the background.

sets val(exogfUpdate, F, V, H) : −!,

exog fluent(F), exog fluent getValue(F, V, H).

116 CHAPTER 4. A GOLOG DIALECT FOR REAL-TIME DYNAMIC DOMAINS

The predicateexog fluent getValue is an interface describing how to achieve a value of a
fluent declared as on-line fluent (exog fluent). It is usually directly coupled with the world
model. This concludes our description of the implementation in brief. One has to note that there
are further predicates liketrans, final, andbestDo which implement the formal semantics of
READYLOG. This can be nearly literally derived from the logical description of the semantics of
READYLOG given in Section 4.1. We therefore omit them here.

Progressing the Database

As we showed in Chapter 3.3 the basic mechanism to acquire fluent values is to regress the action
history. Applying the right-hand sides of successor state axioms, formulas with complex situation
terms are reduced to formulas only mentioning ground situation terms, and thusS0.

In practice this means that each time the program accesses the value of a fluent, the fluent
formula has to be regressed to the initial situation to be able to get the value of the fluent. The
problem which arises here is that when action histories grow large this is no longer efficient. In
real world applications many fluents have to be accessed. Consider a tour-guide robot which is on
operation for several hours without restarting the high-level controller. The length of the action
history might be in the order of hundreds of thousand of actions. One could imagine that then
regression is no longer the right choice.

Another approach makes use of progression. With progression, the database is rolled forward
with each new action. This means that each performed action is directly manifested with calculat-
ing a new initial database. The basic idea is to calculate the effect of the action currently performed
for each fluent and store this value in a newS0. Unfortunately, it was shown by Lin and Reiter
(1997) that progression for the situation calculus in general is only definable in second-order logic.
Though, for some special cases, there exists also a first-order definable progression. We will here
present the progression for the sub-class of the so-called relative complete initial databases. The
general result about second-order definable progression can be found in (Lin and Reiter 1997).
A relatively complete initial databaseDS0

consists of a set of situation independent sentences to-
gether with a set of sentences of the form∀~x.F (~x, S0) ≡ ΠF (~x) for each fluent whereΠF (~x) is a
situation independent formula whose free variables are among the~x, i.e. ΠF (~x) does not mention
terms of sort situation inDS0

.

Theorem 4 (Theorem 3 from (Lin and Reiter 1997)) Let D be an action theory with a rela-
tively complete initial databaseDS0

, and letα be a ground action term such thatD |= Poss(α, S0).
Then the following set

Duna ∪ {ϕ | ϕ ∈ DS0
is situation independent}∪

{∀~x.F (~x, do(α, S0)) ≡ ΦF (~x, α, S0)[S0] | F is a fluent}

is a progression ofDS0
to Sα, where

1. ΦF is the right-hand side of a successor state axiom,

2. ΦF (~x, α, S0)[S0] is the result of replacing, inΦF (~x, α, S0), every occurrence ofF ′(~t, S0)

byΠF ′(~t), whereΠF ′ is as in the corresponding axiom forF ′ in DS0
, and this replacement

is performed for every fluentF ′ mentioned inΦF (~x, α, S0).

4.4. THE READYLOG INTERPRETER 117

The theorem states that replacing the right-hand side of the successor state axiom instantiated
in situationS0 for each fluent yields a progression of the database. To illustrate the above theorem
we show an example from (Lin and Reiter 1997).

Example (Example 5.1, Lin and Reiter (1997))First, we introduce the educational database
from (Reiter 1991). There are two fluents (1)enrolled(st , course, s): studentst is enrolled in the
coursecourse in situations; (2) grade(st , course, grade, s): the grade ofst in course is grade

in situations. Further, there are two situation independent predicatesprereq(pre, course): pre

is a prerequisite course for coursecourse, andbetter(grade1 , grade2): gradegrade1 is better
than gradegrade2 . The possible database transactions are (1)register(st , course): register the
studentst in coursecourse; (2) change(st , course, grade): change the grade of the studentst in
coursecourse to gradegrade; (3) drop(st , course): drop the studentst from coursecourse. Dss

consists of the following successor state axioms:

enrolled(st, c, do(a, s)) ≡ a = register(st, c) ∨ enrolled(st, c, s) ∧ a 6= drop(st, c)

grade(st, c, g, do(a, s)) ≡ a = change(st, c, g)∨
grade(st, c, g, s) ∧ ¬∃g′.g 6= g′ ∧ a = change(st, c, g′).

Dap consists of the following action precondition axioms:

Poss(register(st, c), s) ≡ ∀pr .prereq(pr , c) ⊃ ∃g.(grade(st, pr, g, s) ∧ better(g, 50))

Poss(change(st, c, g), s) ≡ true

Poss(drop(st, c), s) ≡ enrolled(st , c, s)

Suppose now that the initial databaseDS0
consists of the following axioms:

John 6= Sue 6= C100 6= C200, better(50, 70), prereq(C100, C200),

enrolled(st, c, S0) ≡ (st = John ∧ c = C100) ∨ (st = Sue ∧ c = C200)

grade(st, c, g, S0) ≡ st = Sue ∧ c = C100 ∧ g = 70

DS0
is relatively complete, andD |= Poss(α, S0), whereα = drop(John,C100). From the

axiom for enrolled inDS0
we see thatΠenrolled(st, c) is the formula:

(st = John ∧ c = C100) ∨ (st = Sue ∧ c = C200).

Now from the successor state axioms forenrolled , we see thatΦenrolled(st, c, a, s), the condition
under whichenrolled(st, c, do(a, s)) will be true, is the formula:

a = register(st, c) ∨ (enrolled(st, c, s) ∧ a 6= drop(st, c)).

Therefore,Φenrolled(st, c, α, S0)[S0] is the formula:

drop(John,C100) = register(st, c) ∨ ([(st = John ∧ c = C100)∨
(st = Sue ∧ c = C200)] ∧ drop(John,C100) 6= drop(st, c)).

By the unique names axioms inDuna, this can be simplified to

((st = John ∧ c = C100) ∨ (st = Sue ∧ c = C200)) ∧ (John 6= st ∧ c = C100).

118 CHAPTER 4. A GOLOG DIALECT FOR REAL-TIME DYNAMIC DOMAINS

By the unique names axioms inDS0
, this can be further simplified to

st = Sue ∧ c = C200.

Therefore we obtain the following axiom aboutdo(α, S0):

enrolled(st, c, do(α, S0)) ≡ st = Sue ∧ c = C200.

Similarly, we have:

grade(st, c, g, do(α, S0)) ≡ st = Sue ∧ c = C100 ∧ g = 70.

Therefore a progression todo(drop(John,C100), S0) is Duna together with the following sen-
tences:

John 6= Sue 6= C100 6= C200, better(70, 50), prereq(C100, C200),

enrolled(st, c, do(α, S0)) ≡ st = Sue ∧ c = C200,

grade(st, e, g, do(α, S0)) ≡ st = Sue ∧ C100 ∧ g = 70

�

Theorem 4 basically gives us a scheme how to progress relatively complete initial databases.
Each occurrence of a fluent in the initial database is replaced by its value instantiated on the
current situation. Thus, we have to restrict READYLOG’s basic action theories to be relatively
complete. Recall that relatively complete means that the right-hand side of a fluent formula is
situation independent. This on the other hand means that the progressed database can be computed
by successively substituting fluent formulas by their value instantiated on the current situation.

In the following we briefly sketch our implementation of the progression of a relatively com-
plete initial database. It consists of four steps.

1. Copy an instance of the databaseDS0

2. Evaluate the effects of actionα

3. Update changed fluent values onSα

4. Restore changed and unchanged fluent values toDSα
.

For the first step, we make use of the following predicate in our implementation:

current to temp :− retract all(temp val(, ,)), !,

(clause(current val(F, V, H) :− B),

assert(temp val(F, V, H) : −B), fail; true), !.

First, all previously remaining temporary values are deleted from Prolog’s internal database before
all existingcurrent val clauses are stored as temporary values. The constructionfail; true ex-
ploits Prolog’s backtracking mechanism. With this we get allcurrent val clauses, when Prolog

4.4. THE READYLOG INTERPRETER 119

backtracks at thefail token. In the second step the effects of the current action is calculated. In
READYLOG the effects of an action are specified by an effect axiom. With the predicate

causes val(Action, Fluent, Value, Condition)

the effect is specified. The last argumentCondition can be used to attach further conditions to
the value assignment. With this it is possible to implement conditional effects of an action. It is
particularly easy to establish all the effects of executing an action with these kind of effect axioms.
All causes val clauses have to be evaluated and the respective fluent values have to be stored.
In a next step the changed fluent values have to be added to the new databaseDSα

. Basically, all
effects as encountered bycauses val predicates are asserted astemp val’s to Prolog’s database.
In a final step, all temporary values, i.e. those which remained unchanged fromS0 and those which
were changed by actionα are now manifested in the new databaseDSα

by copying the clauses
back to the database. To access the such progressed fluent values we have to add the clause

has val(F, V, [S]) :− current val(F, V, S), !.

as firsthas val clause to the interpreter core. Now, every time a fluent value is accessed the actual
progressed database is queried first.

For our student example the copy of the initial database is

temp val(enrolled(john, c100), true, s0) :− true.

temp val(enrolled(sue, c200), true, s0) :− true.

temp val(grade(sue, c100, 70), true, s0) :− true.

The actiondrop(john, c100) has the effect axiom

causes val(drop(john, c100), enrolled(john, c100), false, true).

and thus the fluent value forenrolled(john, c100) becomesfalse. In the last step we have to
restore the database with the changed and unchanged values. Finally, the database looks like

current val(enrolled(john, c100), false, s0) :− true.

current val(enrolled(sue, c200), true, s0) :− true.

current val(grade(sue, c100, 70), true, s0) :− true.

In our implementation domain objects which occur as fluent parameters are referenced by an
index. Thus, internallyenrolled(john, c100) is represented as, say,enrolled(1, 100). We
make use of the built-in finite domain library which assigns an integer domain to each object. For
example, the player of a soccer team are referenced by their player number and have assigned
the domain{1, . . . , 11}. This has the advantage that formulas likex ≥ 5 or 5 ≤ x ≤ 8 can be
evaluated against their integer domain. Similarly, formulasnot(x = 1) can be computed easily.

120 CHAPTER 4. A GOLOG DIALECT FOR REAL-TIME DYNAMIC DOMAINS

To evaluate a logical formula there exists a predicateholds/2, which is defined as

holds(and(P1, P2), H) :− !, holds(P1, H), holds(P2, H).

holds(or(P1, P2), H) :− !, (holds(P1, H); holds(P2, H)).

...

holds(P, H) : −
P = .. [Op, A, B], (Op = (=); Op = (<); (Op = (>); (Op = (=<); Op = (>=)))), !,

eval comparison(false, Op, A, B, Expr, H),

(Expr = and()→ holds(Expr, H); call(Expr)).

holds(P, H) : −proc(P,), !, subf(P, P1, H), proc(P1, P2), holds(P2, H).

holds(P, H) : −function(P, ,), !, subf(P, P1, H), holds(P1,H).

...

holds(not(P), H) :− !, (nonground(P)→ holds not(P, H); not holds(P, H)).

Negations are pushed inside with the last clause above. Unlike other GOLOG implementations
(cf. Chapter 3.3), we do not make use of Prolog’s evaluation strategy “negation by finite failure”
for nonground terms, as for value comparisons like¬x = 1 the domain of the parameter has to be
set appropriately. In this special case, the domain ofx has to be set tox ∈ D\{1}. holds not/2

pushes negations inside the comparison. Therefore, we have to provide a set of predicates of the
form

holds not(and(P1, P2), H) :− !, holds(or(not(P1), not(P2)), H).

Comparisons have to be treated in a special way. We realize this by the predicateeval comparison

which was already used in the definitions ofholds/2 above.

eval comparison(Not, Op, A, B, Expr, H) :−
subf(A, A1, H), subf(B, B1, H),

...

(Not = not→ Expr = not(Expr2); Expr = Expr2);

(is domain(A2); is domain(B2))→ fd op(Not, Op, Op2), Expr = .. [Op2, A2, B2];

Expr2 = .. [Op, A2, B2], (Not = not→ Expr = not(Expr2); Expr = Expr2))).

One parameter of this clause is the Boolean flagNot which can be handed over to distinguish
between negated and non-negated comparisons. The interesting part of this predicate w.r.t. pro-
gression is the call to the predicatefd op/3. It substitutes the operand given by the variableOp

with an operand of the finite domain library which in turn evaluates the results of the operation on
the index structures.

One has to remark that progression does not come for free. Depending on the structure of the
used effect axiom it is worthwhile not to use progression each time an action was executed. For
our soccer domain implementations we found out that using a hybrid model, i.e. using regression
and progression side by side up to an action history of 20 actions, regression is faster. After 20
actions we progress the database to get a newS0.

4.5. DISCUSSION 121

4.5 Discussion

In this chapter we laid out our proposal for the Golog-based action language READYLOG. As we
stated before, it is an amalgamation of several existing GOLOG dialects into one framework. For
real-world domains one definitely needs a notion of continuous change. As in the situation cal-
culus the world evolves from situation to situation, i.e. not continuous, an appropriate extension
had to be integrated. We used the account in (Grosskreutz and Lakemeyer 2001; Grosskreutz and
Lakemeyer 2003) where continuous change is formalized in the situation calculus and the dialect
CCGOLOG is proposed. Further, uncertainty is omnipresent in realistic domains and an expressive
action language has to provide a means to deal with it. Here, we follow two approaches: (1) is
the possibility to reason with probabilistic programs as proposed inPGOLOG (Grosskreutz 2000;
Grosskreutz and Lakemeyer 2000b), and (2) stochastic action models in the decision-theoretic
planning context. Originally, probabilistic action models were proposed in (Pinto et al. 2000) (see
also (Reiter 2001)). In order to simplify the programming of the outcomes of stochastic actions,
we modified their definition from deterministic actions which describe the outcome to restricted
READYLOG programs. We showed that both approaches have the same expressiveness. We intro-
duced decision-theoretic planning as proposed in (Boutilier et al. 2000) into our framework.

To satisfy the requirements of real-time domains we proposed a new on-line execution model
for decision-theoretic policies. We already discussed a similar approach which is due to Soutchan-
ski (2001). To detect when a policy is no longer applicable due to unpredicted changes in the
dynamic environment, we proposed a simple but efficient method to monitor the execution of
policies. Previously, the problem of execution monitoring in GOLOG was regarded, although not
in the context of monitoring policies. Nevertheless, we want to discuss the approaches in De Gi-
acomo et al. (1998) and Bjärland (1999) in the following briefly. De Giacomo et al. (1998) and
Soutchanski (2003) (the latter is the extended version of the former) introduce traces of histories.
A trace : program × history → history is a function which maps a program and a history to
histories. They define a predicateTransEM : situation× program× history × situation×
program × history which extends the originalTrans predicate of theCONGOLOG transition
semantics to also take histories. If there exists a legal program trace for the successor configura-
tion they call a predicateMonitor which monitors the execution. The monitor predicate checks
whether there have been relevant discrepancies between the successor situation with and without
sensing actions or exogenous events, which might have happened in the meantime. If there are
such discrepancies a recover predicate is invoked. To make this work a postcondition describing
the original goal of the program being monitored must be specified. With the postcondition the
goal of the monitored program is known. Thus, for a recovery strategy a forward chaining planning
algorithm in GOLOG is used to detect a recovery strategy. Bjärland (1999) extends the approach
by (De Giacomo et al. 1998) by taking also modeling faults into account. It might be that a par-
ticular effect is expected but when executing the associated action, a not expected effect occurs,
and no exogenous event has happened in between. Similarly, we detect discrepancies between the
expected state, based on model assumptions of our (stochastic) actions during decision-theoretic
planning and real execution. Our recovery strategy currently is to simply cancel the policy and
start planning from first principles. Given our time constraints this seems to be reasonable against
the background that finding recovery strategy has the same complexity in general as planning from
scratch. In Chapter 8 we develop some ideas how a recovery plan can be established, at least in the

122 CHAPTER 4. A GOLOG DIALECT FOR REAL-TIME DYNAMIC DOMAINS

case where only little discrepancies are detected. Concluding this topic, there exist a body of work
dealing with explaining execution failure. One example in the situation calculus is (Iwan 2002).

Finally, we introduced options (Hauskrecht et al. 1998; Precup et al. 1998; Sutton et al.
1999) into the READYLOG framework. These macro-actions lead to an exponential speed up in
the planning times compared with using basic actions. Besides this speed up, the drawback of
our approach is that our algorithm relies on explicit state space enumeration. This is a restriction,
especially because the forward search algorithm used for calculating policies in READYLOG is
not subject to such restrictions. In Chapter 7 we present some ideas how this can be overcome.
Another restriction related to the state space enumeration is that for realistic domains our option
approach is not directly applicable. One has to provide a clever state space abstraction for real-
world applications such as robotic soccer. In Chapter 7 we present one possibility how the state
space for the soccer domain could be abstracted making the option approach applicable. Some fur-
ther commonly known concepts like caching techniques and pruning are presented in this chapter.
They further decrease the computation times, but come at the cost of losing optimality.

Chapter 5

Simulated Readylog Agents

In this section we show application examples of the language READYLOG. We start with the

interesting real-time dynamic domain of UNREAL TOURNAMENT 2004, an interactive computer

game, which we will introduce in Section 5.1. We show how READYLOG can be applied for

agents acting in this domain. We dwell especially on the trade-off between full agent programming

and full decision-theoretic planning in the READYLOG framework. Then, we go over to the this

domain. In Section 5.2, we first give an overview of this domain as this domain was central for

the development of READYLOG. Here, we discuss the different ROBOCUP leagues and portray

the different properties of this application domain. In Section 5.2.2 we concentrate on an example

from the robotic soccer domain. We show how a double pass can be planned in ROBOCUP’s

Simulation league using probabilistic projections. We conclude with Section 5.3, where we discuss

our approach as well as related approaches in the area of game AI and particularly, in the are of

game bots.

5.1 Unreal Readylog Bots

In this section we will show a case study of decision-theoretic planning and modeling in the com-

plex domain of the interactive computer game UNREAL TOURNAMENT 2004. We will compare

different models how to pick up a sequence of “health item” needed to power up a READYLOG

bot.

5.1.1 UNREAL TOURNAMENT 2004

UNREAL TOURNAMENT 2004 (Epic Games Inc. 2007) is a state-of-the-art interactive computer

game. We have chosen this game because the bots available therein are programmed to behave

like human adversaries for training purposes. The game engine itself is mainly written in C++ and

cannot be modified. In contrast to this, the complete Unreal Script (in the following USCRIPT)

code controlling the engine is publicly available and modifiable for each game. For instance,

introducing new kinds of game play like playing soccer in teams or the game of Tetris have been

123

124 CHAPTER 5. SIMULATED READYLOG AGENTS

implemented on the basis of the Unreal Engine (see (Epic Games Inc. 2007) for more information

about these kind of ’game modes’). All this can be defined easily in USCRIPT, a simple, object-

oriented, Java-like language which is also publicly available. Figure 5.1 shows a scene from an

UNREAL TOURNAMENT 2004 game.

In UNREAL TOURNAMENT 2004 ten types of game-play or game modes have been imple-

mented and published. For our work the following game types are of interest:

• Deathmatch(DM) is a game type where each player is on its own and struggles with all other

competitors for winning the game. The goal of the game is to score points. Scoring points

is done by disabling competitors and the secondary goal is not getting disabled oneself. If

the player gets disabled he can choose to re-spawn1 in a matter of seconds and start playing

again. To be successful in this type of game one has to know the world, react quickly,

and recognize the necessity to make a strategic withdrawal to recharge. An interesting sub-

problem here is the games where only two players or bots compete against each other in

much smaller arenas. In this setting one can compare the fitness of different agents easily.

• Team Deathmatch(TDM) is a special kind of Deathmatch where two teams compete against

each other in winning the game with the same winning conditions as in Deathmatch. This

is the most basic game type where team work is necessary to be successful. Protecting

teammates or cooperating with them to disable competitors of the other team are examples

of fundamental strategies.

• Capture the Flag(CTF) is a strategical type of game play. The game is played by two teams.

Both teams try to hijack the flag of the other team to score points. Each flag is located in the

team base. In this base the team members start playing. Scoring points is done by taking

the opposing team’s flag and touching the own base with it while the own flag is located

there. If the own flag is not at the home base no scoring is possible and the flag has to be

recaptured first. If a player is disabled while carrying the flag he drops it and if it is touched

by a player of an opponent team, the flag is carried further to the opponents home base. If

the flag is touched by a teammate who owns the flag it is teleported back to its base.

To win such a game the players of a team have to cooperate, to delegate offensive or de-

fensive tasks, and to communicate with each other. This game type is the first one which

rewards strategic defense and coordinated offense maneuvers.

Note that the above game types include similar tasks. A bot being able to play Team Death-

match has to be able to play Deathmatch just in case a one-on-one situation arises. Furthermore

Capture the Flag depends on team play just like the Team Deathmatch.

1’Re-spawning’ means the reappearance of a player or an item such that it becomes active again.

5.1. UNREAL READYLOG BOTS 125

Figure 5.1: A scene from the interactive computer game UNREAL TOURNAMENT 2004.

5.1.2 Modeling UNREAL in READYLOG

The UNREAL bots are described by a variety of fluents which have to be considered while playing

the game. All of the fluents have a time stamp associated such that the bot is able to know how old

and how precise his state information are.

Identifier fluents: In the set of identifier fluents the bots name, the currently executed skill, to-

gether with unique IDs describing the bot and the skill can be found, among others.

Location fluents: The location fluents represent the bots location in a level, its current orientation,

and its velocity.

Bot Parameter fluents: Health, armor, adrenaline, the currently available inventory in which the

items are stored, and the explicit amount of each inventory slot is saved in this set of fluents.

In the inventory additional game objective items can be found such as a flag in CTF.

Bot Visibility fluents: Here information about the objects in the view range of the agent are

found. These information are distinguished in a team-mate and an opponent set. They

contain the bots identifier and its current location. In games without team play the set of

friends stays always empty during game-play.

Item Visibility fluents: Here the information about the currently visible and non visible items

can be found. If an item is not visible at its expected position a competitor took it away

and it reappears after a specific time. The definite re-spawn time of the item is unknown in

general. The explicit re-spawn time is only available, if the bot itself took the item.

Bots in UNREAL TOURNAMENT 2004 are able to use the skillsstop, celebrate, moveto, roam,

attack, charge, moveattack, retreat, and hunt. All actions from UNREAL are modeled in the

126 CHAPTER 5. SIMULATED READYLOG AGENTS

READYLOG framework as stochastic actions and successor state axioms are defined for all the

fluents.

To illustrate the capabilities of READYLOG we begin by showing two extreme ways to specify

one task of the bot, collecting health items. One relies entirely on planning, where the agent has to

figure out everything by itself, and the other on programming without any freedom for the agent

to choose.

The example we use for describing the different approaches, their benefits, and their disad-

vantages is the collection of health items in an UNREAL level. Because collecting any one of

them does not have a great effect the agent should try to collect as many as possible in an optimal

fashion. Optimal means that the bot takes the optimal sequence which results in minimal time and

maximal effect. Several constraints like the availability have to be taken into account.

The first and perhaps most intuitive example in specifying the collection of health packs is the

small excerpt from a READYLOG program shown below. Using decision-theoretic planning alone,

the agent is able to choose in which order to move to the items based upon the reward function.

The search space is reduced by only taking those navigation nodes into account which contain a

health item.

proc collect naive
. . .
getNavNodHealthList(HealthNodeList) ;
solve(Horizon, healthReward ,

while truedo

pickBest (healthnode, NodeList , moveto(own, healthnode)))
endwhile

. . .
endproc

function healthReward , Reward

CurrentTime = start∧
TmpReward = CurrentHealth − CurrentTime∧
Reward = max(TmpReward , 0)

return Reward

The first action of the excerpt binds the list of all health nodes in the current level to the free

variableHealthNodeList . Thesolve statement initiates the planning process. Up to the horizon

Horizon the loop is optimized using the reward functionf HealthReward which simply awards

the health status of the bot discounted over the planning time. Note that we assume a continuously

changing world during plan generation. ThepickBest statement projects the best sequence of

moveto actions for each possible ordering of health nodes. This results in the optimal action

sequence given the bot’s current location as health nodes which are far away are honored a lower

reward.

Note that in this first basic example all calculations are up to the agent. Information about

availability of items, the distance or the time the agent has to invest to get to the item become

5.1. UNREAL READYLOG BOTS 127

available to the agent as effects of themovetoaction. While easy to formulate, the problem

with this program is its execution time. With increasing horizon the computation time increases

exponentially in the size of the horizon. All combinations of visiting the nodes are generated

and all stochastic outcomes are evaluated. For example, in a setting withHorizon = 3 and

#HealthNodes = 7 the calculation of the optimal path from a specific position takes about50

seconds,2 which makes this program infeasible at present.

The next idea in modeling the health collection is to further restrict the search by using only

a subset of all available health nodes. The example shown previously took all health navigation

nodes of the whole map into account, whereas a restriction of those nodes is reasonable. Items

which are far away are not of interest to the agent. Because of this restriction the real-time demands

are fulfilled in a better way, but they are still not acceptable for the UNREAL domain. In the same

setting as above (Horizon = 3 and#HealthNodes = 7 from which onlyHorizon + 1 = 4

health navigation nodes are chosen) the calculation of the optimal path lasts about8 seconds.

A much more efficient way to implement this action sequencing for arbitrary types is to pro-

gram the search explicitly and not to use the underlying optimization framework. For example,

filtering the available nodes and ordering them afterwards in an optimal way by hand is a much

better way to perform on-line playing. First, the agent looks if there are item available with a

rather high confidence value of0.9. If no item with such a value come into sight, it is cross-

checked whether there are item with a lower visibility value of0.5. Finally, the agent starts to pick

these item up. The example described above is illustrated in the programcollect following next.

proc collect(Type, Horizon)
if Horizon 6= 0 then

Loc = botLocation;
getNextVisNavNode(Loc, Horizon, Type, 0.9, TmpVisList)

endif

if TmpVisList = {} then

getNextVisNavNode(Loc, Horizon, Type, 0.5, TmpVisList)
TmpV isList = [HeadElement|Tail];NewHorizon = −1;

else HeadElement = nil endif

if VisList 6= {} then moveto(HeadElement)
else collect(Type, NewHorizon) endif

endproc

This example of modeling health collection is far from optimal from a decision-theoretic point

of view. There are no backup actions available if something goes wrong and no projection of

outcomes is applied during execution. On the other hand, the execution of the programcollect is

computationally inexpensive. It therefore could be accepted if a sub-optimal solution is calculated.

Given the pros and cons of these two examples, it seems worthwhile to look for a middle

ground. The idea is to allow for some planning besides programmed actions and to further abstract

2The experiments were carried out on a Pentium 4 PC with 1.7GHz and 1GB main memory.

128 CHAPTER 5. SIMULATED READYLOG AGENTS

the domain so that the search space becomes more manageable. Instead of modeling each detail

for every action simpler models are introduced which do not need that much computational effort

when planning.

To illustrate this we use an excerpt from our actual implementation of thedeathmatch agent

(programagent dm below). Here an agent which chooses at each action choice point between

the outcomes of a finite set of actions, was programmed. It has the choice between collecting

a weapon, retreating to a health item and so on, based on a given reward function (see function

rewardDM on page 128).

The main part of the agent is the nondeterministic choice which represents the action the agent

performs next. It has the choice between roaming, attacking an opponent, or collecting several

specific items. The decision which action to take next is performed based on the reward of the

resulting state. Note also that the non-deterministic choices are restricted by suitable conditions

attached to each choice. This way many choices can be ruled out right away, which helps to prune

the search space considerably.

proc agentdm(Horizon)
while truedo

solve(Horizon, rewardDM ,
if ¬sawOpponent then roam(own)
else if sawOpponent then moveattack(own))endif

. . .
| if itemTypeAvailable(healthPack) then collect(healthPack) endif

| if ¬hasGoodWeapon ∧itemTypeAvailable(weapon)
then collect (weapon) endif

) /*end solve*/
endwhile

endproc

function rewardDM

∃reward.(. . .
if (health < 150, rewardhealth1

= −1),
if (health < 100, rewardhealth2

= −5)
. . .
if (armor > 135, rewardarmor = 20)
. . .
rewardscore = 200 ∗ (max score−my score)
reward = rewardhealth1

+ rewardhealth2
+ · · ·+ rewardscore)

return reward

5.1. UNREAL READYLOG BOTS 129

Level Name #Player RB only RB vs. UB
Training Day 2 9:6 8 : 9
Albatross 2 9:5 8 : 9
Albatross 4 9:8:5:3 8:1 : 9:5
Crash 2 8:7 7 : 8
Crash 4 9:7:5:3 8:5 : 9:6

Table 5.1: UNREAL deathmatch results generated in our framework. The setting was as follows:
GoalScore = 9, LevelTime = 6 min, SkillLevel = skilled. We present the median result of five
experiments for each entry here.

5.1.3 Experimental Results

In our implementation we connected READYLOG and UNREAL via a TCP connection for each

game bot. With this connection the programs transmit all information about the world asyn-

chronously to provide the bot with the latest world information and receive the action which the

bot shall perform next until a new action is received. With this setup and after implementing an

agent to play different styles of play, we conducted several experiments.

Perhaps the most important thing to be mentioned before attending to the explicit results is that

the game is highly influenced by luck. Letting two original UNREAL bots compete in the game

can result in a balanced game which is interesting to observe or in an unbalanced game where one

bot is much more lucky than the others and wins unchallenged with healthy margin. Because of

that we ran every test several times to substantiate our results.

Table 5.1 shows the results of the deathmatch agent which we described in the last section.

In this and the next table the first column contains the name of the level we used for testing. The

second column shows the total number of players competing in this level. In the following columns

the results of different settings of the game are represented. The abbreviation UB stands for the

original UNREAL bot. RB means the READYLOG bot. “RB only” means that only READYLOG

bots competed. “RB vs. UB” means that the READYLOG bots compete against the UNREAL bots.

The entries in line 3 and 5 mean the total ranking of the four competing bots, i.e. the winning bot

got a score of 9, the second a score of 8, the third a score of 5, and the fourth a score of 3. In the

column “RB vs. UB” the first two entries show the results of the READYLOG bots against the two

UNREAL bots.

Next we consider the capture-the-flag agent, which was implemented based on the team death-

match agent. Here we focused on the implementation of a multi-agent strategy to be able to play

Capture the Flag on an acceptable level. We introduced two roles to implement a strategy for this

type of game which we calledattackeranddefender. The attacker’s task is to try to catch the

opponents flag and to hinder the opponents from building up their game. The defender’s task is

to stay in the near vicinity of the own flag and to guard it. If the own flag is stolen its job is to

retrieve it as fast as possible. Each role was implemented using a simple set of rules based on the

130 CHAPTER 5. SIMULATED READYLOG AGENTS

Level Name #Players RB only RB vs. UB Mixed
Joust 2 5:3 5:3 -
Maul 4 1:0 0:1 2:1
Face Classic 6 2:1 0:1 2:1

Table 5.2: UNREAL Capture the Flag results generated in our framework. The setting was as
follows: GoalScore = 5, LevelTime = 6 min, SkillLevel = skilled. We present here the median
result of five experiments for each entry.

state of each team’s flag: the two flags can each be in three states,at home, carried, or dropped.

For each of the resulting nine combinations of the two flags we implemented a small program for

each role. For instance, if the own flag is in the state dropped the defender’s task is to recapture it

by touching the flag. For several states we introduced nondeterministic choices for the agent. It is

able to choose between collecting several items or trying to do its role-related tasks.

The results can be interpreted as follows: In the one-on-one levelJoustthe READYLOG bot

is surprisingly strong in game-play. We confirmed those results in other one-on-one levels. We

think this is due to the goal directed behavior of our attacker. The agent does not care much about

items and mainly fulfills its job to capture the flag and recapture the own flag. The column titled

“Mixed” in Table 5.2 shows the result where READYLOG and UNREAL bots together made up a

team.

5.2 Robotic Soccer

The next application example is from the robotic soccer domain. We show the action selection

scheme of a simulated 2D soccer agent using READYLOG. As robotic soccer will be an issue also

in Chapter 6 and in Chapter 7, we go more into the details and especially describe the domain

properties which make the robotic soccer domain such a demanding and interesting domain. We

start with our description of the domain before we go into the details of the READYLOG example.

5.2.1 The RoboCup Initiative

The RoboCup initiative was started in 1997 with the paper (Kitano et al. 1997). The idea was

to foster AI and robotics research with proposing a common application domain: soccer. They

provided the vision

“By the year 2050, [to] develop a team of fully autonomous humanoid robots that

can win against the human soccer world champion team.”

(RoboCup 2006)

While this is clearly an ambitious goal, interesting insights about how to design and control au-

tonomous humanoid robots can be made on the way towards this goal.

5.2. ROBOTIC SOCCER 131

Several questions arise regarding the vision behind the RoboCup initiative. Why does one

need a team of humanoid robots playing soccer? Why is it important to have a common test bed

for research? Why soccer?

Soccer is of special interest as a common test bed because it has a very interesting characteris-

tic: it is a cooperative and adversarial multi-agent/robot domain. There is a common goal (to win

the game) which can only be achieved in a team, cooperatively. There are opponents that try to

foil the own endeavors. We will discuss the domain aspects in detail below.

Even if one is not convinced that one needs a team of humanoid soccer playing robots the

RoboCup idea seems to push the development towards the right direction. From a robotics per-

spective the interesting fields are how to build and control those robots or agents, including re-

search on human gait and running, mobile power supply, control theory, engineering. From an

AI perspective interesting fields are foundations of cooperative multi-agent systems, behavior pro-

gramming, strategy acquisition, or decision making.

Trying to solve all problems at once will probably not lead to success. Therefore, RoboCup is

organized in several different leagues which all concentrate on sub-problems.

Simulation League. The Simulation league, one of the first leagues in RoboCup, concentrates

on agent research. It is, as the name says, a simulated league, where two teams of eleven software

agent compete in a simulated environment. A simulation server, the Soccerserver (Noda et al.

1997), which receives the action commands from the agents and dispatches the sensory informa-

tion to each agent exists. The Soccerserver calculates the visible information for each player and

sends it in form of a string message to each agent via an UDP socket. The information of the visi-

ble landmarks of an agent are computed in an egocentric view. Besides the visual information the

soccer server also sends aural messages to the player, i.e. player can shout and in a close distance

around this can be heard by other players. The amount of data which can be sent via these “say”

messages is restricted to 10 bytes per simulation cycle. From this information each agent has to

construct a world model. Agents can settle actions by sending one of five basic actions back to

the server. These actions aredash, kick, turn, catch(for the goal keeper only),tackle. The Soc-

cerserver controls also the game play. An automated referee judges offsides, throw-ins and counts

the goals. The simulation takes place in simulation cycles of 100 ms. That means that each agent

can send an action to the Soccerserver every 100 ms. Visible and audible information are sent to

the players every 150 ms. For the last three years a new simulation environment was established

which extends the simulation to 3D (Obst and Rollmann 2004).

Small-size League. The Small-size league is a robotic league. Five small wheeled robots play

on a field of the size of a table tennis board with a golf ball. As the robots are too small to carry

sensors on-board, a ceiling camera is installed above the field. The camera images are sent to

each team. Vision processing extracts the relevant information from the images. To alleviate the

recognition, each player has a special color coding on top. With these information the actions the

132 CHAPTER 5. SIMULATED READYLOG AGENTS

robots should perform are calculated by a computer off the field. The actions are sent back via

radio to the robots. Thus, the league is partly autonomous. The research focus here is mainly on

image processing and decision making.

Middle-size League. Two teams of up to five fully autonomous wheeled robots compete on a

field of the size8 × 12 m.3 The robots may have a maximal size of50 × 50 cm and the height

may not exceed80 cm. Like in the other soccer leagues are the goals and the ball color-coded to

ease perception. The goals are painted blue and yellow, the ball is orange. The research focus of

the Middle-size league is on robotics and on decision making. It turns out especially in this league

that the whole system, hardware as well as the software, must form a unit. Only well integrated

overall systems are competitive.

Four-legged League. While in the Small-size and the Middle-size league the hardware is

developed by the participating teams and part of the research, the Four-legged league aims at

developing robot control software on a restricted but common platform. The robots here are Aibo

dog robots from Sony. The different developments and achievements made by the teams can be

well compared, as they all work on the same platform. The robot’s capabilities are limited. It has

only a very small camera resolution, the sensor values of the joints are very noisy. Another problem

in this league regarding the hardware platform is that Sony does not provide enough information

about the hardware such that several controllers had the be reverse-engineered in order to learn how

they work. Another remarkable note in this league is that it allows for distributed development.

For example, there is a German Team (Röfer et al. 2004) where five universities work successfully

together on the same code. Clearly, this is supported by the common hardware. Unfortunately,

this league will sooner or later come to an end as Sony stopped the production of the Aibo in 2006.

Humanoid League. The ultimate goal of the RoboCup initiative is to play (robotic) soccer with

humanoid robots. Of course, research on human-like robots must be conducted in order to achieve

this goal. The humanoid league has existed for three years and makes remarkable progress. In

the beginning, the competitions were only so-called technical challenges, where the teams showed

the capabilities of their robots. Today, there are already soccer matches two-on-two. There are

two different sub-leagues based on the sizes of robots, the so-called Kid-size league and the Teen-

size league. In the Kid-size league, robots with a height from30 cm to60 cm compete, while a

typical Teen-size robot measures between65 cm and130 cm, although in special cases robots up

to 180 cm may participate in this league.

Rescue Leagues. Besides the soccer activities RoboCup has a broader scope. It turned out that

the general idea to have competitions to foster certain research fields and aspects works very well.

The Rescue leagues aim at rescuing entombed people from urban disaster areas, both in simulation

3The competition rules for 2007 are changed in that way that there are six robots on a field of size12 × 20 m.

5.2. ROBOTIC SOCCER 133

and with real robots. In the simulated leagues, research is about strategic planning, how resources

like fire trucks has to be scheduled. In the hardware league, the partly autonomous robots must

detect people. The problem is, for one, to detect the victims by the sensors, and for another that

the robots have to maneuver in rough terrain.

RoboCup@Home League. The RoboCup@Home league was established in 2006. The idea

here is to foster service robotics research. In a human apartment environment the robots should

perform service robotics tasks. In the first competition the tasks were to safely maneuver through

the apartment, follow a person, and pick up a newspaper. Further some free performance was

allowed to show the capabilities of the robot. The focus of the several tests are the general applica-

bility of the methods. Thus, each team has only five minutes time to adapt the environmental map

of the robot to changes. Only the floor plan may be mapped in advance. The tests are conducted

in such a way that first the developer may present the test to show the general applicability. In a

second run the robot has to fulfill the task with a referee instructing the robot. An important aspect

of the RoboCup@Home league is human machine interaction. Among other things, the robots

should be able to understand natural language commands.

RoboCup Junior. Another important aspect of RoboCup is to interest students below university

level for robotics. In the RoboCup Junior league students at high-school level program Lego

Mindstorm robots for dance competitions or to fulfill simple tasks like follow a line on the floor.

A key aspect for research and education is the competition idea. In annual competitions re-

searchers and students from all over the world get together. Participants can easily exchange

experiences or research ideas. As the open source idea is widely spread with the RoboCup teams,

it also possible not only to exchange ideas but also code. This helps a lot to bring the develop-

ment further. Next, we will concentrate on the question why the soccer domain is an interesting

research domain. In addition to the domain aspects discussed in Russel and Norvig (2003) we will

concentrate on several other interesting properties of the soccer domain in the following and their

impact to the system design of robots or agents acting in these domains.

Thedynamic and real-time aspectof a domain means for one that the environment changes at

any time unlike checkers which is round-based, for another that decision and actions must be taken

in real-time. The decision cycles are short. The longer it takes to come to a decision the more the

performance of the system decreases. The real-time aspect refers to nearly all systemaspects. On

the highest level this means that the decision which action is to be performed next has to be taken

quickly. Consider the soccer domain where a player is in ball possession. If it takes too long to

decide what to do next, an opponent might steal the ball, or the robot which is dribbling with the

ball simply loses the ball because it stopped to think about when to kick the ball. This example

shows that the real-time aspect of a domain is connected to several other aspects like acting in an

adversarial domain. This aspect has an impact on the high-level decision layer: if it takes too long

to decide, an opponent which decides faster will render the own efforts useless. If no opponents

134 CHAPTER 5. SIMULATED READYLOG AGENTS

are involved there still are real-time aspects for the whole system. The example of dribbling a

ball shows that motion control of the robot must also take decisions in real-time. If there are time

latencies during execution, the robot will simply lose the ball while dribbling.

Many researchers intensively think about the termphysical embodiment. For example, the

Cognitive Robotics community discusses if a system acting in the real world must have a rigid

body to give realistic results. Our experience over several years of doing RoboCup shows that it

has significant impact on the design of decision making algorithms if the agent you deal with is

physically embodied. Many good ideas turn out to be not feasible in the real world application. It

also forces the system designer to meet the hard reality. Even in good simulated environments it

is often not possible to generate results which are realistic enough to transfer the results directly

to a real world application.

The soccer domain is onlypartly observable. The robot can only observe several aspects like

its own position or the ball position. For instance, it may be that the robot cannot perceive what

is happening behind it. For a simulated environment it means that not all important aspects are

accessible.

Uncertaintyis imposed by several other aspects of the robotic soccer domain. One reason for

uncertainty for a soccer robot comes from the aspect of embodiment: we are dealing with “real”

systems in the real world. This means that the actuators and the sensors of the robot are error-

prone. The sensors are not accurate and thus impose uncertainty on the robot system. For example,

consider the estimation of the position of the robot on the soccer field. The autonomous robot

can only estimate its own location. The actuator system of the robot is imprecise and moreover

coupled to the error-prone sensor systems. If the robot kicks the ball it can never predict exactly

where the ball will be afterwards. The reason lies in the fact that we can only partly observe our

domain. Many relevant aspects of the domain are not accessible to the agent. Again, consider

the kick example. It will also depend on the pressure inside the ball where the ball will be after

the kick. This information will never be available to the robot. In a simulated environment these

problems are not ostensible. For this reason noise functions are used to simulate these effects

also in simulated agent systems. Another kind of uncertainty is imposed by the fact that robotic

soccer is an adversarial domain. The robot does not know the behaviors of its opponents. It can

build models for the possible behaviors by observing them, but these form of prediction is also

uncertain. The behaviors of the opponent should have direct influence on the decision making of

the robot.

For many problems a winningstrategyexists. One can prove that with this strategy the goal

can be reached. For example, in checkers such a strategies is known. In a game like robotics

soccer there definitely does not exist a global strategy which ensures to win the match. The term

strategic domain also covers if there are strategies or tactics to achieve desired sub-goals of agame.

Achieving these sub-goal do not necessarily ensure the achievement of the global goal, but might

build a good base in doing so. For example, think of a defense strategy in robotic soccer. With

a good defense which hinders the opponent team to shoot goals it is more likely to win a soccer

5.2. ROBOTIC SOCCER 135

match than without. The question is if such strategies for a domain exists, and which they are.

In domains like soccer or interactive computer games like UNREAL TOURNAMENT 2004

adversariestry to foil the endeavors of the agent to reach its goal. It introduces another source

of uncertainty to the agent as it is hard to predict how the opponent might behave. It fosters the

design of flexible and general approaches for achieving the desired goals of the domain. Another

important aspect of an application domain for an agent system is thecooperativeness. This aspects

is about if the global goal can be reached by one agent or of several agents need to cooperate in

order to achieve the global goal. The aspect of cooperation has a major impact to the design of

decision making. The design of the high-level control of an agent is also influenced if the domain

is partly episodic. By this we mean that there are episodic elements in the application domain. For

soccer this means that there are standard situations like free kicks or corner kicks. These situations

define a subspace of all possible situations. For these episodes more specialized strategies can be

developed.

After having introduced these domain properties of robotic soccer we now come to our first

soccer application example. Throughout the rest of this thesis the soccer example will be our

companion.

5.2.2 Action Selection in 2D Soccer Using Probabilistic Projections

Modeling a Double Pass

In the following we give an example of a READYLOG domain description for simulated soccer.

In the subsequent programs the agent needs the primitive relational fluentsseeBall andhasBall ,

and the functional fluentsplayMode andpassPartner . The fluentplayMode is accessed via the

exogenous actionchangePlaymode, which is triggered when the play mode in the Soccerserver

changes. The update is done using the described passive sensing approach. The former fluent

denotes the actual game state as broadcasted by the Soccerserver likebeforeKickOffor offSideLeft,

which is sensed by the agent. The latter takes the player number of a possible pass partner to play

the double pass with. It will store the result of the probabilistic projection. Another continuous

fluentballPosition is needed in the specification. To perform a double pass (see Figure 5.2) the

agent will need the actionssearch next passPartner anddirectPass. The first one is a sensing

action which senses a player nearby that could be taken into account for playing a pass to. The

directPass action then performs the pass in the simulated environment.

The following action precondition can be modeled:

Poss(directPass(own, p)) ≡ hasBall(own) ∧ reachable(own, p)
Poss(search next passPartner ≡ true

Poss(changeP laymode) ≡ true

The effect for the pass action, for example, is that

Poss(directPass(own, p)) ⊃ ¬hasBall(own) ∧ hasBall(p).

136 CHAPTER 5. SIMULATED READYLOG AGENTS

Player 2

Player 3

Opponent

(a) Beginning of the
double pass

(b) Player 3 received
first pass

(c) Player 2 moves to re-
ceive position

(d) Player 2 receives the
second pass

Figure 5.2: Double pass scenario

The main control of the soccer agent can be modeled like given in the proceduresoccer agent

below. ThewithCtrl takes care that depending an the current play mode which is sent by

proc socceragent
forever do

withCtrl playmode = beforeKickoff do placeon field endwithCtrl

|| withCtrl playmode = ownFreeKick do . . . endwithCtrl
...

|| withCtrl playmode = playOn do playSoccerendwithCtrl

endforever

endproc

the Soccerserver the appropriate control procedure is exhibited. Each of these are interleaved

concurrently with priority from top to bottom. Assume the current play mode is set to “play on”,

i.e. normal play. Then the procedureplaySocceris called.

In this example we do not make use of decision-theoretic planning. We want to show how

action selection can be conducted using solely probabilistic projections. So, the procedure calls in

the following procedure refer to probabilistic programs. These programs either make use of the

prob statement or use probabilistic projections.4

We want to illustrate how a double pass can be selected. The procedure for probabilistically

projecting a double pass is in the proceduretry double passes below.

The actionsearch next passPartner senses the fluentpassPartner and sets it to the next

possible pass partner. This information is retrieved from the world model. As long as there

is a pass partner for the agent the loop condition remains true and the conditional is evaluated.

A probabilistic projection over the proceduretry double pass is initiated. If the probability of

success for the projection is greater or equal a rather high value of0.9, the double pass procedure

is invoked, or otherwise the next pass partner which is offered from the world model is tested.

The probabilistic projection is performed over thetry double pass procedure. In this proce-

dure the agent who intends to play the pass (own) looks for a free space between itself and the

4Note that we do not make use of stochastic actions. All action models are deterministic ones.

5.2. ROBOTIC SOCCER 137

proc try doublepasses
searchnext passPartner;

while ¬passPartner = nil do

if pproj (has ball (own), try double pass(own, passPartner)) ≥ 0.9
then setnext action(doublepass(own, passPartner))
else searchnext passPartner(own)

endif

endwhile

endproc

proc try doublepass(own, targetPlayer)
look for free space(own, targetPlayer);
try direct Pass(own, targetPlayer , passNormal) ;
(receivePass(targetPlayer) ||

interceptdirect pass(closestOpponentToPass(targetPlayer), targetPlayer));
if ballKickable then

kickTo(targetPlayer , freePos, 0.8) ||
interceptdirect pass(closestOpponentToPass(own), own)

else

moveToPos(own, freePos);
receivePass(own)

endif

endproc

pass-receiving player (targetPlayer) for which the current projection is performed. This action

sets the fluentfreePos to a position inside the free space behind the opponent player in order to

offer a position where the second pass in this double pass scenario can be received. Then, the

direct pass to the target player is performed in the simulation. Concurrently, the pass reception of

the target player and a possible intercept action by the opponent player which should be outplayed

is projected. When the next conditional is projected the world is in a state where the first pass was

already played. Either, the target player received the pass in the projection, or the opponent player

was able to intercept the ball. Therefore, it can decide if the ball is kickable for the target player.

This condition is also used to separate the roles of both players in this double pass scenario. For

the receiver the ball should be kickable, for the player who just played the first pass, the ball is no

longer kickable. Thus, the target player kicks the ball back to the previously calculated position

(freePos). Again, an opponent intercept action is taken into account. The player of the first pass

starts running to the calculated receive position of the second pass and tries to receive the ball.

The model of the direct pass is given below. First, we project the effects of the direct pass

action (by performing this action). Then, there are two possibilities for the further outcome of

the pass. Either, the opponent which should be outplayed can intercept the ball (denoted by the

prob intercept direct pass procedure) or, concurrently, it is waited until the event that the ball is

near the pass recipient or somewhere else has happened. With thewaitFor statement one respects

138 CHAPTER 5. SIMULATED READYLOG AGENTS

the duration of the action as the real execution blocks until either condition has become true.

proc try direct pass(own, targetPlayer)
directPass(own, targetPlayer , passNormal) ;
prob interceptdirect pass(closestOppToPass(targetPlayer , targetPlayer))
||waitFor(ball near player(targetPlayer) ∨ ball far(targetPlayer))

endproc

For the modeling of the opponent behavior one could also easily integrate different models. In

the following we show an example of how two different models for an opponent can be integrated.

For example,intercept direct pass1 can be a model describing a very sophisticated behavior of

the opponent assuming the opponent to be very good at intercepting the pass. The other one might

assume an opponent which is not so good at intercepting the ball. With theprob statement the

former gets assigned a probability of0.7, the latter than has a probability of0.3. These probability

is taken into account when projecting over the pass.

proc prob interceptdirect pass(opp, targetPlayer)
prob(0.7,

interceptdirect pass1(opp, TargetPlayer),
interceptdirect pass2(opp, targetPlayer))

endproc

Executing a Double Pass

To illustrate how READYLOG works in practice we give an example execution of a double pass.

We refer to the procedures given above. We first introduce the example setting and show how a

multi-agent plan is generated and executed in READYLOG by an execution trace of the program

try double passes.

Our scenario is the following. Player 2 (the lower yellow player in Figure 5.2 on p. 136) wants

to outplay the opponent with a double pass. Player 3 (upper yellow player in Figure 5.2) is in

a good position to play a double pass with Player 2. Player 2 therefore initiates the double pass

by playing a direct pass to Player 3. Thereafter, Player 2 has to run to the position where it can

receive the pass from Player 3 (Figure 5.2(b)). Player 3 receives the ball and should pass it back to

Player 2 if Player 2 itself is near the reception position (Figure 5.2(c)). Finally, Player 2 receives

the ball (Figure 5.2(d)).

To make it more concrete, we show the READYLOG execution trace of the described scenario

in Figure 5.3. Although we are able to reason about the behaviors of opponents by appropriate

models as well, we leave out this detail here. The left column of this figure shows the trace for

Player 2 which initiates the pass, the right one for Player 3. Player 2 starts by getting a new world

model and intercepting the ball to be able to play the first pass (lines 1 – 6). After the successful

intercept action both agents start the proceduretry double passes(own). The variableown is set

5.3. SUMMARY AND RELATED WORK 139

to Player 2 for both agents. Player 3 therefore plans all actions of the double pass from Player 2’s

perspective. Of course, in the execution each agent performs only actions regarding itself.5

The first action in this procedure is to find a pass partner. After resetting the fluentpassPartner ,

the agents project all possible partners for playing a pass. This is expressed by thepproj state-

ment in proceduretry double passes on page 137. This corresponds to the lines 7 to 13 in Fig-

ure 5.3. If this projection is successful with probability 0.9 the procedureexecute double pass

is called. As one can observe in lines 14 and 15 in Figure 5.3, both players are executing the

actiondirectPass. The execution system can determine by the commandnextSkill(2) that

this action is for Player 2. Player 3 will not perform the action in the real world. We now enter

phase 2 of our double pass (Figure 5.2(b)) where the first pass is to be received by Player 3. Again,

both players settle on the same action (receivePass). To synchronize the actions of both players

the execution system waits until some condition meets denoting the end of the respective action.

In our example the reception of the first pass is acknowledged by an exogenous event “received

pass”. (For ease of presentation we do not show this event as well as some control output in the

programs code. They occur nevertheless in the execution trace. An example for this is indicated

by the exogenous action in line 18 in Figure 5.3,WAITING FOR EXOGENOUS ACTION). The

pass back from Player 3 to Player 2 is not modeled by a direct pass. Instead, akickTo action is

performed to a position calculated bylook for free space in the proceduretry double pass on

page 137, i.e. a position in a free region behind the opponent. Note that the target position of

thekickTo command slightly differs in both traces. This can be explained by the different world

models of the resp. agent based on which this calculation is done.

Figure 5.2(c) shows the situation when Player 2 is near the calculated receive position. Finally,

Player 2 receives the pass (Figure 5.2(d)). As stated above, there can be small differences in

values derived from the agent’s world model. Therefore, to ensure that Player 2 receivesthe ball,

it performs an intercept action in the end.

In this example we showed a multi-agent plan for a double pass. This plan does not use explicit

communication to coordinate the agents involved. The execution of this plan is possible because

both player reason about the same actions. Player 3 in the example generates the plan from the ball

holder’s point of view and comes to the same conclusion as Player 2. So, Player 3 identifies itself

to be the best pass partner for Player 2. Multi-agent coordination like this only works if agents’

world models are similar and not too uncertain.

5.3 Summary and Related Work

In this chapter we presented two application examples of READYLOG, the one was the simulated

soccer example where the decision was taken based on probabilistic projections, the other was a

READYLOG bot for the interactive computer game UNREAL. With the latter example of an opti-

5This is realized by the distinction between the own player and teammates in Clause 4.18 on p. 112 in Chapter 4.4.
In the case the action was to be executed by a teammate, a reply action is immediately enqueued into the action queue.

140 CHAPTER 5. SIMULATED READYLOG AGENTS

5

10

15

20

25

30

35

40

Player 2

send(getBasicWorldModel, true)
send(nextSkill(2), intercept)
WAITING FOR EXOGENOUS ACTIONS...
setPlayerProj(2,[-28.34,-2.33],...)
waitedIntercept
send(getBasicWorldModel, true)
initializePassPartner
setPassPartner(3)
Prob. Proj. Test
(# of initial configs: 1,
unsorted/sorted # of traces:1/1).

Prob. Proj. Test (cached result).
write(PLANNED DOUBLE PASS.)
send(nextSkill(2),

[directPass, [3, pass_NORMAL]])
setBallProj([-27.50,-3.88],...)
send(nextSkill(3), receivePass)

setBallProj([-23.27,-11.44],...)
send(nextSkill(3),

[kickTo, [[-18.71,-1.88],0.4])

setBallProj([-27.50,-3.88],...)
send(nextSkill(2),

[moveToPos,[[-18.71,-1.88],...])
WAITING FOR EXOGENOUS ACTIONS...
setPlayerProj(2,[-18.71,-1.88],...)
send(nextSkill(2), receivePass)
WAITING FOR EXOGENOUS ACTIONS...
setBallProj([-20.57,3.19],...)
send(getBasicWorldModel, true)
send(nextSkill(2), intercept)
setPlayerProj(2,[-20.96,3.47],...)
waitedIntercept
setPassFinished
setTrySucceeded(true)
send(nextSkill(2), intercept)
WAITING FOR EXOGENOUS ACTIONS...
setPlayerProj(2,[-21.01,3.62],...)
waitedIntercept

Player 3

send(getBasicWorldModel, true)
initializePassPartner
setPassPartner(3)
Prob. Proj. Test

(# of initial configs: 1,
unsorted/sorted # of traces:1/1).

write(PLANNED DOUBLE PASS.)
send(nextSkill(2),

[directPass, [3, pass_NORMAL]])
setBallProj([-28.50, -3.00], ...)
send(nextSkill(3), receivePass)
WAITING FOR EXOGENOUS ACTIONS...
setBallProj([-23.19, -11.43],...)
send(nextSkill(3),

[kickTo, [[-21.42, 0.98],0.4])
WAITING FOR EXOGENOUS ACTIONS...
setBallProj([-23.26, -8.75], ...)
send(nextSkill(2),

[moveToPos,[[-21.42,0.98],...])

setPlayerProj(2,[-21.42,0.98],...)
send(nextSkill(2), receivePass)

setBallProj([-3.37, 2.97],...)
send(getBasicWorldModel, true)
send(nextSkill(2), intercept)
setPlayerProj(2,[-23.30,-6.25],...)
waitedIntercept
setPassFinished
setTrySucceeded(true)

Figure 5.3: Execution traces of the pass sender and receiver in the double pass situation

mal ordering of items for the item pickup tasks we showed the different modeling possibilities the

READYLOG framework offers. One has to note that the ’best’ model is dependent on the compu-

tational resources available. The framework for the READYLOG bot provides only the information

the bot is able to see, that is, it has no complete world state. This is in contrast to the built-in bots,

which can make use of the complete world state.

There have been other approaches to design AI-based game bots. Kaminka et al. (2002) imple-

mented tasks like navigation, mapping, and exploration for game bots for the UNREAL TOURNA-

5.3. SUMMARY AND RELATED WORK 141

MENT framework. They used SOAR as the underlying agent framework in their approach. SOAR

is general cognitive architecture for developing systems which exhibit intelligent behavior (Lewis

1999). Another example for the successful connection of SOAR and the UNREAL engine is given

in (Magerko et al. 2004) where they implemented agents for the game Haunt II (Laird et al. 2002).

The idea of this game is the following. Without being able to physically interact with the game

world, the human player has to influence the AI-controlled bots in order to proceed in the game,

that is, trying to scare the bots or to “possess” an AI character and manipulating its thinking pro-

cesses. Another example is Munoz-Avila and Fisher (2004). Here the authors made use of HTN

techniques to implement strategies for game bots in the UNREAL TOURNAMENT framework.

Buro is currently developing an open source real-time strategy game (Orts) which allows hu-

man players as well as machines to compete in a ’hack-free’ environment (Buro 2003). Hack-free

means that cheating is not possible. To ensure this only the server keeping all world information

has a full world state (similar as the Soccer Server for the RoboCup Simulation league). Each

cycle, all information available to a player (and only these information) are sent to her. In contrast

to commercial games, this increases the amount of data processed and sent through the network

each cycle, but the possibility of cheating is ruled out. Therefore this system is a well-suited plat-

form for real-time strategy research. The server is still under development and, to the best of our

knowledge, no clients have been developed yet.

Another closely related work is (v. Waveren 2001). v. Waveren describes the development

of the Quake III Arena Bot. Quake III Arena is a fairly successful commercial game andlike

UNREAL TOURNAMENT 2004 it is purely based on multi-player gaming. The state based bots

are implemented for training purposes and for gamers who do not possess an Internet connection.

In (v. Waveren 2001) the architecture and methods used are described in detail, as are the problems

which occurred during development. Recently, Bererton described the use of particle filters for

state estimation in game AI (Bererton 2004). To reduce the agents’ omniscience, they represent the

knowledge of the bot by a computationally efficient method known from robotics. They simulate

sensors for each bot and use the particle filter to estimate the state the bot is in. The example they

use is the knowledge of the players’ position in the environment. Instead of making use of the

knowledge where the player is, the bot searches for him, estimates and tracks his position with the

filter. This results in more realistic behaviours of the bots.

The work of Forbus et al. is about qualitative spatial reasoning to improve the AI of strategy

games. In (Forbus et al. 2002) they describe the application of their ideas to computer games.

They represent the environment in a qualitative fashion which results in better path finding, and

more general strategy libraries. As examples they use military settings, e.g. ambushes or encir-

cling manoeuvres. The already mentioned work of Funge (Funge 1998) is more GOLOG related.

It describes the use of GOLOG in several simulated environments for computer animation, camera

control, and physics-based applications situated in virtual worlds. Another work related to simu-

late computer controlled characters is that of Thurau et al. (Thurau et al. 2004) and (Bauckhage

and Thurau 2004). They present approaches to behavior modelling by applying several machine

142 CHAPTER 5. SIMULATED READYLOG AGENTS

learning and pattern recognition methods. They learn complex behaviors by observing the human

player in how she is using the available elementary movements.

A good overview of AI techniques used in interactive computer games is given in the series

Game Programming Gems(DeLoura et al. 2006) andAI Wisdom(Rabin 2003). New develop-

ments and applications are contributed to this series. These examples give an overview about

other works in the field. The relation to our work is that they also apply AI techniques to increase

the performance of game bots in various ways. Our results show that compared with the built-in

game bots, our approach is competitive even with a restricted world model. The READYLOG bots

can compete with the omniscient UNREAL TOURNAMENT bots, though, currently, we are not able

to play out all the strength of READYLOG. These domains are demanding in that there exist very

many items in a game level which have to be represented by fluents. Having too many fluents is a

problem for both regression and progression in READYLOG. Clearly, one could apply qualitative

abstraction techniques to downscale the number of item needed to be represented. These problems

resulted in that only a small horizon for decision-theoretic planning was possible. But the exam-

ples from simulated soccer and interactive computer games showed the different possibilities of

modeling the environment and the behavior of an READYLOG agent. The possibility to choose the

level of behavior modeling between programming and full planning or probabilistic projections

for selecting the most appropriate actions is one of the appealing features of READYLOG.

Chapter 6

Embodied Readylog Agents

6.1 Introduction

As we pointed out in Chapter 5.2 is the embodiment of an agent system an important aspect also

for high-level decision making. The abilities of a real robot, and especially the imperfection of

its sensors and actuators together with imprecision resulting from small deviations on each layer

of the control software which may cumulate, have an influence on the high-level control. For

successful cognitive robotics applications one needs a control system which forms a union. A

good reasoning component does not help if the robot has trouble driving to a given position or

is not able to localize robustly, and vice-versa, a good low-level system does not lead to a robust

museum tour-guide if the high-level component is not able to react appropriately to unforeseen

changes in the world. This means that the control software must be tailored to the hardware

system. In the following we sketch our hardware platform that was built with the aim to be able to

compete in robotic soccer as well as to provide a stable ground for service robotics applications.

The hardware platform of the AllemaniACS Middle-Size league RoboCup Team has a size of

39 cm× 39 cm× 80 cm (Figure 6.15). The robot is powered by a differential drive, that is, the

robot has two wheels that can be controlled separately, and another castor wheel. The differential

drive allows the robot to turn in place. The advantage is that a differentially driven robot can very

well drive in a straight line, but the disadvantage at least for the soccer application is, that it is

non-holonomic, i.e. the drive poses some restrictions on the possible trajectories and the robot

cannot move ad lib to all its degrees of freedom. A holonomic wheeled robot is able to move

sideways, too.

The motors have a total power of 2.4 kW and are originally developed for electric wheel chairs.

They provide the robot with a translational top speed of about 2.5 to 3m/sec and a rotational speed

of nearly 1000◦/sec. The motor power is needed as the robot has a total weight of approximately

70kg. For power supply there are two 12 V lead-gel accumulators with 15 Ah each on-board. The

battery power lasts for approximately two hours at full charge.

As one can see in Figure 6.15 the robot has several layers. On the first layer above the base,

a laser range finder (LRF) is installed. It scans a field of360◦ with one degree resolution in

143

144 CHAPTER 6. EMBODIED READYLOG AGENTS

(a) AllemaniACs Robot

Colli ObjectsLocalize VisionPathplan

Worldmodel

Data
Commands

Data
Commands

Skills

H L I

KickerLaser CameraMotor

WLAN

READYLOG

(b) Software Architecture

Figure 6.1: The “AllemaniACs” System

one sweep. The LRF provides measurements with a scan frequency of10 Hz. This is our main

sensor and is used for tasks like navigation, collision avoidance, and localization. We discuss our

approaches to these tasks in detail throughout the next section. On the next layer a Sony EVI-

D100P camera mounted on a pan/tilt unit is installed. The camera provides us with images in

PAL resolution at a frequency of25 Hz. The main task for this camera is to recognize objects.

In the soccer application this is mainly the ball. Behind the camera, parts of the air tank for our

pneumatic kicking device becomes visible. On top, the IEEE 802.11a/b/g access point for wireless

communication and an omnicamera is mounted. The omnicamera is a low-cost development with

a web cam which is pointed towards a hyperbolic mirror. This camera allows a360◦ view field

around the robot. The aim for this device is to roughly approximate the position of the orange

color blob (the ball) in the image. The information from this camera should only give a hint where

the ball is located, and therefore a very low-cost light bulb serving as the hyperbolic mirror is

sufficient.

On-board the robot has two Pentium III PC’s at 933 MHz running Linux, one equipped with

a frame-grabber for the Sony EVI-D100P camera. This platform allows for soccer playing, but is

suited also (and by now even better) for service robotics applications.

6.2 Robot Control Software

In this section we look at the low-level control software of the AllemaniACs robots. The system

uses a classical three layered architecture with an interface layer between the hardwareand the

control modules on the middle layer, which in turn build the interface to our high-level decision

6.2. ROBOT CONTROL SOFTWARE 145

making with READYLOG. The middle layer comprises modules like navigation, localization, or

object recognition. While we have a detailed view on the tasks navigation, localization, and a

comparative study of several sensor fusion techniques for merging the ball perception of the robots,

we overview tasks like vision, path-planning, and object recognition only briefly. The third layer

of the system architecture consists of the world model and the reasoning component READYLOG.

The software architecture is shown in Figure 6.1(b). As already mentioned the system consists

of three layers. The control flow is as is usual in layered hierarchical architectures from bottom to

top concerning data and from top to bottom w.r.t. control commands (cf. e.g. (Murphy 2000)).

Inter-process Communication

For communication between control modules we make use of a blackboard system. Each mod-

ule connects to the blackboard system and is able to read data provided by other modules from

the blackboard. Inside the blackboard several data sections are separated and access rights are

regulated. To avoid dirty reads we make use of a client-server structure to govern read/writeper-

missions. For each data section in the blackboard only one server process which may write to the

respective data section, is allowed. This avoids dirty reads as several writers cannot overwrite data

from others. Reader processes have no restriction, several modules may read a data section.For

another, to assure atomic read and write operations semaphores are used for reading and writing.

The blackboard is realized as a shared memory segment. At start up of a new module it connects

to the blackboard and registers the data it is allowed to write, as well as the sections is wants

to read data from. By using a shared memory for exchanging data on one host, one meets the

real-time conditions closely, as there is basically no overhead in storing the data. There are no

time guarantees for accessing the data and all modules connected to the blackboard are running

asynchronously. The age of the data are tracked by timestamps. The consumer modules have to

decide on their own if a date is too old for their application. Race conditions, though, are mostly

avoided by guarding the memory segments with semaphores. For inter-host communication the

blackboard offers the possibility to use TCP or UDP connections to communicate with remote

blackboards. This is an important feature as our robots are equipped with two hosts over which

the several control modules are spread.

Low-Level Interfaces

The low-level interfaces are basically hardware drivers with access to the blackboard.Themotor

driver provides data like odometry information which are calculated from the wheel encoders

and estimates about the velocity of the robot on the one hand, on the other hand it takes driving

commands from modules of upper levels. Thelaserdriver takes commands for starting or stopping

the LRF, and provides 360 distance measurements per sweep. As thedirected camerais with its

pan/tilt unit also an actuator it can take commands likemove(ϕ, θ). It provides the vision module

with camera images. The omnivision camera only yields raw images. Finally, we have thekicker

interface which takes commands actuating the pressure valves of the pneumatic kicking device.

146 CHAPTER 6. EMBODIED READYLOG AGENTS

The Middle Layer

The modules on the middle layer work on the data provided by the sensors. A central task espe-

cially with fast heavy-weight robots is an effectivecollision avoidancestrategy. We present our

approach in Section 6.3 in detail. For successful complex robot operations in dynamic environ-

ments a working localization is needed. Here we make use of a Monte Carlo approach which we

show in Section 6.4. To endow the robot’s world model with a rich representation of the environ-

ment, one moreover needs a good object classification. Here we use the information provided by

the vision module, and further we make use of the fact that the robot is localized on its given en-

vironment map. Thus it is able to distinguish between static and dynamic obstacles. The dynamic

obstacles are classified by their laser signature. For the soccer application, detecting the ball is an

important feature. Thevision module inspects a camera image on several scan lines. If a suffi-

cient number of pixels on a scan line has the appropriate object color we grow a region of interest

around these pixels. Each region is then color segmented. The segmentation is based on a color

map which is gained in a color calibration process, where the different colors are trained in a super-

vision mode on a few sample images. The thresholds for the different colors are found following a

Bayesian approach. For finding the ball we apply a randomized circle fitting following (Chen and

Chung 2001). The circle fitting is implemented as an any-time algorithm which returns the best

fitted circle. With a geometric model of the robot the position of the ball is estimated.

Interfaces to Readylog

Above the middle layer Figure 6.1(b) shows the modulesworld model, andskills. These are the

modules with which our high-level framework READYLOG is connected with. From the point of

view of high-level decision making, the skill module encapsulates actuators, the world model has

the same function w.r.t. sensor data. The skill module provides the basic actions for READY-

LOG. These are for example actions likedrive to global positionor turn with angleθ or more

sophisticated ones likedribble around opponents. While the basic actions are clearly influenced

by the soccer application, they are nonetheless useful for service robotics applications as well.

In Section 6.6 we give a detailed overview of the different actions available. The world model

accumulates all the available data from the sensor systems. This data comprises the location of the

robot in the map, the locations of the teammates, opponents and the ball for the soccer application,

and also tactical information are calculated and stored here. We come back to world modeling

issues in Chapter 7. One can distinguish between local data which are derived from the percep-

tion of the robot, or global data which also makes use of information of the teammates that are

communicated among the robots. When addressing sensor fusion in Section 6.5 we discuss this

matter. While READYLOG is implemented in Prolog and the rest of the software is implemented

in C++, we need another interface between READYLOG and the low-level control software. This

function has the moduleHLI, the high-level interface. It translated Prolog calls to appropriate C++

function calls.

6.3. LASER-BASED COLLISION AVOIDANCE ON A MOBILE ROBOT 147

6.3 Laser-based Collision Avoidance on a Mobile Robot

One central task for a mobile robot is to safely maneuver in its environment. Therefore, the

robot must find a collision-free path to a given target location. The objective is to find such a

collision-free path while maximizing the robot’s speed. In dynamic environments the method

applied must also account for obstacles which may suddenly appear in the robot’s trajectory. The

control algorithm must either be able to drive around the dynamic obstacle or, if this is not possible,

it has to stop right in front of the obstacle without colliding.

In this section we describe our method for attacking the problem of collision avoidance. We

make use of the 360◦ laser range finder which provides us with distance measurements in a fre-

quency of10 Hz. Roughly, the algorithm works as follows: first, a collision-free path to the target

point is found by applyingA∗ search over an occupancy grid with a fixed size. The last visible

point on the path lying in the grid is selected as a local target point. Ray-tracing with the current

orientation of the robot yields a collision point in front of the robot, i.e. the point where the transla-

tional trajectory hits an obstacle. Using the target point, the collision point and the robot’s location

we construct a triangle. By the way we construct this triangle we ensure that every grid cell in it is

collision-free. To achieve optimized velocities for approaching the local target point,A∗ searches

for 〈atrans , arot〉-values which keeps the robot inside the triangle and which minimizes the time to

reach the target point. In the following we describe the method in detail.

Navigation Algorithm

Our algorithm is based on anA∗ search in the〈x, y〉-space. The resulting path is modified in such

a way that the robot can follow this path for as long as possible without the need to calculate a new

one in each cycle of the algorithm.

Input : laser scans, odometry positionpr = (xr, yr), θr, target positionpt = (xt, yt), θt,
current velocityvr = (υr, ωr)

Output : motor commandsc = (υm, ωm)
pathP = {}, Pprev = {}
while ¬atGoal(pr, pt) do

M = buildOccupancyMap(s, pr, pt, υr)
if valid(P) thenP = Pprev

elseP = searchPath(M)
end
if |P | = 0 then c = escapeAction
else

Popt = smoothPath(P)
c = calculateMotorCommand(Popt)

end
Pprev = Popt

end

148 CHAPTER 6. EMBODIED READYLOG AGENTS

l2

l2

l1

l1

l1

l1

l2

l2

Laserbeam
Laserbeam

(a) Two examples of obstacle integration (b) Speed0 m/s

(c) Speed1 m/s (d) Speed2 m/s

Figure 6.2: Examples of integrating obstacles in the occupancy grid map.

Each cycle, i.e. each time the navigation algorithm is called, it retrieves an up-to-date sweep

from the laser range finder, the robot’s own pose, which is derived from the odometry, the target

pose and the robot’s current velocity as its input. First, we integrate the distance measures into

an occupancy grid and search for a path to the target point. If a path from a previous cycle of

the algorithm exists, it is checked whether this path is still valid, i.e. if it is still collision-free. A

new path is calculated otherwise. In the next step the path is smoothed. This means that in this

extra computation step it is checked if the path could not be displaced further away from obstacles.

This is especially useful in narrow doorways. Moreover, this makes the path more persistent, i.e.

a once generated path will be used during subsequent cycles of the algorithm if possible which

saves computation time. In a final step appropriate motor commands in terms of translational and

rotational velocities are calculated. If no path could be found in the search which means that the

robot is surrounded by obstacles, a special escape procedure tries to navigate the robot slowly out

of the stuck situation. If the robot is not in an escape situation, the generated path is smoothed.

6.3. LASER-BASED COLLISION AVOIDANCE ON A MOBILE ROBOT 149

Building the Occupancy Grid Map. In the first step of our algorithm we integrate the laser

sweep into an occupancy grid. In case of our soccer robots, we integrate360 single values, for

the B21 only180.1 The occupancy grid is the basis for our path calculation. At the beginning,

the robot is located in the origin of the 2D occupancy grid representation. To ensure safe passage

of the robot during the execution of the next driving command, we take account for the robot’s

velocity. The faster the robot moves the greater the security distance to the obstacles should be, or

the farer away from obstacles the calculated path should be. Therefore, in the step of integrating

new sensor information, we represent a single distance measurement from the laser range finder

not as a single occupied cell, we calculate an ellipsis which depends on the size and the velocity of

the robot. Figure 6.2(a) shows two examples. The length of the robot isl1, the width of the robot is

represented asl2. Note that the width and the length of the robot (and therefore of the ellipse) also

depend on the angle of the laser measurement. Further note that the ellipses in Figure 6.2(a) are

calculated when the robot stands still, i.e.vr = 0. In case the robot has a velocityv we multiply

l1 andl2 with the velocities inx andy direction:

l1 = l1 + lsec + l1 · | sin θ · υ|, l2 = l2 + lsec + l2 · | cos θ · ω|

with θ denoting the angle of the respective measurement,〈υ, ω〉 the translational and rotational

velocity of the robot, andlsec an additional security distance.

The idea of integrating the velocity of the robot is the following: to account for the safety

aspect that the robot has to be able to stop in front of an obstacle at any time the size of the

obstacles is extended. Thus, the robot itself can be represented as a mass point which simplifies

the detection of possible collisions between the robot and an obstacle in the algorithm.

We use a fixed occupancy grid size. Thus, we cut off sensor readings at a certain distance to

keep the search for an optimal path in a certain time-bound. When the robot is moving at high

speed, we shift the position of the robot in the occupancy grid so that it uses more look-ahead.

Figure 6.2 shows the integration of laser readings into the grid map. The laser scans were

taken from our department hall. Note that we only applied translational speeds and the robot was

oriented down the hallway. Therefore, the ellipses were only expanded in parallel to the robot.

On the right wall the robot can “see” into an open door. The repositioning of the robot inside

the grid with increasing speed can be observed by looking at the doorway on the right-hand side

which moves “down” the hall in Figure 6.2(b)-6.2(c). Our soccer robots have blind spots where

the mounting for the layer with the camera is installed (see the markings in Figure 6.2(b)). One

can observe these with the loops in the hallway walls. With increasing speed these blind spots

disappear since the obstacles are further expanded.

Searching a Path with A∗. After integrating the new laser distance measurements into the

occupancy grid, we calculate an optimal path from the current position to the target position. If

1We also implemented this method on the RWI B21 robot Carl which is installed atour department.

150 CHAPTER 6. EMBODIED READYLOG AGENTS

the target position lies outside the grid range, then we project the target point onto the border of

the grid to get a local target.

The heuristic used for theA∗ search is the Manhattan distance between the robot and the target

point. The possible actions in each state of the search areA = {N,NE,E, SE, S, ...}, i.e. all

unoccupied neighboring cells that can be reached in one step of the search. The cost function

between two neighboring grid cellsi andj is defined as

cost(a, b) =

{

d if i, j adjacent,√
2d otherwise

and∀k∃j.cost(i, k) = cost(i, j)+ cost(j, k). If the distance weightd is set to1, the cost function

describes the Euclidean distance of two grid cells (normalized by the cell size). There is no need

to integrate a more complex cost function such as a function which decreases with the distance to

an obstacle or is proportional to the occupancy of a grid cell as in (Stachniss and Burgard 2002)

(which takes an extra value iteration step over the grid for each new target point)2 because we can

guarantee that the robot takes a security margin around the obstacle as described above. Moreover,

the calculation of such a cost function is more expensive than using our simple cost function plus

taking the extra computation time to integrate the obstacles as ellipses into the grid.

This step of the algorithm yields a pathP = 〈pr, p0, p1, . . . , pt〉, wherepr = (xr, yr) is the

robot position andpt is the target position, which can either be the global target position or which

is a local target position that resulted from the projection onto the border of the grid.

Smoothing the Path. For stable navigation it is important that the path does not change too

much from cycle to cycle. The worst case would be if the path planning method returns a new

path each cycle which could lead to oscillating behavior. The reason for this alternating solutions

is mainly the sensor noise (even if a sensor model is integrated when calculating the grid) and the

fact that in the step of integrating the laser distance measurements rounding errors might occur

(due to the sine and cosine operations). The result is that the integrated obstacle positions might

swing. To prevent recalculations of the whole path we stabilize the path by shifting it further

away from obstacles nearby. This is important for narrow doorways. With smoothing the path as

described below the robot is able to traverse narrow passages faster than using solely the planned

path.

The pathP is represented by a sequence of grid cells from the start to the target point. To

enlarge the clearance of a way-pointpi = (xi, yi)
T we need to find the obstacles perpendicular

to the path segment throughpi. These obstacles can be found by ray-tracing orthogonally to the

current gradient of the path segment.

Therefore we need to calculate the gradient for each way-point. We define the derivative of a

2We discuss the paper Stachniss and Burgard (2002) which is the most related work to our algorithm at the end of
this chapter.

6.3. LASER-BASED COLLISION AVOIDANCE ON A MOBILE ROBOT 151

Obstacles

Solution

pi

pi−1

pi+1

λ1
i

ρ1
i

▽pi = pi−1−pi+1

2

λ1
i =

(

xi

yi

)

+ 1 ·
(

∂pi/∂y
−∂pi/∂x

)

ρ1
i =

(

xi

yi

)

+ 1 ·
(

−∂pi/∂y
∂pi/∂x

)

Figure 6.3: Derivation of solution

way-point by

▽pi = ▽(xi, yi)
T =

pi−1 − pi+1

2

The left and right environment around the way-pointpi can be found by

λεl

i =

(

xi

yi

)

+ εl ·
(

∂pi/∂y

−∂pi/∂x

)

ρεr

i =

(

xi

yi

)

+ εr ·
(−∂pi/∂y

∂pi/∂x

)

whereε denotes the step size, i.e. the number of grid cells searched aroundpi. The derivatives

∂pi/∂x and∂pi/∂y are thex andy coordinates to the left and the right of the way-pointpi. We

applyλεl or ρεr and check if the grid cellλεl

i or ρεr

i are occupied. The new way-point is found

by applying eitherλ or ρ ((εl + εr)/2)-times depending on whether a collision was found on the

left or on the right side of the way-point. Theε are bounded to a small number (we use a bound

of 15 cells in our implementation) to search only in the neighborhood ofpi. Figure 6.3 shows an

example.

In each cycle of the algorithm we check if there exists a path from a previous cycle and if this

path is still valid for the current situation. This validity check comprises the coordinate transforma-

tion of the previous solution into the current occupancy map and it checks if the path collides with

any obstacle in the world. If the path is still valid, we continue to use it, otherwise a re-planning is

initiated.

Generating Motor Commands. Now we have calculated a safe path to the next target point.

The robot will follow this path as long as no obstacles appear on it along the way. The collision-

free path has to be realized, i.e. appropriate motor commands need to be generated. For the

realization of the path we have to take the current orientationθr of the robot into account. If the

robot is already moving it will not be able to perform, say, a90◦ turn.

152 CHAPTER 6. EMBODIED READYLOG AGENTS

pc pppr

pw

Figure 6.4: Collision-free triangle

Given the current orientationθr of the robot one can find the next obstacle in the direction

θr by ray-tracing from the current position of the robot. The robot would collide with this point

when, from the current point of time on, only translation is applied to the motors. Now we search

for a point pc on this line whose connection to the last “visible” point on the calculated path,

denoted bypw, is collision-free. Together with the robot positionpr we can define the triangle

△(pr, pc, pw). Each grid cell in this triangle can be guaranteed to be unoccupied by construction

of the triangle. Figure 6.4 shows an example. The green line represents the planned path, the red

dots represents the robot and its orientation, the blue lines yield the collision-free triangle. We

construct this triangle to constrain the search for the motor commands to reach the target point in

minimal time. For the calculations of the acceleration values below, we further need the following

measures from the triangle:dw = |pwpc|, dc = |pcpr|, andα = ∠(prpc, prpw). The pointpp is

the orthogonal projection ofpw onto the line throughpr andpc.

Inside this triangle we have to find appropriate translation and rotation velocity pairs which

take us frompr to pw in minimal time.

To realize the path on the motor, i.e. to drive to the target point, we have to find a sequence of

translational and rotational accelerations such thatS(t) = S(0) + V (t) · t+ 1
2 · A(t) · t2 = pt in

minimal time. Here,S(t) denotes the displacement,V (t) the velocity, andA(t) the acceleration

of the robot at timet with the usual connectionsS(t) =
∫

V (t)dt andV (t) =
∫

A(t)dt between

displacement, velocity, and acceleration for accelerated motion. We have to constrain the solu-

tion such that all points reachable with feasible〈atrans , arot〉 lie inside this triangle and thus are

collision-free.S(0) denotes the current location of the robot.

We approximate the problem iteratively by (1) discretizing the acceleration space (as described

below) and (2) by approximating the displacement bysi = si−1 + vi−1 · δ(t) + 1
2 · ai−1 · δ(t)2 for

each time stepδ(t). The initial position of the robot iss0 = S(0), its initial velocity isv0 = V (0).

6.3. LASER-BASED COLLISION AVOIDANCE ON A MOBILE ROBOT 153

To find a sequence of motor commands taking the robot to the target position we applyA∗ on

the acceleration space of the robot. The current pose of the robot and the collision-free triangle

yield the information we need to approximate the velocity values: we know that the robot has to

turn by angleα to reach the target point and has to cover the distancedw.

We search for rotational and translational accelerations in two separate steps. We do so to

avoid the search in the five-dimensional pose-velocity space with a prohibitive branching factor

for the search. The rotational velocities may take valuesvrot = crot · amax
rot · δ(t) + vrot

0 with

crot ∈ {−1, 0, 1} during the search withamax
rot the maximal rotational acceleration. We find a

sequence of accelerations which cover the angleα in minimal time. It is obvious that when the

angleα between the robot and the target position is less than90◦ the time to reach the target

is smaller when translation and rotation is performed at the same time than when the robot first

turn towards the target point, stops, and then start to translate towards it. Note that if rotation

minimizing the angle to the target point and translation towards to collision point is performed at

the same time, all reachable positions lie inside the collision-free triangle. Driving along the edges

of the triangle yields the worst solution to our approximation for which we can guarantee collision-

freeness. Each path inside the triangle has a shorter path length and one needs shorter time to

reach the target. If theα ≥ 90◦ it takes less time first to turn towards the target, and then start to

translate towards the target point. This consideration gives us a heuristic when to start translating

towards the target point. Ifα ≥ 90◦ the distance between the robot’s position and the orthogonal

projection of the target point onto the orientation line of the robot (dp = prpp) is less than the

distance between the robot’s position and the collision point (dc = prpc). This relates the search

for translational velocities to the already calculated rotational velocities. This means that until we

are oriented towards the target, our intermediate target distance isd = min(dc, dp). The objective

of theA∗ search for translational accelerations is to minimize the time to cover this distanced. The

search branches overvtrans = ctrans · amax
trans · δ(t) + vtrans

0 with ctrans ∈ {−1,−2
3 , . . . , 1}. amax

trans

is the maximal translational acceleration. For each node in the search tree we check if the required

translational acceleration is admissible w.r.t. the given rotational acceleration given the kinematic

constraints of the robot. Note that in each iteration the collision pointpc and the projection point

pp as well as the triangle changes. After one time step the robot’s heading is towards a point

betweenpc andpw. After several iterations the robot is oriented towards the target point and only

translation is performed. Hence, we generate a sequence of velocities which takes the robot on a

curve to the target point. The goal test for theA∗ search is

IsGoal(si, vi) ≡ (si − sτ < vi · δ(t)) ∧ (vi − vτ < ai · δ(t)).

wheresτ andvτ are threshold values. With the360◦ laser scanner the robot is also able to drive

backwards to the target point. In the presented version of the algorithm we have a branching

factor of3 for the search for rotational velocities and a branching factor of7 for the translational

accelerations.

154 CHAPTER 6. EMBODIED READYLOG AGENTS

(b) Series 1

(d) Series 2

Figure 6.5: Example traces

6.3. LASER-BASED COLLISION AVOIDANCE ON A MOBILE ROBOT 155

Implementation Details

Special attention must be turned to an efficient implementation to make the navigation algorithm

run fast on the robot platform. Main issues are the integration of the ellipses which are computa-

tionally costly, the path generation and the calculations of the motor commands in real-time. In

the following we describe some details of our implementation and sketch some problems which

arise on running the navigation algorithm on our platform.

Occupancy Grid. The step of integrating the sensor readings into the local map of the robot as

ellipses is more costly than integrating single laser beams. Nevertheless, it is meaningful because

collision detection of the robot with obstacles is eased. To efficiently integrate the obstacles,

we pre-calculate the ellipses and assign a unique identifier to them. Thus, the cells an ellipse

occupies in the grid can be taken from the library of ellipses and can be inserted at the appropriate

coordinates in the grid. The size of the grid we use is6× 6 m2 with a resolution of5 cm2 which

gives14400 cells.

One problem with our soccer platform is that it is made of several levels which are connected

with threaded bolts, blinding the laser range finder in four angle fields. To overcome these blind

spots the robot builds a local map over several time steps.

Searching the Path. It is very important to calculate stable paths for two reasons: (1) if a path is

reused in the next step one can reduce the amount of computational power needed; (2) oscillating

behavior can be reduced.

A simple test before searching for a path to the target point reduces the run-time of the algo-

rithm noticeably: we test if in the occupancy grid the target position is directly reachable for the

robot. The test performs a ray-tracing from the robot position to the target position and the search

is skipped if no collision occurs on this traced trajectory.

The implementation of theA∗ search calculates a path of a length up to300 grid cells (i.e. a

path length of6 m) in less than10 ms on the Pentium-III 933 machine on the robot. Given that

the frequency of the laser range finder is10 Hz and the navigation module runs at20 Hz (not to

lose any update from the laser range finder) there are about40 ms left for the other steps of the

algorithm.

We further reduce the computational costs with an extra step in the algorithm by displacing

the path away from near obstacles. Especially in narrow door passages this extra step prevents

searching for a path too often. A situation where this extra smoothing step pays off can be seen in

the third picture of Figure 6.5(b). Here, the path is smoothed in such a way that the path does not

need to be altered during the passage through the doorway.

Escape Situations. Another problem occurs when the robot navigates itself near walls such

that its position in the grid lies inside an obstacle in the next step of the algorithm. For such rare

156 CHAPTER 6. EMBODIED READYLOG AGENTS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6
RoboCup

KI2005

S
am

pl
es

%

[0.0; 0.5[

[0.5; 1.0[

[1.0; 1.5[

[1.5; 2.0[

[2.0; 2.5[

[2.5; 3.0[

Figure 6.6: Velocity distributions of ROBOCUP Middle-Size league games

occasions an escape mode is implemented working on raw laser data. Upon these data the robot

determines which direction the most unoccupied space exists and drives towards it very slowly.

Experimental Results

We use the proposed navigation and collision avoidance method for over five years with our soccer

robots. Figure 6.5 shows the path visualization of two runs at our department hall. The red dot

represents the robot, the green line represents the planned path, the black objects are the walls of

the hall. In Figure 6.5(b) the robot should navigate from the hall into a room. One can observe that

the path is calculated in such a way that the shortest possible connection between robot and target

is chosen. The second picture in the first series shows the robot several snatches later. The chosen

path is still valid, but one can notice that calculation of the drive commands and/or the realization

of these commands on the robot are approximated as the robot does not stay on the path. But

note that the position of the robot is still inside the collision-free triangle. In the fourth picture of

Series 1 the robot entered the room; re-planning is initiated. Series 2 (Figure 6.5(d)) shows how

the robot drives out of a room and along the hallway. In the second series one can note how the

smoothing step influences the path. When driving out of the door the path snuggles around the left

durn. Here, the path is diverted several grid cells away from the durn. This is the reason whyin

the second picture of series 2 the path remains the same. The snapshots for both series are taken

from our simulation environment.

RoboCup Experience. In the Middle-Size league four to five fully autonomous robots in each

team with a maximal size up to50 cm×50 cm×80 cm (w×d×h) are competing. During recent

years we tested our navigation algorithm on many ROBOCUP tournaments. The requirements for

6.3. LASER-BASED COLLISION AVOIDANCE ON A MOBILE ROBOT 157

navigation in the ROBOCUP domain are different from those in office environments. The robot’s

navigation algorithm must not be too cautious, slight contacts must be accepted, otherwise, the

robot will never get the ball — the opponent robots are not polite at all. For the ROBOCUP setting

we configure the navigator in such a way that the security distance is0.0(!) and the obstacle

ellipses are only extended to the half of their normal size. The data we logged on the ROBOCUP

tournaments are the time stamp of the data, the localization position (which is very accurate, cf.

Chapter 6.4), and several other data about the ball, the opponents, etc. Unfortunately, we do not

log the motor velocities; moreover, the logger runs twice as slow as the navigator. So, for the

evaluation here, we reconstructed the velocities from the log file by approximatingv = ∆s/∆t,

taking only those values into account wherev > 0.1 m/s.

We analyzed the games from the World Cup 2004, the German Open 2004, the German Open

2005, and also four friendly matches. In total, the data were taken from 26 ROBOCUP matches.

The data also contain the values of our goal keeper. The goalie usually does not travel longer

distances, therefore its velocity values due to acceleration latency slightly drag down the values.

In one friendly match at the German National Conference on AI (KI2005) we played on a handball

field with a size20 m× 40 m (which is8 times larger than an ordinary ROBOCUP field). One can

observe slightly higher velocities in this game. Fig. 6.6 shows the velocity distribution over the

velocity samples from the log files. We built 6 velocity categories, ranging from slow (between0

and0.5 m/s) up to very fast (2.5 to 3.0 m/s). The red curve shows the ROBOCUP distribution, the

blue curve shows the distribution at KI2005. During these events the team traveled a total distance

of 5.357 km (a soccer field has a size of8 m × 12 m). The median speed lies around0.69 m/s.

The maximal velocities lie around2.9 m/s. The Quartile of the distribution lies at0.3 m/sec, the

75-quantile has a value of0.9 m/s. These values were calculated using 98,666 velocity samples.

Note that in the Middle-Size league many maneuvers like approaching the ball are performed

with medium to slow speeds. Nevertheless, we reach an acceptable median speed for this domain

and severe collisions do not occur.

We also tested our navigation algorithm on our B21 robot Carl. From the performance point

of view we encountered no problems with the algorithm. We could observe that Carl reached

higher velocities than with the Dynamic Window (DW) approach (Fox et al. 1997) which is part

of the original control software of Carl. The DW approach has inherently problems with narrow

doorways as well as with relatively sharp turns.

Stachniss and Burgard (2002) report on similar results. They also compared theirA∗ collision

avoidance method with the dynamic window approach. TheA∗ approach to collision avoidance

clearly dominates the DW approach.

The next interesting question to be raised is how our algorithm with the heuristic to find ro-

tation and translation velocities compares to their search method in terms of path length, traveled

time, and average speed. As we cannot directly compare the methods, we have to compare it in a

setting similar to the one they report on in (Stachniss and Burgard 2002). The scenario is nearly the

same as in Figure 6.7(b). We get the same average velocities as Stachniss and Burgard report on

158 CHAPTER 6. EMBODIED READYLOG AGENTS

(a) Carl with DWA (vmax = 0.45 cm/s)

(b) Carl with Navigator (vmax = 0.45 cm/s)

(c) Carl with Navigator (vmax = 0.95cm/s)

(d) Soccer robot with Navigator and(vmax =
3 m/s)

Figure 6.7: Comparison of the DWA with our method

6.4. LASER-BASED LOCALIZATION WITH MANY DISTANCE MEASUREMENTS 159

with a similar path length: the average speed for the depicted path was32 cm/s, the path length is

12.21 m with a travel time of38.1 s with Carl’s maximal speed set to40 cm/s (vs. average speed:

34.3 cm/s, path length:11.86 m, travel time34.5 s). The improvement compared with the DW

approach is the same. Comparing Figure 6.7(a) and Figure 6.7(b) which show the trajectory of

Carl driving with the DW approach and with our approach one can observe a smoother and faster

trajectory. The improvement of the trajectory is comparable to (Stachniss and Burgard 2002).

Fig 6.7(c) shows the trajectory of Carl in the same situation with a maximum speed of0.95 m/s.

In comparison to Figure 6.7(b) there is almost no difference in the trajectory while the travel time

to the target is cut in half. This shows that our navigation algorithm scales with increasing speed.

The trajectory in Figure 6.7(d) depicts the movement of one of our soccer robots with a maxi-

mal speed of3 m/s in the same environment. The trajectory length differs only slightly from the

other cases, the maximal speed was2.85 m/s, the robot had an average speed of1.77 m/s. It took

6.7 s to approach the target.

This shows that decoupling the search for rotational and translation accelerations in order to

avoid a search over the five-dimensional pose-velocity space yields the same results in terms of

path length, average speed, and travel time. Though, our method is much more reactive, is able to

drive with much higher velocities, and consumes less computation time.

6.4 Laser-based Localization with Many Distance Measurements

Self-localization in dynamic environments is a central problem in mobile robotics and is well stud-

ied, leading to many satisfying approaches which can be found in the literature such as (Gutmann

et al. 1999; Fox et al. 1999; Dellaert et al. 1999).

Most localization algorithms follow a probabilistic approach. The most popular among these

is the Monte Carlo Localization algorithm (MCL) (Dellaert et al. 1999). Many applications of this

method use a laser range finder (LRF) for perceiving the environment. MCL with LRF works best

in environments with many landmarks.

In environments where landmarks are sparse, on the other hand, the results are far less satisfy-

ing. One such domain is the Middle-size league of robotic soccer, where up to ten mobile robots

are competing on a field of the size of12 × 8 meters. Available landmarks are the goals and the

corner posts. To make the task even harder, they are often occluded by other robots.

For these reasons, the combination of a LRF and MCL is presently not the method of choice for

self-localization in RoboCup. Most teams use vision-based systems for the purpose of localization.

Nevertheless, our team, the “AllemaniACs”, successfully deploys a Monte Carlo approach with a

laser range finder in that environment. In this section we present two modifications to MCL with

LRF which allows it to be a viable and robust method for self-localization in RoboCup.

In principle, the sparsity of landmarks can be dealt with by taking many single measurements

in a sweep from the laser scanner. However, this makes the use of the standard MCL algorithm

intractable because the range of weights for the samples grows exponentially in the number of sin-

160 CHAPTER 6. EMBODIED READYLOG AGENTS

(a) (b) (c) (d)

Figure 6.8: Simulated global localization on the RoboCup field. The real position of the robot is
depicted by the gray circle. Because of the symmetry of the environment model, two clusters have
developed.4

gle readings. To circumvent these computational problems we propose a heuristic weight function.

Furthermore, we introduce so-calleddon’t-care regions in maps that ignore the regions outside

the field and thus enables incomplete specification of environments.

It turns out that our approach, which was inspired by the RoboCup setting, scales very well

for indoor navigation in large environments.

A Heuristic Perception Model for MCL

In this section, we present the modifications to the MCL method to be able to localize with a laser

range finder in environments with sparse landmarks. First, we briefly discussdon’t-careregions

and their integration into the sensor model. Then we introduce our heuristic weight function. The

mathematical background of Monte Carlo localization can be found in Chapter 3.2.

Don’t Care Regions in Occupancy Grid Maps. We use occupancy grid maps (as in (Fox et al.

1999)) for representing the environment. Each cell of the grid stores the probability of this cell

being occupied by an obstacle. Figure 6.8 presents an example of a RoboCup field. Black regions

denote an occupancy with a probability of 1 (the goals and the posts), and white regions are free

areas. With the help of this information one can determine for each position on the map, which

distance a laser ray pointing to a certain direction should measure. This value will be referred to

as theexpected distancein the following. The red border around the field in Figure 6.8 represent

our don’t-careextension to occupancy grid maps. In these areas simply no information about

occupancy is given. This models an incompletely specified environment.

4This ambiguity cannot be resolved by MCL with LRF due to the inherent symmetry of the environment. In
practice, it is resolved simply by using the information about the color of nearest goal provided by the camera used for
ball tracking.

6.4. LASER-BASED LOCALIZATION WITH MANY DISTANCE MEASUREMENTS 161

 0

 0.01

 0.02

 0.03

 0 500 1000 1500 2000

p d
(d

|d
e=

50
0c

m
)

d [cm]

(a) Sensor model with an expected distance
de = 500cm

 0

 0.01

 0.02

 0.03

 0 500 1000 1500 2000

p u
(d

)

d [cm]

(b) Sensor model for a don’t care–region.

Figure 6.9: Sensor model for a single distance measurement for known and unknown expected
distance.

When using a 2D laser range finder, the weighting step of MCL can be performed as described

in (Fox et al. 1999). The perception modelp(o(i)|x) for a single laser beami describes the

probability that the laser beam traveling in a certain direction fromx will measure the distanceo.

We need the environment model to distinguish two cases: (1) the laser beam will hit an obstacle;

and (2) the laser beam will hit a don’t care-region.

In the first case we know the expected distance of the measurement. According to (Fox et al.

1999), this yields the single-beam perception model shown in Figure 6.9(a). The peak represents

a Gaussian curve assigning a high probability to the laser beam being reflected at the expected

distance. Note that the probability of the measurement being shorter than expected is significantly

higher than the probability of its being longer. This is due to the possibility of dynamic occlusion.

Because the probability of occlusion is equal at all distances, it is modeled by a geometric distri-

bution. The merging of the geometric distribution with the Gaussian yields the model displayed in

Figure 6.9(a).

As one does not have information of an expected distance in the case when a laser ray is

hitting a don’t-care region the perception model is reduced by the Gaussian part. This yields a

purely geometric distribution shown in Figure 6.9(b).

An example of a large map consisting of several parts are shown in Figure 6.10. The don’t

care regions define the stitch regions for the parts of the map. When the robot reaches such a red

marked border of a map it internally switches to the next map. This example stems from a service

robotic application we presented during an robotic exhibition in a large local bank. The robot

navigated safely through the bank over several days.

The Heuristic Perception Model. In order to perform the actual weighting of samples one has

to combine the probabilities of single-beam perception for a given sample positionx and a full

2D-sweepo = (o(1), . . . , o(n)) of the laser range finder by multiplying the weights (Fox et al.

162 CHAPTER 6. EMBODIED READYLOG AGENTS

to middle

(a) The front side.

to front

to back

3

2

45

1

(b) The middle. The numbers denote way points of the test run
for robustness of the position tracking.

to middle

(c) The back side.
10 m

Figure 6.10: The building of a local bank which is about 80 m long. We used three intersecting
maps to build an environment model of the whole floor. Thedon’t-careregions, that are marked
red, show the borders of each part of the map.

6.4. LASER-BASED LOCALIZATION WITH MANY DISTANCE MEASUREMENTS 163

1999):

pmult(z|l) =
n
∏

i=1

p(o(i)|x). (6.1)

The weight range is exponential in the number of single measurements. With 360 readings

it is practically impossible to weight the samples in that exponential range. To give an example,

suppose that we have two positionsx1 andx2 with uniform weights of 0.01 forx1 and 0.025 for

x2. pmult yields the following weights:

pmult(x1|o) = 0.01360 = 10−720 and pmult(x2|o) = 0.025360 ≈ 10−576.

The re-sampling step of MCL draws samples proportionally to their weights. This means that

in this example the sample containing positionx2 has to be drawn10144 times (!) as often as the

sample with positionx1. Practically, this is impossible because one cannot handle a sample set as

large as this.

Note that using the logarithm ofpmult does not provide a solution to this problem. One can

handle the weight range by doing so and sample from the logarithm of the sample distribution.

However, the resulting sample distribution would have to represent the proportions of the weights

beforeusing the logarithm. Thus, the sizes of the sample sets would still be intractable.

It may seem that the problem could be fixed simply by reducing the number of measurements

to a manageable size.1 However, in the RoboCup scenario this does not work since typically up

to 90% of the readings are useless due to the sparsity of landmarks and occlusions. Hence even

dropping a few readings risks losing the few precious good readings. Instead, we propose to use

all readings for re-sampling, but replace the product by the sum of the measurements:

padd(o|x) =
n
∑

i=1

p(o(i)|x).

In contrast to the multiplicative model the weight range is now linear in the number of single

measurements of a 2D-sweep. Considering Figure 6.9(a) the weights range from about0 to about

360 · 0.025 = 9.

Let us consider how the heuristicspadd differs from the mathematically correct modelpmult.

First, it is easy to see that the former changes the proportions of the weights:

padd(o|x)
padd(o′|x)

6= pmult(o|x)
pmult(o′|x)

for mosto, o′, x.

Furthermore, it does not preserve the order:

padd(o|x) > padd(o
′|x) 6≡ pmult(o|x) > pmult(o

′|x) for manyo, o′, x.

1Experience shows that a reasonable number is in the order of 40.

164 CHAPTER 6. EMBODIED READYLOG AGENTS

Thus, the additive perception model may prefer positions to others that would not have been fa-

vored by the multiplicative model. A simple example for such a situation is the following: Let

o = (o(1), o(2)) andx1, x2 such thatp(o(1)|x1) = 0.06, p(o(2)|x1) = 0.01, p(o(1)|x2) = 0.04,

andp(o(2)|x2) = 0.02. Now it follows thatpmult(o|x1) = 0.0006 < 0.0008 = pmult(o|x2) and

padd(o|x1) = 0.07 > 0.06 = padd(o|x2).

What one can learn from this example is that the additive model tends to assign higheroverall

weights to positions with highsingleweights than the multiplicative model. Expressed in different

terms, the low weights do not have such a great impact on the sample weighting as with the

multiplicative model.

Having a look at Figure 6.9(a), low single-beam weights can have two reasons: (1) The reading

is dynamically occluded, or (2) the reading is longer than expected. In the first case it is desirable

that a low weight does not pull down the weight of a correct hypothesis. In the second case,

however, the weighting function should reduce the weight of a position by the low single-beam

weight.padd works well in the first case while it fails in the second. In practice, however, it turned

out that even in the latter case the correct hypotheses were supported and the algorithm converges.

Experimental Results

We have tested our method extensively, both in simulation and with real robots at RoboCup events.

We will now present results concerning the accuracy and robustness of our approach.

We used a map of a RoboCup field as shown in Figure 6.8 for the evaluation. It contains just

the goals and the corner posts of a RoboCup field. We changed the noise level of the LRF in order

to gain meaningful results. A noise level ofn% means that we setn% of the single readings

randomly shorter than the reading from the simulator. This simulates dynamic objects causing too

short readings. The distribution for the random shortening was uniform.

During the experiment with movement the robot traveled at an average speed of1.74 m/s and

34◦/s, with a maximum speed of3 m/s, and225◦/s. Figure 6.11 shows that below a critical noise

level of 90 % the accuracy is about15 cm in the pose and4◦ in orientation. Above a noise level

of 95 % localization is no longer possible. One can get an intuitive understanding of what a loss

of 90 % of the laser information means by calculating how many laser beams are still useful in

that case. For example, if the robot is placed in the middle of the field, about12 % of its laser

measurements correspond to usable landmarks. A loss of90 % means that only1 %–2 % remain

which means 3–7 distance measurements.

We gathered data from two RoboCup events the AllemaniACs took part in in order to gain

results about the robustness of our localization approach. In order to do so, we counted dis-

localizations during each of the matches. The results are shown in Table 6.1. All position losses

were caused by severe failures of odometry due to slippage caused by collisions. When this

happens, the robot senses a movement suggesting that it translated or rotated much farer than it

actually did.

6.4. LASER-BASED LOCALIZATION WITH MANY DISTANCE MEASUREMENTS 165

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

P
os

iti
on

 E
rr

or
 [m

]

Laser Noise [%]

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10 20 30 40 50 60 70 80 90 100

O
rie

nt
at

io
n

E
rr

or
 [D

eg
re

es
]

Laser Noise [%]

(a) No movement, simple map.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

P
os

iti
on

 E
rr

or
 [m

]

Laser Noise [%]

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10 20 30 40 50 60 70 80 90 100

O
rie

nt
at

io
n

E
rr

or
 [D

eg
re

es
]

Laser Noise [%]

(b) No movement, complete map.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6

 0 10 20 30 40 50 60 70 80 90 100

P
os

iti
on

 E
rr

or
 [m

]

Laser Noise [%]

(c) Pose Error.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

O
rie

nt
at

io
n

E
rr

or
 [D

eg
re

es
]

Laser Noise [%]

(d) Orientation Error.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6

 0 10 20 30 40 50 60 70 80 90 100

P
os

iti
on

 E
rr

or
 [m

]

Laser Noise [%]

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

O
rie

nt
at

io
n

E
rr

or
 [D

eg
re

es
]

Laser Noise [%]

(e) Fast movement, complete map.

Figure 6.11: Accuracy of position tracking by the MCL module. The red line shows the mean
error, and the green lines represent a one–σ–environment around the mean.

166 CHAPTER 6. EMBODIED READYLOG AGENTS

RoboCup 2003
Team Artisti Trackies Eigen Cops Persia ISePorto AIS
Position Losses 0 1 7 4 2 1 5

German Open 2004
Team Paderkicker Minho Philips FUFighters Persia AIS
Position Losses 0 0 0 0 1 1

Table 6.1: Position Losses

6.5 Fusing Sensor Values

Estimating the ball position accurately and reliably is one of the central problems in robotic soccer

(RoboCup, (RoboCup 2006)), especially in the Middle-size league, where the robots often occlude

the ball due to their size. Knowing where the ball is located is central for the cooperation and

coordination task of the team. As the rules of the Middle-Size league allow for communication

between the robots or to an external host, global sensor fusion can be applied for calculating a

global ball estimate. Merging the single estimates of the robots into a global ball position is one

of the keys to robust team-play as the perception of a single robot might be wrong. With the

knowledge of the team-mates the wrong estimate of a single robot can be adjusted. This leads to a

better overall team performance.

In this section we evaluate state-of-the-art sensor fusion techniques for merging the global ball

position from the robot’s local perceptions, filtering out wrong estimates and false positives. The

methods comprise simple approaches based on averaging and more sophisticated ones, like the

Kalman filter or the Monte Carlo approach (cf. Chapter 3.2). We tested the global sensor fusion

with our team AllemaniACs during the World Cup 2003 in Padova, Italy, and 2004 in Lisbon,

Portugal, and the German Open 2004 in Paderborn observing a significant increase in the quality

of the ball position estimate. Moreover, we use the global ball information to detect when a robot

is dis-localized.

We show that the best methods yield better results than reported before in the literature for the

RoboCup setting and that the one reported in (Dietl et al. 2001) is outperformed by an even simpler

one. The presented experiments were conducted in real game situations showing a significant

increase in the availability and quality of ball position estimates.

Applied Sensor Fusion Techniques

In this section we give a brief overview of the sensor fusion techniques we use in this case study.

We start with simple ones like mean methods and go over to more sophisticated ones, like the

Weight grid method, the Kalman filter and the Monte Carlo method. Finally, we test a combination

between the Weight grid and the Kalman filter. This method is similar to the one proposed in (Dietl

et al. 2001).

6.5. FUSING SENSOR VALUES 167

Arithmetic Mean. Each roboti seeing the ball contributes his local estimate(lbx, lby)
(i) about

the ball position by communicating it to a central server. The global ball estimate(gbx, gby)

is calculated by averaging over the estimates from each robot, i.e.gbx = 1
n

∑n
i=0 lb

(i)
x , gby =

1
n

∑n
i=0 lb

(i)
y .

Here, every local ball estimate has the same importance. The estimate of a robot which is far

away from the ball should not be weighted as much as the estimate of a robot being close to the

ball. Therefore in a variant, we weight the estimates according to the distance from the robot to

the ball and a time factor, which denotes how long ago the robot has seen the ball for the last time:

wi = 1/disti · confb
(i) · confp

(i). (6.2)

(a) Arithmetic mean (b) Monte Carlo ball localization

(c) Example situation for the weight
grid fusion

(d) The weight grid for the situation in Fig. 6.12(c)

Figure 6.12: Fusion techniques

confb is the ball confidence provided by the vision system. The role of this confidence is to give

some means of persistence to the ball estimate. If the ball is not seen in one frame it is not

reasonable to assume that the ball disappeared from the previously detected position as the vision

system has some detection error. The confidence is modeled by a rapidly decreasing function over

the time, which is set to1 if the ball is detected. This confidence helps stabilizing the local ball

estimates. The other confidenceconfp is provided by the localization system and represents the

168 CHAPTER 6. EMBODIED READYLOG AGENTS

confidence that the robot is located at the given position. The weighted mean is then calculated as

gbx = 1
Pn

i=0
wi

∑n
i=0wi · lbx(i) andgby = 1

Pn
i=0

wi

∑n
i=0wi · lby(i). An example of the weighted

mean estimation is depicted in Figure 6.12(a). The local ball estimates are enumerated and marked

with the respective robot’s color. The merged estimate is numbered as estimate 5 (red ball).

Weight Grid. This method uses a grid to represent positions on the field. The representation

is similar to an occupancy grid representation (Moravec and Elfes 1985), but each cell can take

weights greater than 1. For each ball estimate a 2-dimensional Gaussian distribution is calculated.

The parameters for this Gaussian are taken from thedistance errorand thepan error which are

provided by the vision system.

The cell update works as follows: each local ball estimate is weighted by the weight function

given in Eq. 6.2. These weights are then multiplied with the Gaussian distribution, and the result is

stored in the respective grid cells. Figure 6.12(c) shows an example situation where the ball can be

seen by the goal keeper, the blue, and the black robot. The perception of the goal keeper (brown) is

closest to the real ball position (dark blue) and its distribution is due to the weighting more narrow

than ones from the other robots. The merged ball position is depicted in red. Figure 6.12(d) shows

the weight grid representation of the scene.

Kalman. A Kalman filter (Kalman 1960) is used to estimate the state of a process variable

x ∈ IRn in a dynamic system (see also Chapter 3.2). As we want to estimate the position of

the ball we havex = (gbx, gby)
T . The basic equation describing the stochastic process isxk =

Axk−1 + Buk−1 + wk−1 with measurementszk = Hxk + vk, wherewk andvk represent the

process and measurement noise, resp. They are assumed to be independent of each other and

normally distributed, i.e.p(w) ∼ N(0, Q) andp(v) ∼ N(0, P).

The matrixA represents the motion model relating the old process state with the new one. In

our case we do not integrate a motion model directly as the local ball measurements from all robots

are from the same point in time. Instead we propagate the global ball position by the ball velocity

which is calculated using the last global ball estimates each time the Kalman filter is called. This

simplifies the application of the motion model. Otherwise a complex motion model has to be

found and applied. It turned out that applying the motion model this way works fine for the ball

tracking task. To integrate control inputs in the estimate the variableB · u is added toxk. In our

caseu = 0. Therefore, the state equation results in

(

gbx,k

gby,k

)

=

(

1 0
0 1

)(

gbx,k−1

gby,k−1

)

+wk−1

To integrate the sensor measurementszk the matrixH is used denoting the observable com-

ponents ofx. In our case it is also the identity matrix as we can observe both coordinates of the

ball. The process noise covariance matrixQ was empirically found asQ = diag(3, 3)T , the mea-

surement noise covariance matrixP is initially set toP = diag(4, 4)T . For the first time when the

filter is started we take the very first measurement from one robot as initial value forx0. Applying

the time update and measurements update equations (see. e.g. (Maybeck 1979) or Chapter 3.2)

we estimate the global ball position from the robots’ local estimates.

6.5. FUSING SENSOR VALUES 169

As another variant we use theKalman resetfilter. Here, the matrixP is reset to its initial value

each time a global ball position is calculated, which in our case happens 10 times a second. This

means that the actual measurement receives more attention.

Monte Carlo Localization. The Monte Carlo (Ball) Localization(cf. also Chapter 3.2 and

Section 6.4) represents the distributionBel(l) with a set of weighted samples instead of the grid,

which is used in the Markov localization. For the ball fusion we take samples that represent the

ball position hypotheses. Therefore, asamplexi consists of a possible ball positionl = 〈x, y〉 and

a weightwi which is also calledimportance factor: xi = 〈〈x, y〉 , wi〉.
In one iteration of the Monte Carlo algorithmm samples from the sample set are drawn by

chance according to their importance factor. A sample with a high weight is drawn more often

than one with a lower weight. Additionally, some new samples are generated around new local

ball estimates. Then, the algorithm works in two steps. First the motion model is applied to the

drawn samples. This is done by promoting the samples according to the ball velocity and some

noise. In the second step the samples are re-weighted with the new local ball estimates using the

measurement error covariance matrix around the estimated ball position.

In practice it turned out that Monte Carlo is applicable with a set size of 1000 samples in our

time constraints on our hardware. With more than 1500 samples we are not able to fulfill our

time constraints of 100 ms of computation time any more. In Figure 6.12(b) the samples of the

distribution approximation are depicted. The dark blue ball resembles the true position of the ball,

the red one is the fusion result. The black dots show the samples.

Combined Fusion. Inspired by the work of the CS Freiburg RoboCup Team (Dietl et al. 2001),

we combined the weight grid technique with the Kalman filter. All local ball estimates are used

to calculate areference ballby using our weight grid algorithm. We use only those local balls as

input for the Kalman filter that are in between a radius of 1 meter around the reference ball. If the

resulting ball of the Kalman filter is too far away from the calculated reference ball the Kalman

filter receives a reset.

Experiments and Results

To get significant and realistic results about the quality of the presented fusion techniques we

tested them in real game situations. We made several test games at the Philips RoboCup team in

Eindhoven. To get ground truth for the real ball position, we used a ceiling camera. All relevant

data were logged and can be replayed. The ground truth data were manually added to the log data.

As this is rather elaborate, we do not have any ground truth data from the German Open or the

RoboCup championships.

In the game against Philips, we picked 6 different sequences lasting between one and three

minutes with significant action on the field. For example, in one sequence the ball was blocked

between two robots so that the other robots of the team did not see the ball at all. One sequence is

170 CHAPTER 6. EMBODIED READYLOG AGENTS

 0

0.2

 0.5

 1

 1.5

 2

K
alm

an
(reset)

K
alm

an

M
C

L

W
eight

grid

C
om

bined

A
M

(w
eighted)

A
M

er
ro

r
[m

]

(a) The mean error for the different methods

 0

 5

 10

 15

 20

 25

 30

 35

 40

K
alm

an
(reset)

K
alm

an

M
C

L

W
eight

grid

C
om

bined

A
M

(w
eighted)

A
M

co
m

pu
ta

tio
n

tim
es

[m
s]

(b) Computation times in ms

Figure 6.13: Comparison of the methods

a typical game start situation, in another one the Philips robot kicked very often (and very hard, as

usual) resulting in a rapidly moving ball. During some of the sequences one or more robots were

dis-localized reporting wrong ball estimates.

The evaluation results are shown in Figure 6.13(a). The data represent the mean error in

meters together with its deviations over each test run.2 Not very surprisingly, the arithmetic-mean

method yields the worst results, followed by the weighted arithmetic mean. The reason is that

one outlier is enough to drag the merged position into the wrong direction. Even with weighting

the estimates according to their distance to the ball this bias cannot be prevented. The grid-based

method (combined and weight grid) are in the midfield w.r.t. their accuracy.

The first three places are taken by the Kalman, Kalman with reset, and Monte Carlo. De-

pending on the game sequence one of the three scored first place. One can see that in the mean

these method have an error of about 20 cm. This is better than the results reported on in (Dietl

et al. 2001). They reported on a position error of about 38 cm. Moreover, they conducted their

experiments in a static setting, where the robots did not move during the experiments.

With respect to the computation times, one can state that the Kalman filter methods clearly

outperform the other methods. With an average computation time of 0.8 ms and an error of about

20 cm the Kalman filter methods are accurate and fast. What surprised us most was that combining

2For the whole testing time we had 8.520 cycles where the fusion module calculated a global ball estimate.

6.5. FUSING SENSOR VALUES 171

-6-4-2 0 2 4 6

-4

-3

-2

-1

 0

 1

 2

 3

 4 0 100 200 300 400 500 600 700 800time [cycles]

real ball

field x [m]

field y [m]

time [cycles]

(a) Trajectory of the ball

field x [m]

field y [m]

 0
 100
 200
 300
 400
 500
 600
 700
 800

time [cycles]

real ball

-6-4-2 0 2 4 6

-4
-3

-2
-1

 0
 1

 2
 3

 4

time [cycles]

(b) Trajectory of the ball over the time

field x [m]

field y [m]

 0
 100
 200
 300
 400
 500
 600
 700
 800

time [cycles]

real ball
robot1
robot2
robot3
robot4

-6-4-2 0 2 4 6

-4
-3

-2
-1

 0
 1

 2
 3

 4

time [cycles]

(c) Sensor Data

field x [m]

field y [m]

 0
 100
 200
 300
 400
 500
 600
 700
 800

time [cycles]

real ball
MCL

KalmanR
Kalman

-6-4-2 0 2 4 6

-4
-3

-2
-1

 0
 1

 2
 3

 4

time [cycles]

(d) Tracking results of the Kalman and Monte Carlo
methods

Figure 6.14: Sample Trajectories with their estimates

a Kalman filter with a weighted grid which is similar to the method proposed in (Dietl et al. 2001)

does not seem to pay off, as a simple Kalman performed better, both in accuracy and computation

time. To give an impression about the tracking of these methods we show one sample trajectory

in Figure 6.14(a). Figure 6.14(b) shows the same trajectory over the time from a reverse angle.

The tracking results of the two Kalman methods and the Monte Carlo method are depicted in

Figure 6.14(d). To get a feeling about the quality of the tracking methods we moreover depicted

the robots’ local ball estimates in Fig 6.14(c).

In the next experiment we tested another typical RoboCup scenario: it happens very often in

RoboCup that the referee picks up the ball, for instance after the ball passed the side line or was

stuck between robots. Then, no robot can see the ball. The referee places the ball at some restart

spot again. In this situation it is important to get stable ball estimates as soon as possible. In our

second experiment, the robots took their kick-off positions and two helpers staying at the opposing

172 CHAPTER 6. EMBODIED READYLOG AGENTS

restart points randomly placed a ball at one of these points.

In this experiment, again the Kalman reset method showed the best results. The Kalman reset

had a mean error of 0.45 m, which is reasonable with respect to a minimum distance of 5 meters

between the robots and the ball. Moreover, the computation time of 0.6 ms is a good result,

especially compared to Monte Carlo which takes in the order of two magnitudes longer.

In the RoboCup domain it is very important to have a good estimate about the ball position.

As the ball is perceived by only some robots most of the time, a stable global ball estimates

helps to increase the team performance. The result for RoboCup’s Middle-size league is that the

Kalman reset filter shows the best performance. The quality gain using a ball fusion technique is

significant. The availability of a global ball estimate lies at over 80 % in our experiments while

each robot itself has seen the ball only 50 % of the time. Another nice effect of using a ball

fusion technique is that one is able to detect when a robot is dis-localized. Comparing local and

global estimates it is easy to notify when those values differ too much in order to detect a wrong

localization position. Of course, it is crucial to find that value, as false positives must be avoided.

It turned out that using the Kalman reset method we detected all dis-localizations during the test

runs having only one false positive. Another problem is to gather ground truth data for empirical

evaluation. In our experiments we installed a ceiling camera and associated the real ball position

with the logged data by hand. This is a very time consuming process. Recently, Stulp et al. (Stulp

et al. 2004) proposed a ceiling camera system to acquire ground truth data for the robots and the

ball. With these data, we could evaluate the methods on a wider data basis. For the future we

would like to conduct further experiments with real tournament data. As the presented results are

very specific to the RoboCup domain, generally it turns out that one should try out several methods

for the specific application domain in order to find the most appropriate method. Further, one can

observe that applications of the Bayes filter (Kalman, Monte Carlo) provided the best estimates

for the fusion task.

6.6 Robotic Soccer in the Middle-Size League

In Chapter 5 we showed an example of how READYLOG can be used to implement soccer agents

in the Simulation league and in the interactive computer game UNREAL TOURNAMENT 2004.

We showed how probabilistic programs can be used for deciding pass partners in a double pass

scenario and how tasks can be modeled on the border between full DT planning and programming.

In this section we will address the decision making applying decision-theoretic planning on a real

robot in the soccer domain.

In the previous section we showed the low-level control software of our robots. These control

modules are, like in the Simulation league connected to the high-level control by encapsulating

them as basic actions and in form of a condensed world model. Basically in the Middle-size

league, our robots can perform the following actions:

• goto global(x, y, θ): move to a global position on the field.

6.6. ROBOTIC SOCCER IN THE MIDDLE-SIZE LEAGUE 173

Figure 6.15: A scene from the RoboCup 2004 against the Osaka team (right-hand side).

• goto relative(x, y, θ): move relativex meter to the front,y meter to the side, and turn

relatively with angleθ.

• turn global(θ) / turn relative(θ): turns the robot with angleθ globally or relatively, resp.

One variant of this action is theturn with ball action which tries the robot to turn without

losing the ball in the gripper.

• intercept ball(θ): gain control over the ball such that the ball is in the gripper of the robot;

θ is an optional argument which controls the angle the robot should have in the global coor-

dinate system afterwards. As the robots use a differential drive, this action also implements

that the robot depending on the intercept angle has to drive a curve around the ball.

• dribble(x, y): the dribble action tries to reach a position on the field with the ball. This

action takes the opponents into account and tries to find a path around all visible opponents

and obstacles without losing the ball.

• guard pos: this is a defending action; the defender positions itself between the ball and the

goal such that the body of the defender covers the goal.

• search ball: If the robot does not know where the ball is located, one can use this action to

seek it. The robot starts turning slowly until the ball becomes visible again.

• look at(x, y). This skill controls the pan/tilt unit of the robot. One can track a global

world coordinate or the ball. The correct camera position is calculated from the sensor

information about the position of the robot, the position of the object being tracked and the

previous camera position.

• kick(power): activates the kicker.

• kick to(θ, power) is a combined skill which turns the robot without losing the ball withθ

and then kicks the ball.

174 CHAPTER 6. EMBODIED READYLOG AGENTS

• move kick(x, y, θ, power) dribbles the robot to the position(x, y, θ) in global coordinates

and then kicks the ball.

The world information of the robot basically comprises fluents like the agent position, the

position of the ball, and the opponents. All these information come together with confidences

or visibility flags (which is true if the ball is seen), and come with two flavors: the agent could

query the positions gathered locally from its sensors, or ask the information from the global world

model. The information coming from the global world model are most of the times more accurate,

though, they have some latency. The robot must store also tactical information. From the global

world model the robot can retrieve the information about the roles of the robots like defender or

attacker, or can directly address the robot which is, say, the defender. Having a role assignment for

dividing up the tasks on the soccer pitch, one also needs a coordination mechanism to coordinate

the behaviors of the different robots. The decision who should intercept the ball cannot easily be

made by the robots themselves. The reason is that they often have only partial knowledge about

the world, for example they sometimes cannot perceive the position of their teammates. Therefore,

they could not decide which player might be located best to the ball to take an intercept action.

The robots could negotiate about which robot is heading to the ball, but a lot of communication

between the robot is then needed. Due to the time constraints this is not an option. An easier

way is to synchronize this information through the global world model. This instance has all

the information needed to decide which robot is positioned best. Based on a heuristics taking

into account the distance and the angle of the robots the so-calledbestInterceptor predicate is

computed and sent to each robot. It contains the number of the robot which is best positioned to

the ball.

This basically makes up the world model the agent can use. In the following code examples

also some other fluents or predicates are used, but their meaning becomes clear from their naming.

The main loop of our soccer robots is the following:

proc main
forever do

withPol(¬positionValid , treatDislocalization)
||withPol(illegalDefenseOrAttack , moveOutPenaltyArea)
||handlePlaymodes

endforever

endproc

The agent program runs in an infinite loop. The program runs therefore forever. To terminate

it, a special play modequit is caught in the procedurehandlePlaymodes which then terminates

the agent program. Inside the loop, it is first checked with highest priority whether the robot is still

localized. If the confidence coming from the localization module of the robot is below a threshold

value, it is assumed that the robot has lost its position. Then one could either start an active

localization, stop the robot and wait for human interaction, or try to regain the position on the field

6.6. ROBOTIC SOCCER IN THE MIDDLE-SIZE LEAGUE 175

by using the information of the other robots. For the soccer scenario, active localization is not a

good idea as the robot has to drive around for a while until its position hypotheses converge again.

Thus, it could disturb the play, or shoot self-goals, for example. Regaining the position with the

information from the other robots works in general. The procedure is to estimate the position using

the global ball position (which is distributed from the world model) and the local ball perception

if the ball is seen by the dis-localized robot. Nevertheless stopping for safety reasons is the best

possibility. The robot cannot damage the field, or other robots. A human operator can then re-

localize the robot. WithillegalDefenseOrAttack it is checked whether the robot is located in the

opponent’s or the own penalty area. The rules of the Middle-size league allow only one robot to

be located in the penalty area, and only for 10 seconds. After 7 or 8 seconds the fluent becomes

true initiating the robot to move out of the penalty area with the mentioned procedure. With lowest

priority the procedurehandlePlaymodes is called.

proc handlePlaymodes
forever do

exogfUpdate;
if playMode = pm stop then

((¬playMode = pm stop)? || procStop);
elseif playMode = pm running then

((¬playMode = pm running)? || procRunning);
. . .

endif

endforever

endproc

In the Middle-size league a semi-automated referee system is used. The commands from

the human referee are typed in by an assistant referee, and sent to the robots via wireless LAN.

The different playmodes mentioned in the procedurehandlePlaymodes arestop to immediately

stop the game play (pm stop), a signal to go on with the game (pm running), and several other

playmodes for indicating the kick-off, throw-ins, corner-kicks, and goal-kicks. The procedure

handlePlaymodes now checks for the current playmode and calls other procedures which handle

the currently set playmode. For each playmode a statement similar to those presented in the

procedurehandlePlaymodes is used. Each conditional which checks for a playmode stands in

concurrency with other playmodes. For making the concurrent statement block in order to check

for other playmodes, a test on the negation is used. If the condition of an if-statement holds,

the then-branch is executed. Here, it is checked whether the opposite of the if-condition holds.

This evaluates to false and thus the other branch of the concurrent statement is executed, i.e.

the procedure which handles the playmode. As the semantics of the concurrent execution was

to take a transition in eitherσ1 or σ2, andσ1 fails unless the negated condition becomes true,

the next transition of the procedure handling the actual playmode is executed. The next but one

transition checks again if the negated condition holds. Summarizing, this construct guarantees that

176 CHAPTER 6. EMBODIED READYLOG AGENTS

the appropriate procedure is executed as long as its condition holds. If the test action succeeds, i.e.

the playmode must have changed, the else-branch of the conditional is further evaluated.

Next we want to show how the robot can make use of decision-theoretic planning. The pro-

cedureattackerBestInterceptor is a specialized procedure for the player taking the roleattacker

which is additionally the player which is best located to intercept the ball.

proc attackerBestInterceptor
if scoringSituation then scoreDirectly(own)
else

if ¬haveBall then interceptBall(own, fast) endif

endif

solve(4, reward ,
continueSkill(currentSkill) ;
(haveBall? ;
(kickTo(own)
| dribbleOrMoveKick(own)
| dribbleToPoints(own)
| if isKickable(own) then

pickBest(angle,{−3.1,−2.3, 2.3, 3.1}, /* in rad */
(turnRelative(own, angle, medium);
(intercepBall(own,slow); dribbleOrMoveKick(own)
| interceptBall(numberByRole(supporter);

dribbleOrMoveKick(numberByRole(supporter)
) /* end pickBest */

else

interceptBall(own); dribbleOrMoveKick(own)
| interceptBall(own, 0.0)

endif

) /* end solve */
endproc

First it is checked reactively if there exists a situation where the robot can directly score by

calling the procedurescoreDirectly. Otherwise, the robot tries to intercept the ball. With the

solve statement the DT planning is initiated. To speed up the execution of the plan to be calculated

the robot begins to calculate the policy before the intercept action succeeded. Therefore, the first

action in the policy is to continue the previously executed action. In this case the robot will finish

its intercept action. Then, as the intercept action may fail, we introduced another test if the robot

has the ball in the gripper (which is part of the generated policy). This extra test is introduced

to quickly detect if the policy is still valid when executing it (cf. Chapter 4.2.3 about execution

monitoring of policies). Now, the agent checks for the different alternatives to find out the best one.

It has the choices to try a goal shot (kickTo), to try dribbling followed by a goal kick whenever

there is an opportunity to hit the goal (dribbleOrMoveKick), or to dribble to several tactical points

on the field (dribbleToPoints). The latter action has lower reward, but it turned out that it is often

6.6. ROBOTIC SOCCER IN THE MIDDLE-SIZE LEAGUE 177

(a) Direct kick alternative. (b) DribbleOrMoveKick alter-
native.

(c) Cooperative Play alterna-
tive.

Figure 6.16: Game situations

a good idea to dribble the ball towards the opponent goal, and then decide again what to do. The

last alternative begins with a conditional which checks whether the ball is in the gripper of the

robot. This conditional is introduced to further restrain the search space of the agent. In the case

the ball is not kickable, the robot is going to try to regain control over the ball with executing

an intercept action. Note that also the other alternatives described above are not possible if the

robot is not in ball possession. As a last resort for the case that the first intercept action failed

in execution, another intercept action will be initiated by the policy. Otherwise, if the robot has

the ball, it makes use of the optimal choice of argument possibility,pickBest. Here, the robot

calculates for the four given angles, if it should turn to the left or to the right. The idea behind

this is that often the ball is blocked between the robots. With a turn to the side, the robot frees

the ball again. Afterwards, it tries to intercept the ball and to dribble towards the opponent goal.

Another alternative after the turn action the robot takes into account, is if the player with the role

supportermight be able to take over the ball and dribble towards the opponent goal. As the actions

are instantiated with the number of the acting robot (own, or numberByRole(supporter)) the

execution system can distinguish if an action should be executed by the robot itself or if another

robot is meant. In the latter case the execution of the action immediately returns with a success.

By this simple mechanism multi-agent plans can easily be encoded (see also Chapter 5, p. 111).

Figure 6.16 shows three alternatives of the programattackerBestInterceptor. Figure 6.16(a)

shows the model of thekick alternative. The robot receives a rather high reward for this action

because the ball position in the projection is behind the opponent base line. It is though discounted

because the ball is outside of the field in the projection. Figure 6.16(b) shows the actionMoveKick.

The stochastic model of a move kick linearly approximates the curve the robot takes based on the

target position and the initial angle of the robot. As one can see, the robot will not succeed with

this action. Finally, Figure 6.16(c) shows the cooperative alternative, encoded by thepickBest

178 CHAPTER 6. EMBODIED READYLOG AGENTS

natures choices

agent choices
 move_kick

kick

turn

intercept(me)

intercept(TM)

move_kick

move_kick

0.8

0.2

0.8

0.2

10000

10000

 4169

 4169

costs: −70

costs: −70

costs: −70

costs: −70

 4169

 4169

 4169

costs: −12

costs: −7

 4557

4776

4623

(a) Tree (b) Reward function

Figure 6.17: Plan tree

statement above. The robot Cicero chooses in this case a turn angle of2.2 rad. The model of the

turn action is indicated by the dotted line in the figure. The robot taking the rolesupporter, Caesar

in this example, now plans to intercept the ball and to kick it towards the opponent goal. This action

receives the highest value of all alternatives. The rewards of the different alternativesare depicted

in Figure 6.17(a). The evaluation is based on the reward function depicted in Figure 6.17(b).

The reward function mainly takes the position of the ball into account. The highest reward is

awarded for the ball being in the opponent goal, and the lowest reward is given for the ball being

in the own goal. Positions on the field are evaluated according to the reward function shown in

Figure 6.17(b). Further it is checked if the ball is out of the field in the action models. In this cases

the value is discounted. Besides the reward, a crucial point for applying the decision-theoretic

planning approach are the stochastic action models. To give an impression how they are modeled,

we show as an example the stochastic action of the intercept action below. It is very simplistic, but

this elucidates the restrictions the robots have w.r.t. their abilities very well.

procmodel intercept(own, mode)
∃angleToBall.angle(agentPos, ballPos, angleToBall?∧
∃pos.pos = interceptPose(angleToBall) ∧ pos = (x, y, θ))

sprob((set(agentPos(own,(x, y), (0, 0)));
set(agentAngle(own,Angle, 0)), 0.2, isDribbleable),
(nil, 0.8, ¬isDribbleable),
exogf Update)

endprocmodel

In the preamble of the stochastic procedure in this case, we only use test actions. These have

only a practical meaning, namely to bind the variablen. It is bound to a possible intercept position.

First, the current angle between the agent’s pose and the ball position is identified. Then with the

auxiliary functioninterceptPose the intersection between the robot’s and the ball trajectory is

found and set as the position where the robot will intercept the ball. With thesprob statement,

6.7. A SERVICE ROBOTICS APPLICATION 179

the nature’s choices of this stochastic action are encoded. AsagentPos is a continuous fluent

besides the calculated position(x, y) we also have to set the agent’s velocity. It is assumed to be

zero, as we only regard this situation as static. Besides the agent’s position we have to set the

estimated orientation of the robot at the intercept position. This is done with theset(agentAngle)

action. The probability of success for this outcome is set to0.2 which is rather low. This resembles

observations of the abilities of the robots to intercept the ball, and this low probability is due to

the fact that, taking the dynamics of the game and the other robots into account, a lot can happen

while the robot drives to the ball. The last conditionisDribblable checks if the intercept action

was successful and is used to discriminate the different outcomes. Therefore, in the other case

the negation of this is tested. The model for the failure case is even easier. As one cannot really

predict how the world may evolve, we make no assumption about how the world might have

evolved. Therefore the assumed world situation is the same as before. Why is this a good idea?

Of course, one could define many different possible outcomes for the failure case. None of them

will probably happen in reality. For the planning it does not make a real difference. For further

planning the effect of this outcome is that the action has not happened at all, but during policy

execution the sense condition¬isDribbleable is tested. This means, in the worst case, the robot

will try to intercept the ball several times, as in the policy again an intercept action will be entered.

Thus, the robot will eventually try to intercept the ball, and this is what the robot should do.

This gave an impression of how decision-theoretic planning can be used for soccer applications

with real robots. It also showed that due to many limiting factors, the models and abilities for using

the full range of expressiveness of READYLOG is restricted. This is also owed to the complexity

of the planning approach. More complex models result in longer planning times, which for the

robotic soccer case, are not feasible. The table below shows the computation times logged at the

RoboCup World Championships 2004.

examples min avg max
without ball 698 < 0.01 0.094 0.450

with ball 117 0.170 0.536 2.110

In cases where the robot was not near the ball the computation times for the generating policies is

rather low. In cases with ball, the agent has to take more possibilities into account and therefore

has much longer computation times. But an average of0.5 seconds are on the border-line of what

is still possible for a soccer robot to reason about what to do before an opponent will steal the ball.

6.7 A Service Robotics Application

As another application for READYLOG we want to address a typical service robotics application

and show an example from a RoboCup tournament. At RoboCup tournaments the teams have to

participate besides the soccer matches also in a so-called Technical challenge , where the scientific

progress is rated. There are several challenges to fulfill, for example one has to show that the

robots are able to avoid obstacles on the soccer field. As part of this challenge, there exists also an

180 CHAPTER 6. EMBODIED READYLOG AGENTS

(a) The Robot driving through the exhibition hall. (b) Map of RoboCup Championships in Lisbon
2004

Figure 6.18: Technical Challenge at the RoboCup Championships 2004 in Lisbon.

open challenge, where teams can show whatever they like. At the RoboCup Championships 2004

we won the Silver Medal in the Technical Challenge by demonstrating a tour-guide application.

The robot started at the so-called “team area” where all teams store their equipment and have the

possibility to calibrate and program the robots. The referees were to choose one of the four soccer

fields as destination for the tour. Then the robot calculated the shortest route to this field applying

decision-theoretic planning. On the way several places of interests where announced by the robot.

Figure 6.18(a) shows our robot on the way through the exhibition hall. Figure 6.18(b) shows

the occupancy map of the exhibition hall. On the upper half of the map one could see two of the

fields, on the lower half there was the team area. We defined a topological map with “outstanding”

sights like “grand stand” or “field one”. The nodes of this map were made available to READYLOG

by the fluentmapNode, and the relationschildrenOf (mapNode). The program the robot had was

the procedurepathPlan given below.

proc pathPlan(Goal,H)
solve(H, reward at(goal)

while ¬mapNode = goal do

pickBest(child , childrenOf (mapNode), gotoMapNode(child))
endwhile

endproc

The actiongotoMapNode is in fact a procedure which initiates the robot to drive to the re-

spective coordinate and announce the exhibit. The reward function for the planning task was quite

simple. At the goal node the robot receives a high positive reward and zero for all other nodes.

When defining a metric on the graph and giving discounts for longer edges one easily could ensure

6.8. DISCUSSION AND RELATED WORK 181

that the robot will take the shortest path to the goal.

function reward at(Goal)
∃v.((mapNode = Goal) ∧ v = 100
¬mapNode = Goal ∧ v = 0)

return v

Several other such application like at a fair in a local bank demonstrated the robustness of our

approach. At this application the robot also had to fulfill tour-guide tasks in a crowded bank for

several days. The occupancy grid map we already showed in Figure 6.10 on page 162.

6.8 Discussion and Related Work

In this chapter we showed the application of READYLOG on a real robot system. Unfortunately,

before one can run a high-level control language on a robot to plan something meaningful, one

has to provide the whole robot system, hardware as well as software. Over the recent years of

experience participating with a robot team at the Middle-size league, it turns out that special

focus must be laid on a tight system integration. As stated in the introduction to this chapter, it

does not help to have a good working high-level control when the low-level system is only fairly

working, and vice-versa a good low-level system does not help to come to clever decisions without

a good high-level control. This is the reason why we focused in this chapter on both, the low-level

and the high-level control. Regarding our READYLOG applications it became obvious that good

behaviors must be provided by the low-level system. Then, the language READYLOG can show its

strengths. Decision-theoretic planning in READYLOG is well-suited for the decision making of a

soccer robot. We also showed how a team of robots can be coordinated with multi-agent decision-

theoretic plans in READYLOG. Nevertheless, as we also showed in Chapter 5.1 the drawbacks

of the expressiveness of READYLOG are its planning times. With the hardware of our robots

(Pentium-III 933) the planning times are at the border of what is possible for robotic soccer. The

other application we showed, the service robotics application, is less time critical and therefore

READYLOG is best-suited to solve the task. In the following we discuss the low-level modules of

our robot system.

Collision Avoidance. Borenstein and Koren (1991) proposed to use vector field histograms.

The target point exerts an attractive force to the robot while obstacles emerge repulsive forces. The

trajectory of the robot is then formed by the sum of both these forces. They propose a special wall-

following mode to avoid getting stuck in local minima which could otherwise cause oscillating

behavior. The method was tested with robots equipped with sonar sensors driving with an average

speed of 0.53 m/s. In (Fox et al. 1997), Fox et al. proposed the dynamic window approach. It is

directly derived from the motion equations. In the velocity space circular collision-free trajectories

are searched. To handle the state space they define adynamic windowaround the robot’s trajectory

182 CHAPTER 6. EMBODIED READYLOG AGENTS

where only those velocities are regarded that the robot can reach in the next time interval. Finally,

a trajectory is found by maximizing over the minimal target heading, maximal clearance around

the robot and the maximal speed. The method was tested on an RWI B21 robot with a maximum

speed of 0.95 m/s. A similar approach except for the dynamic window was proposed in (Simmons

1996). Recently, Dimarogonas and Kyrikopoulos (2005) proposed a collision avoidance scheme

for independent non-holonomic non-point agents, other work, like (Ögren and Leonard 2005)

proved the convergence of the Dynamic Window Approach, or, like in (Gottfried 2005), try to

encounter the problem of collision avoidance by qualitative calculi, or like Pradalieret al. navigate

with car-like robots in pedestrian areas (Pradalier et al. 2005). The most related research to

our approach is the method proposed by Stachniss and Burgard (Stachniss and Burgard 2002).

They useA∗ to find an optimal trajectory to a given target. The state space used here is a five-

dimensional pose-velocity space consisting of the posex, y, θ and the translational and rotational

velocitiesυ, ω. First, a trajectory to the target is calculated usingA∗ in the 〈x, y〉-space. This

trajectory deals as a heuristic for the search in the pose-velocity space. With a value iteration

approach a 70 cm broad channel around the robot is calculated which determines the state space

for the five dimensional search. Stachniss and Burgard tested their approach on a Pioneer I and

an RWI B21 both having a maximum speed below1 m/s. In their experiments they describe that

their approach is able to calculate a path of a length of2 m in 0.25 s with the robot driving with a

top speed of0.40 m/s on a Pentium-III 800 MHz. They report that in the search for the velocity

values they use a discretization of the grid of10 cm2, they discretize the translational velocities

in steps of10 cm/s yielding 9 velocity steps and the rotational velocities withπ/16 yielding 32

rotational velocity steps. This makes a maximal branching factor of9 × 32 for the A∗ search.

Unfortunately, they do not report on the average branching factor which results from constraining

the search space in their approach. The latter approach is especially interesting as it does not have

problems with U-shaped objects (as opposed to (Borenstein and Koren 1991)) or narrow doorways

(as opposed to (Fox et al. 1997)).

Localization. Bayes filtering using Kalman filters (KF) or Monte Carlo localization (MCL) ap-

proaches are standard methods for localizing a robot with proximity sensors. Implementations

of the Bayes filter differ mainly in the representation of the belief. For example, Kalman Filter

based approaches use a uni-modal Gaussian distribution (e.g. (Gutmann et al. 1999)). In contrast,

grid-based Markov Localization (ML) stores the distribution in a discrete grid covering the state

space. While the former methods are computationally more efficient and accurate, their restriction

to uni-modal distributions makes it impossible for them to perform global localization (finding the

position without initial knowledge). ML is able to solve this task, and also the kidnapped-robot

problem, which means finding the correct position again after the filter converged to a wrong posi-

tion. A combination of both methods, called ML-EKF (Gutmann 2002), combines the robustness

of ML and the accuracy of the KF. MCL is a further refinement of ML, replacing the probability

grid by the already described sampling mechanism. As the filter converges, the samples gather

6.8. DISCUSSION AND RELATED WORK 183

around positions of high probability. An experimental comparison (Gutmann and Fox 2002) of

the described localization methods showed that the ML-EKF approach performs about equally

well as MCL. Because MCL is quite popular, there are a number of extensions tackling shortcom-

ings of the base algorithm. Here, we mention two of them. KLD sampling (Fox 2001) allows an

adaptation of the size of the sample set in every iteration of the algorithm which greatly increases

efficiency. Cluster-based sampling (Milstein et al. 2002) tackles the problem of symmetrical en-

vironments. In such domains, ordinary MCL will develop two or more clusters of samples and

finally decide for one of them. This often happens prematurely. The clustering extension works

around this problem by tracking emerging clusters within different sample sets until the sensory

information allows for an unambiguous decision for one of them. Our aim was to localize our

robots with a LRF on a soccer field. Here, the landmarks are sparse (two goals and four small cor-

ner posts), which means that the standard Monte Carlo approach could not be applied out of the

box. We had to adapt the perception model for laser range measurements so that many readings

can be used. While usual implementations use about 20–40 measurements per scan, we needed to

make use of a whole sweep of 360◦ at a resolution of 1◦ because of the sparsity of landmarks and

high sensor occlusion in RoboCup. Our heuristic perception model exhibited good performance

in this setting. We regard the fact remarkable that MCL is at all able to keep track of the position

in the presence of a constant laser noise of 90% and fast movement of the robot.

We ascribe the good performance of our MCL module in the presence of laser noise to the

characteristic of the additive perception model (cf. Section 6.4) that it prefers position hypotheses

with high individual weights. The drawback of the additive model is the weak effect weights have

on the weighting of a position for readings that are longer than the expected distance. This plays a

role primarily in global localization. However, we found out that our approach works well in this

case, too, as is shown, for example, in Figure 6.8. Although the weights for wrong positions are not

drawn down as strongly as with the multiplicative model, it turns out that the correct hypotheses

still have a higher overall weight and are thus preferred. Concluding, the additive model is a

heuristic which turned out to work very well in practice.

Sensor Fusion. The soccer domain is an interesting domain for research on sensor fusion.

Most of the work concentrates on merging perceptions of the ball to one consistent estimate. The

methods commonly used are probabilistic method as Kalman filters (Kalman 1960) or Markov

Localization (Fox et al. 1999). As there exists a large body of work on sensor fusion (e.g (Brooks

and Iyengar 1998; Chung et al. 2001; Hall 2004)) we here we will concentrate on the related work

in the field of fusing ball estimates in the RoboCup domain. One can distinguish between the so-

calledlocal sensor fusionandglobal sensor fusion. In the former case the perceptions of several

sensors on one robot are combined. The latter refers to merging the perceptions of different robots.

Dietl et al. (2001) present a ball tracking algorithm, which combines a Kalman filter with Markov

localization. They assign a new measurement to an existing track of observation by minimizing

the sum of squared error distances. For predicting the ball position a Kalman filter is used. For this

184 CHAPTER 6. EMBODIED READYLOG AGENTS

Kalman filter they use Markov localization as an observation filter. They report a mean error of 38

cm for a moving ball while the robots did not move. Stroupe et al. (Stroupe et al. 2001) represent

each ball estimate as a two-dimensional Gaussian in a canonical form. This allows to merge the

single estimates of the robots simply by multiplying them. For predicting the ball position they use

a Kalman filter approach. Pinheiro and Lima (2004) also represent sensor information about the

ball as a Gaussian applyingBayesian Sensor Fusion. They assume that the last position is known

and that the single estimates are close by each other. The teamMostly Harmless(Steinbauer et al.

2004) use local sensor fusion to integrate the perceptions from the different sensors their robots

are equipped with. They use a Monte Carlo approach (Dellaert et al. 1999) to merge the data from

the different sensors into a local world model. They also provide a merged global world model.

The Milan RoboCup Teamuse ananchoring approach(Bonarini et al. 2001). The Sensor data

are represented symbolically and are anchored with objects from the environment. For the sensor

fusion of the symbolical sensor data they use fuzzy logics.

Chapter 7

Qualitative State Space Abstractions

7.1 Introduction

So far, we have seen several examples how READYLOG can be applied to real-world applications.
While for the UNREAL TOURNAMENT 2004 domain the example we have chosen was a case
study for the different specification possibilities of READYLOG w.r.t. high-level decision making,
the set of fluents which we came up with for the soccer domain were kind of ad hoc. Besides
common knowledge about soccer there is no compelling reason for exactly this domain specifi-
cation. The question is if we can rely on more scientifically grounded approaches to specify our
behaviors for the soccer domain. When looking at soccer literature the simple answer is that there
are some theories about soccer which we can rely on. These are not theories in a mathematical
sense but nevertheless the knowledge about soccer is encoded in such a way that we can use it.
In the next section, we present our approach to come up with a theory for robotic soccer. For the
specification, the language READYLOG turned out to be very expressive.

While working on formulating abstract soccer patterns in READYLOG we observed that most
of the patterns used in the soccer literature are qualitative in nature. Humans usually use qualitative
notions for positions on a soccer pitch, assuming common sense knowledge about its meaning. For
example, all the soccer patterns in (Lucchesi 2001), the book which we used for our investigation,
are diagrams with circles denoting qualitative positions on the pitch, and arrows denoting the
actions of the players. To simplify the behavior specification for these soccer moves we constituted
the most important qualitative predicates and found mathematical models for them. In Section 7.3
we discuss our approach in detail.

Having parts of behavior specification inspired by human soccer theory and a qualitative world
model which helps to implement the qualitative notions of soccer, we applied both to Simulation
League. In Section 7.4 we report on some of our results about establishing a decision-theoretic
plan library for simulated soccer. The idea we follow is rather simple. Instead of calculating
a particular decision-theoretic policy, we leave the whole policy abstract. In a sense, we store
the whole DT computation tree. When the agent now faces a particular situation again, it just
picks one of the already stored policies from the library and executes it. By this the agent can
significantly reduce its on-line computation time. As a nice effect of the plan library it turns out
that macro action similar to those proposed in Chapter 4 can easily be modeled with it. This has

185

186 CHAPTER 7. QUALITATIVE STATE SPACE ABSTRACTIONS

the additionally advantage that macro action here do not rely on explicit state enumeration any
longer. We conclude this chapter with a summary and a discussion of more related work in the
area of qualitative world modeling.

7.2 Formalizing Soccer Strategies

In this section we describe our approach to formalize soccer strategies for soccer robots. This
work was done together with Dylla et al. (2005). The idea is to derive the basic behavior patterns
of soccer as described in (Lucchesi 2001) and condition them to the different soccer leagues in
RoboCup. The formalization of the soccer moves was done in GOLOG which coming with its
formal semantics, is also very suited for this task.

In the original paper (Dylla et al. 2005), we also started a case study how to apply the soccer
moves to the different leagues. We leave out this part and concentrate on the qualitative aspects of
the formalization referring to (Dylla et al. 2005) for further details.

In the following we describe first the basic ontology for soccer strategies and related with this,
the basic actions of a soccer player before we derive the basic qualitative predicates needed to
formalize soccer moves. Further, we give an example specification of a soccer move in GOLOG

which can nearly directly be encoded on a soccer robot as a READYLOG program.

7.2.1 The Organization of Soccer Knowledge

Among the modern soccer publications Lucchesi’s book (Lucchesi 2001) is one of the most inter-
esting because it concentrates on strategic aspects of soccer rather than on training lessons. Soccer
strategies in the literature (e.g. (Lucchesi 2001; Peitersen and Bangsbo 2000)) are not as highly
structured as for example strategies for American football are, though they are structured enough
to build a top-level ontology for it. According to (Lucchesi 2001) there are two phases in the
game: (1) the defensive phase and (2) the offensive phase. In the defensive phase the ultimate
goal of the team is toprevent the opponent to score a goaland togain ball possessionagain.
When the second sub-goal of this phase is fulfilled the game enters the offensive phase. Here, a
controlledbuild-up of the playhas to be performed. In general, there are two ways to build up the
play: either we introduce the phase in a counterattack manner, fast and direct with a long pass or
deliberately by a diagonal pass or a deep pass followed by a back pass. The taxonomy for soccer
strategy is depicted in Figure 7.1, where “3-4-1-2” stands for the basic tactical setup of the team.1

In the following, we will concentrate on the building-up phase for an illustration of deriving basic
behavior patterns for soccer play. Figure 7.2 shows two example diagrams from (Lucchesi 2001).
The goal of the attacking team is now tocreate a scoring opportunity. The finalizing move is to
try to score a goal. In soccer, there exist several strategic groups, each having a particular task in
fulfilling the just mentioned strategy. The defense has to prevent the opponent team to score and
has to build-up the play. The mid-fielders work to create a scoring opportunity and the offense has
to score the goal.

1The pattern 3-4-1-2 means that the team is playing with three defenders, four midfielders, one offensive midfielder,
and two forwards.

7.2. FORMALIZING SOCCER STRATEGIES 187

Figure 7.1: Top-level ontology according to (Lucchesi 2001).

Accordingly a soccer strategy can be defined as a tuple

str = 〈RD,CBP 〉.

With RD as a set ofrole descriptionsthat describe the overall required abilities of each player
position in relation toCBP , the set ofcomplex behavior patternsis associated with the strategy.
Given the strategystr, the associated role descriptionrd ∈ RD can be described by the defense
tactics task, the offense tactics task, the tactical abilities, and the physical skills.

An Example: Build up Play

In this phase of the game the team’s objective is to take the ball towards the opponent’s goal in
order to establish a setting which allows for creating a scoring opportunity. There are a number
of ways to build up a play: (1)immediately with a long pass. The long pass enables the team to
take the ball up-field towards the opposing goal very quickly. There is an immediate reversal of
play and the risk of losing the ball near ones own penalty area is very low. However, the long
pass is difficult to receive, so the opponent may be able to steal the ball more easily. Moreover,
as there is not much time, the team cannot move forward in a coordinated way; (2)deliberately
with a diagonal pass.The diagonal pass allows for a coordinated way to move forward with the
ball and it is easy to receive. The time to get close to the opponent’s goal is longer than with the
long pass. Thus, chances of losing the ball in a dangerous area are higher; (3)deliberately with a

188 CHAPTER 7. QUALITATIVE STATE SPACE ABSTRACTIONS

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

3

2

1

1

7

8

9

11

4

6

2

10

3

5

(a) Diagram 4 from (Lucchesi 2001).

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

4

7

6

5

3

9

2

1

8

10

11

(b) Diagram 21 from (Lucchesi 2001).

Figure 7.2: Two tactical diagrams from (Lucchesi 2001). The bold arrow next to the field indicates
direction of play. Player movements are represented by arrows (→ or y), passes are indicated by
dashed arrows (99K), and squiggly arrows () stand for dribbling. Opponents are not shown.

deep pass and a subsequent back pass. This way of building up play requires very good timing
as it involves three players who have to move in a coordinated way. If such a move is carriedout
successfully it allows the team to move forward up-field without great risks if they lose the ball.
We depict one exemplary tactical move for each of the three patterns to build up play mentioned
above in Figure 7.3.

The decision which pattern to choose certainly depends on the opposing team as well as on
the particular situation. That is to say, when playing against an opposing team which has many
players in the midfield one would perhaps favor to build up a play with a long pass whereas with
a team leaving lots of space uncovered in the midfield one would prefer the deep pass.

Basically, all the possibilities mentioned above are meant to take the ball up-field and establish
a more offensive setting for the team while remaining in possession of the ball. The ball is either
taken forward from the defense to the midfield section or in the case of the long pass directly to
the offense section. Both can be done through the center of the playing field or by using the wings
of the pitch. Depending on how the play was built up, there are several ways to create a scoring
opportunity.

Basic Primitives

The previous examples already suggest which behavior patterns are needed for a soccer formal-
ization. Following the lines of (Lucchesi 2001), we distinguish betweenrole (back, midfield,
forward) andside(left, center, right) in soccer. This distinction is more or less independent from
the pattern of play (e.g. 3-4-1-2 or 4-2-3-1). The combination of role and side (e.g. center for-
ward) can be interpreted astypeof a (human or robotic) soccer player or asposition (region or
point) on the soccer field. Therefore, we basically have nine different positions, as illustrated in
Figure 7.4(a).

The notions player type and position can be seen as instances or specializations of the notion
of anabstract position, or address for short, usually associated with its (actual) coordinates or a
region on the soccer field. Also the ball (strictly speaking, its position) is an abstract position,

7.2. FORMALIZING SOCCER STRATEGIES 189

���
���
���
���

������

1

2
3

1

56

8 4

9

11 10

7

3 2

(a) A long pass

���
���
���
���

������

1

2

56

3

8

4

7

10

9

11

(b) A diagonal pass

���
���
���
���

������

2

1

1

5

8

3

11

7

2

6 4

9

10

(c) A deep pass and a subsequent
back pass

Figure 7.3: Three different ways to build up a play. Dashed lines represent pass-ways and solid
lines denote a player’s movement. The bold arrow next to the field indicates the direction of play.

i.e. the parameter or goal of a test or operation of a soccer player (agent). A movableobject in
the context of soccer may be a player or the ball. An object is in a currentstate, which includes
besides other data the current speed or view direction. Although not explicitly mentioned, amodel
of behavioris assigned to every object, e.g. average or maximum speed or a deceleration rate
for the ball as a special case. Additionally, every player needs to hold data about other agents’
states. We abstract this by the termworld model. All this is summarized in the class diagram in
Figure 7.4(b).

In (Lucchesi 2001, p. ii) only few symbols are introduced that are used throughout the many
diagrams in that book: players (in many cases only the team-mates, not the opponents are shown),
the ball, passing, movement of the player receiving the ball, and dribbling. Conceptually, all
symbols correspond toactions, which we abbreviate aspass, goto, anddribble. Since all actions
are drawn as arrows starting at some player, naturally two arguments can be assumed:player

andabstract position. goto(player [LF], region[CF]) for instance means that the left forward
player moves in front of the opposing goal.

Although in most cases this is not explicitly mentioned in (Lucchesi 2001), actions require
that certain prerequisites are satisfied, when they are performed. Since our approach aims at a
very abstract and universal (league-independent) formalization of soccer, we restrict ourselves
to only two tests: possession of ball and reachability. Each of them can be seen as apredicate
with several arguments:hasBall has the argumentplayer (the ball owner);reachable has two
arguments, namely an object and an abstract position.

A pass, for example, presupposes reachability, i.e. it should be guaranteed that the ball reaches
the teammate. Note that we already made use of this in Chapter 5.2.2 in the example of playing
a double pass. Clearly, the implementation of the reachability test is heavily dependent on the
respective soccer league and its (physical) laws. Therefore, at this point, we only give a very
general and abstract definition: Objecto can reach an addressa iff o can move toa and after that

190 CHAPTER 7. QUALITATIVE STATE SPACE ABSTRACTIONS

��
��
��

��
��
��

��
��
��

��
��
��

RB RM RF

CFCMCB

LM LFLB

(a) Tactical regions on the field.

object
state:
object_behavior_model:

position

ball

address

player
worldmodel:

reachable

role : {back,midfielder,forward}

side : {left,center,right}

hasBall

(b) Class hierarchy for soccer derived
from (Lucchesi 2001).

Figure 7.4: Tactical regions and abstract position hierarchy derived from (Lucchesi 2001). The
field is divided into three rows (corresponding to player roles): back (B), midfield (M), and for-
ward (F), and three lanes (sides): left (L), center (C), right (R). An address may be one of the nine
regions or player types.

the ball is not in possession of the opposing team. This also covers the case of going to a position
where the ball will be intercepted.

7.2.2 Deriving the Specification of Soccer Tactics

The primitive actions we consider here aregoto(player , region), pass(player , region), and
dribble(player , region). Further we need the actionintercept which is a complex action built
from the primitive ones. The arguments of the actions areplayer andregion denoting that the
particular player should go to, pass, or dribble the ball to the given position. For describing the
properties of the world on the soccer field we need the fluentsreachable andhasBall(player),
among others. The precondition axioms for the actions are:

Poss(pass(player , region), s) ≡ hasBall(player)

Poss(dribble(player , region), s) ≡ hasBall(player)

Poss(goto(player , region), s) ≡ true

For our soccer domain axiomatization, we give successor state axioms for theballPos function
(ball position) andhasBall fluent as examples. We assume that the ball position changes only if
we pass the ball to a teammate or dribble with the ball.

ballPos(do(a, s)) = b ≡
∃player , region.

(

(

a = goto(player , region) ∧ ballPos(s) = b
)

∨
(

(a = pass(player , region) ∨ a = dribble(player , region)) ∧ b = region
)

)

A player is in ball possession if its position is the same as the ball position. Of course, the
player should be located in a certain area around the ball, but for ease of presentation we leave out

7.2. FORMALIZING SOCCER STRATEGIES 191

this detail. If the player passes the ball to another position, the fluent value becomes false.

hasBall(player , do(a, s)) ≡
∃region.

(

(

a = goto(player , region) ∧ ballPos(s) = region
)

∨
(

hasBall(player , s) ∧ ¬∃region a = pass(player , region)
)

)

An Example: Build up Play Revisited

In the following we formalize the examples of building up the play from Figure 7.2, starting with
Figure 7.2(a) showing a long pass as first action. There, back player 2 makes a long pass to
forward 9, who then passes back to the center midfielder 10, who can make a pass to forward 11,
who cuts in deep down-field, as written in (Lucchesi 2001, p. 29). Four teammates are actively
involved in this maneuver: back playerp2 = player [B] (whose side need not to be specified), the
center midfielderp10 = player [CM], and two forwardsp9 = player [xF] andp11 = player [yF]

on different sides, i.e.x 6= y.
Before we are able to formalize the whole maneuver, we have to think about what passing

means exactly. A pass from playerp to p′ requires thatp is in ball possession and the ball can be
passed top′ beforehand, i.e. the logical conjunctionhasBall(p)∧ reachable(ball, p′). Afterwards
p′ is in ball possession, i.e.hasBall(p′). In (Lucchesi 2001, p. 27), three different types of passes
are mentioned that can be formalized by additional constraints: (i) long pass withp.role = B ∧
p′.role = F , (ii) diagonal pass withp.side 6= p′.side, and (iii) deep pass withp.role < p′.role

where we assume that the roles (which can also be understood as rows in Figure 7.4(a)) are ordered.
With these definitions and constraints for passing, the tactics in Figure 7.2(a) can be described as
a sequence of actions in a straightforward manner:

proc build -up-play 4
(

(

pass(p2, p9); pass(p9, p10)
)

‖goto(p11, r)
)

; pass(p10, r) endproc

Recall that subsequent actions (sequences) are marked with semicolon; concurrent, i.e. paral-
lel actions are separated by the symbol‖. In addition,r = region[CF] denotes the region in front
of the opponent’s goal. Since we take the allocentric view from the diagrams in (Lucchesi 2001),
we may have parallel actions of different agents (e.g. player 11 running in front of the opposing
goal, while player 9 or 10 initiates the pass). Clearly, this has to be turned into an implementation
for each agent.

Formalizing the Counterattack

Figure 7.5 depicts a possible move for a counterattack. There, player 8 just captured the ball from
the opposing team, dribbles toward the goal, while the forwards (player 9 and player 11) revolve
the opponent’s defense in order to get a scoring opportunity from both corners of the penalty
area while player 10 starts a red herring by running to the center. The white circles represent the
opponents. In the original figure (diagram 21 in (Lucchesi 2001), see also Figure 7.2(b)), there
are no opposing players as well as no dedicated regions; we inserted them here for illustration
purposes.

The specification of the counterattack is given in the procedurecounterattack 21 below.

192 CHAPTER 7. QUALITATIVE STATE SPACE ABSTRACTIONS

��
��
��
��

��
��
��
��

regl

regr

4

7

9

8

10

11

6

Figure 7.5: Extended diagram 21 from (Lucchesi 2001)

proc counterattack21
intercept;
startDribble(region[CF]);
waitFor (reachable(p11, region[LF]) ∨

reachable(p9, region[RF]) ∨
∃x.Opponent(x) ∧ Tackles(x));

endDribble;
if reachable(p11, region[LF]) then

pass(region[LF]);
else ifreachable(p9, region[RF]) then

pass(region[RF]);
end

endproc

The program is from the view of player 8, that is, all actions and tests are performed by this
player. Player 8 gains the ball with an intercept action. He dribbles toward the center (denoted by
region[CF])) until either player 11 or player 9 is able to receive the pass or an opponent forces
player 8 to do another action (which is not specified in this example). In the specification above,
we use the action pairstartDribble andendDribble instead of a singledribble action accounting
for temporal aspects of that action. Splitting the dribble action into initiation and termination is a
form of implicit concurrency, since other actions can be performed while dribbling.

The next step in the presented sequence is awaitFor construct. Recall that its meaning is that
no further actions are initiated until one of the conditions becomes true, i.e. player 11 or 9 are able
to receive a pass in their respective region or an opponent tackles player 8, i.e., an opponent can
intercept the ball (go-reachability). Note that during the blocking of thewaitFor the dribbling of
player 8 continues and sensor inputs are processed to update the relationreachable making use of
passive sensing as described in Chapter 4.2.2.

Finally, in the conditional we have to test which condition became true to choose the appro-

7.2. FORMALIZING SOCCER STRATEGIES 193

priate pass. Note that we do not choose an action in the case of neither player 9 nor player 11 can
receive the pass as this would be the matter of another soccer move procedure. The counterattack
programs for the other players can be specified similarly.

Reachability

For our formalization of soccer, reachability is central. Reachability strongly depends on the
physical abilities of the robot. Besides the physical abilities, the reachability relation has some
independent properties. In general, we can distinguish three different reachability relations:

go-reachability: a playerp not being in ball possession will reach an addressa on the field before
any other player:reachablego(p, a) with prerequisite¬hasBall(p)

dribble-reachability: a playerp being in ball possession is able to dribble towards addressa

with high probability of still being in ball possession afterwards:reachabledribble(p, a) with
prerequisitehasBall(p)

pass-reachability: a playerp being in ball possession is able to pass the ballb towards addressa
with high probability of a teammate being in ball possession afterwards:reachablepass(b, a)

with prerequisitehasBall(p)

To express reachability mathematically, one needs a model which takes the free space between
the positions of teammates or opponents into account. One possible model is to use Voronoi
diagrams and their dual, the Delaunay triangulation (see e.g. (Aurenhammer and Klein 2000)), as
they separate the field into non-intersecting regions and we get a connection graph between the
players. Figure 7.6 depicts the Delaunay triangulation and the Voronoi regions for the positions
of the players in the counterattack example. The bold lines represent the triangulation, the white
and shaded regions correspond to the Voronoi regions of the attacking team and the defending
team, respectively. Figure 7.6(b) shows the diagram for the intended situation after player 9 and
player 11 have taken their positions in their regions near the goal area. Note that we ignore offside
here.

The Voronoi diagram gives us information about which position on the field is closer to which
player. In Fig. 7.6(a) we draw the conclusion that the opponent’s defense controls the goal area,
whereas after the successful counterattack the defense line is penetrated. The triangulation gives
information about which player can receive a secure pass. In this particular example there is
no connection between player 8 and player 9 and this resembles our intuition that the pass is
not secure. The go and dribble reachability is also covered by these diagrams. In Figure 7.6(a)
player 9 and player 11, respectively, can test if their target regions are occupied by opponents and
they can also test the distance of the defenders to their particular region. With a similar argument
the dribble reachability can be expressed. Player 8 can dribble the ball as long as no opponent is
in a distance where it can tackle player 8.

With this we can define ourreachable relation as a connection between vertices in the Delau-
nay triangulation. Note that this approach is only one possibility for implementing reachability.
The practical experiences made in robotic soccer show that this model is useful as a mathematical

194 CHAPTER 7. QUALITATIVE STATE SPACE ABSTRACTIONS

region[LF] region[RF]

���
���
���
���

46 7
8

10

911

(a) Initial situation.

region[LF] region[RF]

���
���
���
���

46 7

11

8

10

9

(b) Intended resulting situation.

Figure 7.6: Delaunay triangulation (bold lines) and Voronoi regions (white/gray) for the counter-
attack example.

description of reachability not only for pass-reachability, but also for go-reachability and dribble-
reachability. In the following section we give examples how free space can be modeled based on
Voronoi diagrams.

7.3 A Qualitative World Model for the Robotic Soccer Domain

To implement the soccer moves described in the previous section a qualitative world model is
needed. We show one possibility for a qualitatively abstracted world model in this section. First
we will introduce several properties of world model data in Section 7.3.1. The representation of
the world model depends also on the design paradigm and the goals of the system. Our aim is to
formulate soccer strategies and coordinate the behavior of a whole robot team based on a planning
approach. Therefore, our world model representation isexplicit, global, absolute, andallocentric.
Our representation is hybrid, i.e. we have both representations, a quantitative and a qualitative
one. As the world model predicates computed from sensor readings are quantitative, it does not
make sense to ignore them. Thus, the agent or robot is able to make use of both representations.

7.3.1 World Model Categories

The particular choice of what information to include in a robot’s world model is not only influenced
by the domain, but also by the hardware platform (sensors and actuators), behavior strategy of the
team, and the coordination strategy of the team.

With its sensor setting, a robot is limited to perceive only certain aspects of the world. The
sensor setup imposes restrictions of the retrievable environment information like the quality of
information, how noisy the sensor inputs are, what kind of aspects of the environment are covered
by the chosen sensors. Not only the sensory system but also the actuators of the robot restrict
the world model. It is not necessary to hold useless information for, say, actions which the robot
cannot perform because of its actuators. For example, consider a soccer robot which can only
kick the ball in the plane. The world model does not need to keep any information regarding the
possibility to perform a loop kick. The sensor and actuator setup therefore restricts the data held

7.3. A QUALITATIVE WORLD MODEL FOR THE ROBOTIC SOCCER DOMAIN 195

absolute allocentric global precise abstract
moves

qualitative

relative egocentric local imprecise
concrete
sonsor

measurements
quantitative

6
bottom-up

(classification)

?

top-down
(execution)

Figure 7.7: Categories of world model representations.

in the world model. This means that for the world model there naturally exists a trade-off between
what is desirable, i.e. what the system designer has in mind, and what is possible, i.e. what the
chosen hardware and software platform is able to provide. As it is an iterative process to math the
both, it is hard to define which kind of information are needed for representing the environment of
a soccer robot. Nevertheless, one can define a set of world model predicates which every soccer
robots needs. Moreover one can define a set of predicates which are needed to coordinate a team
of robots and to come to strategic decisions.

In the following we give an overview about different aspects of world modeling before we
derive the qualitative world model for the soccer domain. The different aspects like using a global
frame of reference versus using a world model relative to the robot can be transformed to each
other. In general, one can distinguish between the categories presented in Figure 7.3.1, which we
discuss in the following.

Point of Reference/View. The world model data can have different points of reference. Abso-
lute data have a fixed global point of reference. Usually this is a global coordinate system for all
objects or agents. In contrast, the data can be represented with a relative point of reference. For
example, another robot or agent can be the point of reference. Then, the data to all the other objects
in the world are relative to this particular robot: another robot will collect different data from the
same object. A relative representation can always be transformed into an absolute representation
by choosing a unique point of reference. Put differently, representations of objects in the world
have in general two different perspectives. The one is the global,allocentric view. Here, each
robot represents the data from a bird’s eyes view. In contrast to this view, theegocentric viewhas
the robot itself as the center of the world. It means that objects in the world are represented relative
to the robot. Consider for example the position of the goals on a soccer field. In an allocentric
view the goals have fixed positions, e.g. the center of the goal is located at position(−5, 0). In an
egocentric view, the position depends on the position of the robot itself. The position of the goal
would be represented as “the goal has a distance of5 meters ahead and an angle of0 degree to me”.
The difference in the representation lies in the coordinate systems of the data. For example, the
allocentric view is usually represented with a Cartesian coordinate system while for the egocentric
view one would rather choose a polar coordinate system.

196 CHAPTER 7. QUALITATIVE STATE SPACE ABSTRACTIONS

Amount of Information. In this category one can distinguish betweenglobal information and
local information. Each robot builds up a local world model which it can acquire through its
sensors. If all robots communicate the gathered information about the world and then share their
own information with other robots, we speak of aglobal world model. The use of a global world
model enhances the quality of the gathered information in general. Unfortunately, it comes at the
cost of communication latencies and therefore at the cost of timeliness. The local world model
information from all robots must be integrated into a consistent global world model. This costs
extra computation times, as inconsistent information due to sensor noise or erroneous calculations
in a local world model must be filtered out by appropriate methods. In Chapter 6.5 we compared
several known methods for the integration of ball estimates.

Accuracy of Data. The quality of the data of the world model is dependent on the sensor in-
formation of the robot. The robot can gather world information only by its sensors which nearly
always is noisy. Often, noisy information is captured by attaching a confidence value, which
resembles the grade of uncertainty of the information. In some cases, the algorithm used for
gathering world model information supplies a mathematical measure about the uncertainty of the
respective information, e.g. the position data of the robot which is calculated by a probabilistic
algorithm gives a Gaussian distribution of the error (cf. Chapter 6.4), in other cases these measures
are empirically found and form a heuristic for the plausibility of the respective world model infor-
mation. For the decision making of a robot these measures form a trust value about the reliability
of the information.

Type of Data. When dealing with sensor systems, nearly all basic data the robot can acquire
are quantitative in nature. Consider odometry values gathered by the wheel encoders of the robot.
The encoders return a value how much the wheel of the robot has turned in a certain amount
of time. Another example is the pose estimation of a robot when a laser range finder is used
(cf. Section 6.4). This data is in general quantitative. On the other side of the spectrum are
qualitative representations. Qualitative representations are commonly used. For example, for
many applications it is sufficient to categorize the speed the robot is driving with in classes like
“slow” or “fast”. A complete qualitative world model which we describe in the next section is on
the other hand not so common for robotics applications.

Kind of Representation. Each robot acting in any kind of environment needs a world model.
In behavioristic approaches like (Brooks 1986) the kind of world model representation isimplicit
on a sub-symbolic level. It means that the system designer does not define predicates or variables
to store certain aspects of the world in but derives certain behaviors directly from a sensor input.
Nevertheless, this defines a form of world model. In contrast to this, anexplicit world model
can be formulated. Here, each representable aspect of the world gets assigned a predicate which
holds the aspect at a certain time of the world. A famous example for this kind of world model
representation is the robot system Shakey (Nilson 1984).

Goal of Representation. The decision how the information about the world is represented
depends on what the aim of a certain world model information and the general architecture of

7.3. A QUALITATIVE WORLD MODEL FOR THE ROBOTIC SOCCER DOMAIN 197

Left Right

(a) level 1

Left Right

Front

Back

(b) level 2

Left Right

Front

Back
BackRightBackLeft

FrontRightFrontLeft

(c) level 3

Figure 7.8: Different levels of granularity for the orientation from (Hernández et al. 1995)

the system is. In a stimulus-response architecture an implicit, quantitative world model might
be sufficient to generate the behaviors of the robot. When one wants to formulate multi-agent
strategies making use of a planning system a symbolic, more qualitative representation seems
preferable.

7.3.2 Modeling Relative Positional Information

For a qualitative abstraction of positional information we must consider two models: (1) qualitative
orientations, and (2) qualitative distances. Combining both yields the qualitative abstraction of the
relation of two objects in the plane. Our abstraction of positional information is based on the work
of Herńandez (1991) Herńandez et al. (1995), and Clementini et al. (1997) who present a unified
framework for qualitative positional information. The position of a primary object is represented
by a pair of distance and orientation relations with respect to a reference object. Both relations
depend on a so-called frame of reference which accounts for several factors such as size of objects,
different points of view, and so on. Their framework also features basic reasoning capabilities such
as the composition of spatial relations as well as switching between different frames of reference.
We leave out the mathematical background here concentrating on our adaptations for the soccer
domain. For a thorough discussion we refer to the original work Clementini et al. and Clementini
et al.

Orientation Relation

The orientation between two objects describes how one object is located relatively to the other.
Based on the fundamental observation of how three points in the plane relate to each other, an
orientation relation can be defined in terms of three basic concepts: theprimary object, therefer-
ence object, and theframe of referencewhich contains the point of view. The point of view and
the reference object are connected by a straight line. The view direction is then determined by a
vector from the point of view to the reference object. The location of a primary object is expressed
with respect to the view direction as one of a set of relations. The number of distinctions made is
determined by the level of granularity.

There are different levels of granularity for orientation relations. On the first level the point of

198 CHAPTER 7. QUALITATIVE STATE SPACE ABSTRACTIONS

view and the reference object are connected by a straight line such that the primary object can be
to the left, to the right, or on that line. Thus, the first level partitions the plane into two half-planes.
On the second level there would be four partitions, the third level would have eight, and so on.
Figure 7.8 depicts the first three levels of granularity for the orientation relation. A well known
example of qualitative directions are the points of a compass which correspond to the second level
in the simple case: a place can be north, east, south, or west. Sometimes we notice even finer
distinctions in terms of intermediate directions such as north-east or south-west. This setting of
finer distinctions corresponds to the third level in the above model.

The frame of reference accounts for contextual aspects such as the front side of the reference
object. Different frames of reference can be classified into three basic types: they are called (1)
intrinsic if the orientation is given by some inherent property of the reference object, (2) extrin-
sic if a particular orientation is imposed by external factors such as motion, or (3) deictic if the
orientation is given by the point of view from which the reference object is seen. Based on the
frame of reference there is a ’front’ side of the reference object. Independent of the level of gran-
ularity there is a uniform circular neighboring structure. In general, at a level of granularityk

the set{α0, α1, . . . , αn} denotes then + 1 orientation relations wheren = 2k − 1. Having a
reference objectA and a primary objectB the orientation ofB with respect toA is denoted by
θAB = θ(A,B). It can take any of the values mentioned in the set above.

Each orientation has a successor such thatsucc(α0) = α1, succ(α1) = α2, . . ., succ(αn) =

α0 and a predecessor withpred(α0) = αn, pred(α1) = α0, . . ., pred(αn) = αn−1. In addition
each orientationαi has an opposite orientation which is obtained by applying(n + 1)/2 times
the functionsucc to αi. The minimal number of steps needed to get from orientationαi to αj

along the circular neighboring structure is called range. The range between opposite orientations
is (n+1)/2. Two orientations are called orthogonal if the range between them is(n+1)/4 (except
for the basic level 1). Each orientation has two orthogonal orientations to it.

Distance Relation

Similarly, the distance relation requires three elements as well: the primary object, the reference
object, and the frame of reference.

In a 2D metric space, the distance between points is defined by the following three axioms

1. dist(P1, P1) = 0 (Reflexivity),

2. dist(P1, P2) = dist(P2, P1) (Symmetry), and

3. dist(P1, P2) + dist(P2, P3) ≤ dist(P1, P3) (Triangle Inequality).

Conventional concepts of distance normally rely on coordinates. The distance between pointsPi =

(xi1, xi2, . . . , xin) in a n-dimensional vector space can be expressed in terms of the Minkowsky
Lp-metric (Preparata and Shamos 1985):

dp(P1, P2) =
(

n
∑

j=1

|x1j − x2j |p
)1/p

7.3. A QUALITATIVE WORLD MODEL FOR THE ROBOTIC SOCCER DOMAIN 199

close

far

(a) level 1

close

far

middle

(b) level 2

close

far

middle

very far

(c) level 3

Figure 7.9: Different levels of granularity for the distance relation

Well-known examples are for instance, the Manhattan distance which is defined by theL1-metric
or the Euclidean distance which is defined by theL2-metric.

Similar to the orientation relation we can distinguish distances at various levels of granularity.
An arbitrary leveln of granularity withn + 1 distinctions yields the setQ = {q0, q1, . . . , qn} of
qualitative distances. Given a reference objectRO these distances partition the space aroundRO

such thatq0 is the distance closest toRO andqn the one farthest away. The qualitative distance
between the reference object and a primary object, both belonging to a setO of objects, is a
functiond : O×O → Q. Thus, the distance between the primary objectA and a reference object
B then isdAB = dist(A,B), wheredist denotes the distance fromA toB.

Next, we have to choose an appropriate distance system for our domain. We choose ahomo-
geneouspartitioning, i.e. our distances measures follow a recurrent pattern likeq1 = 2 · q0, . . .,
instead of using equally spaced distance ranges. That is not only because the perception of ob-
jects and situations farther away is less accurate but also because of a temporal aspect. The robot
needs more time to get to positions farer away, and objects there are more likely to change their
positions before it gets there. Each distance interval grows by factors w.r.t. its direct predeces-
sor. As we already stated there is a maximal distancedmax due to the fixed size of the pitch.
We compute its value from the diagonal of the rectangle formed by the playing field and its
additional boundary border.dmax =

√

(wfield + 2 · wborder)2 + (lfield + 2 · lborder)2. The dis-
tance system we use is parametrized with the level of granularityn chosen. At leveln there are
n + 1 distance relations. We introduce another distance relation calledout of field which sub-
sumes all distances that are greater thandmax . The maximal distance can then be represented
by dmax = ‖δ0‖ + ‖δ1‖ + . . . + ‖δn−1‖. It has to be subdivided inton intervals with growing
size. Each distance relation iss times larger than its predecessor. Thus,‖δi‖ = s · ‖δi−1‖ or
‖δi‖ = ‖δ0‖ · si. dmax can then be expressed as

dmax = (n− 1)‖δ0‖ ·
n−1
∑

i=0

si.

with ‖δ0‖ = dmax/
∑n−1

i=0 s
i. For simplicity we have chosen a strict interpretation of our distance

relations. This leads to sharp boundaries for our distance intervals. Thus, we need exactlyn

values to representnumber of distances many intervalsδi. These intervals are then constituted

200 CHAPTER 7. QUALITATIVE STATE SPACE ABSTRACTIONS

Left Right

Front

Back

BackRightBackLeft

FrontRightFrontLeft

close

far

middle

(a) The combination of the distance and the
orientation relation

angle

radiusP (radius, angle)

(b) A pointp defined in polar coordinates

Figure 7.10: The combination of distance and orientation relation compared to the polar coordinate
system.

as follows:

[0, a1[, [a1, a2[, . . . , [an−1, an[, [an,+∞].

To obtain the qualitative distance for a quantitative distance value we simply determine to which
of the intervals it belongs.

Combining Orientation and Distance

In order to describe (and reason about) positional information we now investigate the combination
of the distance and the orientation relation. Putting together the two relations presented above,
allows us to represent the location of a primary objectB relatively to a reference objectA. From a
quantitative point of view, the combined description of a position can be seen as the representation
of a point in polar coordinates. The two-dimensional polar coordinate system involves the distance
from the origin and an angle. A pointp in polar coordinates is defined by the distancer from the
origin to the point and the angleϕ measured from the horizontalx-axis to the line from the origin
to p in the counterclockwise direction. Thus, the position of a pointp is described as(r, ϕ). This
description corresponds to a combination of the distance relation and the orientation relation which
we presented in the previous sections. We depict an illustration in Figure 7.10.

Most of the time, we use the Cartesian coordinate system to represent a position. As we have
just seen, the combination of our qualitative distance and orientation relation corresponds to the
definition of a point in polar coordinates. Fortunately, there is an easy way to switch between the
two systems. If we choose a Cartesian coordinate system with the same origin as with the polar
coordinates and if we have thex-axis in direction of the polar coordinates, we have the following
formulas for the transformation between the two systems:x = r · cos(ϕ), y = r · sin(ϕ), and
r =

√

x2 + y2, ϕ = arctan y
x + π · u0(−x) · sgn(y) whereu0 is the Heaviside function2 with

2The Heaviside function, sometimes called the unit step function, is a discontinuous function whose value is zero

7.3. A QUALITATIVE WORLD MODEL FOR THE ROBOTIC SOCCER DOMAIN 201

u0(0) = 0 and sgn is the signum function. Here, we use the functionsu0 and sgn as logical
switches instead of a distinction of different cases.

By this we can transform the distance and orientation relations to Cartesian coordinates which
we use in our system. Beside the relative positional information described so far positions are also
used globally. We are going to investigate a possible representation approach for this in the next
section.

7.3.3 Modeling Semantic Regions

As we already observed in our analysis of soccer theory one of the qualitative concepts applied
frequently is that of semantic regions on the playing field. These regions are often used as tactical
positions corresponding to player roles. There are three zones: back, midfield, and forward. Fur-
thermore, there are three sides: left, center, and right. Combining the two partitions above results
in a subdivision of the field into nine regions. This seems to be enough to cover the role descrip-
tion task (cf. Section 7.2.1). Although, when specifying soccer moves for a team of autonomous
soccer agents, it may be necessary to have a finer distinction. Thus, to retain flexibility we aim at
building a representation framework that is adjustable to different requirements.

A well-known approach to qualitative representation of positional information was proposed
by Freksa and Zimmermann (1992). It bases on a directional orientation information. The ap-
proach is motivated by considerations on how spatial information is available to humans and to
animals: directly through their perception. Thus, cognitive considerations about the knowledge
acquisition process build the basis here.

Qualitative orientation information in two-dimensional space is given by the relation between
a vector and a point. The vector consists of a start pointA and an end pointB. It represents
the orientation of a possible movement. Suppose a line throughA andB, and consider two lines
each going orthogonally throughA andB. These three lines form an orientation grid which has
the form of a double-cross. Different positions of an additional third pointC can be described as
follows. In relation to the line throughA andB a pointC can either be to the left-hand side of this
line, straight on this line, or to the right-hand side. The lines throughA andB allow for further
distinctions of the position of pointC. It can either be in front of the line throughB, just on the
orthogonal line throughB, neutral in between the two orthogonal lines, on the line throughA, or
back, that is, behind the line throughA. Altogether this leads to15 different orientation relations.
Figure 7.11 depicts the grid presented above and the iconic representations of the different possible
positions of a pointC in this grid.

Reasoning with these relations is possible through four operations:inversion, homing, short-
cut, andcomposition. Freksa (Freksa 1992) uses two different types of composition, one of them
named coarse composition and the other named fine composition. While the coarse version pro-
duces very imprecise results the fine version is enhanced with rudimentary distance information.
These supplementary distance information allow for a more exact composition.

The approach presented in (Freksa 1992) and (Freksa and Zimmermann 1992) is quite intu-
itive, because it is based on human cognition. However, any relation is based on a vector between

for negative arguments and one for positive arguments. The value ofu(0) can be defined freely; it is often indicated as
an index tou, that isu0 in our case.

202 CHAPTER 7. QUALITATIVE STATE SPACE ABSTRACTIONS

A

B

(a) (b) (c)

B

A

C

(d)

Figure 7.11: The double-cross calculus by (Freksa and Zimmermann). (a) shows the orientation
vector fromA toB. (b) shows the possible position of an additional pointC. (c) shows the iconic
notation for each of the possible positions ofC. (d) A possible composition of two orientation
relations.

two points, which cannot be taken for granted in the context of our work. Spatial settings in soc-
cer not always involve a movement but they also describe static situations. Furthermore, we need
to represent inherent spatial characteristics of a player in terms of qualitative predicates like the
view direction. These inherent traits also do not provide a motion vector to which we could apply
Freksa’s model. Thus, it is not always applicable for us. Nonetheless, we can use the orientation
grid to abstract from the quantitative values.

Inspired by the work of Freksa (1992) and Freksa and Zimmermann (1992), we develop our
model of semantic regions for soccer play. The orientation grid used for the representation of
orientation alignment bases on a (movement) vector going from a pointA to a pointB. Although
we do not have an explicit movement in the context of global positioning on the playing field we
can regard the direction of play as a vector. From a tactical point of view the focus of a game is
to advance from a defensive situation in a team’s own half to an offensive one in the opponent’s
half. Thus, we can take the center of each team’s half as the start and end point of our imaginary
vector. If we place this vector onto the playing field Freksa’s orientation grid yields15 regions.
The regions and their derivation are depicted in Figure 7.12.

The regions originating from embedding Freksa’s orientation grid onto the playing field are
separable by the field’s two dimensions. We can carry out a subdivision along the field length and
width. This procedure results inzonesfor the length of the field and insidesfor the width. To
preserve the importance of the center of the field w.r.t. its tactical meaning, we take it as the center
for both, the zones and the sides of the field. In order to have a central position on the field we
chose both the number of zones and the number of sides to be odd.

There is no obvious reason not to choose equidistant intervals for our representation of regions.
The reason is that the regions of the playing field do not differ in terms of size or shape seen
from a global point of view. Basically they form an abstraction grid, which consists of equally
formed sectors subsuming the set of positions of a certain area. Since we want our regions to be
as flexible as possible we parametrize the model by the desired number of distinctions for each
dimension of the pitch. Hence, we can determine the length and the width of each region by
‖region‖x = wfield/number of sides and‖region‖y = lfield/number of zones.

The system sketched above consisting of zones and sides having its center in the middle of

7.3. A QUALITATIVE WORLD MODEL FOR THE ROBOTIC SOCCER DOMAIN 203

(a)

���
���
���
���

���
���
���
���

(b)

���
���
���
���

���
���
���
���

(c)

Figure 7.12: Semantic regions on the playing field. Figure (a) shows the orientation grid taken
from (Freksa 1992). Figure (b) shows the grid embedded into a soccer field. The resulting semantic
regions on the playing field are shown in Figure (c).

the playing field roughly corresponds to a coordinate system. Zones and sides form perpendicular
axes, where the zones correspond to thex-axis and the sides correspond to they-axis of a Cartesian
coordinate system. We still can specify an object’s position in a coordinate-system-like manner,
but by using zones and sides we achieve a qualitative description. In the following section we are
going to elaborate on possible applications of the qualitative approach to regions we just presented.

7.3.4 Reachability, Free Space, and More

In Section 7.2.2 we already discussed reachability as a central relation for soccer. As a possible
mathematical model for reachability we have chosen and are making use of Voronoi diagrams.

The notion of free space is another important aspect, which can frequently be found in the
description of spatial settings and tactical patterns in soccer. The term free space denotes an area
which is not occupied by any of the players of the opposing team. Consider a Voronoi diagram
being constructed from all opponent’s positions. A Voronoi vertex (a crossing of Voronoi edges) in
the diagram constructed from the opponents’ positions determines a point with maximal distance
to all surrounding opponents. This means that this point is the most free point in that particular
region. To acquire these free regions we provide two different methods. First, we consider a
classification request. Given a point on the playing field, we can ask how ’free’ this point is.
To answer such a request we compute the point’s distance to the nearest point site (the nearest
opponent) in the opponent’s Voronoi diagram as well as its distance to the nearest Voronoi vertex.
The ratio between these two values is a good criterion on how ’free’ the given point is. Of course,
the ratio is not always a sufficient indicator since it does not reflect the absolute distance to an
opponent. Therefore, we additionally require a minimal distance which has to be exceeded for a
position to be classified as being free. Secondly, we can answer inquiries for free point positions.
Most of the times it is reasonable to specify a region of interest, in which to search for a free
position. For simplicity we assume that this region of interest is specified by a position in the
coordinate system of the pitch (along with a maximal distance limiting the search). Given this

204 CHAPTER 7. QUALITATIVE STATE SPACE ABSTRACTIONS

nearest vertex
request

nearest opp

(a) Classification request

request

result

maxdist

(b) Point request

Opp2

Opp3

Opp1

Pend

Pstart

(c) Pass-way vacancy

Figure 7.13: Free space and pass-way vacancy.

query, we determine the nearest Voronoi vertex to the position. If the distance between the query
point and the vertex is less than the maximal distance we return the vertex’ position. Otherwise,
we return the position of a point lying on a line starting at the query point going into the direction
of the nearest Voronoi vertex. We depict an illustration for both queries in Figure 7.13.

Within the course of a soccer game it is a vital information whether or not ones team is in
possession of the ball. We can provide this information by exploiting the structure of Voronoi
diagrams. The simplest way to answer the question of ball possession is to check if the ball is
located in the Voronoi region of a player who belongs to ins’s own team. This is not always
correct. For example, if the player whose Voronoi cell the ball belongs to is not facing the ball,
it might be the case that another player who has a greater distance to the ball but who is directly
facing it can reach it more quickly. It is, however, possible to take this additional information into
account and to refine the predicate accordingly.

As an additional qualitative predicate of particular interest in the soccer context we further
consider something we call pass-way vacancy. We denote a qualitatively abstracted classification
of the amount of space available along a potential pass-way by this predicate. That is to say,
we classify the degree of exposure of a line segment going from pointPstart to pointPend by
examining possible sticking points or points of interception. We derive our classification by con-
sidering a ratio on how likely an interception is. Consider a straight line fromPstart to Pend. We
compute the minimal distance of each opposing player to this line, which is either the length of
a line perpendicular to the pass-way or the distance to the pass-way’s nearest end point. Further,
we compute the distance from each opponent to the starting point of the passageway. Then, we
calculate the ratio between these two values. That is to say, we determine if the opponent is so
close to the pass-way that it can intercept a ball passed along the pass-way. Figure 7.13(c) shows
an illustration of the calculations performed when determining a PasswayVacancy.

As we already pointed out in Chapter 7.2 another information that is beneficial for the specifi-
cation of tactical patterns can be provided by theunmarkedpredicate. It is used to state whether
a player is free or covered by an opponent. This information is essential, for instance, to decide if
a pass to this player makes sense or not. A simple way to answer this question is to calculate if
there are any opponents within a certain distance to the player desired.

7.4. A DT PLAN LIBRARY FOR ABSTRACTED PLANS 205

7.4 Using State Space Abstractions for Soccer: Generating a DT
Plan Library

Having constructed a world model consisting of qualitative predicates as presented in the previous
section, the question is whether we gain expressiveness for formulating high-level tasks of the
robot or agent, or if we can solve problems which we could not be solved before. In Chapter 4
we introduced an approach to use macro actions in a decision-theoretic context. Recall that our
proposed method was to use ordinary value iteration until the values for all states of the macro
action converged. We were therefore restricted to problems where we could determine the state
space for the macro action. This precluded the use of decision-theoretic macro action in more
complex domains like robotic soccer.

In this section we present the idea of using macro actions taken a step further. The idea is
rather simple: we first calculate an abstract policy without filling in the decisions the forward
search algorithm takes. With this, we calculate an abstract policy consisting of all possibilities
the input program leaves open. This is done off-line. Each of these so-calculated macros are
instantiated at run-time in the particular world situation the agent is facing. Finally, we store the
outcomes of our macro action in a plan library so that the agent, if it is facing the same world
situation again, exactly knows which of the possible macro actions might be the best. To make
this idea work for robotic soccer we need to abstract the soccer state space with the just described
qualitative world model. In the following we show our approach to build up an abstract plan
library and give two examples from the Simulation League revealing that the approach together
with the qualitative world model allows it to define macro actions, and that these macros turn out
to be beneficial w.r.t. to computation times.

7.4.1 Solving Decision-theoretic Plans in an Abstract Way

Recall that READYLOG’s forward-search algorithm calculates a policy from an input program. By
taking into account all possible outcomes of a stochastic action, nondeterministic choices in the
input program are optimized away. For each agent’s choice point the forward-search algorithm
selects the best alternative, for each nature’s choice point given by stochastic actions a conditional
branching over the possible outcomes is introduced. The calculations of values and probabilities
rely on the current situation term, i.e. the reward is given w.r.t. a particular situation. Therefore,
the algorithm can decide optimal choices at choice points.

The idea for generating a plan library is now the following. In a run of the forward-search we
do not calculate explicit numeric values for the reward function but keep it as terms. Basically,
we store the whole computation tree for a respective input program. Later, when instantiating
a plan from the plan library, we can establish the optimal policy, the values and probabilities of
all outcomes of the policy. By this, we make use of the trade-off between space and time. It
turns out that with re-instantiating the abstract terms and re-evaluating the optimal choices one
can save a significant amount of computation time compared to the on-line interpretation of a
decision-theoretic program. For the implementation of the calculation of policies in an abstract
way, we have to modify severalBestDo predicates in such a way that choices are not taken, but all
possible continuation policies are calculated. When calculating the possible continuation policies

206 CHAPTER 7. QUALITATIVE STATE SPACE ABSTRACTIONS

for a conditionalif ϕ then a1 else a2 endif , for instance, we have to calculate both branches,
whereϕ and¬ϕ holds. To do so, we introduce a new predicateBestDoM . BestDoM is basically
the same asBestDo, despite that we replace the calculation of the value by an abstract value term,
and that we calculate all possible continuation policies. To give an example, we show the macro
for a stochastic action.

BestDo(A; p, s, h, π, v, pr)
def
=

∃P.procmodel(A,P) ∧
∃π′, v′, pr ′.BestDoAux(P, p, s, h− 1, π′, v′, pr ′)

π = a;π′ ∧ v = +(−(reward(s), cost(a, s)), v′) ∧ pr = pr ′

Basically, the difference to the predicates introduced in Chapter 4 (Eq. 4.1 on page 85) is that
instead of calculating the value with the formulav = reward(s) + v′ ∧ pr = pr ′ as is done in the
original BestDo predicate, we keep the termv = +(−(reward(s), cost(a, s)), v′). Further, we
do not check whether the stochastic procedure is possible or not. The reason for this change is that
we cannot decide whether or not the respective outcome action is possible, as we are not given a
concrete situation where we could evaluate the predicate. This must be checked when executing
the so-calculated policy. Again, the value as well as the probability of success is calculated as a
term depending on situations, not as a concrete value. The respective auxiliary predicates for the
stochastic action are:

BestDoMAux(sprob({(n1, p1, ϕ1), . . . , (nk, pk, ϕk)}, p, s, h, π, v, pr)
def
=

∃δ, s′.trans∗(n1, s, δ, s
′) > 0 ∧

∃π′, v′, pr ′.BestDo(p, s′, h, π′, v′, pr ′) ∧
∃π′′, v′′, pr ′′.BestDoAux({(n2, p2, ϕ2), . . . , (nk, pk, ϕk)}, p, s, h, π′′, v′′, pr ′′) ∧
π = if ϕ1 then π′ else π′′ endif ∧
v = +(v, ·(v1, prob(n1, a, s))) ∧ pr = +(pr ′, ·(p1, prob(n1, a, s)))

BestDoMAux(sprob({(n1, p1, ϕ1)}), p, s, h, π, v, pr)
def
=

∃δ, s′.trans∗(n1, s, δ, s
′) > 0 ∧ Final(δ, s′) ∧

∃π′, v′, pr ′.BestDo(p, s′, h, π, v, pr) ∧
v = ·(v′, prob(nk, a, s)) ∧ pr = ·(pr ′, prob(nk, a, s))

As we have stressed before, the difference of ourBestDoM definitions compared to the
original BestDo is that (1) all possible continuation policies have to be calculated, and (2) the
value as well as the probability of success are handed over as terms. Later, when the policy is
instantiated in a concrete situation, we could evaluate the value and probability term to get the
real numbers. To illustrate this again, we come back to our well-known maze world example from
Chapter 4. We give the abstract value for the agent calculating one step of the (simplified) policy
to leave room 1 from the start position “S” through the northern door:

7.4. A DT PLAN LIBRARY FOR ABSTRACTED PLANS 207

v = +(−(reward(do(go up, s)), cost(do(go up, s))), ·(prob(go up, det up, s),
reward(do(det up, s)), ·(prob(go up, noop, s), reward(do(noop, s)))),

+(−(reward(do(go right, s)), cost(do(go right, s))), ·(prob(go right, det right, s),
reward(det right, s)), ·(prob(go right, noop, s), reward(do(noop, s)))), . . .

Similarly, the first step of the abstract policy to leave room 1 looks like

(poss(go up, S)→ ((has val(pos, V6, S), V6 = [V11, V12]), V14 is V12 + (1), V13 is V14),

V111 = [goup, if(pos = [V11, V13], [], [if(pos = [V11, V12], [], [])])]; V111 = [], !),

(poss(go right, S)→ ((has val(pos, V19, S), V19 = [V24, V25]), V27 is V24 + (1), V26 is V27),

V110 = [go right, if(pos = [V26, V25], [], [if(pos = [V24, V25], [], [])])]; V110 = [], !),

(poss(go down, S)to((has val(pos, V32, S), V32 = [V37, V38]), V40 is V38 − (1), V39 is V40), . . .

Remember thathas val is a predicate to evaluate a fluent, andposs checks whether the precon-
dition of an action holds. For ease of presentation, the example is simplified as the basic actions
only have one failure case, namely anoop action where the agent will stay on the same position.
As one can see from the small examples above the policies grow large even for small toy problems.
Even if the optimal solution to leave room 1 is encoded as an option, i.e. as a macro action, the
option cannot be represented in a compact way as each possible outcome for each action has to be
provided when calculating abstract policies and values. Though, as we will show in Section 7.4.3
one can buy the larger space consumption by less computation time.

7.4.2 Generating a DT Plan Library

In the previous section we presented our idea of solving decision-theoretic problems in an abstract
way implemented by a new predicateBestDoM . Independent from a particular situation, this
predicate generates, from a given program, a list of abstract policies with a corresponding abstract
representation of the value function. In a given situation, this abstract representation can be easily
re-instantiated with numerical values, which makes it possible to choose and execute the highest
valued abstract policy. Our idea is now to use this abstract plan instead of on-the-fly decision-
theoretic planning and to build a DT PLAN L IBRARY, a library that contains policies that already
were calculated and used before. These stored policies are then provided for re-use if the agent
comes to similar states again.

This is the basic idea of our new options approach: an option is essentially a READYLOG

program with a solve statement which encodes the contents of the option (similar to thenavigate

program in Section 4.2 on page 73). This means that with this program the partition of the state
space of the option is induced. The states reachable with the program form the state space of the
option. Note that we use the term state here and use it similar as is done in related action for-
malisms like FLUX (Thielscher 2005) (cf. also Chapter 2.1.5, page 18). A state refers to a finite
(sub-)set of all fluents which are needed to solve the option. A finite subset of instantiated fluents
form the state representation for the option and must be given by the user. This state description

208 CHAPTER 7. QUALITATIVE STATE SPACE ABSTRACTIONS

must contain enough information to evaluate tests and action preconditions mentioned in the input
program from which the option is calculated. For the maze domain our state representation com-
prises only the location fluent. It is sufficient for navigating between the rooms in the maze. In the
soccer domain, on the other hand, we need to find the fluents which are important for the option.
Obviously, is too much to take the positions of all 22 players on the field into account for a free
kick option. Only the players near the ball are of importance. In the MDP theory using logical
literals to describe the state of an MDP is also referred to as a factored representation ofthe state
space.

To calculate a policy for an option the following steps have to be conducted:

1. Off-line pre-processing

(a) Calculate an abstract policy for each solve statement occurring in the behavior speci-
fication.

(b) Replace each solve statement with its abstract policy in the specification.

2. On-line execution

(a) Look up the policy, value, and probability of success for the option in the DT PLAN

L IBRARY.

(b) If the option is not contained in the library, instantiate the option in the particular
situation and store the value and the probability of success together with the current
world state in the library.

In the off-line part we pre-process each occurrence of a solve statement in our agent high-level
specification with theBestDoM predicates shown in the previous section. As the result we obtain
for each solve statement an abstract policy as presented before.

When executing an option in a particular situation we first query our DT PLAN L IBRARY if
for the current world situation an instantiated policy for the option currently to be executed exists.
If so, we simply take this policy from the library and execute it. If there does not exist a policy for
the option in the current world situation, we have to generate it. We take the situation independent
abstract policy for the option and substitute the situation terms with the actual situation. Similarly,
we evaluate the value and success probability of the option given the current world situation. With
a particular situation we can re-evaluate the precondition axioms of actions, if-conditions, and
nondeterministic choices of the abstract policy and obtain one fully instantiated policy which is
the same as if we would have calculated it on the fly. To gain computation speed for the next
time when the agent wants to execute the option in this particular situation, we store the fully
instantiated policy, the value, and the success probability together with the world state. Thus, the
next time the option is to be executed in the very same situation, we simply look up the policy
without the need to calculate anything at all.

The on-line execution is illustrated in Algorithm 7.14 on page 209. The predicategetState

calculates the current world state based on fluent values as described above. The predicate
get bestPolicy performs the look-up operation, the predicateevaluate assesses the abstract
plan tree returning a fully instantiated policyπs, which is then executed withexecute(πs). The

7.4. A DT PLAN LIBRARY FOR ABSTRACTED PLANS 209

getState;
while ϕm do

if DT PLAN L IBRARY has entry for current states then
get bestPolicy(s,DT PLAN L IBRARY,π);
execute(πs);

else
evaluate(s,AbstractValues,πs);
execute(πs);
store((s, πs, v, pr), DT PLAN L IBRARY);

end
execute(asense);

end

Figure 7.14: The algorithm executed by a macro-action.

store predicate saves the instantiated policy, the value, and the success probability together with
the current world situation in the DT PLAN L IBRARY for the next time it is needed. The action
asense is a sensing action which is executed to sense the actual state the agent is in, when trying
to execute the option. The logical formulaϕm is a condition which checks if the option is exe-
cutable. This condition can be viewed as a precondition for the option. This precondition is part
of the specification of the option and must be provided by the user.

The main difference to the original options approach as presented in Chapter 4 is that we do not
use standard value iteration to calculate the behavior policy, but make use of the forward-search
algorithm which is also used for decision-theoretic planning in the framework. The advantage is
that with our new approach we gain flexibility in the sense that the input program from which
the option is calculated determines the state space of the option. Determining the sub-tasks in
toy domains like the maze domain is rather easy (leaving rooms through doors). But in realistic
domains like robotic soccer this tasks is not that easy and therefore it helps to define the option by
the input program.

7.4.3 Experimental Results from the Simulation League

As an extension to options in READYLOG we propose macro actions based on an abstract set of
precomputed policies and a DT PLAN L IBRARY, with the aim to speed up the agent’s behavior
in contrast to on-the-fly decision-theoretic planning. In this section we present the results we
obtained by testing our approach in a continuous real-time domain. The presented results are
from the 2D Soccer Simulation league. The results shown here are rather proof-of-concept results.
Further investigations have to be taken especially w.r.t. scalability aspects of our proposal.

We define two macro actions to test the applicability of our approach in an environment such
complex as robotic soccer. A building block of being able to apply our new macro action to soccer
is the use of the qualitative world model. The agent’s position, for example, can be the coordinate
(12.0226375902, 5.847583745). The probability, that the agent comes to exactly this position
twice is nearly zero. Building equivalence classes over ranges of positions, for instance, ensure
that the agent meets a position on the field more than once. Otherwise, it would preclude a re-

210 CHAPTER 7. QUALITATIVE STATE SPACE ABSTRACTIONS

���
���
���

���
���
���

���
���
���

���
���
���

(a) First setting for out-
playing opponents.

���
���
���

���
���
���

���
���
���

���
���
���

(b) The macro-action
chooses to pass and go.

���
���
���

���
���
���

���
���
���

���
���
���

(c) Second setting for out-
playing opponents.

���
���
���

���
���
���

���
���
���

���
���
���

(d) The macro-action
chooses to dribble.

Figure 7.15: Outplay Opponent; (a)-(b): “pass and go”.(c)-(d): “dribble”.

use of the policies stored in the DT PLAN L IBRARY. Nevertheless note that even with using the
qualitative world model together with the options approach as presented in Chapter 4, we could
not formulate the behaviors of the soccer agent as a macro action. That is because in the original
approach we have to enumerate the whole state space which is fairly possible for a soccer action.

The first macro action is designed tooutplay opponentsas shown in Fig. 7.15(a) and 7.15(b).
Facing attacking opponents, the ball leading agent either dribbles or passes the ball to a teammate.
If the macro action chooses the pass, the agent afterwards moves to a free position to be a pass
receiver again. The second action aims tocreate a good scoring opportunityto shoot a goal. The
agent in ball possession can dribble with the ball if the distance to the opponent’s goal is too far.
Near the goal the agent can shoot directly to the goal or pass to a teammate that is in a better
scoring position. We compared macro actions with DT planning for the game settings we created
as test scenarios. Besides the computational behavior, we also investigated the action’s choices
in specific states. We want to remark that by using the proposed state abstraction we commit to
some sort of bias in the representation of the environment that is reflected in the state variables.
In fact, these variables have to ensure that the macro action correctly chooses a policy fitting
the game setting. Situations which require different policies have to be represented by different
states. This can be handled by the granularity of the qualitative world model. The provided grid
is adjustable by hand and can be created fine-grained enough to distinguish significant changes in
the game setting. In the first setting depicted in Fig. 7.15(a) the ball leading agent directly faces
an opponent. In this state the macro action evaluates a pass to the uncovered teammate and a
subsequent move action as best policy (Fig. 7.15(b)). In the second setting given in Fig. 7.15(c),
both opponents cut the possible pass-ways for the ball leading agent to its teammates. The state
representation ’detects’ this difference and evaluates a new policy. The agent dribbles towards
the opponent’s goal (Fig. 7.15(d)). Qualitatively there is no difference in the behavior between
the on-the-fly DT planning and the macro approach, as both rely on the same READYLOG input
programs. What can be observed, though, is that the macro action approach needs less time to
come to a decision.

7.4. A DT PLAN LIBRARY FOR ABSTRACTED PLANS 211

We considered three strategies: (a) using DT planning to cope with the task, (b) using the
macro action, but only by evaluating a policy in each step3, and (c) using the macro action with
the DT PLAN L IBRARY that was generated in the previous step. We conducted20 iterations per
setting. Using the planning approach the agent needed0.1 seconds on average to calculate a pol-
icy. With the evaluation strategy (b) only0.08 seconds are needed. This is a speed-up compared
to planning of about20 %. The time for off-line computations in this example was about0.02

seconds for each macro. Even taking this pre-processing time into account our macro approach
yields reasonable speed-ups. The pre-processing time naturally increases with the complexity of
the macro action model. But as this time does not need to be spent on-line this off-line computa-
tion time can be justified. The macro action based on the DT PLAN L IBRARY clearly outperforms
DT planning. In each test-run, for both macro actions, the executing system constantly returns
the minimum of measurable time of0.01 seconds for searching the best plan in the DT PLAN L I-
BRARY. In fact, this is a mean time saving of over90 %. In tests in the ROBOCUP 3D simulations
which we conducted in another test scenario these savings showed an impact on the quality of
the agent’s behavior in real game situations. Caused by a reduced reaction time the agent showed
fewer losses of the ball during the game. Moreover the team created more opportunities to score
than in test runs without using the macro actions. This goes along with a space consumption of
about10 kB for each defined macro action. Our examples reflect the task to find a suitable policy
in a split second for the ROBOCUP domain. In practice, our policies are quite short, since comput-
ing larger policies is not (yet) reasonable as the world changes unpredictably for larger horizons.
In our application examples the larger space consumption does not play a major role. For more
complex macros the space consumption of the exponentially growing computation tree has to be
further investigated. It is due to future work to examine how well our method scales.

In this section we showed how a significant speed-up can be gained for calculating policies
with an alternative macro-action approach. The basic idea is to calculate and store all possible
calculation branches of the used forward-search algorithm together with their values and probabil-
ities in an abstract fashion. When the agent faces a world situation which it already encountered
before, it can simply draw on a previously calculated policy, re-instantiate it with the current sit-
uation it is in and gains an optimal policy instantaneously. While previous proposed approaches
like those presented in Chapter 4 also resulted in an exponential speed-up for toy domains, they
fail for continuous domains like robotic soccer. The reason is that the method presented before
relies on an explicit state enumeration for calculating the result of an option. Even when soccer
state space abstractions (the qualitative world model) are used the problem of deciding the states
of an option remains. With our second approach of a plan library on the other hand, this problem
is no longer apparent. Which states belong to an option is implicitly given by the input READY-
LOG program. Nevertheless, the original options approach in READYLOG can be easily modeled
equivalently with our plan library. The appeal of the plan library lies, for one, in the speed-up
of the agent’s decision making, for another in it simplicity. By simply exploiting the well-known
trade-off between space and time we can speed up decision-making in READYLOG significantly.

3Each policy evaluated in this step is stored in the DT PLAN L IBRARY, so we can use this stored knowledge in the
next step (c).

212 CHAPTER 7. QUALITATIVE STATE SPACE ABSTRACTIONS

7.5 Summary and Related Work

In this chapter we showed that READYLOG cannot only be used as an agent programming lan-
guage, but is with its expressiveness well-suited for formalizing agent behaviors in general. From
human soccer theory literature we derived basic primitives needed to encode the behavior of soccer
agents. It turns out that humans very much rely on qualitative representations in their descriptions
of tactics and strategies, particularly in the description of soccer tactics. We formulated several
qualitative predicates which are essential for this application domain. The models we used are
well-founded in the qualitative spatial reasoning community and are particularly useful as math-
ematical models for our needs. To be able to apply the formulated qualitative world model for
soccer playing robots, one must be able to do some simple reasoning with the retrieved qualitative
measures. Our approach to this is to exploit the fact that the qualitative world model is computed
from quantitative data. With a hybrid representation of the world we are able to perform some
simple reasoning like calculating the position of a robot which is moving far to the front-right
direction. By this we are able to avoid spatial calculi which, in general, are computationally ex-
pensive. Very important to note is that with the presented qualitative world model we provide a
state space abstraction for the robotic soccer domain. These abstractions allow to apply macro ac-
tions also for the complex soccer domain, as we have sketched at the end of this chapter. Of course,
we are not the first to use qualitative predicates in general, and in the soccer domain in particular,
and there is a lot of work in the related fieldsspatial reasoningandstate space abstractions. In
the following we are discussing some of the work on these fields.

Cohn and Hazarika give an overview of major qualitative spatial representation and reasoning
techniques in their paper (Cohn and Hazarika 2001). They survey the main aspects of qualitative
representations and they also consider methods for qualitative reasoning. Their survey covers
ontological aspects and topological approaches as well as methods on distance, orientation, and
shape. Besides, they mention possible applications for qualitative spatial reasoning which include
geographical information systems, robot navigation, computer vision, engineering design, and
many others. They evaluate the usefulness of different reasoning approaches with respect to their
potential application areas. One of the most well known works on qualitative spatial reasoning is
the region connection calculus (RCC).

In 1992 Randell, Cui, and Cohn presented a calculus for reasoning about regions and con-
nections called RCC (Randell et al. 1992). The fundamental approach bases on extended spatial
entities, that is, regions and the relations (also called connections) between them. The RCC al-
lows for representing shape and structure of spatial objects. In contrast to systems from classic
geometry the approach pursued in the RCC takes regions as primitives rather than points. The re-
lationC(x, y) states whether regionx and regiony are connected or not. The RCC is founded on
two basic axioms onC, namely reflexivity∀x[C(x, x)] and symmetry∀x, y[C(x, y)→ C(y, x)],
plus some axioms and definitions on the main spatial relations. With these axioms one can define
predicates and functions that allow for the description of topological knowledge. All theorems and
functions in the RCC are defined in first order logic. Thus, reasoning in the RCC can be performed
by theorem proving. But, since first order logic is generally undecidable there is no effective way
of reasoning with the complete version of the RCC in terms of computational complexity. Nev-
ertheless, several efforts have been made to find subsets of the RCC which are more tractable.

7.5. SUMMARY AND RELATED WORK 213

For example, the RCC-8, a subset of the RCC, provides a set of eight basic relations between
two regionsx andy: disconnectedDC(x, y), part ofP (x, y), proper part ofPP (x, y), identical
with EQ(x, y), overlapsO(x, y), partially overlapsPO(x, y), externally connectedEC(x, y),
tangential proper partTPP (x, y), and non tangential proper partNTPP (x, y). These eight re-
lations are jointly exhaustive and pairwise disjoint. The RCC-8 has been well studied by Nebel
and Renz (Renz and Nebel 1999). They proved that reasoning in the RCC-8 is NP-complete, in
general, and they identify a maximal tractable subset calledH8 that contains all basic relations.
They observed that this language subset is sufficient to model important topological structures but
they also noticed that it can be too weak for some other purposes. For a detailed account on this
we refer to (Renz and Nebel 1999).

In the field of robotic soccer there exist some approaches to use qualitative notions to abstract
from an infinite quantitative state space. Stolzenburg et al. (2002) investigate the use of quali-
tative velocities in the ROBOCUP Simulation league. Within their case study they compare four
approaches to ball interception, namely a qualitative method, a numerical method, a strategy based
on reinforcement learning, and a naive approach. Their focus is the qualitative representation of
motion and they state that it was not covered that much in research on qualitative spatial reasoning.
The experiments they present in (Stolzenburg et al. 2002) reveal that the qualitative method is less
successful with ball interception than the numerical and the learning approach because the execu-
tion system still heavily depends on precise values to be successful. One has to remark that they
conducted their experiments in a simulated environment. This means for instance that is easier
to learn the artificial noise which is imposed by the simulation environment. It is doubtful if the
same results apply in a real robotic environment

In recent work Beetz et al. (2005), overview the FIPM system, a real-time analysis tool for
soccer games. Based on position data of the players and the ball they interpret common soccer
concepts. In (Beetz et al. 2005) they report on first results drawn from data from the RoboCup
simulation league. They use first-order interval temporal logic to represent events or situations.
Their model consists of five layers comprising a motion, situation, action, and tactical layer. On
the situation layer they identify concepts likeScoringOpportunity. With data-mining techniques
they assess the conditions for such situations. On the action layer they distinguish between several
kinds of models. The observation model for example classifies shots to belong to a dribbling or a
pass, the predictive model use decision-tree learning to form rules for predicting the success rates
of goal shots. They also provide, for example, information about the physical abilities of players
based on the distances the player covers during a match, and also tactical patterns of a team can
be derived. These information are especially useful for soccer coaches.

Miene et al. (Miene et al. 2003) report on successful experiments on detecting and predicting
offside positions based on data also from the simulation league. They developed an algorithm for
rule-based motion interpretation. The rules are given as background knowledge in first-order logic.
The input data are first temporally segmented based on thresholds and monotonicity criteria. Then
the segmented motion data are mapped into qualitative classes likeno motion, or slow. They use
logical representations to model game situations like a player being in an offside position. They
are able to detect offside positions successfully and can also predict if a player risks to run into an
offside trap. Important to note is that they do not regard static situations but analyse the motion
data. This covers especially the dynamic aspects of soccer.

214 CHAPTER 7. QUALITATIVE STATE SPACE ABSTRACTIONS

(Dylla et al. 2007) make use of the OPRA calculus to reason for way-rules for sail boats. In
particular, they make use of theOPRA4 calculus where two instances of oriented points yield the
qualitative orientations. TheOPRA calculus allows for qualitative reasoning closed under con-
verse and composition. The way rules are established using an ontology describing what it means
that a vessel is approaching “from-the-star-board” or “from-the-harbor”. Using an Ackermann
kinematics for the boats collision-free qualitative courses are calculated.

In (Fraser et al. 2004) Fraser, Steinbauer, and Wotawa describe how to extract qualitative
information from numerical world model data. Just like in our work they chose robotic soccer
as the real world example domain to apply their qualitative data representation. Fraser et al. use
a hybrid system similar to ours. It combines reactive low-level control with deliberative high-
level decision making using classical AI approaches. Their planning approach uses STRIPS-like
preconditions for every action. These preconditions are facts about perceived states of the world
which are represented by Boolean predicates either being true or false such as the visibility of an
object or the reachability of the ball. The mapping from quantitative values to their qualitative
representation turns out to be not as easy as it might have looked like. Fraser et al. exemplary
consider the inReach predicate which is grounded in the distance to the ball in order to determine
whether it is reachable for the robot or not. Due to the unreliable perception of a robot, a simple
threshold does not suffice as it leads to very unstable results. Hence, Fraser et al. propose the
utilization of a so-called hysteresis function. Systems following a hysteresis function can be seen
as systems that remember decisions taken previously. Once a predicate evaluates to true, it remains
true unless a significant change in the world occurs. Steinbauer, Weber, and Wotawa discuss first
results of the above work in (Steinbauer et al. 2005). They present results of several experiments
conducted. The symbol grounding with hysteresis proposed in (Fraser et al. 2004) has proven
useful to decrease the number of undesired changes in truth values of predicates to a minimum.
This improvement in terms of stability in a robot’s knowledge increases the performance of the
decision making process. Although, some issues still remain unsolved. Firstly, the size of the
hysteresis yet cannot be determined in general. Secondly, the conjunction of a large number of
predicates using hysteresis has not been investigated sufficiently. Nonetheless, the concept of
hysteresis may prove useful in our approach as well.

Chapter 8

Conclusion

Summary

In this thesis we proposed an approach to decision making of mobile robots or agents. The agent
is acting in a dynamic environment with adversaries having opposing goals where it is forced to
take decisions in real-time, i.e. in tenth of a second. We discussed several techniques how to come
to rational decisions, which we as external observers would call intelligent. Intelligent decision
making can be defined as taking decisions which the agent predicted to reach its goal. This pre-
sumes that the agent acts goal-directed and makes use of some form of deliberation. Deliberation
is seen here mainly as predicting the effects of the own actions temporally, i.e. to reason which
future world situation might evolve due to the actions of the agent. At the same time as the agent
deliberates about future courses of actions it must be ensured that it stays reactive enough to cope
with the real-time constraints posed by the environments we aim at. This means for one that the
agent must be able to take decisions fast enough w.r.t. its own capabilities but also w.r.t. opposing
agents which try to impede the own actions. Fast enough regarding its own capabilities means that
the agent or robot has to keep up with the speed and decision cycles of its own actions. We gave
the example of a dribbling robot. If the robot is dribbling with the ball it must take the next action
fast not to lose the ball. Fast enough regarding opponents means that it cannot deliberate for a long
time because a faster opponent will take advantage of this.

Therefore, one has to find a middle ground between deliberation and taking decisions in a
reactive fashion. This means on the other hand to find the right level of abstraction for modeling
the agent’s or robot’s action. We found our approach on the powerful situation calculus and the
language GOLOG. With READYLOG we attain such a middle ground. It seamlessly integrates
robot programming and deliberation. Programs can be partially specified and missing details are
filled in by the READYLOG interpreter at run-time.

In READYLOG we follow two different approaches for deliberation. For one, we make use of
a probabilistic projection mechanism. Programs which have a success probability associated can
be projected into the future. In a future world situation one can query the likelihood that certain
propositions hold. This can be used for decision making in the following way. Several alternatives
are projected into the future, the one with the highest success probability is selected. We gave

215

216 CHAPTER 8. CONCLUSION

an example from the soccer domain. The agent planned a double pass with this technique. As
we have pointed out, it is especially interesting to evaluate different models for the behaviors of
opponents in the soccer scenario. Different behavior models of the opponents can be encoded
as READYLOG programs with different probabilities. The agent now can find out under which
model his own actions are most successful. If observations about the success of own actions under
different opponent models are made one can reason about the appropriateness of the opponent
model. This gives a means to address the problem of adopting to opponents behaviors (though we
did not address it in this thesis).

The second approach we follow is that of decision-theoretic planning. Instead of querying
whether certain propositions hold in some future situations, one assigns a utility to world states
which are desirable for the agent. The background theory now finds a policy which maximizes
the utility leading towards the desirable world states. Connected with this technique is a notion
of uncertainty of ones own actions. This notion is indispensable for modeling dynamic real-time
domains. Especially when dealing with embodied agents, i.e. robots, many different sources of
uncertainty exist. These are the own perception and the own actuators of the robot, but there is also
uncertainty about the actions of opponent robots. The action models, although being simplistic at
the moment, have to account for these uncertainties. Again, there exists a trade-off between the
complexity of the models and the computation time. Complex models lead to longer computation
times for calculating behavior policies. We studied this with the “item pickup tasks” in UNREAL

TOURNAMENT 2004.

Summarizing, READYLOG features probabilistic projections, decision-theoretic planning, but
can also deal with continuous change. As a programming language it moreover melds useful
features known from other robot programming languages, such as condition-bounded execution
of action (wait-for) and external events. The framework of READYLOG as a high-level decision
component can easily be integrated into state of the art software architectures for mobile robots.
A layered software architecture is envisioned. The ability to directly connect READYLOG to a
world model (on-line fluents), to settle commands to the low-level system (action register) while
the high-level interpreter can concurrently follow other goals, and acquire information about the
environment in the background (passive sensing) makes it very flexible and applicable for a wide
range of robotics applications.

In the context of integrating decision theory into READYLOG, very important improvements
are the execution monitoring facility of policies, the extension of the notion of stochastic actions
(from an implementation point of view), and options. As one cannot always foresee how the world
may evolve due to the inherent uncertainty of the application domain plans or policies might fail,
i.e. the plan cannot provide a meaningful action for the world situation encountered. Then, it
is important to quickly detect such situations to avoid that the agent is performing meaningless
actions. With keeping track of the model assumptions made during planning, we are able to detect
when a policy becomes invalid. At the moment, we discard the whole policy and start a re-planning
process. It is a subject to future work to investigate other useful techniques such as plan repair to
circumvent discarding the whole policy. The extension of modeling stochastic actions is probably
only an issue of usability. We extended the notion of stochastic action outcomes in such a way

217

that they can be modeled by programs instead of a single primitive action. The expressiveness, in
general, is not improved but the implementor can more easily keep track of the outcome models.
Further, we introduced the possibility to plan with macro actions in the decision-theoretic context.
While our original approach had the drawback that it relied on explicit state space enumeration, the
extension of using a DT plan library, where abstract policies are stored in, showed more flexibility.
It allows to apply macro actions also for the complex soccer domain.

The issues above mirror the run-time aspects of READYLOG. It turns out that READYLOG with
its expressiveness rooted in the situation calculus and GOLOG coming with a formal semantics
is also well-suited as a behavior modeling and description language. It serves as a description
language for our efforts to come to a qualitative description of soccer moves. Complex interactions
in strategies can easily be modeled. Another nice feature of using READYLOG for describing
complex behaviors is that we can run these descriptions on our robot without (too much) further
modifications.

Finally, we set up a qualitative world model for soccer agents which allows for the formulation
of strategies and high-level behaviors in a more natural, human-like manner. Finding models
for the salient attributes of an application domain is one of the tasks to be achieved to establish
a qualitative world model. Besides this has a qualitative world model the important property
that it abstracts from quantitative world model representations. A qualitative predicate builds an
equivalence class for a range of (infinitely many) quantitative assignments. This further allows to
apply techniques like MDP macro actions also to continuous domains like soccer. This was shown
for simulated soccer where macro actions could be formulated using the qualitative world model
together with the aforementioned DT plan library.

With several example applications we showed the usefulness and applicability of READYLOG

in simulations as with real robots. We also presented the robot system we built and its software
components. In particular, we proposed a very general and reactive approach to collision avoid-
ance and showed how one can localize a robot with proximity sensors in environments with sparse
landmarks. The approach of representing “don’t care” regions in occupancy grid maps is of spe-
cial value as it gives a means to hide regions in an occupancy map which seem not helpful for the
localization task. Further, these regions can be used to stitch overlapping regions of several occu-
pancy grid maps. This allows applications in large environments where the partial maps are stored
in a memory-efficient way. The robot switches to another map when traversing such a “don’t care”
region. Finally, we compared several state-of-the-art sensor fusion techniques with the problem
of merging perceptions of the ball on a soccer field. A stable and good world model is important
for making intelligent decisions and sensor fusions techniques help to improve the world model,
especially when a team of robots can exchange their perceptions. The probabilistic methods can
also be used to detect when a robot is likely to be dis-localized.

Future Work

As we have already stated before, are some of our results in a proof-of-concept state or slightly
above, for instance, the DT plan library as discussed at the end of the previous chapter. In the

218 CHAPTER 8. CONCLUSION

current state we can formulate stochastic macro action very similar to those proposed in Chapter 4.
The reason why this is possible is that the method seems to be general enough for this purpose
and on the other hand, we yet only used small horizons to calculate the macro policy. This policy
is executed when the macro action is called from the DT plan library. Currently, the calculation
inside the macro consists of one-step DT plans. Here it would be interesting to find out if larger
steps policies, like two-step or three-step policies are be beneficial. However, more investigations
are needed to learn how well our proposed method scales.

Another very important and interesting field is the field of learning in the context of decision-
theoretic planning and READYLOG. Looking at Reinforcement Learning methods it appeals that
both, learning and planning, use the same formal background model. In the former, an explicit
model is not given and has to be approximated, while the latter approach makes use of an explicit
model (cf. also Chapter 3.1.2). The interesting question will be if it might be possible to use the
information gathered from a run of Q-Learning to improve the action models on which the the
planning procedure relies. As was done in RPLLEARN (Beetz et al. 2004) a future direction
for READYLOG is to integrate learning methods directly into the framework. The advantage of
such an integration is that the agent directly receives feedback from the environment about the
performance of its action. A preliminary study how reinforcement learning techniques could be
usefully integrated into the READYLOG framework, gave evidence that with the decision-theoretic
extensions and our execution monitoring framework for policies it is easy to integrate RL methods
by defining several simpleBestDo andTrans predicates. The application we chose for a proof-
of-concept implementation was a maze scenario. The model of the agent was the usual one, the
intended action succeeds with a high probability and with the remaining probability mass the agent
comes out in any adjacent position. The execution of the agent’s action were now pathological.
With the highest probability the agent came out in the opposite direction than was expected: if
it intended to move to the right with probability0.8 it came out left with this probability. We
then compared the policies calculated from decision-theoretic planning and from our Q-learning
READYLOG agent. The calculated policy never reached the goal position, while the Q-learner
quickly found out which action it should take. The reason why the decision-theoretic agent could
not proceed to the goal state was due to the precondition of its stochastic actions. In its start
position in the lower left corner of the maze it has only the possibility to move to the right and
upwards, the other two directions are blocked with walls. As it was not possible for the agent to
take ago left action (which with high probability lead the agent to the field to its right with our
pathological execution system) due to its action preconditions he did not succeed. The learner
instead had to try also thego left action to explore its environment (one of the requirements of
Q-learning) and thus were able to learn quickly that the actions had outcomes differently from
expected.

Other directions focusing on learning the action models by different means are conceivable
as well. A different approach to improve the effectiveness of READYLOG is to improve the ac-
tion models used during policy generation of decision-theoretic planning. The way READYLOG

chooses between action alternative is based on decision-theoretic planning. This means, that given
a model of the outcomes of an action the decisions are made. Clearly, the models abstract from

219

the world. In Chapter 5 we gave an example of an intercept-ball action. The failure case for this
action, i.e. the outcome where the robot could not intercept the ball, was modeled such that it was
assumed that the world did not change at all. While we argued in Chapter 5 that this behavior
nevertheless exhibit the intended behavior, these models seem to be too simplistic. In his Diploma
thesis Gester (2007) investigates models to learn the outcomes of actions. He uses methods from
data mining to cluster the observation data in order to generate models which are as general as
possible. The optimum would be to retrieve a logical description or a concise mathematical model
of the outcomes of actions together with their probabilities which could directly transformed into
the logical description in READYLOG. In his experiments he shows that for toy domains like the
maze domain this works quite well, also the cluster methods applied generalize in a way that a
fairly compact logical representation could be derived. For more realistic domains with a lot of
noise and where the effects of an actions could only partially be observed (for instance, the soc-
cer domain, where the effect and the termination of a ball passing action is hard to describe) the
outcomes are less compact and generalization is weak. This opens a possible future research di-
rection: what methods are suitable for learning the outcomes or how must the existing methods be
improved

Finally, interesting applications for READYLOG can be found in service robotics applications.
READYLOG should be extended in such a way that it is able to cope with the demands of modern
service robotics applications. This means in first row to introduce extensions which allow a better
integration of human-machine communication and dialog systems. The reasoning capabilities
could be used to find a way to a target point as well as to tell the user that its commands are not
clear. Being able to create an intelligently answering companion using projections and utility-
based planning would have a major impact on the ways humans and robot communicate with
each other. Today’s service robotics competitions like RoboCup@Home show the abilities and
the potential of mobile robots equipped with decent reasoning capabilities.

Index

3APL, 18
3T architecture, 25

abstract MDP, 97
acceleration

rotational, 152
translational, 152

action
exogenous, 7, 110–112
macro, 94
sensing, 111
stochastic, 72, 83

action register, 78, 112
action selection problem, 3
ADL, 16, 19
admissable heuristic, 152
agent, 3

web, 23
agent control, 2
AllemaniACs, 10, 143
applyPol, 80
architecture

3T, 25
BDI, 18
deliberative, 6
reactive, 6
subsumption, 24

A∗, 146, 155
autonomous system, 2
autonomy, 2
axiom

effect, 14,41
frame, 41
precondition, 14,41
sense fluent, 15
successor state, 14

ball possession, 204

Bayes filter, 36, 182
BDI, 18
Behavior-Based AI, 4
belief distribution, 39
Bellman Equation, 32
breadth-first search, 108
BURIDAN, 16

caching, 105
camera

directed, 143
omni-vision, 143
pan/tilt, 143

Capture the flag, 124
Carl, 148, 157
ccGOLOG, 21,52
choice, 56, 84
circumscription, 17
Cognitive Robotics, 2, 6
Cognitive Robotics Logic, 20
Colbert, 26
collision avoidance, 8, 145, 146
collision-free triangle, 152
complex behavior pattern, 186
Composition Theorem, 98
concurrency, 50
condition-bounded execution, 22
configuration

final, 49
successor, 49
transition, 49

ConGOLOG, 20
continuous change, 7, 21, 52
control

agent, 2
high-level, 2
robot, 2

221

222 INDEX

CoSy, 27
covariance, 37

DARPA Grand Challenge, 3
Deathmatch, 124
decision epoch, 31
decision tree search, 34
decision-theoretic planning, 5, 33, 123, 125, 172
decsion-theoretic regression, 12
deictic relation, 201
deliberative paradigm, 6
depth-first search, 108
discounted reward model, 96
discounted transition model, 96
distance relation, 198
do, 41
domain

(partly) episodic, 135
adversarial, 135
cooperative, 135
dynamic, 133
partly observable, 134
real-time, 133
strategic, 134
uncertain, 134

don’t-care region, 160
double pass, 135
DTGOLOG, 12, 22,56

on-line, 75
dynamic programming, 12, 33

symbolic, 12
Dynamic Window Approach, 157, 182

effect axiom, 14,41
ES, 15
evaluation semantics, 45
Event calculus, 18
event calculus, 17
execution

on-line, 7
execution monitoring, 7, 79
execution transformer, 111
exogenous action, 110–112
exogenous event, 111
extrinsic relation, 201

Features and fluents, 20
Final, 50
final configuration, 49
fluent

continuous, 52
functional,41
on-line, 78
relational,41

FLUX, 18
formalization

soccer, 188
formula

regressable,44
forward search value iteration, 7
forward search value iteration, 34
foundations axioms,43
Four-legged league, 132
frame axiom, 41
frame of reference, 198, 201
frame problem, 14, 41

inferential, 18
free space, 203
functional fluent,41

game bot, 123
General Game Playing, 18
global localization, 37
GOLEX, 23
GOLOG, 5, 6, 18, 20,45

decision-theoretic, 24
interpreter, 47
semantics, 45

GTGOLOG, 22
guarded action theories, 49

heuristic pruning, 106
Hidden Markov model, 36
hierarchical task network,seeHTN
high-level control, 2
HLI, 146
homogeneous partitioning, 199
HTN, 4, 11, 25
Humanoid league, 132
hybrid architecture, 4

ICL, 14

INDEX 223

Independent Choice Logic,seeICL
indiGOLOG, 21, 23
initial situation, 14, 41
intelligent agent metaphor, 18
inter-process communication,seeIPC
interactive computer games, 123
intrinsic relation, 201
IPC, 145
iterative deepening search, 108

Kalman filter, 37, 166, 182
KLD sampling, 183
Knowledge-based AI, 4

laser range finder,seeLRF
Lego Mindstorm, 23
level of granularity, 199
local localization, 37
local MDP, 99
localization

global, 37
local, 37
Markov, 38

LRF, 143

macro-action, 7, 94
marker, 80
Markov localization, 182
Markov decision process,seeMDP
Markov Decision Processes, 31
Markov games, 22
Markov localization, 38
Markov model

hidden, 36
Markov property, 31, 36, 38, 39, 98
MAXQ, 12
MCL, 38, 40, 159, 166, 182
MDP, 7, 11, 12, 22,31, 56, 94

abstract, 97
decomposition, 12
factored, 12
finite horizon, 32
first order, 12
fully observable, 32
fully observable, 31
indefinite horizon, 32

infinite horizon, 32
local, 99
partial observable, 14, 32
semi, 32
sub, 12

Middle-size league, 132, 143, 159, 172
MinkowskyLp-metric, 198
Monte Carlo localization,seeMCL
multiple hypothesis tracking, 38

Nash equilibrium, 22
NOAH, 11
Nomad200, 23
NONLIN, 11

occupancy grid, 39, 147, 160
off-line projection, 112
OL, 16
omni-vision camera, 143
on-line execution, 7
on-line fluent, 78
online, 113
Only knowing, 15
option, 7, 96
option skeleton, 98
options, 94
orientation relation, 198

pan/tilt camera, 143
Partial Order Planning,seePOP
particle filter, 38
passive sensing, 7, 22, 77, 112
PDDL, 16
perception model, 160
pGOLOG, 22,55
physical embodiment, 134
physical skills, 186
pickBest, 176
plan, 4, 24

conditional, 31
planning

decision-theoretic, 5, 7, 33, 123, 125, 172
plans

concurrent precept-driven, 26
point of reference, 195
point of view, 195

224 INDEX

policy, 31, 32, 75, 79, 175
non-stationary, 32
stationary, 32

policy improvement, 33
policy iteration, 33
POMDP, 14, 32
POP, 4
position tracking, 37
posterior distribution, 37
practical reasoning, 4
precondition axiom, 14,41
preferences, qualitative23
primary object, 198
prior distribution, 37
proabilistic projection, 22
prob, 56, 84
probabilistic projection, 7, 55
PRODIGY, 25
progression, 79, 116
projection

off-line, 112
probabilistic, 7, 22, 55

projection problem, 44
PRS-Lite, 25

Q-learning, 12, 35
qualification problem, 14
qualitative preferences, 23

ramification problem, 14
RAP, 25, 26
ray-tracing, 155
reachability, 203
reachability relation, 192

dribble-, 193
go-, 193
pass-, 193

Reactive action package,seeRAP
reactive paradigm, 6
Reactive Plan Language,seeRPL
READYLOG, 65, 124, 135, 146, 179, 186

restricted program, 84
conditional, 69
event-interrupt, 68
execution trace, 138
guarded execution, 70

interpreter, 109
loop, 69
primitive action, 67
prioritized execution, 70
probabilistic execution, 71
probabilistic projection, 71
procedures, 71
sequence, 69
test action, 67

reference object, 198
register, 112
regressable formula,44
regression, 18,44, 113

decision-theoretic, 12
regression operator,44
reification, 20, 65
Reinforcement learning, 5
relation

deictic, 201
extrinsic, 201
intrinsic, 201

relational fluent,41
reply, 78, 112
Rescue league, 132
reward function, 31, 56
reward model

discounted, 96
Rhino, 2, 6
RoboCup, 3, 5, 28,130, 143

Four-legged league, 132
Humanoid league, 132
Middle-size league, 159
Middle-size league, 132, 143
Rescue league, 132
Home league, 133
RoboCup Junior league, 133
Simulation league, 131
Small-size league, 131

Home league, 133
RoboCup Junior league, 133
robot control, 2
robot navigation, 8, 145, 146
Robotic soccer,130, 172
role description, 186
RPL, 5, 26

INDEX 225

RWI B21, 23, 148, 157, 182
RWI Pioneer I, 182

sampling, 39, 183
importance, 39

SARSA, 36
semantic region, 201
semi-MDP, 32
send, 78, 112
senseCond, 56
sense fluent axiom, 15
sense-act cycle, 4
sense-plan-act cycle, 4
sense-plan-act cycle, 24
senseCond, 84
sensing, 20

passive, 7, 22, 77
sensing action, 111
sensor fusion, 166

Bayesian, 183
global, 183
local, 183

Service Robotics, 2
sGOLOG, 20
Shakey, 2, 24
SHOP, 11
Simulation league, 131, 135, 136
situation calculus, 14,41
Small-size league, 131
soccer formalization, 188
soccer ontology, 186
solve, 80
Sony Aibo ERS-7, 24
sprob, 84
SPUDD, 12
SRC, 26
stage, 31
state-action function, 36
stochastic action, 72, 83
STRIPS, 4, 16, 24
Structured Reactive Controllers,seeSRC
sub-MDP, 12
subsumption architecture, 25
successor configuration, 49
successor state axiom, 14

successor state axioms,42
symbolic dynamic programming, 12

t-form, 55, 68, 114
t-function, 55, 68, 114
tactical abilities, 186
tactical task, 186
TAL, 20, 28
Task Control Architecture, 25
TCA, 25
Team deathmatch, 124
Temporal Action Logics,seeTAL
tracking

multiple hypothesis, 38
trans, 50
trans∗, 50
transition configuration, 49
transition function, 31
transition model, 56

discounted, 96
transition semantics, 20, 21,49

weighted, 66
triangle inequality, 198

UCPOP, 16, 17
Unreal Tournament, 123

capture the flag, 124
deathmatch, 124
team deathmatch, 124

value function, 36
value iteration, 33
vector field histograms, 181
Voronoi diagram, 203
Voronoi vertex, 203

wait-for, 26, 192
web agent, 23
WITAS, 27
withPol, 56
world model, 189

absolute, 196
allocentric, 195
egocentric, 195
global, 195
imprecise, 196

226 INDEX

local, 195
precise, 196
qualitative, 185, 196
quantitative, 185, 196
relative, 196
representation, 194

XABSL, 29
Xavier, 25
XFRM, 26
xTra, 111, 112

Bibliography

Amiranashvili, V. (2007).Robust Real-Time Localization and Mapping in Single and Multi-Robot Sys-
tems. Ph. D. thesis, Knowledge-based Systems Groups, Computer Science Department, RWTH
Aachen University.

Amiranashvili, V. and G. Lakemeyer (2005). Distributed multi-robot localization based on mutual path
detection. In U. Furbach (Ed.),KI 2005: Advances in Artificial Intelligence, Proceedings of the
Twenty-Eighth Annual German Conference on Artificial Intelligence, (KI-05), Volume 3698 ofLec-
ture Notes in Computer Science, pp. 279–290. Springer.

Apt, K. and M. Wallace (2006).Constraint Logic Programming using Eclipse. Cambridge University
Press.

Arkin, R. (1986). Path planning for a vision-based mobile robot. InProceedings of the 1986 SPIE Con-
ference on Mobile Robots (SPIE-86).

Arkin, R. (1987). Motor schema-based navigation for a mobile robot: An approach to programming by
behavior. InIEEE International Conference on Robotics and Automation (ICRA-87). IEEE Com-
puter Society Press.

Arkin, R. (1989). Motor schema-based mobile robot navigation. The International Journal of Robotics
Research 8(4), 92–112.

Arkin, R. (1998).Behavior-Based Robotics. MIT Press.

Aurenhammer, F. and R. Klein (2000). Voronoi diagrams. In J.-R. Sack and J. Urrutia (Eds.),Handbook
of Computational Geometry, Chapter 5, pp. 201–290. North-Holland.

Bacchus, F., J. Halpern, and H. Levesque (1995). Reasoning about noisy sensors in the situation calculus.
In Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence (IJCAI-
95), pp. 1933–1940.

Bacchus, F., J. Halpern, and H. Levesque (1999). Reasoning about noisy sensors and effectors in the
situation calculus.Artificial Intelligence 111(1–2), 171–208.

Bahar, R., E. Frohm, C. Gaona, G. Hachtel, E. Macii, A. Pardo,and F. Somenzi (1993). Algebraic
Decision Diagrams and Their Applications. InProceedings of the 1993 IEEE /ACM International
Conference on CAD, pp. 188–191. IEEE Computer Society Press.

Bar-Shalom, Y. and X. Li (1995).Multitarget-Multisensor Tracking: Principles and Techniques. YBS
Publishing.

Baral, C. and T. Son (2000). Extending ConGolog to allow partial ordering. In N. R. Jennings and
Y. Lesṕerance (Eds.),Intelligent Agents VI — Proceedings of the Sixth International Workshop on
Agent Theories, Architectures, and Languages (ATAL-99), Volume 1757 ofLecture Notes in Com-
puter Science. Springer.

Baral, C., N. Tran, and L.-C. Tuan (2002). Reasoning about actions in a probabilistic setting. InPro-
ceedings of the Eighteenth National Conference on Artificial Intelligence (AAAI-02) and Fourteenth
Conference on Innovative Applications of Artificial Intelligence (IAAI-02), pp. 507–512.

227

228 BIBLIOGRAPHY

Barto, A., S. Bradtke, and S. Singh (1995). Learning to act using real-time dynamic programming.
Artificial Intelligence 72(1), 81–138.

Bauckhage, C. and C. Thurau (2004). Exploiting the Fascination: Video Games in Machine Learning
Research and Education. InProceedings of the 2nd International Workshop in Computer Game
Design and Technology, pp. 61–70. ACM.

Beetz, M. (1999). Structured reactive controllers. In O. Etzioni, J. P. M̈uller, and J. M. Bradshaw (Eds.),
Proceedings of the Third International Conference on Autonomous Agents (Agents-99), pp. 228–235.
ACM Press.

Beetz, M. (2000). Runtime plan adaptation in structured reactive controllers. InProceedings of the
Fourth International Conference on Autonomous Agents (Agents-00), pp. 19–20. ACM Press.

Beetz, M. (2001). Structured reactive controllers.Journal of Autonomous Agents and Multi-Agent Sys-
tems 2(4), 25–55.

Beetz, M., B. Kirchlechner, and M. Lames (2005). Computerized real-time analysis of football games.
IEEE Pervasive Computing 4(3), 33–39.

Beetz, M., A. Kirsch, and A. M̈uller (2004). RPLLEARN: Extending an autonomous robot control
language to perform. In N. R. Jennings, C. Sierra, L. Sonenberg, and M. Tambe (Eds.),Proceed-
ings of the Third International Joint Conference on Autonoumous Agents and Multi Agent Systems
(AAMAS-04), pp. 1022–1029. ACM Press.

Beetz, M. and D. McDermott (1994). Improving robot plans during their execution. In K. Hammond
(Ed.),Proceedings of the Second International Conference on AI Planning Systems (AIPS-94), pp.
3–12. Morgan Kaufmann.

Beetz, M., T. Schmitt, R. Hanek, S. Buck, F. Stulp, D. Schröter, and B. Radig (2004). The AGILO robot
soccer team-experience-based learning and probabilisticreasoning in autonomous robot control.
Autonomous Robots 17(1), 55–77.

Bekey, G. (2005).Autonomous Robots: From Biological Inspiration to Implementation and Control.
MIT Press.

Belker, T., M. Hammel, and J. Hertzberg (2003). Learning to optimize mobile robot navigation based on
HTN plans. InProceedings of the 2003 IEEE International Conference on Robotics and Automation,
(ICRA-03), pp. 4136–4141. IEEE Computer Society Press.

Belleghem, K. V., M. Denecker, and D. D. Schreye (1997). On the relation between situation calculus
and event calculus.Journal of Logic Programming 31(1-3), 3–37.

Bellman, R. (1957).Dynamic Programming. Princeton University Press, Princton, NJ.

Bererton, C. (2004). State Estimation for Game AI Using Particle Filters. In AAAI-04 Workshop on
Challenges in Game AI. AAAI-04.

Bertsekas, D. (1987).Dynamic Programming: Deterministic and Stochastic Models. Prentice-Hall.

Bertsekas, D. and J. Tsitsiklis (1996).Neuro-Dynamic Programming. Athena Scientific.

Bjärland, M. (1999). Recovering from modeling faults in Golog. In IJCAI-99 (Ed.),IJCAI-99 Workshop:
Scheduling and Planning Meet Real-Time Monitoring in a Dynamic and Uncertain World.

Boddy, M. (1991).Solving Time-Dependent Problems: A Decision-Theoretic Approach to Planning
in Dynamic Environments. Ph. D. thesis, Department of Computer Science at Brown University,
Birmingham, UK.

Böhnstedt, L. (2007). Macro-actions for highly dynamic domains in readylog. Diploma thesis,
Knowledge-based Systems Group, Computer Science Department, RWTH Aachen University.

Böhnstedt, L., A. Ferrein, and G. Lakemeyer (2007). Options in readylog reloaded – generating decision-
theoretic plan libraries in golog. InProceeding of the 30th German National Conference on Artificial
Intelligence. to appear.

BIBLIOGRAPHY 229

Bonarini, A., M. Matteucci, and M. Restelli (2001). Anchoring: do we need new solutions to an old
problem or do we have old solutions for a new problem? InProceedings of the AAAI Fall Symposium
on Achoring Symbols to Sensor Data in Single and Multiple Robot Systems. AAAI Press.

Bonasso, R., R. Firby, E. Gat, D. Kortenkamp, D. Miller, and M. Slack (1997). Experiences with an
architecture for intelligent, reactive agents.Journal of Experimental and Theoretical Artifical Intel-
ligence 9(2-3), 237–256.

Borenstein, J. and Y. Koren (1991). The vector field histogram - fast obstacle avoidance for mobile
robots.IEEE Transactions on Robotics and Automation 3(7), 278–288.

Boutilier, C., T. Dean, and S. Hanks (1999). Decision-theoretic planning: Structural assumptions and
computational leverage.Journal of Artificial Intelligence Research 11, 1–94.

Boutilier, C., R. Dearden, and M. Goldszmidt (1995). Exploiting structure in policy construction. In
C. Mellish (Ed.),Proceedings of the Fourteenth International Joint Conference on Artificial Intelli-
gence (IJCAI-95), pp. 1104–1111. Morgan Kaufmann.

Boutilier, C., R. Dearden, and M. Goldszmidt (2000). Stochastic dynamic programming with factored
representations.Artificial Intelligence 121(1-2), 49–107.

Boutilier, C. and D. Poole (1996). Computing optimal policies for partially observable decision pro-
cesses using compact representations. InProceedings of the Thirteenth National Conference on Ar-
tificial Intelligence (AAAI-96) and Eighth Innovative Applications of Artificial Intelligence Confer-
ence (IAAI-96), pp. 1168–1175. AAAI Press / The MIT Press.

Boutilier, C., R. Reiter, and B. Price (2001). Symbolic dynamic programming for first-order MDPs. In
B. Nebel (Ed.),Proceedings of the Seventeenth International Joint Conference on Artificial Intelli-
gence, (IJCAI-01), pp. 690–700. Morgan Kaufmann.

Boutilier, C., R. Reiter, M. Soutchanski, and S. Thrun (2000). Decision-theoretic, high-level agent pro-
gramming in the situation calculus. InProceedings of the Seventeenth National Conference on Arti-
ficial Intelligence (AAAI-00) and Twelfth Conference on Innovative Applications of Artificial Intelli-
gence (IAAI-00), pp. 355–362. AAAI Press.

Bratman, M. (1987).Intentions, Plans, and Practical Reason. Harvard University Press.

Bredenfeld, A., A. Jacoff, I. Noda, and Y. Takahashi (Eds.) (2006).RoboCup 2005: Robot Soccer World
Cup IX, Volume 4020 ofLecture Notes in Computer Science. Springer.

Brooks, R. (1986). A robust layered control system for a mobile robot.IEEE Journal of Robotics and
Automation 2(1), 14–23.

Brooks, R. and S. Iyengar (1998).Multi-sensor fusion: Fundamentals and Applications with Software.
Prentice Hall.

Brooks, R. A. (1991). Intelligence without representation. Artifical Intelligence 47(1-3), 139–159.

Buehler, M., K. Iagnemma, and S. Singh (Eds.) (2007).The 2005 DARPA Grand Challenge – The Great
Robot Race, Volume 36 ofSpringer Tracts in Advanced Robotics. Sptringer Verlag.

Burgard, W., A. Cremers, D. Fox, G. Lakemeyer, D. Hähnel, D. Schulz, W. Steiner, and S. Thrun (1998).
The interactive museum tour-guide robot. InProceedings of the Fifteenth National Conference on
Artificial Intelligence (AAAI-98) and Tenth Innovative Applications of Artificial Intelligence Confer-
ence (IAAI-98). AAAI Press.

Burgard, W., M. Moors, C. Stachniss, and F. Schneider (2005). Coordinated multi-robot exploration.
IEEE Transactions on Robotics 21(3), 376–378.

Buro, M. (2003). Real-time strategy games: A new AI researchchallenge. In G. Gottlob and T. Walsh
(Eds.), Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence
(IJCAI-03), pp. 1534–1535. Morgan Kaufmann.

Calmes, L., A. Ferrein, G. Lakemeyer, and H. Wagner (2006). Von Schleiereulen und fus̈sballspielenden
Roboter.RWTH Themen(1), 30–33. (in German).

230 BIBLIOGRAPHY

Calmes, L., H. Wagner, S. Schiffer, and G. Lakemeyer (2007).Combining sound localization and laser-
based object recognition. InProceedings of the AAAi Spring Symposium 2007.

Cassandra, A., L. Kaelbling, and M. Littman (1994). Acting optimally in partially observable stochastic
domains. InProceedings of the Twelfth National Conference on Artificial Intelligence (AAAI-94),
Volume 2, pp. 1023–1028. AAAI Press/MIT Press.

Chen, T. and K. Chung (2001). An efficient randomized algorithm for detecting circles.Computer Vision
and Image Understanding 83(2), 172–191.

Chung, H., L. Ojeda, and J. Borenstein (2001). Sensor fusionfor mobile robot dead-reckoning with a
precision-calibrated fiber optic gyroscope. InProceedings of the IEEE International Conference on
Robotics and Automation (ICRA-01). IEEE Computer Society Press.

Claßen, J., P. Eyerich, G. Lakemeyer, and B. Nebel (2007). Towards an integration of golog and planning.
In Proceedings of the Twentieth International Joint Conference on Artificial Intelligence (IJCAI-07).
AAAI Press.

Claßen, J. and G. Lakemeyer (2006). Foundations for knowledge-based programs using ES. InProceed-
ings of the Tenth Conference on Principles of Knowledge Representation and Reasoning (KR-06).
AAAI Press.

Clementini, E., P. di Felice, and D. Hernàndez (1997). Qualitative representation of positional informa-
tion. Artificial Intelligence 95(2), 317–356.

Cohn, A. G. and S. M. Hazarika (2001). Qualitative Spatial Representation and Reasoning: An
Overview.Fundamenta Informaticae 46(1-2), 1–29.

CoSy (2007). http://www.cognitivesystems.org/abstract.asp. last visited in January.

Davis, E. (1994). Knowledge preconditions for plans.Journal of Logic and Computation 4(5), 721–766.

De Giacomo, G., Y. Lesperance, and H. Levesque (1997). Reasoning about concurrent execution, prior-
itized interrupts, and exogenous actions in the situation calculus. In M. Pollack (Ed.),Proceedings
of the Fifteenth International Joint Conference on Artificial Intelligence (IJCAI-97). Morgan Kauf-
mann.

De Giacomo, G., Y. Lesṕerance, H. Levesque, and S. Sardiña (2002). On the semantics of deliberation
in IndiGolog – from theory to implementation. In D. Fensel, F. Giunchiglia, D. McGuinness, and
M.-A. Williams (Eds.),Proceedings of Eighth International Conference on Principles of Knowledge
Representation and Reasoning (KR-02), pp. 603–614. Morgan Kaufmann.

De Giacomo, G., Y. Lesperance, and H. J. Levesque (2000). Congolog, a concurrent programming lan-
guage based on the situation calculus.Artificial Intelligence 121(1-2), 109–169.

De Giacomo, G. and H. Levesque (1999). An incremental interpreter for high-level programs with sens-
ing. In H. Levesque and F. Pirri (Eds.),Logical Foundation for Cognitive Agents: Contributions in
Honor of Ray Reiter, pp. 86–102. Springer.

De Giacomo, G., H. Levesque, and S. Sardiña (2001). Incremental execution of guarded theories.Com-
putational Logic 2(4), 495–525.

De Giacomo, G., Y. Lsperance, and H. Levesque (2000). ConGolog, A concurrent programming lan-
guage based on situation calculus.Artificial Intelligence 121(1–2), 109–169.

De Giacomo, G., R. Reiter, and M. Soutchanski (1998). Execution monitoring of high-level robot pro-
grams. In A. Cohn, L. Schubert, and S. Shapiro (Eds.),Proceedings of the Sixth International Con-
ference on Principles of Knowledge Representation and Reasoning (KR-98), pp. 453–465. Morgan
Kaufmann.

Dean, T. and R. Givan (1997). Model minimization in markov decision processes. InProceedings of the
Fourteenth National Conference on Artificial Intelligence(AAAI-97) and Ninth Innovative Applica-
tions of Artificial Intelligence Conference (IAAI-97), pp. 106–111. AAAI Press / The MIT Press.

BIBLIOGRAPHY 231

Dean, T. and K. Kanazawa (1990). A model for reasoning about persistence and causation.Computa-
tional Intelligence 5(3), 142–150.

Dellaert, F., D. Fox, W. Burgard, and S. Thrun (1999). Monte Carlo localization for mobile robots. In
Proceedings of the 1999 IEEE International Conference on Robotics and Automation, (ICRA-99).
IEEE Computer Society Press.

DeLoura, M., D. Treglia, A. Kirmse, K. Pallister, and M. Dickheiser (Eds.) (2000 – 2006).Game Pro-
gramming Gems, Volume 1–6. Charles River Media.

Dietl, M., J.-S. Gutmann, and B. Nebel (2001). Cooperative sensing in dynamic environments. InPro-
ceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS-
01). IEEE Computer Society Press.

Dietterich, T. G. (2000). Hierarchical reinforcement learning with the MAXQ value function decompo-
sition.Journal of Artificial Intelligence Research 13, 227–303.

Dimarogonas, D. and K. Kyrikopoulos (2005). A Feedback Stabilization and Collision Avoidance
Scheme for Multiple Independent Nonholonomic Non-point Agents. InProceedings of the 2005
International Symposium on Intelligent Control & 13th Mediterranean Conference on Control and
Automation.

dmoz.org/Computers/Robotics (2007). Web ressources in the web. http://dmoz.org/ Computers/
Robotics/. (last visited January).

Doherty, P. (2005). Knowledge representation and unmannedaerial vehicles. In A. Skowron, R. Agrawal,
M. Luck, T. Yamaguchi, P. Morizet-Mahoudeaux, J. Liu, and N.Zhong (Eds.),Proceedings of the
2005 IEEE / WIC / ACM International Conference on Web Intelligence (WI 2005), pp. 9–16. IEEE
Computer Society Press.

Doherty, P., G. Granlund, K. Kuchcinski, E. Sandewall, K. Nordberg, E. Skarman, and J. Wiklund
(2000). The WITAS unmanned aerial vehicle project. In W. Horn(Ed.), Proceedings of the Four-
teenth European Conference on Artificial Intelligence (ECAI-00). IOS Press.

Doherty, P., J. Gustafsson, L. Karlsson, and J. Kvarnstrom (1998). TAL: Temporal action logics – lan-
guage specification and tutorial.Linkoping Electronic Articles in Computer and InformationSci-
ence 15(3), 273–306.

Doherty, P., P. Haslum, F. Heintz, T. Merz, T. Persson, and B.Wingman (2004). A distributed architecture
for intelligent unmanned aerial vehicle experimentation.In Proceedings of the Seventh International
Symposium on Distributed Autonomous Robotic Systems.

Dylla, F., A. Ferrein, and G. Lakemeyer (2003a). AllemaniACs 2004 team description.

Dylla, F., A. Ferrein, and G. Lakemeyer (2003b). Specifyingmultirobot coordination in ICPGolog –
from simulation towards real robots. InProceedings of the Workshop on Issues in Designing Physi-
cal Agents for Dynamic Real-Time Environments: World modeling, planning, learning, and commu-
nicating. IJCAI-03.

Dylla, F., A. Ferrein, G. Lakemeyer, J. Murray, O. Obst, T. Röfer, S. Schiffer, F. Stolzenburg, U. Visser,
and T. Wagner (2007). Approaching a formal soccer theory from behaviour specifications in robotic
soccer. In P. Dabnicki and A. Baca (Eds.),Computer in Sports, pp. . WIT Press. accepted for publi-
cation.

Dylla, F., A. Ferrein, G. Lakemeyer, J. Murray, O. Obst, T. Röfer, F. Stolzenburg, U. Visser, and T. Wag-
ner (2005). Towards a League-Independent Qualitative Soccer Theory for Robocup. In D. Nardi,
M. Riedmiller, C. Sammut, and J. Santos-Victor (Eds.),RoboCup 2004: Robot Soccer World Cup
VIII , Volume 3276 ofLecture Notes in Computer Science. Springer.

Dylla, F., L. Frommberger, J. Wallgrün, D. Wolter, S. Ẅolfl, and B. Nebel (2007). Sailaway: Formaliz-
ing navigation rules.Proceedings of the AISB’07 Artificial and Ambient Intelligence Symposium on
Spatial Reasoning and Communication.

232 BIBLIOGRAPHY

Epic Games Inc. (2007, last visited in MayFebruary). http://www.unrealtournament.com/.

Erol, K., J. Hendler, and D. Nau (1994a). HTN planning: Complexity and expressivity. InProceedings
of the Twelfth National Conference on Artificial Intelligence (AAAI-94), Volume 2, pp. 1123–1128.
AAAI Press/MIT Press.

Erol, K., J. Hendler, and D. Nau (1994b). Semantics for hierarchical task network planning. Technical
Report CS-TR-32391, UMIACS-TR-94-31, ISR-TR-95-9, Computer Science Department, Univer-
sity of Maryland.

Erol, K., J. Hendler, and D. Nau (1996). Complexity results for HTN planning.Annals of Mathematics
and Artificial Intelligence 18(1), 69–93.

Farinelli, A., A. Finzi, and T. Lukasiewicz (2007). Team programming in golog under partial observ-
ability. In Proceedings of the Twentieth International Joint Conference on Artificial Intelligence
(IJCAI-07).

Feng, Z. and E. Hansen (2002). Symbolic heuristic search forfactored markov decision processes. In
Proceedings of the Eighteenth National Conference on Artificial Intelligence (AAAI-02) and Four-
teenth Conference on Innovative Applications of ArtificialIntelligence (IAAI-02). AAAI Press.

Ferrein, A. (2004a). Planned economy.Linux Magazin(7), 50–53. (in German).

Ferrein, A. (2004b). Specifying soccer moves with golog. InProceedings of the 5th Conference dvs-
Section Computer Science in Sport.

Ferrein, A., C. Fritz, and G. Lakemeyer (2003). Extending DTGOLOG with options. In G. Gottlob
and T. Walsh (Eds.),Proceedings of the Eighteenth International Joint Conference on Artificial
Intelligence (IJCAI-03). Morgan Kaufmann.

Ferrein, A., C. Fritz, and G. Lakemeyer (2004). On-line decision-theoretic golog for unpredictable do-
mains. In S. Biundo, T. W. Frühwirth, and G. Palm (Eds.),KI 2004: Advances in Artificial Intel-
ligence, Proceedings of the Twenty-Seventh Annual German Conference on Artificial Intelligence,
(KI-04), Volume 3238 ofLecture Notes in Computer Science, pp. 322–336. Springer.

Ferrein, A., C. Fritz, and G. Lakemeyer (2005a). AllemaniACs 2004 team description. In D. Nardi,
M. Riedmiller, C. Sammut, and J. Santos-Victor (Eds.),RoboCup 2004: Robot Soccer World Cup
VIII , Volume 3276 ofLecture Notes in Computer Science. Springer.

Ferrein, A., C. Fritz, and G. Lakemeyer (2005b). Using gologfor deliberation and team coordination in
robotic soccer.KI 19(1), 24–30.

Ferrein, A., C. Fritz, and G. Lakemeyer (2006). AllemaniACs2005 team description. In A. Bredenfeld,
A. Jacoff, I. Noda, and Y. Takahashi (Eds.),RoboCup 2005: Robot Soccer World Cup IX, Volume
4020 ofLecture Notes in Computer Science. Springer.

Ferrein, A., L. Hermanns, and G. Lakemeyer (2006). Comparing sensor fusion techniques for ball posi-
tion estimation. In A. Bredenfeld, A. Jacoff, I. Noda, and Y.Takahashi (Eds.),RoboCup 2005: Robot
Soccer World Cup IX, Volume 4020 ofLecture Notes in Computer Science, pp. 154–165. Springer.

Ferrein, A. and G. Lakemeyer (2005). Wie roboter die welt sehen. In A. Beyer and M. Lohoff (Eds.),
Bild und Erkenntnis – Formen und Funktion des Bildes in Wissenschaft und Technik. Deutscher
Kunstverlag und RWTH Aachen. (in German).

Ferrein, A. and G. Lakemeyer (2006). Fuballroboter – Wissenschaft, die auch Spa macht.RWTH The-
men(2), 36–39. (in German).

Ferrein, A., G. Lakemeyer, and S. Schiffer (2007a). AllemaniACs 2006 team description. In G. Lake-
meyer, E. Sklar, D. Sorrenti, and T. Takahashi (Eds.),RoboCup 2006: Robot Soccer WorldCup X,
Lecture Notes in Computer Science. Springer.

Ferrein, A., G. Lakemeyer, and S. Schiffer (2007b). AllemaniACs@home 2006 team description. In
G. Lakemeyer, E. Sklar, D. Sorrenti, and T. Takahashi (Eds.), RoboCup 2006: Robot Soccer World-
Cup X, Lecture Notes in Computer Science. Springer.

BIBLIOGRAPHY 233

Fichtner, M., A. Großmann, and M. Thielscher (2003). Intelligent execution monitoring in dynamic
environments.Fundamenta Informaticae 57(2–4), 371–392.

Fikes, R. and N. Nilson (1971). STRIPS: A new approach to the application of theorem proving to
problem solving.Artificial Intelligence 2, 189–208.

Finzi, A. and T. Lukasiewicz (2004). Game-theoretic agent programming in Golog. In R. L. de Ḿantaras
and L. Saitta (Eds.),Proceedings of the 16th Eureopean Conference on Artificial Intelligence, (ECAI-
04), including Prestigious Applicants of Intelligent Systems, (PAIS-04), pp. 23–27. IOS Press.

Finzi, A. and T. Lukasiewicz (2005). Game-theoretic Golog under partial observability. In F. Dignum,
V. Dignum, S. Koenig, S. Kraus, M. Singh, and M. Wooldridge (Eds.),Proceedings of 4rd Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS-05), pp. 1301–
1302. ACM Press.

Finzi, A. and F. Pirri (2004). Flexible interval planning inconcurrent temporal golog. InThe Fourth
international Cognitive Robotics Workshop, pp. 102–107.

Firby, R. (1987). An investigation into reactive planning in complex domains. InProceedings of the Sixth
National Conference on Artificial Intelligence (AAAI-87), pp. 202–206. AAAI Press.

Firby, R. (1994). Task networks for controlling continuousprocesses. In K. Hammond (Ed.),Proceed-
ings of the Second International Conference on Artificial Intelligence Planning Systems (AIPS-94).
AAAI Press.

Firby, R. J. (1996). Modularity issues in reactive planning. In B. Drabble (Ed.),Proceedings of the Third
International Conference on Artificial Intelligence Planning Systems (AIPS-96), pp. 78–85. AAAI
Press.

Firby, R. J., R. Kahn, P. Prokopowicz, and M. Swain (1995). Anarchitecture for vision and action. In
Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence (IJCAI-95),
pp. 72–81.

Forbus, K., J. Mahoney, and K. Dill (2002). How Qualitative Spatial Reasoning Can Improve Strategy
Game AIs.IEEE Intelligent Systems 17(4), 25–30.

Fox, D. (2001). KLD-sampling: Adaptive particle filters. InAdvances in Neural Information Processing
Systems 14. MIT Press.

Fox, D., W. Burgard, and S. Thrun (1997). The dynamic window approach to collision avoidance.IEEE
Robotics & Automation Magazine 4(1), 23–33.

Fox, D., W. Burgard, and S. Thrun (1999). Markov localization for mobile robots in dynamic environ-
ments.Journal of Artificial Intelligence Research 11, 391–427.

Fox, M. and D. Long (2003). PDDL2.1: An extension to PDDL for expressing temporal planning do-
mains.Journal of Artificial Intelligence Research 20, 61–124.

Fraser, G., G. Steinbauer, and F. Wotawa (2004). Application of qualitative reasoning to robotic soccer.
In Proceedings of the Eighteenth International Workshop on Qualitative Reasoning, pp. 173–178.

Freksa, C. (1992). Using orientation information for qualitative spatial reasoning. In A. Frank, I. Cam-
pari, and U. Formentini (Eds.),Proceedings of the International Conference (GIS-92) - From Space
to Territory: Theories and Methods of Spatio-Temporal Reasoning in Geographic Space, Volume
639 ofLecture Notes in Computer Science, pp. 162–178. Springer.

Freksa, C. and K. Zimmermann (1992). On the utilization of spatial structures for cognitively plausible
and efficient reasoning. InIEEE International Conference on Systems Man and Cybernetics, pp.
261–266. IEEE Computer Society Press.

Fritz, C. (2003). Integrating decision-theoretic planning and programming for robot control in highly
dynamic domains. Diploma thesis, Knowledge-based SystemsGroup, Computer Science V, RWTH
Aachen, Aachen, Germany.

Fritz, C. (2004). No toys.Linux Magazin(7), 46–49. (in German).

234 BIBLIOGRAPHY

Fritz, C. and S. McIlraith (2005). Compiling qualitative preferences into decision-theoretic Golog pro-
grams. InThe Sixth Workshop on Nonmonotonic Reasoning, Action, and Change, August 1 (NRAC-
05). IJCAI-05.

Funge, J. (1998).Making Them Behave: Cognitive Models for Computer Animation. Ph. D. thesis,
University of Toronto, Toronto, Canada.

Funge, J. (2000). Cognitive modeling for games and animation. Commununications of the ACM 43(7),
40–48.

Gabaldon, A. (2006). Formalizing complex task libraries ingolog. In G. Brewka, S. Coradeschi,
A. Perini, and P. Traverso (Eds.),Proceedings of the 17th European Conference on Artificial Intelli-
gence (ECAI-06), Including Prestigious Applications of Intelligent Systems (PAIS-06), pp. 755–756.
IOS Press.

Gabaldon, A. and G. Lakemeyer (2007). Esp: A logic of only-knowing, noisy sensing and acting. In
Twenty-Second Conference on Artificial Intelligence (AAAI-07). AAAI Press. to appear.

Galliers, J. (1988).A Theoretical Framework for Computer Models of Cooerative Dialogue, Acknowled-
ing Multi-Agent Conflict. Ph. D. thesis, Open University, UK.

Gat, E. (1992). Integrating planning and reacting in a heterogeneous asynchronous architecture for con-
trolling real-world mobile robots. In W. Swartout (Ed.),Proceedings of the Tenth National Confer-
ence on Artificial Intelligence (AAAI-92), pp. 809–815. AAAI Press.

Gat, E. (1998). On three layer architectures. In D. Kortenkamp, R. Bonasso, and R. Murphy (Eds.),
Artificial Intelligence and Mobile Robots, Chapter 8, pp. 195–210. MIT/AAAI Press.

Geffner, H. and B. Bonet (1998). High-level planning and control with incomplete information using
POMDPs.

Gelfond, M. and V. Lifschitz (1993). Representing action and change by logic programs.Journal of
Logic Programming 17(2/3&4), 301–321.

Gelfond, M. and V. Lifschitz (1998). Action languages.Electronic Transactions on Artificial Intelli-
gence 2, 193–210.

Genesereth, M., N. Love, and B. Pell (2005). General game playing: Overview of the AAAI competition.
AI Magazine 26(2), 62–72.

Georgeff, M. and A. Lansky (1986). Procedural knowledge.Proceedings of the IEEE, Special Issue on
Knowledge Representation 74(10), 1383–1398.

Gester, C. (2007). Observing models of stochastic actions in the Readylog framework. Diploma thesis,
Knowledge-based Systems Group, Computer Science Department, RWTH Aachen University.

GGP (2006). General game playing project competition. http://games.stanford.edu/.

Ginsberg, M. and D. Smith (1988). Reasoning about action II:The qualification problem.Artificial
Intelligence 35(3), 311–342.

Giunchiglia, E., J. Lee, V. Lifschitz, N. McCain, and H. Turner (2004). Nonmonotonic causal theories.
Artificial Intelligence 153(1-2), 49–104.

Goodwin, R. (1995). Formalizing properties of agents.Journal of Logic Computation 6(5), 763–781.

Gottfried, B. (2005). Collision avoidance with bipartite arrangements. InProceedings of the 2005 ACM
workshop on Research in knowledge representation for autonomous systems, pp. 9–16. ACM Press.

Green, C. (1969). Application of theorem proving to problemsolving. In D. Walker and L. Norton
(Eds.),Proceedings of the First International Joint Conference onArtificial Intelligence (IJCAI-69).
William Kaufmann.

Grosskreutz, H. (2000). Probabilistic projection and belief update in the pgolog framework. InThe Sec-
ond International Cognitive Robotics Workshop, (CogRob-00), pp. pages 34–41. ECAI-00.

BIBLIOGRAPHY 235

Grosskreutz, H. (2002).Towards More Realistic Logic-Based Robot Controllers in the GOLOG Frame-
work. Ph. D. thesis, Knowledge-based Systems Group, Computer Science V, RWTH Aachen.

Grosskreutz, H. and G. Lakemeyer (2000a). cc-Golog: Towards more realistic logic-based robot con-
trollers. In AAAI Press (Ed.),Proceedings of the Seventeenth National Conference on Artificial
Intelligence (AAAI-00) and Twelfth Conference on Innovative Applications of Artificial Intelligence
(IAAI-00). AAI Press/ The MIT Press.

Grosskreutz, H. and G. Lakemeyer (2000b). Turning high-level plans into robot programs in uncertain
domains. In W. Horn (Ed.),Proceedings of the Fourteenth European Conference on Artificial Intel-
ligence (ECAI-00). IOS Press.

Grosskreutz, H. and G. Lakemeyer (2001). On-line executionof cc-Golog plans. In B. Nebel (Ed.),
Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence, (IJCAI-01).
Morgan Kaufmann.

Grosskreutz, H. and G. Lakemeyer (2003). ccgolog – A logicallanguage dealing with continuous change.
Logic Journal of the IGPL 11(2), 179–221.

Großmann, A., S. Ḧolldobler, and O. Skvortsova (2002). Symbolic dynamic programming with the
Fluent Calculus. InProceedings IASTED Artificial and Computational Intelligence, pp. 378–383.

Gu, Y. (2003). Macro-actions in the situation calculus. InProceedings of IJCAI-03 Workshop on Non-
monotonic Reasoning, Action, and Change (NRAC-03). IJCAI-03.

Gutmann, J.-S. (2002). Markov-Kalman localization for mobile robots. InProceedings of the Sixteenth
International Conference on Pattern Recognition (ICPR-02), Volume 2.

Gutmann, J.-S. and D. Fox (2002). An experimental comparison of localization methods continued.
In Proceedings of the 2001 IEEE/RSJ International Conferenceon Intelligent Robots and Systems
(IROS-02). IEEE Computer Society Press.

Gutmann, J.-S., W. Hatzack, I. Herrmann, B. Nebel, F. Rittinger, A. Topor, T. Weigel, and B. Welsch
(1999). The CS freiburg robotic soccer team: Reliable self-localization, multirobot sensor integra-
tion, and basic soccer skills. In M. Asada and H. Kitano (Eds.), RoboCup-98: Robot Soccer World
Cup II, Volume 1604 ofLecture Notes in Computer Science, pp. 93–108. Springer.

Hähnel, D., W. Burgard, and G. Lakemeyer (1998). GOLEX - bridging the gap between logic Golog
and a real robot. In O. Herzog and A. Günter (Eds.),KI-98: Advances in Artificial Intelligence,
Proceedings of the Twenty-Second Annual German Conferenceon Artificial Intelligence, Volume
1504 ofLecture Notes in Computer Science, pp. 165–176. Springer.

Hall, D. L. (2004).Mathematical Techniques in Multisensor Data Fusion(2nd ed.). Artech House, Inc.

Hauskrecht, M., N. Meuleau, L. Kaelbling, T. Dean, and C. Boutilier (1998). Hierarchical solutions
of MDPs using macro-actions. In C. Cooper and S. Moral (Eds.), Proceedings of the Fourteenth
Conference on Uncertainty in AI (UAI-98). Morgan Kaufmann.

Hermanns, L. (2004). Fusing uncertain world information ofcooperating robots into a global world
model. Diploma thesis, Knowledge-based Systems Group, Computer Science V, RWTH Aachen,
Aachen, Germany, (in German).

Herńandez, D. (1991). Relative representation of spatial knowledge: The 2-D case. In D. Mark and
A. Frank (Eds.),Cognitive and Linguistic Aspects of Geographic Space, pp. 373–385. Kluwer.

Herńandez, D., E. Clementini, and P. di Felice (1995). Qualitative distances. In A. U. Frank and W. Kuhn
(Eds.),Spatial Information Theory: A Theoretical Basis for GIS, International Conference COSIT
’95, Semmering, Austria, September 21-23, 1995, Proceedings, Volume 988 ofLecture Notes in
Computer Science, pp. 45–57. Springer.

Hindriks, K., F. de Boer, W. van der Hoek, and J.-J. Meyer (1999). Agent programming in 3APL.Au-
tonomous Agents and Multi-Agent Systems 4(2), 357–401.

236 BIBLIOGRAPHY

Hindriks, K., Y. Léesperance, and H. Levesque (2000). An embedding of ConGolog in 3APL. In W. Horn
(Ed.),Proceedings of the Fourteenth European Conference on Artificial Intelligence (ECAI-00), pp.
558–562. IOS Press.

Hoey, J., R. St-Aubin, A. Hu, and C. Boutilier (1999). SPUDD:Stochastic planning using decision
diagrams. In K. Laskey and H. Prade (Eds.),Proceedings of the Fifteenth Conference on Uncertainty
in Artificial Intelligence (UAI-99), pp. 279–288. Morgan Kaufmann.

Howard, R. (1960).Dynamic Programming and Markov Processes. MIT Press.

Hu, Y. (2006). A declarative semantics of a subset of PDDL with time and concurrency. Master’s thesis,
Knowledge-Based Systems Group, Computer Science Department, RWTH Aachen University.

Ilghami, O., H. Mũnoz-Avila, D. Nau, and D. Aha (2005). Learning approximate preconditions for
methods in hierarchical plans. In L. D. Raedt and S. Wrobel (Eds.), Proceedings of the Twenty-
Second International Conference on Machine Learning (ICML-05), pp. 337–344. ACM Press.

Ilghami, O., D. S. Nau, H. Mũnoz-Avila, and D. W. Aha (2002). CameL: Learning method preconditions
for HTN planning. In M. Ghallab, J. Hertzberg, and P. Traverso (Eds.),Proceedings of the Sixth
International Conference on Artificial Intelligence Planning Systems (AIPS-02), pp. 131–142. AAAI
Press.

Iwan, G. (2002). History-based diagnosis templates in the framework of the situation calculus.AI Com-
mununications 15(1), 31–45.

Jacobs, S. (2005). Applying readylog to agent programming in interactive computer games. Diploma
thesis, Knowledge-based Systems Group, Computer Science Department, RWTH Aachen Univer-
sity.

Jacobs, S., A. Ferrein, and G. Lakemeyer (2005a). Controlling unreal tournament 2004 bots with the
logic-based action language golog. InProceedings of the First AAAI Conference on Artificial Intel-
ligence and Interactive Digital Entertainment (AIIDE-05). Demonstration.

Jacobs, S., A. Ferrein, and G. Lakemeyer (2005b). Unreal Golog bots. InIJCAI-05 WS on Reasoning,
Representation, and Learning in Computer Games.

Jansen, N. (2002). A framework for developing deliberativecomponents in uncertain, highly dynamic
domains with real-time constraints. Diploma thesis, Knowledge-based Systems Group, Computer
Science V, RWTH Aachen,Aachen, Germany (in German).

Jenkin, M., Y. Lesṕerance, H. Levesque, F. Lin, J. Lloyd, D. Marcu, R. Reiter, R.Scherl, and K. Tam
(1997). A logical approach to portable high-level robot programming. InProceedings of the Tenth
Australian Joint Conference on Artificial Intelligence (AI-97).

Jensen, R. and M. Veloso (1998). Interleaving deliberativeand reactive planning in dynamic multi-agent
domains. InProceedings of the AAAI Fall Symposium on on Integrated Planning for Autonomous
Agent Architectures. AAAI Press.

Kaelbling, L. P., M. L. Littman, and A. P. Moore (1996). Reinforcement learning: A survey.Journal of
Artificial Intelligence Research 4, 237–285.

Kalman, R. E. (1960). A New Approach to Linear Filtering and Prediction Problems.Journal of Basic
Engineering 82(1), 34–45.

Kaminka, G., M. Veloso, S. Schaffer, C. Sollitto, R. Adobbati, A. Marshall, A. Scholder, and S. Tejada
(2002). Game bots: A flexible test bed for multiagent research. Communications of the ACM 45(2),
43–45.

Kelleher, J. and G.-J. Kruijff (2006). Incremental generation of spatial referring expressions in situated
dialog. In C. Cardie and P. Isabelle (Eds.),Proceedings of the 21st International Conference on
Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguis-
tics (ACL-06). The Association for Computer Linguistics.

BIBLIOGRAPHY 237

Kelleher, J., G.-J. Kruijff, and F. Costello (2006). Proximity in context: An empirically grounded com-
putational model of proximity for processing topological spatial expressions. In C. Cardie and P. Is-
abelle (Eds.),Proceedings of the 21st International Conference on Computational Linguistics and
44th Annual Meeting of the Association for Computational Linguistics (ACL-06). The Association
for Computer Linguistics.

Kitano, H., M. Asada, Y. Kuniyoshi, I. Noda, and E. Osawa (1997). Robocup: The robot world cup
initiative. In L. Johnson (Ed.),Proceedings of the First International Conference on Autonomous
Agents (Agents-97), pp. 340–347. ACM Press.

Kok, J. R. and N. A. Vlassis (2006). Using the max-plus algorithm for multiagent decision making in
coordination graphs. In A. Bredenfeld, A. Jacoff, I. Noda, and Y. Takahashi (Eds.),RoboCup 2005:
Robot Soccer World Cup IX, Volume 4020 ofLecture Notes in Computer Science, pp. 1–12. Springer.

Konolige, K. (1997). COLBERT: A language for reactive control in sapphira. InKI - Küunstliche Intel-
ligenz, pp. 31–52.

Konolige, K., K. Myers, E. Ruspini, and A. Saffiotti (1997). The Saphira architecture: A design for
autonomy.Journal of Experimental & Theoretical Artificial Intelligence 9(1), 215–235.

Kortenkamp, D., R. Bonasso, and R. Murphy (Eds.) (1998).Artificial Intelligence and Mobile Robots.
MIT/AAAI Press.

Kowalski, R. (1992). Database updates in the event calculus. Journal of Logic Programming 12(1-2),
121–146.

Kowalski, R. and M. Sergot (1986). A logic-based calculus ofevents.New Generation Computing 4,
67–95.

Kruijff, G.-J., J. Kelleher, G. Berginc, and A. Leonardis (2006). Structural descriptions in human-assisted
robot visual learning. InProceeding of the First ACM SIGCHI/SIGART Conference on Human-robot
Interaction (HRI-06), pp. 343–344. ACM Press.

Kushmerick, N., S. Hanks, and D. S. Weld (1995). An algorithmfor probabilistic planning.Artificial
Intelligence 76(1-2), 239–286.

Kvarnstr̈om, J., P. Doherty, and P. Haslum (2000). Extending TALplanner with concurrency and re-
sources. In W. Horn (Ed.),Proceedings of the Fourteenth European Conference on Artificial Intelli-
gence (ECAI-00), pp. 501–505. IOS Press.

Laird, J., M. Assanie, B. Bachelor, N. Benninghoff, S. Enam,B. Jones, A. Kerfoot, C. Lauver,
B. Magerko, J. Sheiman, D. Stokes, and S. Wallace (2002). A test bed for developing intelligent
synthetic characters. InWorking Notes of the AAAI Spring Symposium on Artificial Intelligence and
Interactive Entertainment 2002. AAAI Press.

Lakemeyer, G. (1996). Only knowing in the situation calculus. In C. Aiello, J. Doyle, and S. Shapiro
(Eds.),Proceedings of Fifth International Conference in Principles of Knowledge Representation
and Reasoning (KR-96), pp. 14–25. Morgan Kaufmann.

Lakemeyer, G. (1999). On sensing and off-line interpretingin GOLOG. In H. Levesque and F. Pirri
(Eds.),Logical Foundation for Cognitive Agents: Contributions inHonor of Ray Reiter, pp. 173–
187. Springer.

Lakemeyer, G. and H. J. Levesque (1998). AOL: A logic of acting, sensing, knowing, and only knowing.
In A. Cohn, L. Schubert, and S. Shapiro (Eds.),Proceedings of the Sixth International Conference on
Principles of Knowledge Representation and Reasoning (KR-98), pp. 316–329. Morgan Kaufmann.

Lakemeyer, G. and H. J. Levesque (2004). Situations, si! situation terms, no! In D. Dubois, C. Welty,
and M.-A. Williams (Eds.),Proceedings of the Ninth International Conference on Principles of
Knowledge Representation and Reasoning (KR-04). AAAI Press.

Lakemeyer, G. and H. J. Levesque (2005). Semantics for a useful fragment of the situation calculus. In
L. P. Kaelbling and A. Saffiotti (Eds.),Proceedings of the Nineteenth International Joint Conference
on Artificial Intelligence (IJCAI-05), pp. 490–496. Professional Book Center.

238 BIBLIOGRAPHY

Lakemeyer, G., E. Sklar, D. Sorrenti, and T. Takahashi (Eds.) (2007).RoboCup 2006: Robot Soccer
WorldCup X, Lecture Notes in Computer Science. Springer.

Lauer, M. and M. A. Riedmiller (2000). An algorithm for distributed reinforcement learning in co-
operative multi-agent systems. In P. Langley (Ed.),Proceedings of the Seventeenth International
Conference on Machine Learning (ICML-00), pp. 535–542. Morgan Kaufmann.

Levesque, H. (1996). What is planning in the presence of sensing? InProceedings of the Thirteenth
National Conference on Artificial Intelligence (AAAI-96) and Eighth Innovative Applications of Ar-
tificial Intelligence Conference (IAAI-96). AAAI Press / The MIT Press.

Levesque, H. and M. Pagnucco (2000). Legolog: Inexpensive experiments in cognitive robotics. InPro-
ceedings of the Second International Cognitive Robotics Workshop (CogRob-00). ECAI-00.

Levesque, H., F. Pirri, and R. Reiter (1998). Foundations for the situation calculus.
Linköping Electronic Articles in Computer and Information Science 2(18), 159–178.
http://www.ep.lui.se/ea/cis/1998/018.

Levesque, H., R. Reiter, Y. Lesperance, F. Lin, and R. Scherl(1997). GOLOG: A logic programming
language for dynamic domains.Journal of Logic Programming 31(1-3), 59–83.

Levesque, H. J. (1990). All I know: A study in autoepistemic logic.Artificial Intelligence 42(2-3), 263–
309.

Levesque, H. J. and G. Lakemeyer (2001).The Logic of Knowledge Bases. MIT Press.

Lewis, R. (1999). Cognitive modeling, symbolic. InThe MIT Encyclopedia of the Cognitive Sciences.
MIT Press.

Lifschitz, V. (1994). Circumscription. In D. Gabbay, C. Hogger, and J. Robinson (Eds.),Handbook of
Logic in Artificial Intelligence and Logic Programming, Volume 3: Nonmonotonic Reasoning and
Uncertain Reasoning, pp. 298–352. Oxford University Press.

Lin, F. and R. Reiter (1994). State constraints revisited.Journal of Logic Computing. 4(5), 655–678.

Lin, F. and R. Reiter (1995). How to progress a database II: The STRIPS connection. InIJCAI, pp.
2001–2009.

Lin, F. and R. Reiter (1997). How to progress a database.Artificial Intelligence 92(1-2), 131–167.

Littman, M. L. (1994). Markov games as a framework for multi-agent reinforcement learning. InPro-
ceedings of the 11th International Conference on Machine Learning (ML-94), New Brunswick, NJ,
pp. 157–163. Morgan Kaufmann.

Lötzsch, M., J. Bach, H.-D. Burkhard, and M. Jngel (2004). Designing agent behavior with the exten-
sible agent behavior specification language XABSL. In D. Polani, B. Browning, A. Bonarini, and
K. Yoshida (Eds.),RoboCup 2003: Robot Soccer World Cup VII, Volume 3020 ofLecture Notes in
Computer Science. Springer.

Lovejoy, W. (1991). Computationally feasible bounds for partially observable markov processes.Oper-
ations Research 39, 162–175.

Lucchesi, M. (2001).Coaching the 3-4-1-2 and 4-2-3-1. Reedswain Publishing.

Maes, P. (1989). How to do the right thing.Connection Science Journal 1(3), 291–323. Special Issue on
Hybrid Systems.

Magerko, B., J. Laird, M. Assanie, A. Kerfoot, and D. Stokes (2004). AI characters and directors for in-
teractive computer games. In D. McGuinness and G. Ferguson (Eds.),Proceedings of the Nineteenth
National Conference on Artificial Intelligence (AAAI-04) and Sixteenth Conference on Innovative
Applications of Artificial Intelligence (IAAI-04). AAAI Press / The MIT Press.

Martin, Y. (2003). The concurrent, continuous FLUX. In G. Gottlob and T. Walsh (Eds.),Proceedings of
the Eighteenth International Joint Conference on Artificial Intelligence (IJCAI-03). Morgan Kauf-
mann.

BIBLIOGRAPHY 239

Maybeck, P. (1979).Stochastic Models, Estimation and Control, Volume 1. Academic Press.

Maybeck, P. (1990). The Kalman filter: an introduction to concepts. In L. Cox and J. Wilfong (Eds.),
Autonomous Robot Vehicles. Springer.

McAllester, D. and D. Rosenblitt (1991). Systematic nonlinear planning. InProceedings of the Ninth
National Conference on Artificial Intelligence (AAAI-91), Volume 2, pp. 634–639. AAAI Press /
The MIT Press.

McCarthy, J. (1963). Situations, actions and causal laws. Technical report, Stanford University.

McCarthy, J. (1980). Circumscription – A from of non-monotonic reasoning.Artifical Intelligence 1–
2(13), 27–39.

McCarthy, J. (1985). Formalization of STRIPS in SITUATION CALCULUS. http://www-
formal.stanford.edu/jmc/strips/strips.html.

McCarthy, J. and P. Hayes (1969). Some philosophical problems from the standpoint of artificial intelli-
gence.Machine Intelligence 4, 463–502.

McDermott, D. (1991). A reactive plan language. Technical Report YALEU/DCS-RR-864, Yale Univer-
sity, Department of Computer Science.

McDermott, D. (1992). Transformational planning of reactive behavior. Technical Report
YALEU/DCS/RR-941, Yale University, Department of Computer Science.

McDermott, D. (1994). An algorithm for probabilistic, totally-ordered temporal projection. Technical
Report YALEU/DCS/RR-1014, Yale University, Department ofComputer Science.

McIlraith, S. and T. Son (2002). Adapting golog for composition of semantic web services. In D. Fensel,
F. Giunchiglia, D. McGuinness, and M.-A. Williams (Eds.),Proceedings of Eighth International
Conference on Principles of Knowledge Representation and Reasoning (KR-02). Morgan Kaufmann.

Meier, D., C. Stachniss, and W. Burgard (2006). Cooperativeexploration with multiple robots using low
bandwidth communication. In J. Beyerer, F. P. León, and K.-D. Sommer (Eds.),Informationsfusion
in der Mess- und Sensortechnik, pp. 145–157.

Microsoft (2006, December). Microsoft robotics studio nowavailable to provide com-
mon development platform. http://www.microsoft.com/presspass/press/2006/dec06/12-
12msroboticsstudioavailablepr.mspx. Press Release.

Miene, A., U. Visser, and O. Herzog (2003). Recognition and prediction of motion situations based on
a qualitative motion description. In D. Polani, B. Browning, A. Bonarini, and K. Yoshida (Eds.),
RoboCup 2003: Robot Soccer World Cup VII, Volume 3020 ofLecture Notes in Computer Science.
Springer Verlag.

Miller, R. and M. Shanahan (1999). The event calculus in classical logic - alternative axiomatisations.
Electronic Transactions on Artificial Intelligence 3, 77–105.

Milstein, A., JavierS̀anchez, and E. Williamson (2002). Robust global localization using clustered parti-
cle filtering. InProceedings of the Eighteenth National Conference on Artificial Intelligence (AAAI-
02) and Fourteenth Conference on Innovative Applications of Artificial Intelligence (IAAI-02), pp.
581–586. AAAI Press.

Monahan, G. (1982). A survey of partially observable markovdecision processes: Theory, models, and
algorithms.Management Science 28(1), 1–16.

Montemerlo, M., S. Thrun, H. Dahlkamp, D. Stavens, and S. Strohband (2006). Winning the DARPA
grand challenge with an AI robot. InProceedings of the Twenty-First National Conference on Ar-
tificial Intelligence (AAAI-06)and the Eighteenth Innovative Applications of Artificial Intelligence
Conference (IAAI-06). AAAI Press.

Moore, R. C. (1985). A formal theory of knowledge and action.In J. Hobbs and R. Moore (Eds.),Formal
Theories of the Commonsense World, Chapter 9, pp. 319–358. Ablex Publishing Corp.

240 BIBLIOGRAPHY

Moravec, H. and A. Elfes (1985). High resolution maps from wide angular sensors. InProceedings of the
1985 IEEE International Conference On Robotics and Automation (ICRA-85), pp. 116–121. IEEE
Computer Society Press.

Mueller, E. (2006).Commonsense Reasoning. Morgan Kaufmann.

Munoz-Avila, H. and T. Fisher (2004). Strategic planning for unreal tournament bots. InAAAI Workshop
on Challenges in Game AI. AAAI-04.

Murphy, R. (2000).Introduction to AI Robotics. The MIT Press.

Murray, J., O. Obst, and F. Stolzenburg (2001). Towards a logical approach for soccer agents engineering.
In P. Stone, T. R. Balch, and G. K. Kraetzschmar (Eds.),RoboCup 2000: Robot Soccer World Cup
IV, Volume 2019 ofLecture Notes in Computer Science, pp. 199–208. Springer.

Musliner, D., J. Hendler, A. Agrawala, E. Durfee, J. Strosnider, and C. Paul (1995). The challenges of
real-time AI.Computer 28(1), 58–66.

Myers, K. (1996). A procedural knowledge approach to task-level control. In B. Drabble (Ed.),Proceed-
ings of the Third International Conference on Artificial Intelligence Planning Systems (AIPS-96),
pp. 158–165. AAAI Press.

Nardi, D., M. Riedmiller, C. Sammut, and J. Santos-Victor (Eds.) (2005).RoboCup 2004: Robot Soccer
World Cup VIII, Volume 3276 ofLecture Notes in Computer Science. Springer.

Nau, D., T.-C. Au, O. Ilghami, U. Kuter, J. Murdock, D. Wu, andF. Yaman (2003). SHOP2: An HTN
planning system.Journal of Artifcial Intelligence Research (JAIR) 20, 379–404.

Nejati, N., P. Langley, and T. K̈onik (2006). Learning hierarchical task networks by observation. In
W. Cohen and A. Moore (Eds.),Proceedings of the Twenty-Third International Conferenceon Ma-
chine Learning (ICML-06), pp. 665–672. ACM.

Nilson, N. (1984). Shakey the robot. Technical Report 323, AI Center, SRI International.

Noda, I., H. Matsubara, K. Hiraki, and I. Frank (1997). Soccer Server: A Tool for Research on Multi-
Agent Systems.Applied Artificial Intelligence 12(2), 233–250.

Obst, O. and J. Boedecker (2006). Flexible coordination of multiagent team behavior using HTN plan-
ning. In A. Bredenfeld, A. Jacoff, I. Noda, and Y. Takahashi (Eds.),RoboCup 2005: Robot Soccer
World Cup IX, Volume 4020 ofLecture Notes in Computer Science, pp. 521–528. Springer.

Obst, O. and M. Rollmann (2004, September). SPARK – A GenericSimulator for Physical Multiagent
Simulations. In G. Lindemann, J. Denzinger, I. J. Timm, and R. Unland (Eds.),Multiagent Sys-
tem Technologies – Proceedings of the MATES 2004, Volume 3187 ofLecture Notes of Artificial
Intelligence, pp. 243–257. Springer.

Ögren, P. and N. Leonard (2005). A convergent dynamic windowapproach to obstacle avoidance.IEEE
Transactions on Robotics and Automation 21(2), 188–195.

Orocos (2007). The ocoros project – smarter control in robotics & automation! http://www.orocos.org/.
last visited Jan. 2007.

Parr, R. and S. Russell (1995). Approximating optimal policies for partially observable stochastic do-
mains. In C. Mellish (Ed.),Proceedings of the Fourteenth International Joint Conference on Artifi-
cial Intelligence (IJCAI-95). Morgan Kaufmann.

Parr, R. and S. Russell (1997). Reinforcement learning withhierarchies of machines. In M. I. Jordan,
M. J. Kearns, and S. A. Solla (Eds.),Advances in Neural Information Processing Systems, Vol-
ume 10. The MIT Press.

Pednault, E. P. D. (1989). ADL: exploring the middle ground between STRIPS and the situation calculus.
In R. Brachman, H. Levesque, and R. Reiter (Eds.),Proceedings of the 1st International Conference
on Principles of Knowledge Representation and Reasoning (KR-89), pp. 324–332. Morgan Kauf-
mann.

Peitersen, B. and J. Bangsbo (2000).Soccer Systems & Strategies. Human Kinetics.

BIBLIOGRAPHY 241

Penberthy, J. S. and D. S. Weld (1992). UCPOP: A sound, complete, partial order planner for ADL.
In B. Nebel, C. Rich, and W. Swartout (Eds.),Proceedings of the 3rd International Conference on
Principles of Knowledge Representation and Reasoning (KR-92), pp. 103–114. Morgan Kaufmann.

Pham, H. (2006). Applying DTGolog to large-scale domains. Master’s thesis, Department of Electrical
and Computer Engineering, Ryerson University, Toronot, Canada.

Pineau, J., M. Montemerlo, M. E. Pollack, N. Roy, and S. Thrun(2003). Towards robotic assistants in
nursing homes: Challenges and results.Robotics and Autonomous Systems 42(3-4), 271–281.

Pinheiro, P. and P. Lima (2004). Bayesian sensor fusion for cooperative object localization and world
modeling. InProceedings of the Eighth Conference on Intelligent Autonomous Systems (IAS-04).
Springer.

Pinto, J. (1998). Integrating discrete and continuous change in a logical framework.Computational In-
telligence 14, 39–88.

Pinto, J. and R. Reiter (1993). Temporal reasoning in logic programming: A case for the situation calcu-
lus. In D. Warren (Ed.),Proceedings of the Tenth International Conference on LogicProgramming
(ICLP-93), pp. 203–221. The MIT Press.

Pinto, J. and R. Reiter (1995). Reasoning about time in the situation calculus.Annals of Mathematics
and Artificial Intelligence 14(2-4), 251–268.

Pinto, J., A. Sernadas, C. Sernadas, and P. Mateus (2000). Non-determinism and uncertainty in the situ-
ation calculus.International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 8(2),
127–150.

Pirri, F. and R. Reiter (1999). Some contributions to the metatheory of the situation calculus.Journal of
the ACM 46(3), 325–361.

Polani, D., B. Browning, A. Bonarini, and K. Yoshida (Eds.) (2004).RoboCup 2003: Robot Soccer
World Cup VII, Volume 3020 ofLecture Notes in Computer Science. Springer.

Poole, D. (1997). The independent choice logic for modelling multiple agents under uncertainty.Artifi-
cial Intelligence 94(1-2), 7–56.

Pradalier, C., J. Hermosillo, C. Koike, C. Braillon, P. Bessière, and C. Laugier (2005). The cycab: a
car-like robot navigating autonomously and safely among pedestrians.Robotics and Autonomous
Systems 50(1), 51–68.

Precup, D., R. Sutton, and S. Singh (1998). Theoretical results on reinforcement learning with tempo-
rally abstract options. In C. Nedellec and C. Rouveirol (Eds.), Proceedings of the 10th European
Conference on Machine Learning (EMCL-98), Volume 1398 ofLecture Notes in Computer Science,
pp. 382–393. Springer.

Preparata, F. P. and M. I. Shamos (1985).Computational geometry: An Introduction. Springer.

Puterman, M. (1994).Markov Decision Processes: Discrete Dynamic Programming. New York: Wiley.

Puterman, M. and M. Shin (1978). Modified policy iteration algorithms for discounted markov decision
problems.Management Science 24(11), 1127–1137.

Quinlan, J. (1993).C4.5 Programs for Machine Learning. Morgan Kaufmann.

Qureshi, F., D. Terzopoulos, and R. Gillett (2004). The cognitive controller: a hybrid, deliberative/reac-
tive control architecture for autonomous robots. InIEA/AIE’2004: Proceedings of the Seventeenth
International Conference on Innovations in Applied Artificial Intelligence, pp. 1102–1111. Springer
Springer Verlag Inc.

Rabin, S. (Ed.) (2002 & 2003).AI Wisdom, Volume 1 & 2. B & T.

Randell, D. A., Z. Cui, and A. Cohn (1992). A Spatial Logic Based on Regions and Connection. In
B. Nebel, C. Rich, and W. Swartout (Eds.),Proceedings of the 3rd International Conference on
Principles of Knowledge Representation and Reasoning (KR-92), pp. 165–176. Morgan Kaufmann.

242 BIBLIOGRAPHY

Reiter, R. (1991). The frame problem in the situation calculus: a simple solution (sometimes) and a
completeness result for goal regression. In V. Lifschitz (Ed.),Artificial Intelligence and Mathematic
Theory of Computation: Papers in Honor of John McCarthy, pp. 359–380. Academic Press.

Reiter, R. (2001).Knowledge in Action. MIT Press.

Renz, J. and B. Nebel (1999). On the complexity of qualitative spatial reasoning: a maximal tractable
fragment of the region connection calculus.Artificial Intelligence 108(1-2), 69–123.

Riedmiller, M. and A. Merke (2002). Using machine learning techniques in complex multi-agent do-
mains. In I. Stamatescu, W. Menzel, and U. Ratsch (Eds.),Perspectives on Adaptivity and Learning.
Springer.

RoboCup (2006). The Robocup Federation. http://www.robocup.org.

Röfer, T., I. Dahm, U. Dffert, J. Hoffmann, M. Jngel, M. Kallnik, M. Lötzsch, M. Risler, M. Stelzer,
and J. Ziegler (2004). Germanteam 2003. In D. Polani, B. Browning, A. Bonarini, and K. Yoshida
(Eds.),RoboCup 2003: Robot Soccer World Cup VII, Volume 3020 ofLecture Notes in Computer
Science. Springer.

Rosenschein, J. and M. Genesereth (1988). Deals among rational agents. In A. Bond and L. Gasser
(Eds.),Readings in Distributed Artificial Intelligence, pp. 227–234. Morgan Kaufmann Publishers
Inc.

Roth, P. M., H. Grabner, D. Skocaj, H. Bischof, and A. Leonardis (2005). Conservative visual learning
for object detection with minimal hand labeling effort. In W. Kropatsch, R. Sablatnig, and A. Han-
bury (Eds.),Proceedings of the Twenty-Seventh DAGM Symposium for Pattern Recognition (DAGM-
05), Volume 3663 ofLecture Notes in Computer Science. Springer.

Russel, S. and P. Norvig (2003).Artificial Intelligence – A Modern Approach(2nd ed.). Prentice Hall.

Sacerdoti, E. (1974). Planning in a hierarchy of abstraction spaces.Artificial Intelligence 5(2), 115–135.

Sacerdoti, E. (1975). The nonlinear nature of plans. InProceedings of the Fourth International Joint
Conference on Artificial Intelligence (IJCAI-75), pp. 206–214.

Sandewall, E. (1995).Features and Fluents: The Representation of Knowledge about Dynamical Sys-
tems. Oxford University Press.

Sandewall, E. (1998). Cognitive robotics logic and its metatheory: Features and fluents revisited.Elec-
tronic Transactions on Artificial Intelligence 2, 307–329.

Sardĩna, S. (2001). Local conditional high-level robot programs. In IJCAI Workshop on Nonmonotinic
Reasoning, Action and Change (NRAC-01). IJCAI-01.

Scherl, R. and H. Levesque (1993). The frame problem and knowledge-producing actions. InProceed-
ings of the Eleventh National Conference on Artificial Intelligence (AAAI-93), pp. 689–697. AAAI
Press / The MIT Press.

Scherl, R. and H. Levesque (2003). Knowledge, action, and the frame problem.Artifical Intelli-
gence. 144(1-2), 1–39.

Schiffel, S. and M. Thielscher (2005). Interpreting golog programs in flux. InThe Seventh International
Symposium on Logical Formalizations of Commonsense Reasoning (Commonsense-05).

Schiffel, S. and M. Thielscher (2006). Reconciling situation calculus and fluent calculus. InProceedings
of the Twenty-First National Conference on Artificial Intelligence (AAAI-06) and the Eighteenth
Innovative Applications of Artificial Intelligence Conference (IAAI-06). AAAI Press.

Schiffel, S. and M. Thielscher (2007). Automatic construction of a heuristic search function for general
game playing. InSeventh IJCAI International Workshop on Nonmontonic Reasoning, Action and
Change (NRAC-07).

Schiffer, S. (2005). A qualitative worldmodel for autonomous soccer agents in the readylog framework.
Diploma thesis, Knowledge-based Systems Group, Computer Science Department, RWTH Aachen
University.

BIBLIOGRAPHY 243

Schiffer, S., A. Ferrein, and G. Lakemeyer (2006a). Football is coming home. In X. Chen, W. Liu, and
M.-A. Williams (Eds.),Proceedings of the International Symposium on Practical Cognitive Agents
and Robots (PCAR-06). University of Western Australia Press.

Schiffer, S., A. Ferrein, and G. Lakemeyer (2006b). Qualitative world models for soccer robots. In
S. Wlfl and T. Mossakowski (Eds.),Qualitative Constraint Calculi, Workshop at KI 2006, Bremen,
pp. 3–14.

Schiffer, S., T. Niemueller, and A. Ferrein (2006). AllemaniACs. http://robocup.rwth-aachen.de.

Shanahan, M. (1990). Representing continuous change in theevent calculus. InIn Proceedings of the
European Conference on Artificial Intelligence (ECAI-90), pp. 598–603.

Shanahan, M. (1997).Solving the Frame Problem: A Mathematical Investigation ofthe Common Sense
Las of Inertia. MIT Press.

Shanahan, M. (2000). An abductive event calculus planner.Journal of Logic Programming 44(1-3),
207–240.

Shanahan, M. and M. Witkowski (2001). High-level robot control through logic. In C. Castelfranchi
and Y. Lesṕerance (Eds.),Intelligent Agents VII. Proceedings of the Seventh International Workshop
Agent Theories Architectures and Languages, (ATAL-00) 2000,, Volume 1986 ofLecture Notes in
Computer Science, pp. 104–121. Springer.

Shoham, Y. (1993). Agent-oriented programming.Artificial Intelligence 60(1), 51–92.

Simmons, R. (1994). Structured control for autonomous robots. IEEE Transactions on Robotics and
Automation 10(1), 34–43.

Simmons, R. (1996). The curvature-velocity method for local obstacle avoidance. InProceedings of
the 1996 IEEE International Conference on Robotics and Automation, (ICRA-96). IEEE Computer
Society Press.

Simmons, R., R. Goodwin, K. Haigh, S. Koenig, J. O’Sullivan,and M. Veloso (1997). Xavier: experi-
ence with a layered robot architecture.SIGART Bulletin 8(1-4), 22–33.

Simmons, R., R. Goodwin, K. Z. Haigh, S. Koenig, and J. O’Sullivan (1997). A layered architecture
for office delivery robots. In L. Johnson (Ed.),Proceedings of the First International Conference on
Autonomous Agents (Agents-97), pp. 245–252. ACM Press.

Smith, D. E., J. Frank, and A. Jonsson (2000). Bridging the gap between planning and scheduling.
Knowledge Engineering Reviews 15(1), 47–83.

Son, T. and C. Baral (2001). Formalizing sensing actions: A transition function based approach.Artificial
Intelligence 125(1-2), 19–91.

Sondik, E. (1971).The Optimal Control of Parially Observable Markiv Processes. Ph. D. thesis, Depart-
ment of Electrical Engineering, Stanford University, Stanford, CA.

Sondik, E. (1978). The optimal control of partially observable markov processes over the infinite horizon:
Discounted costs.Operations Research 26(2), 282–304.

Soutchanski, M. (2001). An on-line decision-theoretic Golog interpreter. In B. Nebel (Ed.),Proceedings
of the Seventeenth International Joint Conference on Artificial Intelligence, (IJCAI-01). Morgan
Kaufmann.

Soutchanski, M. (2003).High-level Robot Programming in Dynamic and Incompletely known environ-
ments. Ph. D. thesis, University of Toronto.

Soutchanski, M., H. Pham, and J. Mylopoulos (2006). Decision making in uncertain real-world domains
using DT-golog. In G. Brewka, S. Coradeschi, A. Perini, and P. Traverso (Eds.),Proceedings of
the Seventeenth European Conference on Artificial Intelligence (ECAI-06), Including Prestigious
Applications of Intelligent Systems (PAIS-06). IOS Press.

244 BIBLIOGRAPHY

Stachniss, C. and W. Burgard (2002). An integrated approachto goal-directed obstace avoidance under
dynamic constraints for dynamic environments. InProceedings of the 2001 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS-02). IEEE Computer Society Press.

Steinbauer, G., M. Faschinger, G. Fraser, A. Mühlenfeld, S. Richter, G. Ẅober, and J. Wolf (2004).
Mostly harmless team description. In D. Polani, B. Browning, A. Bonarini, and K. Yoshida (Eds.),
RoboCup 2003: Robot Soccer World Cup VII, Volume 3020 ofLecture Notes in Computer Science.
Springer.

Steinbauer, G., J. Weber, and F. Wotawa (2005). From the real-world to its qualitative representation –
practical lessons learned. In R. B., H. M., and W. F. (Eds.),International Workshop on Qualitative
Reasoning, Graz, Austria, pp. 186–191.

Stolzenburg, F. and T. Arai (2003). From the specification ofmultiagent systems by statecharts to their
formal analysis by model checking: Towards safety-critical applications. In M. Schillo, M. Klusch,
J. P. M̈uller, and H. Tianfield (Eds.),Proceedings of the First German Conference on Multiagent
System Technologies (MATES-03), Volume 2831 ofLecture Notes in Computer Science, pp. 131–
143. Springer.

Stolzenburg, F., O. Obst, and J. Murray (2002). QualitativeVelocity and Ball Interception. In M. Jarke,
J. Koehler, and G. Lakemeyer (Eds.),KI 2002: Advances in Artificial Intelligence, Proceedings of
the Twenty-Fifth Annual German Conference on Artificial Intelligence, (KI-02), Volume 2479 of
Lecture Notes in Computer Science, pp. 283–298. Springer.

Stone, P. (2000).Layered Learning in Multiagent Systems: A Winning Approachto Robotic Soccer
(Intelligent Robotics and Autonomous Agents). MIT Press.

Strack, A. (2004). Robust self-localisation for mobile robots in the robocup domain. Diploma thesis,
Knowledge-based Systems Group, Computer Science V, RWTH Aachen, Aachen, Germany.

Strack, A., A. Ferrein, and G. Lakemeyer (2006). Laser-based localization with sparse landmarks. In
A. Bredenfeld, A. Jacoff, I. Noda, and Y. Takahashi (Eds.),RoboCup 2005: Robot Soccer World
Cup IX, Volume 4020 ofLecture Notes in Computer Science, pp. 569–576. Springer.

Stroupe, A., M. Martin, and T. Balch (2001). Distributed sensor fusion for object position estimation
by multi-robot systems. In IEEE (Ed.),Proceedings of the 2001 IEEE International Conference on
Robotics and Automation (ICRA-01). IEEE Computer Society Press.

Stulp, F., S. Gedikli, and M. Beetz (2004). Evaluating multi-agent robotic systems using ground truth. In
Proceedings of the Workshop on Methods and Technology for Empirical Evaluation of Multi-agent
Systems and Multi-robot Teams (MTEE-04). KI-04.

Sutton, R. and A. Barto (1998).Reinforcement Learning: An Introduction. MIT Press.

Sutton, R., D. Precup, and S. Singh (1999). Between MDPs and semi-MDPs: A framework for temporal
abstraction in reinforcement learning.Artificial Intelligence 112(1-2), 181–211.

Tate, A. (1977). Generating project networks. In R. Reddy (Ed.), Proceedings of the Fifth International
Joint Conference on Artificial Intelligence (IJCAI-77), pp. 888–893. William Kaufmann.

Thielscher, M. (1998). Introduction to the Fluent Calculus. Electronic Transactions on Artificial Intelli-
gence 2(3–4), 179–192.

Thielscher, M. (1999). From situation calculus to fluent calculus: state update axioms as a solution to
the inferential frame problem.Artificial Intelligence 111(1-2), 277–299.

Thielscher, M. (2000). Representing the knowledge of a robot. In A. Cohn, F. Giunchiglia, and B. Selman
(Eds.),Proceedings of the Seventh International Conference on Principles of Knowledge Represen-
tation and Reasoning (KR-00), pp. 109–120. Morgan Kaufmann.

Thielscher, M. (2001). The qualification problem: A solution to the problem of anomalous models.
Artificial Intelligence 131(1-2), 1–37.

BIBLIOGRAPHY 245

Thielscher, M. (2002a). Programming of reasoning and planning agents with FLUX. In D. Fensel,
F. Giunchiglia, D. McGuinness, and M.-A. Williams (Eds.),Proceedings of Eighth International
Conference on Principles of Knowledge Representation and Reasoning (KR-02). Morgan Kaufmann.

Thielscher, M. (2002b). Reasoning about actions with CHRs and finite domain constraints. In P. Stuckey
(Ed.),Proceedings of Eighteenth International Conference on Logic Programming (ICLP-02), Vol-
ume 2401 ofLecture Notes in Computer Science. Springer.

Thielscher, M. (2005). FLUX: A logic programming method forreasoning agents.Theory and Practice
of Logic Programming 5(4-5), 533–565.

Thrun, S. (2006). Winning the DARPA grand challenge: A robotrace through the mojave desert. In
B. Werner (Ed.),Proceedings of the Twenty-First IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE-06), pp. 11. IEEE Computer Society Press.

Thrun, S., W. Burgard, and D. Fox (2005).Probabilistic Robotics. MIT Press.

Thrun, S., D. Fox, W. Burgard, and F. Dellaert (2000). Robustmonte carlo localization for mobile robots.
Artificial Intelligence 128(1-2), 99–141.

Thurau, C., C. Bauckhage, and G. Sagerer (2004). Synthesizing movements for computer game charac-
ters. In C. E. Rasmussen, H. H. Bülthoff, B. Scḧolkopf, and M. A. Giese (Eds.),Proceedings of the
Twenty-Sixth DAGM Syposium on Pattern Recognition (DAGM-04), Volume 3175 ofLecture Notes
in Computer Science, pp. 179–186. Springer.

Tira-Thompson, E. (2004). Tekkotsu: A rapid development framework for robotics. Master’s thesis,
Robotics Institute, Carnegie Mellon University.

v. Waveren, J. (2001). The quake III arena bot. Master’s thesis, University of Technology Delft, Faculty
ITS, Delft.

Veloso, M., J. Carbonell, A. Ṕerez, D. Borrajo, E. Fink, and J. Blythe (1995). Integratingplanning and
learning: The PRODIGY architecture.Journal of Experimental and Theoretical Artificial Intelli-
gence 7(1), 81–120.

von Neumann, J. and O. Morgenstern (1947).The Theory of Games and Economic Behavior. Princeton
University Press.

Waldinger, R. (1977). Achieving several goals simultaneously. Machine Intelligence 8, 94–136.

Watkins, C. (1989).Learning from Delayed Rewards. Ph. D. thesis, King’s College, Cambridge.

Weld, D. S. (1994). An introduction to least commitment planning.AI Magazine 15(4), 27–61.

White, J. (1999). Telescript technology: Mobile agents. InMobility: processes, computers, and agents,
pp. 460–493. ACM Press/Addison-Wesley Publishing.

Wilkins, D. (1990). Can AI planners solve practical problems? Computational Intelligence 6(4), 232–
246.

WITAS (2007). http://www.ida.liu.se/ patdo/auttek/introduction/index.html. last visited January.

Wooldridge, M. (2002).An Introduction to MultiAgent Systems. John Wiley & Sons.

Wooldridge, M. and N. R. Jennings (1995). Intelligent agents: Theory and practice.Knowledge Engi-
neering Review 10(2), 115–152.

Ziegelmeyer, D. (2006). Decision-theoretic planning in the dynamic logic ES. Diploma thesis,
Knowledge-Based Systems Group, Computer Science Department, RWTH Aachen University.

Curriculum Vitae

Name Alexander Antoine Ferrein

Geburtsdatum 9. Dezember 1974

Geburtsort Hilden

Schulbildung
1981 – 1984 Dreik̈onigen Schule, Neuss
1984 – 1991 Quirinus Gymnasium, Neuss
1991 – 1994 Pascal-Gymnasium, Grevenbroich

1994 Abitur

Studium
1994 – 2001 Studium der Informatik an der RWTH Aachen

2001 Diplom

Tätigkeit
2001 – 2008 wissenschaftlicher Mitarbeiter am Lehr- und Forschungsgebiet

Informatik 5, Wissenbasierte Systeme RWTH Aachen

247

