Skip to main content
Log in

Cognitive Navigation

An Overview of Three Navigation Paradigms Leading to the Concept of an Affordance Hierarchy

  • Fachbeitrag
  • Published:
KI - Künstliche Intelligenz Aims and scope Submit manuscript

Abstract

In this paper we propose a navigation framework for flexible off-road navigation that allows to use different navigation paradigms depending on the given situation. We first classify existing navigation approaches into, global navigation, reactive navigation and guided navigation and then show how a unified view leads to a very flexible navigation architecture that we call affordance hierarchy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. See the video “Lola, der humanoide Laufroboter” at http://www.youtube.com/watch?v=qjBLT1eNkvk.

  2. http://en.wikipedia.org/wiki/Ernst_Dickmanns.

  3. Here, a “path” is a path through the affordance hierarchy and not a path in the world.

References

  1. Behnke S, Frötschl B, Rojas R, Ackers P, Lindstrot W, Melo MD, Schebesch A, Simon M, Sprengel M, Tenchio O (2000) Using hierarchical dynamical systems to control reactive behavior. In: RoboCup-99: robot soccer world cup III. Springer, London, pp 186–195

    Chapter  Google Scholar 

  2. Brooks R (1986) A robust layered control system for a mobile robot. IEEE J Robot Autom 2(1):14–23

    Article  Google Scholar 

  3. Brooks RA (1991) Intelligence without reason. Tech rep, Massachusetts Institute of Technology

  4. Buschmann T, Lohmeier S, Schwienbacher M, Favot V, Ulbrich H, von Hundelshausen F, Rohe G, Wuensche HJ (2010) Walking in unknown environments—a step towards more autonomy. In: International conference on humanoid robots, Nashville, USA

    Google Scholar 

  5. Dellaert F, Fox D, Burgard W, Thrun S (1999) Monte Carlo localization for mobile robots. In: Proceedings of the IEEE international conference on robotics and automation (ICRA)

    Google Scholar 

  6. Dickmanns ED (1994) The 4d-approach to dynamic machine vision. In: Proceedings of the 33rd IEEE conference on decision and control, vol 4, pp 3770–3775

    Google Scholar 

  7. Dickmanns ED (2004) Dynamic vision-based intelligence. AI Mag 25(2):10–30

    Google Scholar 

  8. Dickmanns ED, Mysliwetz BD (1992) Recursive 3-d road and relative ego-state recognition. IEEE Trans Pattern Anal Mach Intell 14:199–213

    Article  Google Scholar 

  9. Dissanayake MWMG, Newman P, Clark S, Durrant-Whyte HF, Csorba M (2001) A solution to the simultaneous localization and map building (slam) problem. IEEE Trans Robot Autom 17:229–241

    Article  Google Scholar 

  10. Eliazar A, Parr R (2004) Dp-slam 2.0. In: Robotics and automation, 2004. 2004 IEEE international conference on proceedings ICRA ’04, vol 2, pp 1314–1320

    Google Scholar 

  11. Gibson JJ (1977) The theory of affordances. Erlbaum, Hillsdale

    Google Scholar 

  12. Hart P, Nilsson N, Raphael B (1968) A formal basis for the heuristic determination of minimum cost paths. IEEE Trans Syst Sci Cybern 4(2):100–107

    Article  Google Scholar 

  13. Himmelsbach M, von Hundelshausen F, Wünsche HJ (2008) LIDAR-based perception for offroad navigation. In: Stiller C, Maurer M (eds) Proceedings of FAS 2008, Fahrerassistenzsysteme workshop 2008, Walting, Germany

    Google Scholar 

  14. Himmelsbach M, von Hundelshausen F, Luettel T, Manz M, Mueller A, Schneider S, Wuensche HJ (2009) Team MuCAR-3 at C-ELROB 2009. In: Proceedings of 1st workshop on field robotics, civilian European land robot trial 2009, University of Oulu, Oulu, Finland. ISBN:978-951-42-9176-0

    Google Scholar 

  15. Himmelsbach M, Luettel T, Hecker F, von Hundelshausen F, Wuensche HJ (2010) Autonomous off-road navigation for MuCAR-3. Künstl Intell. doi:10.1007/s13218-011-0091-1

    Google Scholar 

  16. Jaeger H, Christaller T (1998) Dual dynamics: designing behavior systems for autonomous robots. Artif. Life Robot. 2(3):108–112

    Article  Google Scholar 

  17. Kammel S, Ziegler J, Pitzer B, Werling M, Gindele T, Jagzent D, Schröder J, Thuy M, Goebl M, von Hundelshausen F, Pink O, Frese C, Stiller C (2008) Team annieway’s autonomous system for the DARPA urban challenge 2007. Int J Field Robot Res

  18. Luettel T, Himmelsbach M, von Hundelshausen F, Manz M, Mueller A, Wuensche HJ (2009) Autonomous offroad navigation under poor GPS conditions. In: Proceedings of 3rd workshop on planning, perception and navigation for intelligent vehicles (PPNIV), IEEE/RSJ international conference on intelligent robots and systems, St Louis, MO, USA

    Google Scholar 

  19. Möller R, Krzykawski M, Gerstmayr L (2010) Three 2d-warping schemes for visual robot navigation. Auton Robots

  20. Pellkofer M (2003) Verhaltensentscheidung für autonome Fahrzeuge mit Blickrichtungssteuerung. Dissertation, Universität der Bundeswehr München

  21. Proetzsch M, Luksch T, Berns K (2010) Development of complex robotic systems using the behavior-based control architecture ib2c. Robot Auton Syst 58(1):46–67

    Article  Google Scholar 

  22. Rusinkiewicz S, Levoy M (2001) Efficient variants of the icp algorithm. In: Proceedings of the third intl conf on 3D digital imaging and modeling, pp 145–152

    Chapter  Google Scholar 

  23. Schleicher D, Bergasa LM, Ocaña M, Barea R, Guillén MEL (2007) Real-time stereo visual slam in large-scale environments based on sift fingerprints. In: Moreno-Díaz R, Pichler F, Quesada-Arencibia A (eds) EUROCAST. Lecture notes in computer science, vol 4739. Springer, Berlin, pp 684–691

    Google Scholar 

  24. Strasdat H, Montiel JMM, Davison A (2010) Scale drift-aware large scale monocular slam. In: Proceedings of robotics: science and systems, Zaragoza, Spain

    Google Scholar 

  25. Voemir Kunchev Lakhmi Jain VI, Finn A (2006) Path planning and obstacle avoidance for autonomous mobile robots: a review. Lecture notes in computer science, vol 4252. Springer, Berlin

    Google Scholar 

  26. von Hundelshausen F, Himmelsbach M, Hecker F, Mueller A, Wuensche HJ (2008) Driving with tentacles: integral structures for sensing and motion. J Field Robot 25(9):640–673

    Article  MATH  Google Scholar 

  27. Werling M, Gröll L, Bretthauer G (2010) Invariant trajectory tracking with a full-size autonomous road vehicle. Trans Robot 26(4):758–765

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix von Hundelshausen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Hundelshausen, F., Luettel, T. & Wuensche, HJ. Cognitive Navigation. Künstl Intell 25, 125–132 (2011). https://doi.org/10.1007/s13218-011-0092-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13218-011-0092-0

Keywords

Navigation