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Abstract – Reservoir Computing
with Output Feedback

René Felix Reinhart

A dynamical system approach to forward and inverse modeling is proposed. Forward and inverse
models are trained in associative recurrent neural networks that are based on non-linear random
projections. Feedback of estimated outputs into such reservoir networks is a key ingredient in
the context of bidirectional association but entails the problem of error amplification. Robust
training of reservoir networks with output feedback is achieved by a novel one-shot learning
and regularization method for input-driven recurrent neural networks. It is shown that output
feedback enables the implementation of ambiguous inverse models by means of multi-stable dy-
namics. The proposed methodology is applied to movement generation of robotic manipulators
in a feedforward-feedback control framework.

Keywords: forward and inverse models, bidirectional association, recurrent neural networks,
output feedback dynamics, regularization, stability
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Chapter 1

Introduction

Association is a key principle of neural processing [1, 2, 3]. An associative connection between
two entities is naturally bidirectional, and, as a process, denotes the recall of one entity from
the other. Many connectionist models of associative memory have been developed [4, 5, 6, 7].
Despite their ability to learn from examples and their neuroscientific motivation, early compu-
tational models of associative memory have rather limited capabilities: Hopfield-type networks
[4] can associate only a discrete number of patterns with each other and fail to generalize to
continuous mappings. Then, associative computation remains a neural model of content ad-
dressable memory. In the context of bidirectional association, another challenge arises that
is rarely discussed but important to the subject: If the forward relation is many-to-one, the
reverse relation is ambiguous, i.e. one-to-many. In terms of continuous mappings, the forward
mapping is not invertible.

The case of ambiguous inverse models is a common problem in many application areas
ranging from control engineering to computer vision. For instance, recognizing objects and
their spatial orientation is an one-to-many mapping due to loss of information when three-
dimensional scenes are projected onto a two-dimensional retina. Kersten therefore coined the
term ”inverse graphics” for object recognition [8]1. Hinton also emphasized the need for both,
internal forward and inverse models, in [10] where he proposed “to recognize shapes, first learn
to generate images”. In linguistics and functional neuroanatomy of language, it has been stated
that speech recognition is the inverse process of speech production [11, 12]: The listener es-
timates configurations of the vocal tract from auditory input, which is an ambiguous inverse
relation. The requirement of solving forward and inverse problems is even more prominent in
motor learning. It has been hypothesized that paired forward and inverse models are crucial for
skilled movement generation [13]. In particular, human reaching performance in the absence
of visual feedback and also delayed proprioceptive feedback strongly indicate the presence of
internal forward and inverse models in the brain [14]. Redundancy of the movement apparatus
further gains ambiguity of the inverse model. The ambiguity of one-to-many relations states a
main problem in these contexts.

In principle, the problem of ambiguity can be approached following one of two paradigms:
Either, ambiguous data samples are discarded and learning is restricted to a single solution
[9, 15, 16, 17]. Or, ambiguity is represented by a model such that multiple solutions to the
inverse problem coexist [18, 19, 20, 21]. On the one hand, restricting the inverse model to a
single solution alters the original one-to-many relation to a simpler one-to-one mapping which
can be learned with classical feed-forward networks. On the other hand, this restriction renders
the inverse model incomplete in the sense that not all possible solutions are captured by the
model. The restricted modeling of a single solution only is often not appropriate. For instance,

1Even earlier, Poggio et al. denoted early vision to be “inverse optics“ [9].
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2 Introduction

consider inverse graphics where modeling of a single solution rejects possibly correct solutions.

Fig. 1.1: The Necker cube
admits ambiguous interpre-
tation of its spatial configu-
ration.

The multiplicity of the inverse relation adds flexibility to a
system which is often more meaningful than apriori selection of
a single response. However, representing one-to-many relations
entails additional problems like the selection of a particular solu-
tion during system exploitation. The commitment to a particular
solution out of many, i.e. ambiguity resolution, is often accom-
plished by additional circuitry [18, 13]. A more natural approach
to ambiguity resolution is to utilize additional information that
is integrated over time. For example, consider following the mo-
tion of an object for a while to disentangle if it is moving towards
or away from you. An internal representation then “stands in“
[14] for the missing information from the sensory input which has
been hypothesized to be a minimal requirement for a system to
be cognitive. A simple example for the resolution of ambiguity
by an internal representation is the Necker cube (see Fig. 1.1). One perceives either one face
to the front or the other depending on which information the perceiver adds internally to the
same sensory stimulus. Essentially, the combination of forward and inverse models, memory
and learning by means of bidirectional association constitutes a key ingredient of cognition.

In this thesis, the associative principle is revived by an adaptive dynamical system approach
that facilitates bidirectional and continuous association of ambiguous mappings. I combine and
extend previous ideas to efficient training of connectionist models proposed in [22] and [23, 24]
to achieve robust learning of bidirectional associative models. Inputs and outputs are treated
as parts of a larger recurrent neural network with a hidden layer. Continuous association is
modeled as an input-driven process, i.e. the system’s representation is continuously biased by
external inputs. Inputs or outputs are driven on demand in order to approximate the forward or
inverse relation. The network dynamically inserts estimated values for the unspecified network
parts in a recursive feedback loop. These feedback dynamics of estimated outputs can be multi-
stable and thereby represent one-to-many relations. I formalize the concept of feeding back
estimated outputs under the notion of output feedback dynamics. This concept unifies the
ideas applied in a range of connectionist models, e.g. feed-forward networks with additional
recurrent loops [25, 26, 20, 27, 28], fully recurrent neural networks [29] and particular flavors
thereof [30, 22, 31, 23]. Ambiguity resolution by output feedback dynamics is based on the
current system state that acts as short-term memory and integrates the internal representation
over time.

An early and conceptually similar approach dates back to Barhen et al. [29]. They proposed
an attractor-based scheme for learning inverse kinematics of redundant robots. In the outset
of their method, multiple solutions of the inverse kinematics are represented by multi-stable
attractor dynamics. Learning adapts all weights to imprint the training data into such attrac-
tor dynamics. The approach therefore suffers all the standard problems with complexity and
efficiency of recurrent network training [32], and – while conceptually elegant – has not been
demonstrated to be usable in practice for real robot applications.

Another related approach to represent multi-valued functions in a dynamical network has
been proposed in [20]. Tomikawa and Nakayama utilize a combined representation of inputs
and outputs in the hidden layer of a feed-forward network in order to resolve the ambiguity
of multi-valued functions for learning. During system exploitation, estimated outputs are fed
back iteratively into the network very similar to the model that is proposed in this thesis. How-
ever, additional constraints, in particular an integral condition, added to the learning objective
renders training inefficient despite the feed-forward network structure. Moreover, weights of
the additional constraints have to be balanced precisely [20], which makes learning sensitive to
parameter configurations, and the model was only applied to toy examples.
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I follow another thread of research that considers non-linear random projections networks.
A basic variant of these networks was introduced under the notion of extreme learning ma-
chines [33]. Their spatio-temporal siblings comprise additionally random feedback connections
between hidden processing units which provide a “rich reservoir” of dynamics [34]. These so
called reservoir computing networks support efficient learning and obviate tuning of the inter-
nal representation. Bidirectional association in these reservoir networks is based on training a
perceptron-like read-out layer which is recurrently connected to the reservoir. Training of the
read-out connections imprints desired relations between inputs and outputs into the otherwise
untrained network. In this thesis, associative reservoir computing networks with output feed-
back dynamics are trained to model forward and – possibly ambiguous – inverse relations. The
success of the proposed approach requires the integration of learning and input-driven dynam-
ical systems, which is particularly challenging with respect to stability of the output feedback
dynamics. Feedback of erroneous outputs into the network can lead to error amplification which
is a serious problem. Although output feedback dynamics and the associated stability problem
occurs also in related connectionist models [25, 26, 20, 29, 27], stability of the output feedback
dynamics is rarely discussed, e.g. in [35]. I formalize the concept of output feedback dynamics
and the connected problem of output feedback stability in this thesis.

In the context of bidirectional association, another problem arises. Externally driven net-
work parts change depending on which relation is currently queried, e.g. driving inputs while
estimating outputs or vice versa. It is important to balance the contribution of inputs and out-
puts to the network such that the network state can equally well be driven by inputs or outputs.
Otherwise, either the forward or inverse relation is modeled primarily and bidirectionality of
the model is compromised.

I approach these crucial issues in the context of reservoir computing with output feedback
in three steps. I first formalize the concept of output feedback dynamics and propose a tai-
lored output feedback stability criterion. In a second step, I show that regularization of the
learning and the internal representation mitigates the stability issue to a great extent. While
regularization of the learning has been previously shown to support stability [36, 35], regular-
ization is extended to the internal representation in this thesis. The main idea of this reservoir
regularization is to implement desired network dynamics with small weights which reduces the
gain of the system. For this purpose, I propose an efficient one shot learning method for input-
driven recurrent neural networks that combines ideas from reservoir computing and associative
memories. The reservoir regularization method increases the robustness of learning success by
stabilizing output feedback dynamics. With the same methodology, also the problem of balanc-
ing contributions to the hidden layer is resolved in a single step. Stability of the output feedback
dynamics and the balancing of contributions are necessary prerequisites for the application of
reservoir networks with output feedback to bidirectional association.

With these concepts and methods at hand, I tackle the problem of ambiguity in a third
step. I first show that ambiguity can be resolved by output feedback dynamics. I then adopt
the developed one-shot learning methodology to shape multi-stable output feedback dynamics
of the recurrent network model. Multi-stable output feedback dynamics represent one-to-many
relations and disentangle ambiguous sensory stimuli by means of a short-term memory. I eval-
uate properties of the multi-stable attractor dynamics and demonstrate their application in
different scenarios.

Finally, the gathered techniques are applied to movement generation, which is a salient
example for forward and inverse modeling in the context of motor learning. In robotic experi-
ments, I show that the proposed model for bidirectional association performs smooth movement
generation in a feedforward-feedback control loop. The presented results emphasize the com-
putational power of bidirectional association with dynamical systems. This thesis essentially
contributes to the robust and efficient learning of bidirectional and ambiguous relations in dy-
namical connectionist models.



Chapter 2

Associative models, inverse problems
and ambiguity

In this chapter, mathematical prerequisites concerning association, continuous mappings and
inverse problems are introduced. A brief review of associative models is given along the discus-
sion and the methodology developed in this thesis is related to state-of-the-art approaches. At
the end of this chapter, Tab. 2.1 gives a compact overview of the discussed associative methods.

2.1 Bidirectional association

Consider a set of data pairs {(xn,yn)}n=1,...,N , where x ∈ RD and y ∈ RO. Association denotes
the process of recalling the corresponding output pattern yn given a probably corrupted input
pattern xn + ν [37, 7]. Association of patterns with themselves, i.e. xn ≡ yn, is called auto-
association and hetero-association otherwise. More formally, association is a relation

f : X ⊂ RD → Y ⊂ RO

with a finite domain, |X| <∞ (see Fig. 2.2 (left)). Training samples (xn,yn) strictly define the
associative relation f only for a finite set. In the recalling phase, inputs are generally drawn
from the entire input space.

Standard Hebbian, correlation-based or pseudo-inverse learning can be employed to form
linear transformations from the input space to the output space such that output patterns can
be “retained” from an input key by a simple matrix multiplication [38, 7, 37]. These associative
memory (first row in Tab. 2.1) models store the output data in their model parameters in
a distributed fashion [38, 37, 7]: The input data and the fitted model are sufficient to recall
yn from xn for n = 1, . . . , N . In case of correlation-based learning and orthogonal input
patterns, all output patterns can be correctly recalled [38, 7]. For pseudo-inverse learning,
linear independence of the input patterns is sufficient to achieve perfect recall [37].

The scheme of associative recall has been generalized to non-linear and dynamic associative
memory models. The underlying principle of dynamical associative memories, such as the auto-
associative Hopfield network [4] and its hetero-associative generalization [5], is the convergence
of feedback dynamics to a fixed-point depending on the initial condition. Learning is supposed
to shape the dynamics such that training patterns reside in the center of attractor basins.
Iterating the dynamics from any initial condition in the attractor basin of a training pattern
results in the recall of this pattern. I.e. dynamical associative memories robustly recall stored
patterns from noisy keys which is often emphasized to be a desirable feature [37, 4, 5]. However,
this paradigm drastically affects the kind of computation that can be accomplished: Association
of discrete patterns enables robust recall in the presence of noise. But the gained robustness of

4



Forward and inverse models 5

Fig. 2.2: Association: Mapping a finite domain to its codomain (left). Bidirectional association
additionally maps the finite codomain back to its domain. Injective mapping shown.
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Fig. 2.1: Associative memories
are piecewise constant, discontin-
uous functions.

recalling a finite set of patterns limits generalization of net-
work responses to novel inputs. Through the glasses of func-
tion approximation, these associative models implement a
piecewise constant, “quantized” [39] function with disconti-
nuities at the borders between attractor basins (see Fig. 2.1).
Discontinuities are typically due to saddle nodes of the dy-
namics, i.e. instable fixed-points, at the border of two at-
tractor basins (circles in Fig. 2.1). The associative memory
function f is queried at novel inputs and recalls the associ-
ated training patterns in the output space. Generalization
by means of inter- or extrapolation is therefore restricted.
Typical applications of discrete association are content ad-
dressable memories and pattern recognition. Also, sequence
generation can be implemented by auto-association of pat-
terns at successive time steps, i.e. x(k+1) = f(x(k)) [37, 4, 5].

Given a set of data pairs {(xn,yn)}n=1,...,N , there is apriori no meaningful difference in
associating inputs from outputs or vice versa. Kosko therefore proposed to bidirectionally
associate “inputs“ with “outputs” [5]. His bidirectional associative memory (BAM, second row
in Tab. 2.1) subsumes the Hopfield network as a special case and can be further generalized
to multi-directional associative memories [40, 41]. The bidirectional association of finite sets is
illustrated in Fig. 2.2 (right).

Most of the discussed associative memory models can be generalized to the case of multi-
directional association. An early approach to multi-directional association, the Associatron [42]
introduced by Nakano in 1972, comprises an internal representation in addition to input and
outputs. Nakano formulated the concept of associative memories with multiple “neural areas”
[42] to increase the memory capacity and resolve the problem of cross-talk between patterns.
In this thesis, the coupling of multiple representations by an internal representation is also
pursued. I focus on the case of input, internal and output “fields“ only, which is sufficient for
the discussion and does not impair the generality of the approach.

2.2 Forward and inverse models

In many cases, there is a continuous regularity between inputs and outputs which shall be
extracted by learning of a parameterized model. Continuity means that a small change in input
space corresponds to a small change in the output space, i.e. f(xi) ≈ f(xj) if xi ≈ xj (see
Fig. 2.4). Approximating a continuous mapping f : X → Y with |X| = ∞ by a parameterized
model then enables to generalize the relation of inputs and outputs in the data to novel inputs
that are not part of the training data.

Similar to the generalization of associative memories to bidirectional association, modeling
the forward mapping f : x 7→ y is not different from modeling the inverse mapping g : y 7→ x
under certain conditions. Formally, g is a right inverse of f if (f ◦ g)(y) = y ∀y ∈ Y . Note
that a right inverse g may map outputs y to any x with f(x) = y. That is, the right inverse
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Fig. 2.4: Continuous and invertible mapping mapping (left). Bidirectional mapping with multi-
valued and continuous inverse (right).

is not necessarily unique. The inverse is unique if g is also the left inverse of f such that
(g ◦ f)(x) = x ∀x ∈ X holds for the reverse composition. It is useful to distinguish different
properties of the forward mapping in order to determine uniqueness or ambiguity of the inverse:
If f is a homeomorphism, i.e. f is a continuous and bijective mapping, the forward mapping is
invertible. Then, the forward and inverse mappings are both unique and continuous (sometimes
referred to as one-to-one, see Fig. 2.4 (left)).

branch
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u
t
 
x

Fig. 2.3: Forward and inverse
function with multiple solution
branches.

In many cases, however, the forward mapping is not in-
jective and thus not invertible. This is always the case if
there exist several causes that result in the same effect, e.g.
several joint angles can result in the same end effector posi-
tion. Then, the inverse relation is ambiguous (also referred
to as one-to-many). Formally, there exist several functions
gb with f(gb(y)) = y that are defined on a subset of the
codomain of f and are called solution branches. Typically,
there is a principle branch g that is defined on the entire
codomain of f (see Fig. 2.3). Note that continuity may apply
to each of the solution branches setting up multiple smooth
solution manifolds (see Fig. 2.4 (right)). Solving this in-
verse problem, i.e. providing one of many suitable inputs to
obtain desired outputs, is important in various application
domains ranging from control engineering [15] to pattern
recognition [9, 8].

From a set-theoretic viewpoint, the inverse of a non-injective function is a multi-valued
function f : y 7→ {xb}b=1,...,B. In Fig. 2.5 (left) the multi-valued relation between outputs and
inputs that stems from a non-injective forward model is illustrated using sets. Typically, the
set of solutions for all outputs y is non-convex unless the forward mapping is not constant for a
range of inputs x. In other words, the set of solutions |{xb}| <∞ is discrete and thus forms a
non-convex subset in the continuous input space X. Constant forward mappings have infinitely
many inverse solutions. That is, the multi-valued inverse function has an infinite codomain
(|{xb}| =∞). This set of solution can in addition be non-convex, e.g. if two spatially separated
regions of the input space map to the same output value. In general, there are complex relations
between sets in both spaces, including overlaps and inclusions. A fork of branches, for instance,
translates into ”adjacent” sets, because the point of bifurcation belongs to both branches (or to
the principal branch only depending on the definition). Fig. 2.5 (right) and Fig. 2.3 finally show
that cases exist where both, the forward and the inverse relation can be ambiguous. Note that
noisy data in practice compromise the uniqueness of the forward mapping: Probing outputs for
the same input several times yields to various observations due to noise and thus the forward
mapping is, strictly speaking, not one-to-one even though the function underlying the data
generation process is an one-to-one mapping.

Although there is apriori no preferred direction of mapping “inputs“ to “outputs” or vice
versa, the process underlying the generation of inputs and outputs is often causal. For instance,
consider the causal relationship between joint angles and the resulting end effector position
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Fig. 2.5: Multi-valued inverse relation (left): Multiple values of the inverse are due to a non-
injective forward mapping. Also both, the forward and inverse relation, can be multi-valued
(right). Ambiguous relations are indicated by dashed arrows.

of a manipulator. Causality in physical systems induces directionality of the relation between
inputs and outputs. Then, an approximation of f is typically referred to as forward model which
maps causes to effects. Modeling g is denoted as inverse modeling accordingly. In this thesis,
adaptive bidirectional mappings by means of combined forward and inverse models are the core
application theme.

The terminology above also generalizes to the case of time-series data. Temporally ordered
data samples, i.e. time-series, are indicated by sample indices k in parentheses, x(k). In
this thesis, smooth trajectories, i.e. x(k+1) ≈ x(k), and a continuous forward mapping are
typically considered. For instance, consider data to be collected along the trajectories shown in
Fig. 2.4. The mapping of sequences x(k) to y(k) is generally denoted by sequence transduction.
Analogously, bidirectional sequence transduction is the combined forward and inverse mapping
of time-series.

2.3 Inverse problems and ambiguity resolution

In case of a non-injective relation between inputs and outputs, there is no unique solution
to the inverse problem. For instance, in the context of control engineering multiple system
inputs can cause the same system state and thus there are multiple solution branches to the
inverse problem. How can the problem of ambiguity be tackled? How can multiple solutions be
represented, and how to select a solution, i.e. how to resolve ambiguities?

From a machine learning perspective, multiple solutions to an inverse problem constitute a
serious problem for traditional feed-forward function approximators. Consider ambiguous data
pairs (xn,yn) and (xm,ym) with xn = xm and yn 6= ym for n 6= m. Ambiguous data pairs
with the same or similar input but distinct outputs result in averaged approximations: Any
feed-forward model is a function f : x 7→ y that maps inputs to unique outputs. Parameter
estimation from ambiguous data pairs fails due to the non-convexity of many inverse problems,
i.e. typically the least squares solution 1

2(yn + ym) does not necessarily reside in the non-
convex solution set (compare Fig. 2.3 and the discussion in [15, 26]). Note that the problem is
due to the fact that the input representation is the same for both outputs and thus does not
allow to discriminate between solutions. Traditional feed-forward architectures can therefore
not represent multiple solutions to a mapping without additional knowledge.

In the following, main learning approaches that tackle the inverse problem are discussed.

2.3.1 Restricted inverse modeling

The first approach restricts modeling to a single solution by assuming that the training data
comprises samples of only a particular, e.g. the principle, solution branch of the inverse problem.
This restriction converts the original ambiguous problem into a unique mapping task. Solving
the inverse problem is shifted to the data collection process. It is, however, not trivial to decide
if data stems from a single solution to the inverse problem or how to obtain data for a single
solution only. This problem has been approached from different directions.
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In [15], a distal teacher formulation for a composite setup comprising a serial combination
of an inverse and forward model has been proposed. Training the inverse model is based on
gradient descent with respect to the performance error mediated through the forward model.
The performance error f(g(y))−y is evaluated in target space, e.g. y is the desired end effector
position of a robot arm. Thereby, a particular solution to the inverse problem is found and
the non-convexity problem is circumvented (see [15] for a decent discussion). Selection of a
particular solution depends on initial conditions, exploration of control commands and can be
biased by introducing additional costs to the error function.

In [43, 44], the non-convexity problem is solved by utilizing a strong bias of the model, i.e. a
topological arrangement of neurons in a self-organizing map, which results in selection of a single
solution branch of the inverse problem. The original variant of self-organizing maps (SOM, third
row in Tab. 2.1) is closely related to vector quantization and the local representation of inputs
in the model restricts its generalization abilities. This drawback is cured by the “continuous
generalization” of the self-organizing map [16]. The parameterized self-organizing map (PSOM,
fourth row in Tab. 2.1) approximates a continuous manifold by utilizing basis functions that
are parameterized by the underlying grid of local prototypes. A review of self-organizing maps
and in particular their application to modeling inverse problems can be found in [39].

A goal-directed inverse modeling approach is taken in [17] which solves the non-convexity
problem during control space exploration. “Goal babbling“ [17] utilizes the structure of the goal-
directed exploration process to weight collected data samples in order to resolve ambiguities of
the inverse problem. Also this approach alleviates the non-convexity problem for the learner,
which therefore can be any feed-forward function approximator.

Strong biases either of the model or by means of constrained learning [9, 26, 45] are typical
approaches to cope with ill-posed inverse problems. However, a main drawback of restricting the
inverse model to a single solution branch is that the inverse model is not complete. That is, the
inverse model provides only a subset of the multi-valued inverse function. Moreover, the selected
solution is either depending on initial conditions or is biased by incorporating prior knowledge.

2.3.2 Combining multiple experts

A second approach to deal with ambiguous inverse problems is to model each solution manifold
separately, i.e. learning a set of expert models [18]. Solution selection during system exploitation
then reduces to selection of an expert model that models a specific branch of the inverse.

This modular approach can be understood as generalization of the previous approach to
select a specific solution to the inverse problem per model and hence inherits some of its diffi-
culties: It is difficult to assign data samples to models such that each expert is trained with data
from a single solution branch [18]. It is also apriori unclear how many expert models are needed
to model the complete inverse problem, i.e. how many solution manifolds exist. And finally,
an external gating or responsibility model has to be trained that selects an expert depending
on the current control task [18, 13, 46, 47]. Though arbitrary criteria could be implemented
here independently of the inverse models, it is an additional burden to design such a gating.
Moreover, a discrete set of experts can not model a continuous set of solutions, which occurs
always if the forward mapping is constant in a region of the input space.

A variant of the expert model approach represents multiple solutions in a single model with
additional inputs [21]. The additional inputs parameterize the learner’s representation, alleviate
the non-convexity problem during learning, and serve as selection mechanism during exploitation
[48, 15]. This approach inherits the same drawbacks as the expert modeling approach and also
requires supervised assignment of data pairs to particular input parameter configurations.
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2.3.3 Recover invertibility by augmenting the inverse problem

Another approach tackles ambiguous inverse problems by adding augmented variables to the
input data which resolve the ambiguity. The augmented variables act as additional constraints
that select/discard particular solutions in the set of inverse solution branches. This approach is
related to the previously discussed approach to parameterize the inverse model for the selection
of sub-models. It is nevertheless useful to distinguish parameterizing a model in a rather binary
fashion to select expert models from introducing augmented variables that resolve ambiguity by
means of intrinsic properties of the inverse function. In the latter case, ambiguities are resolved
by means of additional, typically domain-specific, constraints to the inverse model.

For instance, the model presented in a series of papers [49, 50, 51] implements feedback
dynamics based on the mean value of multiple computations (MMC, fifth row in Tab. 2.1). In
MMC networks, redundant sets of equations are provided by the designer which represent partial
aspects of the modeled system. Ambiguity is resolved by augmenting the core relation between
inputs and outputs with additional equations that, for example, express some constraints. Dur-
ing network exploitation, estimated variables are averaged over all redundant equations and
then again fed back into the equations. These MMC dynamics relax to a particular solution
even if the input does not fully constrain the solution, i.e. the approach copes with infinitely
many solutions to the inverse problem.

In [16], a parameterized self-organized map was trained on augmented data which then al-
lowed to resolve the ambiguous inverse kinematics of a simulated three link, four degrees of
freedom robot arm. The augmented variables express specific constraints of the inverse model,
e.g. coupling between joint angles or the elevation of a particular link, that can be weighted
flexibly during model exploitation. In an expert model approach, this is not possible with-
out knowledge about the particular properties of each expert. However, defining augmented
variables requires even more complex domain knowledge of the inverse problem than assigning
solution branches to expert models. Also, the selection of a particular solution during exploita-
tion by means of selecting values for the augmented variables is left to additional mechanisms
in this scheme.

2.3.4 Recover invertibility by incorporating temporal context

A fourth approach exploits temporal context to decide between ambiguous control schemes. For
instance, originally instantaneous inverse problems are turned into a spatio-temporal mapping.
But there are also inverse problems that naturally reside in the temporal domain. The resolution
of ambiguities is then based on the history of inputs, i.e. memory. Memory in connectionist
models is typically modeled by time delay lines [25] or transient-based short-term memories [52].
This scheme of ambiguity resolution is only meaningful in case of temporally correlated data and
can be understood as temporal variant of the augmented variables approach. In deed, traditional
neural time-series classification approaches consider learning as internal representation pursuit
[25] and face the problem of typically ambiguous, non-discriminative input samples with x(k1) =
x(k2) but y(k1) 6= y(k2) for some k1 6= k2.

In this thesis, I also consider ambiguous time-series data pairs but which stem from a static
relation between inputs and outputs. That means the data is temporally ordered but the un-
derlying relation is instantaneous and requires no memory of the history: y(k) = f(x(k)). For
instance, let x(k) be the joint angle configuration of a manipulator and y(k) the end effector
position. Then, using augmented variables that encode the temporal history has the drawback
that different temporal dynamics of the inputs, i.e. speeds, disturb the spatio-temporal rep-
resentation and thus can deteriorate the inverse model. Normalization of the data, e.g. by
temporal warping of input sequences, or learning from rich data sets comprising several se-
quences with exemplary speeds becomes necessary and introduces additional costs. I show in
Chapter 7 that an attractor-based approach to memory circumvents these problems.
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2.3.5 Modeling inverse problems with probabilistic methods

Probabilistic methods have been applied to solve ambiguous inverse problems, e.g. [53]. Ba-
sically, the non-convexity problem is approached by modeling the joint distribution P (x,y)
of inputs and outputs. Then, given a particular input x, the conditional distribution P (y|x)
provides a possibly multi-modal distribution of outputs. Also direct models of the conditional
density P (y|x) can be learned which circumvents modeling the joint distribution, e.g. [54].

However, density estimation in high-dimensional spaces is notoriously hard and requires
many training samples which are typically costly to collect. Moreover, the problem of explicitly
selecting a particular output, i.e. a solution, from a multi-modal distribution remains. A
maximum a-posteriori estimate is a good choice in general, but the value that maximizes the
posterior could flip between two modes for small changes of the input. Also in the case of
infinitely many solutions that cause a plateau of the posterior distribution, it remains an open
question how to select a particular solution.

2.3.6 Dynamical system approach to inverse modeling

In this thesis, another approach is pursued that combines a joint representation of inputs and
outputs with a dynamical ambiguity resolution scheme. The non-convexity of ambiguous in-
verse problems is tackled by utilizing a joint representation h(x,y) of inputs and outputs in a
connectionist model. I.e. an internal representation h(x,y) is formed that is uniquely defined
by x and y (compare Fig. 2.7 (left)). Learning a mapping from h(x,y) to either x or y is then
unique and does not suffer from the non-convexity problem because h(xn,yn) 6= h(xm,ym) also
if xn = xm and only yn 6= ym for n 6= m.
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Fig. 2.6: Dynamical system approach to in-
verse modeling: Multiple attractor mani-
folds with typical bifurcations.

During network exploitation, typically only the
input x is available and an appropriate output y
shall be estimated by the model. Thus, the joint
representation can not be calculated directly. The
idea is to iteratively approach the joint represen-
tation h(x,y) given x only by means of an input-
driven, dynamical process using the current esti-
mate of y(k) at iteration step k. Based on the cur-
rent internal representation h(x,y(k)), the output
y(k+1) at the next time step is computed which
is then recursively fed back into the model (com-
pare Fig. 2.7 (right)). Learning in this framework
reduces to assuring that y(k+1) is closer to the de-
sired output y than y(k). Then, these output feed-
back dynamics give a slightly improved estimate
y(k+1) and eventually converge to y. That is, the
output y is associatively recalled from input x by
approaching an attractor of the possibly multi-stable output feedback dynamics. The driving
input x continuously parameterizes the points of attraction of the output feedback dynamics.
This enables the approximation of continuous mappings by means of parameterized attractor
manifolds (see Fig. 2.6) which is fundamentally different from the piece-wise constant functions
approximated by traditional associative memories.

Output feedback dynamics can be multi-stable [20, 31, 55], i.e. have several points of
attraction for each input x. Solution branches of an ambiguous inverse problem can therefore
be represented by multiple attractor manifolds (see Fig. 2.6). Fig. 2.6 further shows that
solution branches are separated by saddle-nodes of the output feedback dynamics (provided
that the output is a smooth function of the internal representation). Solution branches can
smoothly merge/fork which spells out as a smooth bifurcation from uni- to bi-stable dynamics
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Fig. 2.7: A combined representation h(x,y) of inputs and outputs resolves ambiguities (left).
Dynamical recall of outputs (right): The representation is driven by external inputs x while
iteration of output feedback dynamics recovers the output.

in the dynamical inverse model. Or, abrupt bifurcations can occur if the border of a solution
branch is exceeded and this branch does not merge with another branch (see Fig. 2.6). In
terms of set theory, a flip-node bifurcation occurs when leaving the domain of an inverse branch
(compare Fig. 2.5). Note that bifurcations are driven by changes of the input x to the system.
A main advantage of the dynamical approach to inverse modeling is that training does not
require supervised information about the number of solution manifolds apparent in the data,
nor an explicit assignment of data points to a certain solution. Training of multi-stable output
feedback dynamics to represent ambiguous inverse models is demonstrated in Chapter 7.

In the dynamical approach to ambiguity representation and resolution, the case of infinitely
many solutions translates to the concept of continuous attractor dynamics. A unique solution
to the inverse problem corresponds to a globally stable fixed-point attractor (see Fig. 2.8 (left)),
where the point of attraction is parameterized by the input to the inverse model. Two solutions
to the inverse problem relate to bi-stable attractor dynamics (see Fig. 2.8 (middle)). The input
to the inverse model may drive the output feedback dynamics through a saddle node bifurcation:
A single fixed-point attractor splits into two fixed-points separated by a saddle node (from
Fig. 2.8 (left) to (middle)). These two fixed-points then manifest a two-valued solution set
of the inverse model for a particular input. Continuous attractor dynamics model the limit
case of infinitely many solutions by means of a continuous attractor manifold for a single input
(see Fig. 2.8 (right)). Continuous attractor dynamics can be understood as an evenly leveled
valley in the system’s associated energy function. Descending the energy landscape by iterating
the dynamics yields a continuum of attractor states in the energy valley which are approached
depending on the initial condition. In [56, 57], a model of continuous attractor dynamics
is proposed to explain oculomotor control. I demonstrate continuous attractor manifolds of
output feedback dynamics in Chapter 6 and Chapter 7.

In [29] and [58], a conceptually similar approach to represent the inverse kinematics of robotic
manipulators by multi-stable terminal attractor dynamics has been proposed by Barhen, Gulati
and Zak (sixth row in Tab. 2.1). However, it was not shown that their model is able to learn from
ambiguous data or resolves ambiguities dynamically during operation. The network further
does not model both, the forward and inverse model, and suffers from high computational
load and bifurcations during learning. The implementation of output feedback dynamics to
approximate multi-valued functions has been presented in [20]. However, the model also suffers
from inefficient training and does not comprise a forward model.

The model proposed in this thesis learns the forward and inverse model efficiently and in a
single network. The additional forward model is particularly useful in combination with feedback
information from a plant: The network then implements a feedback control mechanism that
estimates the current system state simultaneously to computing control commands. Moreover,
integration of feedback from the plant renders control responsive to external perturbations.
The proposed model resembles aspects of internal forward and inverse models that are also
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Fig. 2.8: Energy landscape of output feedback dynamics. Convex energy landscape with a single
fixed-point attractor (left): The same attractor is approached for all initial conditions. Energy
landscape with two minima correspond to bi-stable dynamics (middle): One of two attractors
is chosen depending on the initial condition. A saddle node exists in between both attractor
basins. Energy landscape with a level valley exhibits continuous attractor dynamics (right):
Depending on the initial condition, one of the infinitely many solutions (black line in the plane)
is selected.

hypothesized to be implemented in the brain for motor control [13].
The dynamical approach to model ambiguous inverse problems crucially depends on the

ability to shape multi-stable attractor dynamics that reflect the multiplicity of solutions. An
efficient learning mechanism that enables shaping of attractor dynamics on demand is introduced
in Chapter 4. The method from Chapter 4 is extended to a regularization framework which
facilitates the robustness of training output feedback dynamics as is shown in Chapter 5. Several
desirable properties of dynamical systems for inverse modeling will be provided in Chapter 7.

2.4 Flexible selection of models by associative completion

The associative paradigm to model forward and inverse relations can be further generalized to
the flexible selection of mappings between the input and output spaces. To facilitate the further
discussion, we concatenate data pairs to single vectors, i.e. u = (x,y). Associative completion
means that a partially known pattern u is completed by an (auto-)associative process [59, 60, 39].
For example, consider u ∈ R3 with the first and the last component known only. Associative
completion returns the second component:



u1

×
u3


→



u1

u2

u3




The core feature of associative completion is the flexible selection of the forward, inverse or
a mixture of both models. That means any subset of components of u can be selected to
query the model which then completes the complementary dimensions. Each constellation of
inputs and outputs can be understood as a particular mapping, and there is apriori no preferred
selection of inputs and outputs. However, incorporating the discussion above, it is important
to distinguish the cases of unique and ambiguous mappings also in the context of associative
completion. For instance, releasing an external input from the forward model can render the
relation between selected inputs and outputs ambiguous. Note that associative completion
differs from the approach to model each possible mapping between input and output space
separately. Associative completion means that a single model is trained to represent the entire
relation between input and output space. A particular model is then selected between parts of
inputs and outputs during model exploitation.

Associative completion has been successfully implemented in non-dynamical associative
models, for example by (parameterized) self-organizing maps using a flexible distance measure
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u1
u2(k+1)

u3


h(u1, u2(k), u3)

z−1

Fig. 2.9: Associative completion implemented by output feedback dynamics: The hidden rep-
resentation is externally driven by components u1 and u3. The complementary components, in
this case u2, are recalled dynamically by iterating the output feedback loop.

[59, 16, 39]. The dynamical implementation of associative completion is much less considered in
the literature, although the basic concepts can be already found in [37] and [42]. Opposed to the
recall of a stored pattern in traditional associative memories where the memory is retrieved from
a completely determined initial condition, associative completion is an input-driven process. In
case of dynamical associative memories, the processing units are clamped to, or driven by, the
known part of the pattern throughout the recall process. Fig. 2.9 illustrates the implementation
of associative completion by output feedback dynamics.

Seung proposes an associative completion mechanism that is implemented by an auto-
encoder network ([27], seventh row in Tab. 2.1). A similar configuration is commonly applied
in stacked auto-encoder models, where the feature representation of the input is concatenated
with supervised pattern information, e.g. class labels, in the topmost layer. Label information
is then recalled by a feedback process which is driven by the current input representation. A
structurally similar process, i.e. probabilistic inference, is applied in Deep Belief Networks [61].

The dynamical or recurrent implementation of associative completion in case of static input
data has not been explicitly discussed in the literature other than in [27], even though Jordan-
type recurrent neural networks [15] comprise the same feedback feedback loop constellation and
principally enable associative completion. This might be due to the typical application of Jordan
(and Elman) networks to time-series prediction than to the association of static patterns [15, 25].

This thesis focuses on dynamical associative completion implemented in associative reser-
voir computing (ARC, eighth row in Tab. 2.1) networks. The associative reservoir computing
framework developed in Chapter 3 unifies a broad range of reservoir models and comprises
output feedback dynamics with the modeling power outlined in Sec. 2.3.6. Output feedback
dynamics moreover generalize the dynamical implementation of bidirectional mappings to as-
sociative completion (compare Fig. 2.7 and Fig. 2.9). I show that output feedback dynamics of
associative reservoir networks can be trained efficiently to model forward and inverse mappings
including multiple solutions, associative completion and sequence transduction (Chapter 6 and
Chapter 7). Finally, output feedback dynamics of associative reservoir networks are exploited
for movement generation in feed-forward as well as feedback control systems (Chapter 8).
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Tab. 2.1: Taxonomy of associative models. The methods are related to each other with respect to their representation, dynamics, computational
capabilities, and typical learning algorithms. Note that this is a rather broad overview and thus only some of the most prominent models for each
conceptual niche are cited and described.

Method Representation Dynamics Computation Learning Citations

Associative
Memory

•distributed •none •auto- and hetero-association
•correlation-based
•pseudo-inverse

[38], [7],
[37]

BAM

•distributed
(• internal

representation)

•attractor •bidirectional association •correlation-based
[5], [4], [42],
[40], [41]

SOM

• local
•prototypes plus

topology

•none/winner takes all
(• lateral inhibition)

•dimension reduction
•vector quantization
•discrete associative completion

•unsupervised vector
quantization with
topological constraint

[62], [63],
[39]

PSOM

•hybrid between
global and local

•prototypes plus
topology and
basis functions

•winner takes all plus
continuous optimization

• forward and inverse mappings
•continuous associative completion

•unsupervised vector
quantization with
topological constraint or
supervised initialization

[59], [60],
[16]

MMC

•distributed
•augmented

variables

•attractor •ambiguous inverse mappings •none
[49], [50],
[51]

Barhen

•distributed
• internal

representation

• terminal attractor •ambiguous inverse mappings
•generalization of

backpropagation
[29], [58]

Autoencoder
with

Associative
Completion

•distributed
• internal

representation

• (continuous) attractor
•variants with

internal dynamics

•auto-association
•continuous associative completion

•backpropagation
•contrastive divergence
•error correction

[27], ([64],
[65], [66])

Associative
Reservoir

Computing

•distributed
• internal

representation

• transients
• (multi-stable) attractor
• internal and output

feedback dynamics

• sequence transduction/generation
• forward and (ambiguous)

inverse mappings
•continuous associative completion

• regression
•online least squares
• intrinsic plasticity
• state prediction

[22], [23],
[67], [24],
[55]



Chapter 3

Reservoir Computing with output
feedback

In this chapter, the basic idea of reservoir computing is introduced. Then, the associative
reservoir computing model with output feedback is presented. Based on the associative reservoir
computing framework, representative reservoir models are reviewed. The concepts of output
feedback dynamics and stability are formalized.

3.1 The Reservoir Computing Paradigm

Learning in recurrent neural networks with hidden representations is typically implemented
by gradient descent methods [68, 69]. Due to the recurrent network structure, optimizing the
network parameters in closed form is not feasible in a direct way. Beside the enormous com-
putational load of classical learning rules for recurrent networks, e.g. backpropagation through
time, real time recurrent learning and Atiya-Parlos learning (see [68, 69] for an overview), bifur-
cation of the network dynamics during iterative parameter adaptation do not allow guaranteed
convergence to a local minimum of the error function.

In the recent decade, a different approach to training input-driven recurrent neural networks
networks has been developed which considers the recurrent network as a fixed feature generating
device that transforms the input signal into a spatio-temporal representation in the network
state. This leads to the idea of separating a “harvesting” phase to record the states of the
input-driven but otherwise fixed recurrent dynamics, and the output learning, which can be
simple, linear, and efficient once the states are harvested. This approach has become popular
when using a randomly initialized recurrent network as “rich reservoir of dynamics” [34].

Reservoir computing was introduced by Jaeger as Echo State Network (ESN, [30]) and
independently by Maass et al. under the notion of Liquid State Machine (LSM, [70]). Learning
of these reservoir networks is restricted to the weights that project the network state to special
read-out neurons. Steil showed in [71] that this functional decomposition of a recurrent network
into a fixed reservoir and an adaptive read-out layer arises naturally from the constrained
optimization approach first introduced by Atiya and Parlos in [69]. Also, analyzing the weight
dynamics during learning in recurrent neural networks shows a limited adaptation of the internal
connections in relation to the read-out connections [72]. Restricting learning to the read-out
weights circumvents bifurcations of the reservoir dynamics and the resulting problem of a moving
target function that maps internal neuron activations to the desired outputs. Then, learning
boils down to a simple linear regression problem and can be implemented very efficiently in an
offline or online manner [30, 71]. Despite this restriction, the reservoir approach is still powerful
because the strength of computing with a dynamical system is preserved: Transient network

15
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states encode the history of external inputs and can serve as short-term memory.

The reservoir paradigm of using a non-linear dynamical system for computation has been
implemented using various reservoir “substrates”. Typically, rate-coding or spiking neurons are
utilized to build up a reservoir of dynamics [30, 70]. But also domain-specific reservoir models,
e.g. comprising frequency sensitive neurons [73, 74, 75], can be used to build a reservoir. Recent
research efforts try to exploit fast non-linear dynamics in photonic circuits for computation [76].
Fernando and Sojakka took the “liquid” approach literal and implemented a machine that can
classify spoken digits using a bucket of water as reservoir substrate [77]. Even earlier than the
formulation of echo state and liquid state approaches, the idea to use a fixed dynamical system
instead of a fully trained recurrent neural network was proposed in [78] using iterative function
systems as substrate of computation. These examples show that the general idea to read out
the state of a dynamical system is very powerful. In the remainder of this thesis, however, only
reservoirs comprising rate-coding neurons with sigmoidal activation functions are considered.

The reservoir computing paradigm to train only a perceptron-like read-out layer relies on
the encoding of inputs in the reservoir by means of a “random, temporal and non-linear kernel”
[79]. The mixture of both spatial and temporal components of the input is based upon three key
ingredients: (i) the random projection into a high-dimensional state space (ii) with non-linearity
introduced by typically sigmoidal activation functions and (iii) the recurrent connections in the
reservoir implementing a short-term memory. On the one hand, the non-linear projection into
a high-dimensional space is related to spatial kernel expansions which rely on the concept of a
non-linear transformation of the original data into a high-dimensional space and the subsequent
use of a simple, mostly linear, model. On the other hand, the recurrent connections implement a
short-term memory by means of transient network states. Reservoir computing thereby exploits
the “architectural bias“ [80] of recurrent neural networks with small weights to finite memory
machines even prior to learning. Due to this short-term memory, reservoir networks are typi-
cally utilized for temporal pattern processing such as time-series prediction, classification and
generation [30]. In recent work, it is shown that recurrence in the reservoir also enhances the
spatial encoding of static inputs in the reservoir [81]. Reservoir computing based on attractor
states is therefore also suited for static pattern processing [82, 83, 84, 85].

3.2 Associative Reservoir Computing

In this thesis, a generalized version of reservoir networks is considered which extends the reser-
voir computing paradigm to a bidirectional, associative setup. Associative Reservoir Computing
(ARC) is of particular interest in the context of sensory-motor tasks [22, 23]. A single network
then learns the bidirectional relation between inputs and outputs: The mapping from sensory
stimuli to motor commands, and the reverse mapping that can be used to predict or fill in
missing sensory inputs. The network can either relate two (or more) time-series with each
other, or be used in a static manner and learn to bidirectionally associate non-temporal signals.
It further enables learning of ambiguous forward and inverse models [55], and implements an
adaptive controller for movement generation [24, 55].

In the context of associative reservoir computing, feedback of the network output into the
reservoir is a key ingredient. Although there are successful applications reported that use
reservoir networks with output feedback [22, 23, 86, 71], the effects of output feedback have not
been investigated systematically. In principle, I expect output feedback to add information of
the output to the reservoir representation but also to cause additional transients which can be
amplified in the worst case and result in a degraded performance. To grasp the problem of error
amplification by output feedback, the concept of output feedback stability is introduced in this
chapter. Alleviation of error amplification is a necessary prerequisite for robust association and
this thesis mainly contributes to this question in Chapter 5 and Chapter 7.

Formally, the ARC architecture (see Fig. 3.1) comprises a recurrent network of non-linear
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Fig. 3.1: Associative Reservoir Computing setup: Inputs and outputs are bidirectionally con-
nected via the internal representation in the reservoir.

reservoir neurons h ∈ RR that interconnect inputs x ∈ RD and outputs y ∈ RO. Wnet captures
all connection sub-matrices between neurons in the network and is defined by

Wnet =




0 Wrec 0

Winp Wres Wfdb

0 Wout 0



. (3.1)

Only connections Wout ∈ RO×R and Wrec ∈ RD×R projecting to the input and output neurons
are trained by error correction (illustrated by dashed arrows in Fig. 3.1). All other weights,
i.e. Winp ∈ RR×D, Wres ∈ RR×R and Wfdb ∈ RR×O, are initialized randomly with small
weights and remain fixed. Functionally, Winp, Wres and Wfdb parameterize the excitation of
the reservoir by inputs, outputs and the reservoir itself. The read-out weights Wout are trained
to fit a desired input-to-output mapping from training examples, whereas Wrec is trained to
reconstruct inputs from outputs.

Consider discrete reservoir dynamics

a(k+1) = Winpx(k) + Wresh(k) + Wfdby(k) (3.2)

h(k) = σ(a(k)) (3.3)

with time steps k ∈ N, where h(k) is obtained by applying non-linear activation functions σi(·)
component-wise to the neural activations ai(k), i=1 . . . N . Typically, parameterized, sigmoidal
activation functions like the logistic function

hi = σi(ai) =
1

1 + exp (−siai − bi)
(3.4)

or the hyperbolic tangent

hi = tanhi(siai + bi) (3.5)

with slopes si and biases bi are used. Input and output neurons have the identity as activation
function, i.e. are linear neurons, and are updated according to

y(k+1) = Wouth(k) (3.6)

x(k+1) = Wrech(k). (3.7)
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The network dynamics can be compactly written by collecting input, reservoir, and output
neurons in a vector z(k) = (x(k)T ,h(k)T ,y(k)T )T . Then, the dynamics of the entire system
are described by

z(k+1) = σ(Wnetz(k)), (3.8)

where σ are then linear activation functions for input and output neurons.

3.2.1 Associative completion with output feedback dynamics

Association of inputs and outputs is accomplished by iterating output feedback dynamics. The
forward model, which maps inputs to outputs, is queried by driving the network with external
inputs x(k) while estimated outputs ŷ(k) are fed back into the hidden state in a recursive loop
(compare Fig. 3.2). Equation (3.2) of the network dynamics changes to

a(k+1) = Winpx(k) + Wfdbŷ(k) + Wresh(k). (3.9)

Although the network’s input neurons are clamped to the external signal, an estimated value
x̂(k+1) = Wrech(x(k), ŷ(k)) = Wrecσ(Winpx(k) + Wfdbŷ(k) + Wresh(k)) for these clamped
neurons is also available. The forward model coins also the notion of output feedback dynamics
because estimated outputs are fed back into the model.

For the backward model, which is externally driven by y(k), (3.2) alters to

a(k+1) = Winpx̂(k) + Wfdby(k) + Wresh(k). (3.10)

In this case, the estimated inputs are fed back recursively into the network, which is also referred
to under the general notion of output feedback dynamics since then inputs become the functional
outputs of the model.

Note that the forward path from inputs x to outputs y typically models an inverse problem
in the sense of Chapter 2. This is often more convenient because generally applications require
to solve inverse problems. With respect to this convention, the inverse model is “from left to
right” (input-to-output) and the forward model “from right to left” (output-to-input).

x(k)

ŷ(k)

x̂(k+1)

ŷ(k+1)h(k+1)

1
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Winp Wrec

Wfdb Wout

input

driving

Fig. 3.2: Output feedback dynamics of an associative reservoir network: Estimated outputs ŷ
from the last iteration step are fed back into the network whereas externally driven inputs are
clamped to desired values x. Note that estimated outputs for externally driven inputs (here x̂
for x) can be estimated simultaneously though they do not enter the output feedback loop.
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The partial combination of both models is also possible which implements a mixed constraint
satisfaction in input and output space. In a generic form, which also includes the cases of pure
forward or backward mappings, the output feedback dynamics can be written as

a(k+1) = Winpx̂∗(k) + Wfdbŷ∗(k) + Wresh(k) (3.11)

with x̂∗(k) = (x̂∗1(k), . . . , x̂∗D(k))T , where x̂∗i (k) = xi(k) for all constrained input components
i, and x̂∗i (k) = x̂i(k) for all unconstrained input components. The same notational convention
applies to ŷ∗ and allows to flexibly mix constrained and unconstrained components in input
and output space, i.e. associative completion.

3.2.2 Transient- and attractor-based computation

Originally, computation in reservoir networks is based on transient network dynamics and uti-
lized for time-series processing where transient network states serve as short-term memory.
Transients are temporally elusive but reproducible traces in the network state trajectory (see
[87] for a discussion). In case of static, temporally non-contiguous data, transient dynamics by
means of a short-term memory are not meaningful because each sample is independent of the
previous one. Then, attractor-based computation, i.e. let the dynamics settle to a fixed-point
attractor before the estimated output is interpreted, is favorable [82, 81].

Note that there are two distinguished “sources“ of dynamics considered in this thesis: (i) In-
ternal dynamics of the reservoir layer set up by Wres, and (ii) dynamics due to the output
feedback loop. Considering the reservoir dynamics, the mapping (x,y) 7→ h̄ from externally
driven inputs to attractor states h̄ is unique if the reservoir subsystem is globally asymptotically
stable. Unique attractor states of the reservoir layer are essential for learning of a functional
relationship between inputs and outputs. Conditions for convergence of the reservoir layer
are discussed more deeply in Sec. 3.2.3. Properties of the output feedback dynamics are the
main topic of the following chapters. Depending on the task, globally stable, oscillatory or
even multi-stable output feedback dynamics are targeted. Estimated outputs obtained from
converged output feedback dynamics are denoted by ŷ(x). The same notation is utilized for
estimated inputs x̂(y).

In this section, technical details of monitoring the convergence of the network state are
described. A short discussion of transient- and attractor-based computation in the context of
different applications follows in Sec. 3.2.4.

Monitoring the convergence of reservoir networks

Application of the attractor-based computation scheme requires to monitor the convergence of
the network state. The following algorithm monitors convergence of the state based on the
fixed-point condition

h(k+1) = h(k). (3.12)

Algorithm 3.1 iterates the network dynamics (3.2), (3.3), (3.6) with clamped input pattern x
until the network state change ∆h falls below a small constant δ. The same scheme can be
applied if the network is driven by outputs y or a combination of inputs and outputs. Algo-
rithm 3.1 approximately terminates if the network state reaches a fixed-point, or the reservoir
state does not converge in kmax iteration steps.

Algorithm 3.1 relies on the threshold δ to determine convergence and is thus approximate in
nature: If the network dynamics fulfill the fixed-point condition (3.12), convergence is identified
correctly. But also state changes below the threshold δ, which are not necessarily in the vicinity
of a fixed-point, can be mistaken to be a fixed-point. However, Algorithm 3.1 has proven to be
adequate if the admitted number of time steps kmax is sufficiently large and δ small.
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Algorithm 3.1 Convergence algorithm

Require: get external input x
Require: set k=0, ∆h=∞, δ=10−6 and kmax=1000

1: while ∆h > δ and k < kmax do
2: inject external input x into network
3: execute network iteration (3.2)–(3.7)
4: compute state change ∆h = ‖h(k)− h(k−1)‖2
5: k=k+1
6: end while
7: return k (if k = kmax, the network did not converge)

Observation of network convergence

The convergence criterion monitors whether an observable connected to the change of state in
the network drops below a certain value. Measuring the state change directly as proposed in
Algorithm 3.1 is rather inefficient. It is therefore useful to extend the framework to monitor
the convergence of a network by considering different observables of the network state change.
For example, measuring ∆h by ‖h(k)− h(k − 1)‖2 rather than ‖h(k)− h(k − 1)‖ is an option
which saves the computation of the square root. An adopted Hopfield energy of the network
was utilized in [83] to monitor and verify convergence in experimental settings. These measures
implement plainly the general idea of a change in state space of the network and are directly
related to the common fixed-point condition (3.12). However, their computation is inefficient,
either because the last network state has to be stored or the network weights are involved in
their computation which results in quadratic complexity in the number of neurons.

A more efficient way of measuring the rate of change of the network state is to use the sum
of its components, i.e. approximating ∆h by

‖
R∑

i=1

hi(k)−
R∑

i=1

hi(k−1)‖2.

This observable is ambiguous, i.e. there can be different states h(k) and h(k−1) while the
component-wise sum of both states is equal. This case, however, is very rare. But, and this
is important, the simplified observable of the state change is very efficient to compute and
requires only the storage of a scalar from iteration k to k+1. In practice, the author could
not observe any significant differences between using one of the above mentioned criteria and
therefore applied the efficient implementation mostly in this thesis.

3.2.3 Network initialization and the Echo State Property

Supervised learning in the reservoir approach is restricted to weights Wrec and Wout that
project the internal representation h to inputs and outputs. The remaining weight matrices
Winp, Wres and Wfdb are randomly initialized and remain fixed. The initialization of these
weights is therefore important for performance and stability [30, 88, 89]. Typically, the weights
are drawn from an uniform distribution in [−a?, a?], where ? denotes the respective sub-matrix
W? of the network. Often, sparse connectivities 0 ≤ ρ? ≤ 1 are preferred, where ρ? denotes the
density of connections in the respective sub-matrix of the network.

More sophisticated initialization procedures for reservoir networks have been proposed that
consider connectivity patterns according to topological constraints (see [90] for a discussion),
or condensed reservoir creation schemes based on permutation matrices [91] and other reser-
voir creation rules [92]. However, the gain in performance is rather restricted if initialization
parameters are not adopted to the task at hand and therefore these specialized initializations
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of the weight matrices are not further considered in this thesis. I stick to uniformly distributed
network weights that are sometimes sparse but not according to a specific structure.

The reservoir matrix Wres plays a special role in the network configuration: The recur-
rent reservoir connections introduce dynamics in the reservoir layer. These reservoir dynamics
functionally serve as short-term memory [30] or, in case of attractor-based computation, non-
linearly mix the input representation and produce complex features [89, 81]. In either case,
it is important that these reservoir dynamics have some asymptotic properties, i.e. wash out
initial conditions, such that the reservoir state is uniquely determined by a finite history of in-
puts. This requirement for computation that reservoirs have echo states has been formalized by
Jaeger under the notion of the Echo State Property (ESP, [30]). The ESP implies global asymp-
totic stability of the reservoir state in case of no output feedback connections (Wfdb = 0) [30].
Hence, reservoirs that have the ESP always converge to an unique attractor state for constant
inputs independent of initial conditions. This is important for attractor-based computation
with reservoir networks because then the input to reservoir state mapping does not depend on
previous reservoir states.

Unfortunately, there is no necessary and sufficient condition for the ESP known so far and
mostly stricter sufficient or only necessary conditions are typically applied to obtain reservoirs
with the ESP. These criteria are based on the maximal singular value or the maximal absolute
eigenvalue of Wres, are rather too conservative or actually do not guarantee the ESP, and
apply strictly only for constant input. In practice, the sufficient criterion based on the maximal
singular value turned out to yield “poor“ reservoir dynamics [30]. Therefore, the scaling of
the spectral radius λmax(Wres), i.e. the largest absolute eigenvalue of Wres, to the border
of instability is commonly applied in reservoir computing in order to obtain ”rich“ dynamics,
even though a tighter bound for the ESP that is based on matrix operator norms has been
proposed in [93].

In summery, the weights Winp,Wres and Wfdb are first randomly initialized according to
ranges ainp, ares, afdb and densities ρinp, ρres, ρfdb. Then, the reservoir matrix Wres is scaled,
i.e. multiplied by a factor, such that the spectral radius λmax(Wres) is close to unity.

3.2.4 Supervised read-out learning

In this section, supervised learning schemes for the read-out layers are introduced. In principle,
any supervised learning rule could be applied and there are various implementations of reservoir
networks with rather exotic read-out learning mechanisms. For the sake of simplicity, only the
learning rules utilized in this thesis are discussed comprising a standard offline learning scheme
based on regularized linear regression and an efficient online learning rule.

Offline learning by linear regression

Typically, reservoir learning focuses on the optimization of the read-out weights Wout that
project the reservoir state to the read-out neurons in order to infer a desired input to out-
put mapping from a set of training examples. Consider a sequence of input-output pairs
(x(k)T ,y(k)T )T , where k = 1, . . . ,K. The goal is to minimize the mean square error

E(Wout) =

K∑

k=1

O∑

i=1

(
yi(k)−wout

i h(k−1)
)2

(3.13)

by adapting only the read-out weights Wout, where in the following w?
i denotes the i-th row of

the matrix W?. The error E can be understood as one step ahead prediction error because the
network output at time k is a projection of the network state at time k−1.

The error E can be minimized by linear regression. Therefore, the inputs x(k) are injected
into the network and the reservoir states h(k) as well as the desired output series y(k) are
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recorded in a reservoir state matrix

H =




h(0)T

...
h(K−1)T


 ∈ RK×R and target matrix Y =




y(1)T

...
y(K)T


 ∈ RK×O,

respectively. The procedure of collecting the reservoir states H is called harvesting states. In
case of output feedback connections Wfdb 6= 0, it is common practice to teacher-force the
network with desired outputs y(k) during the state harvest. That is, inputs and outputs of the
network are clamped to the desired values contained in the training data. The optimal read-out
weights are determined by the least squares solution

(Wout
opt )

T =
(
HTH + αout1

)−1
HTY, (3.14)

where the Tikhonov factor αout ≥ 0 is used to regularize the read-out weights Wout [36].
Similarly, the weights from reservoir to input neurons Wrec are subject to supervised learn-

ing. The mean square error (3.13) is then

E(Wrec) =

K∑

k=1

D∑

i=1

(xi(k)−wrec
i h(k−1))2 (3.15)

which is minimized by the regularized linear regression solution

(Wrec
opt)

T =
(
HTH + αrec1

)−1
HTX. (3.16)

Both, the adaptation of Wout and Wrec, can be accomplished with a unique sweep through the
training set.

In case of attractor-based computation, the attractor states of the reservoir are collected:
Each input-output sample (xk,yk) is applied to the network until convergence of the reservoir
state to an attractor h̄k. The attractor states h̄k are then used in (3.14) and (3.16) instead of
the transient network states h(k), and the target matrices are set up by inputs and outputs
for k = 1, . . . ,K.

Online Backpropagation-Decorrelation learning

Based on the backpropagation-decorrelation (BPDC) learning rule introduced in [71], the read-
out weights Wout and Wrec can be trained efficiently and online. In the proposed network
configuration, the BPDC learning rule simplifies to

∆wij(k) =
η

‖h(k−1)‖2 hj(k−1) (d∗i (k)− di(k)), (3.17)

where d(k)=(x(k)T , y(k)T )T collects all read-out neurons and d∗i (k) is the desired target value
of read-out neuron i at time step k. The online learning scheme is illustrated in Fig. 3.3

Conceptually, BPDC constitutes an efficient error correction rule with time-dependent learn-
ing rate η̄(k)=η‖h(k−1)‖−2, input predicate hj(k)=σj(xj(k)) and error signal d∗i (k)−di(k). The

x(k)

x̂(k)

y(k)

ŷ(k)

h(k−1)− −

Fig. 3.3: Online learning of associative reservoir networks.
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adaptive learning rate η̄(k) can be interpreted as a time and context sensitive self-regularization:
It scales the gradient step width depending on the overall network activity. Hence, learning is
accelerated for sparse network states.

Analogous to offline read-out learning, online learning can also be applied in case of attractor-
based computation using the attractor states h̄k instead of the transient states h(k−1) in (3.17).

Attractor-based learning versus learning from trajectories

In the setting laid out in Fig. 3.1 and equations (3.2)–(3.17), there are no direct connections
from input to output such that the current output is a projection of the reservoir state at the
previous time step. Actually, the input at time step k is incorporated into the hidden state in
time-step k+1 and contributes to the output earliest at time-step k+2.

In the limit of convergence, the distinction of time steps becomes irrelevant, because input,
output and hidden states become temporally congruent. Then, there is no one-step ahead
prediction, because at an attractor state it holds that h(k+1) = h(k) = h̄(k) and thus y(k+1) =
Wouth(k) = Wouth(k+1) = Wouth̄(k). Speaking in terms of dynamical associative memories
(compare Chapter 2), learning then imprints attractor conditions into the output feedback
dynamics.

In case of static mappings and temporally non-contiguous data, learning consequently first
iterates the network until convergence by clamping the inputs and then adjust the weights to
impose the respective attractor to the network. In case of trajectory data and a static relation
between inputs and outputs, this attractor-based learning, however, can be less efficient, because
iteration until convergence has to be performed in every step. Then, using trajectory-based
learning, where in every time step a new data pair (x(k),y(k)) is presented to the model,
can be more convenient. This learning from correlated data works along reasonably smooth
trajectories like robot movements which are naturally limited in their speeds and accelerations.
In case of slowly changing input trajectories, actually, learning from trajectories is approximately
equivalent to attractor-based learning: In the limit of zero velocity of inputs and outputs, i.e.
||ẋ|| → 0 and ||ẏ|| → 0, the network is teacher-forced with a static pattern and iteration of the
dynamics let the network converge to the associated attractor state h̄. The temporal scheme,
however, allows a more flexible exploitation and better interpretation in terms of correlated
data processing if the training data are smooth trajectories.

Regarding training versus exploitation phase, all combinations of attractor- and transient-
based computation can be applied according to application needs:

1. Training and exploitation using transients: This is the typical case in time-series processing
with reservoir networks.

2. Training and exploitation attractor-based: This is the typical case in static pattern pro-
cessing with temporally non-contiguous data.

3. Transient-based training and attractor-based exploitation: Learning from smooth trajec-
tory data can be efficiently accomplished by the transient scheme because then explicit
convergence of the network is not required. If there is an instantaneous relation between
inputs and outputs, attractor-based computation achieves the best performance during
exploitation in particular when the network has output feedback connections [83].

4. Attractor-based training and transient-based exploitation: This is useful in case of a
static mapping between inputs and outputs that is learned from possibly temporally non-
contiguous data. Transient-based exploitation can be utilized for smooth trajectory gen-
eration in this case [55].
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Fig. 3.4: IP learning maximizes a neuron’s information transmission properties by adapting
the slope s and bias b of the activation function: Initial activation function with input and
output distributions (left). Optimized activation function after IP training with approximately
exponential output distribution (right).

3.2.5 Unsupervised reservoir optimization by intrinsic plasticity

The potential of reservoir computing obviously depends on the properties and the quality of
the input encoding in the reservoir. To address this issue, Steil proposed to use a biologically
inspired learning rule for unsupervised reservoir optimization that is based on the principle of
neural intrinsic plasticity. Intrinsic plasticity (IP) was first introduced in [94] in the context of
feed-forward networks. IP changes the neurons’ gains si and biases bi of the logistic activation
functions (3.4) in order to optimize information transmission of the inner reservoir neurons
[86]. That is, neurons should be active only sparsely according to an approximately exponential
distribution (see Fig. 3.4). Recent work also shows that IP acts as a regularization on the
reservoir representation and therefore improves the generalization performance [89, 95].

More formally, denote by Fa(a) and Fh(h) the input and output distributions of the logistic
neuron with h = σ(a, s, b) (compare (3.4)). Fa(a) is determined by the statistical properties
of the net input the neuron receives in the operating network. Let Fexp(h) = 1/µ exp(−h/µ)
be the desired exponential output distribution of a neuron. The average activity rate µ of the
exponential distribution appears later as global parameter for the learning process. Then, the
Kullback-Leibler divergence D between Fh and Fexp can be written as

D(Fh, Fexp) = H(h) +
1

µ
E(h) + log(µ)

where H(h) is the entropy of the neurons output distribution and E(h) the expected value [96].
Further calculations yield the following online gradient rule to adapt the parameters si and

bi with learning rate ηIP for all reservoir neurons i = 1, . . . , R:

∆bi(k) = ηIP

(
1−

(
2 +

1

µ

)
hi(k) +

1

µ
hi(k)2

)
, (3.18)

∆si(k) = ηIP
1

si(k)
+ ai(k)∆bi(k). (3.19)

IP is an unsupervised learning technique in the sense that there is no error signal required.
Note, however, that IP is fed with information about the output data in reservoir networks
with output feedback if teacher-forced training is applied.

A similar IP rule can be derived for tanh (3.5) activation functions, where the target distri-
bution can be Gaussian [97] or, with one eye on sparsity, Laplacian [91]. These gradient IP rules
are local in time and space and therefore efficient to compute. The idea of IP has been general-
ized to an offline learning scheme recently in [95] under the notion of Batch Intrinsic Plasticity
(BIP). BIP is particularly suited for and efficient with Extreme Learning Machines (ELMs, [33]).
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Online IP can be applied in parallel with BPDC learning [86, 98, 24], or in combination
with offline read-out learning [99]. The combination of IP and the BPDC learning rule has
proven to work well together [86, 98, 23, 24]. For each data sample, the network dynamics
(3.2), (3.3) are iterated first before the read-out weights Wrec and Wout are adapted according
to (3.17). Finally, the IP rules (3.18), (3.19) are applied at each time step k. In case of offline
read-out training, the reservoir is typically pretrained by IP before states are harvested for the
read-out regression.

Note that IP affects the reservoir dynamics by scaling the reservoir weights Wres implicitly
through adaptation of the slopes s. In addition, adaptation of biases b shifts the point of
operation of each activation function. Effects of IP on reservoir stability have been investigated
in [86] and [100]. It turns out that, although IP increases the absolute eigenvalues, the reservoir
dynamics do usually not ”blow up”, i.e. the neurons are not driven into saturation. This might
be due to the homeostasis constraints formulated by IP itself.

3.2.6 General Reservoir Computing Learning Scheme

In this section, the typical design cycle according to the reservoir computing scheme is sum-
merized. Algorithm 3.2 gives a generic recipe and applies to a wide range of reservoir networks
including also the non-dynamic Extreme Learning Machine.

First of all, data samples and the task at hand guide the design cycle. Beside the number of
input neurons D and output neurons O, the task and data properties determine which kind of
training and exploitation scheme to apply. For instance, transient-based reservoir computation
for time-series prediction tasks, or attractor-based computation for static pattern processing.

Next, the designer has to commit to some general model selection steps. In particular,
the size of the reservoir R is an important model parameter. But also the kind of activation
functions, and in particular, which sub-matrices of Wnet (see (3.1)) to initialize, are crucial
design decisions and dramatically affect the network’s capabilities. For instance, setting output
feedback connections Wfdb = 0 restricts the model to unidirectional applications: Driving
outputs externally can then not excite the reservoir since Wfdb = 0 (compare Fig. 3.1).

Then, the network’s parameters have to be initialized. This step is discussed in more detail
in Sec. 3.2.3. As a rule of thumb, slopes can be set to unity, i.e. s = 1, and biases b are initialized
uniformly in [−1, 1]. A better, input-specific adaptation of biases and slopes can be achieved
by applying intrinsic plasticity (see Sec. 3.2.5) in a pretraining phase or during online learning
in parallel with read-out weight adaptation. IP learning is well-suited to adopt the model
complexity to the task at hand [89] which then mitigates the need to chose an appropriate
network size and initialization ranges. Nevertheless, the relative scaling of input, reservoir and
probably output feedback weights is not changed by IP and remains a rather important factor
for successful training [88]. Scaling of the spectral radius λmax(Wres) can be understood as
another pretraining step (Sec. 3.2.3). The spectral radius is typically scaled close to unity, e.g.
λmax(Wres) = 0.95, if hyperbolic tangent activation functions (3.5) with s = 1 and b = 0 are
used. For other configurations of the activation functions, e.g. b 6= 0, the linear approximation
of the system is impaired and the value of the spectral radius has to be adopted.

Then, learning of the read-out weights Wout and probably Wrec is conducted. Here, sev-
eral combinations of learning rules (online or offline) and harvesting modes (teacher-forced or
unforced) are possible. Note, however, that the unforced training mode, i.e. feeding only in-
puts x(k) into the network during state harvesting, is meaningful only if the network has no
output feedback connections, or learning proceeds online: Online learning brings the estimated
outputs closer to the target values such the reservoir state is driven into the dynamical regime
that is actually apparent if the network is teacher-forced. Unforced online training has been
conducted successfully in [101, 23] and in the context with a reward-based, explorative learning
rule in [102, 103]. In case of offline training, the learning would not “see“ the teacher-forced
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Algorithm 3.2 Reservoir Computing Learning Scheme

Require: set of data samples and a task definition
1: chose network size R, activation functions σ and network connectivity pattern Wnet

2: initialize network parameters randomly including slopes s and biases b
3: scale spectral radius λmax(Wres) (optional)
4: unsupervised pretraining, e.g by intrinsic plasticity (optional)
5: read-out learning (online (3.17) or offline (3.14)–(3.16))
6: exploit network

network dynamics and the network dynamics will be fundamentally different during output
feedback-driven network exploitation.

In principle, offline learning proceeds in two steps: First, the reservoir states and the re-
spective targets are harvested. Then, the read-out weights are computed, e.g. by (3.14) and
– depending on the model – also by (3.14). Online learning is typically conducted for several
sweeps, i.e. epochs, through the data set. Thereby, the harvesting and adaptation phase pro-
ceed “online“ and in parallel: For each data example, the network state is collected and the
read-out weights are adopted. In general, the learning may introduce additional model selection
parameters like regularization constants and learning rates.

One has to take care for another important issue to achieve good results when training
dynamical reservoir networks (Wres 6= 0). Due to the reservoir dynamics, one has to wash out
initial transients by teacher-forcing the network with part of the training pattern for several
time steps. Otherwise, ”false” transients will be harvested and used for learning which degrades
the performance.

Finally, the trained network is ready for exploitation. Again, several options, e.g. the mode
of operation, can be selected. Which mode is suitable is mainly defined by the task at hand
(see discussion in Sec. 3.2.4).

3.3 Taxonomy of random projection methods

In this section, reservoir and non-dynamic random projection approaches are reviewed and re-
lated to each other. Tab. 3.1 puts the discussed random projection methods into a taxonomy
depending on key features including network structure, properties of the projection, kind of dy-
namics, and their typical application. Also, structurally similar approaches that utilize learning
schemes like backpropagation to tune their internal representation are briefly discussed. It is
pointed out that the ARC model unifies the presented random projection networks.

3.3.1 Random projections

Early approaches utilizing random projections are linear and non-dynamic. Basically, a random
matrix Winp is used to linearly project samples xk from the high-dimensional data space to a
low-dimensional representation, i.e. hk = Winpxk. Theoretical results support the application
of random projections in particular in the context of dimension reduction: Random projections
preserve pairwise distances of samples in the data and projection space accurately [104, 105, 106].
Moreover, it was shown that elongated distributions of inputs are more compact after random
projection into a lower dimensional space [106].

For these reasons, random projections are mainly applied as efficient and unsupervised di-
mension reduction technique [107, 106, 108, 109]. Clustering techniques that rely on pairwise
distances of the data points can then work easily in the projected space [110]. Also, using
the projected data in combination with supervised learning for classification, random projec-
tions achieve competitive performance compared to dimension reduction by principle component
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analysis [111]. While random projections require no learning, PCA requires the calculation of
outer products and the matrix inversion of these correlations which is not feasible for very
high-dimensional data. Therefore, random down-projections are considered as a well-balanced
trade-off between performance and efficiency in particular for computations on complex data
bases [112, 113]. A summary of the basic properties and selected references concerning linear
random projections are given in the first row of Tab. 3.1.

3.3.2 Extreme Learning Machine (ELM)

A historically rather recent extension of random projections to non-linear function approxima-
tion was proposed in [33] under the notion of Extreme Learning Machines (ELMs). ELMs are
single-layered feed-forward, non-dynamic networks, where supervised learning is restricted to
the perceptron-like read-out layer. The projection from inputs to the hidden layer is randomly
initialized and remains fixed. Non-linearity is introduced by sigmoidal activation functions in
the hidden layer. Restricting learning to the read-out layer alleviates the need for backpropaga-
tion of errors like typically applied in Multi-Layer Perceptrons (MLP) and therefore accelerates
learning significantly. Theoretic results show that ELMs have nevertheless universal function
approximation capabilities [114].

The ELM approach differs from typical MLPs and linear random projections in the idea
to use a non-linear and high-dimensional projection of the input data in the hidden layer,
i.e. R � D. This random kernel idea underlies also the following family of dynamic random
projection methods. To determine a suitable kernel ”size“, i.e. number of hidden neurons,
several mechanisms have been proposed for automated model selection (see [95] for a brief
review). See the second row in Tab. 3.1 for the summarized properties of the ELM.

3.3.3 Echo State Network (ESN)

Under the notion of reservoir computing, a family of dynamical and non-linear random projec-
tion methods is unified. Though the reservoir paradigm is fairly general and comes in different
flavors as discussed in the beginning of the chapter, here only the main prototypical variants with
rate-coding neurons and with a special focus on associative reservoir computing are discussed.

In a first step, extending the ELM by random connections between the hidden neurons
adds a temporal component to the otherwise spatial encoding of inputs in the hidden layer.
The recurrent layer then acts as a ”spatio-temporal kernel“ which can serve as transient-based
short-term memory [30] or as enriched, recurrent mixture of the hidden representation [89, 81].
The combination of a reservoir network with the offline training by regression is often referred
to as Echo State Network (ESN), although also online learning can be applied to the same
network architecture [30, 83].

Echo State Networks may or may not have output feedback connections Wfdb. Although
the original ESN formulation already comprises connections Wfdb from the output into the
reservoir [30], the definition of the Echo State Property and most experiments exclude output
feedback connections explicitly. This is due to the fact that, although the feedback connections
Wfdb are also randomly initialized and not subject to adaptation in ESNs, learning of the
read-out layer has significant impact on the overall system because estimated outputs are then
fed back into the reservoir via Wfdb 6= 0 [115]. The role of output feedback and its theoretical
implications are discussed in detail in Sec. 3.4.

To this end, it is important to distinguish ESNs with and without output feedback connec-
tions Wfdb (compare third and fourth row in Tab. 3.1):

ESNs without output feedback (Wfdb = 0) are feed-forward function approximators with
short-term memory and are therefore typically applied to time-series transduction, prediction
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Fig. 3.5: Echo State Networks with asynchronous update but without output feedback are
Elman-type networks [25] (a). Jordan-type networks [48] implement output feedback dynamics
and are typically utilized for parameterized pattern generation (b). The combination of Elman-
and Jordan-type networks is structurally equivalent to Echo State Networks with output feed-
back (c).

and classification [30, 116, 34, 52, 98, 86]. Note that ESNs without output feedback connections
and recurrent reservoir connections Wres = 0 degenerate to Extreme Learning Machines.

The original ESN formulation with layer-wise, asynchronous update of neural activities [30]
and without feedback connections from the outputs into the reservoir is structurally equivalent
to Elman-type networks [25, 117] with random input and random feedback connections (see
Fig. 3.5 (a)). Asynchronous updates are usually applied to multi-layer networks that operate
on static data, e.g. forward propagation of activities in MLPs. Throughout this thesis, the
synchronous update (3.2) is used in all reservoir implementations and therefore the reservoir
networks discussed here can be understood as a full recurrent neural network with special out-
put neurons but without a layered structure which is similar to the ideas in [29, 58]. Technically,
applying synchronous network updates in ESNs yields to an increased memory capacity by one
time step because then the reservoir is not yet excited by the input at time step k and the
previous input at k−1 is available for the read-out. In case of attractor-based computation,
however, both update rules are equivalent with respect to the reservoir state and read-out learn-
ing because then the reservoir is several times updated with the input pattern (see discussion
in Sec. 3.2.4).

ESNs with output feedback (Wfdb 6= 0) are typically trained for autonomous pattern
generation [30, 118, 22, 86] by implementing a recursive prediction loop at the output neurons:
The ”predicted“ output ŷ(k+ 1) = Wouth(k) is recursively fed back into the reservoir via
the output feedback connections Wfdb. If the read-out weights Wout are trained properly,
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the output feedback dynamics exhibit cyclic attractor dynamics, i.e. generating an oscillatory
activity pattern autonomously. Inputs can additionally parameterize the generated pattern
[30, 119, 120] (see Fig. 3.5 (b) and (c)).

Implementation of parameterized autonomous pattern generation by recursive prediction is
conceptually related to sequence generation in associative memories [5] where the pattern at
time step k is associated with the pattern at time step k+1. Sequence generation proceeds by
recursively feeding associated patterns of the next time step back into the network. The same
recursive prediction loop is implemented by Jordan-type recurrent neural networks [48, 15] (see
Fig. 3.5 (b)). A more recent approach of autonomous pattern generation with Jordan-type
networks is the recurrent neural network with parametric bias (RNNPB) [28, 121]. In Jordan-
type RNNs and RNNs with parametric bias, however, learning is applied to all network weights
which involves temporal generalization of backpropagation methods. In RNNPB, the paramet-
ric bias representation of the stored patterns is additionally self-organized during learning. In
reservoir networks, the network parameterization is typically an one-of-k, hand-coded repre-
sentation of the pattern [30, 119, 120], and restricted adaptivity of the network alleviates the
need for backpropagation of errors through the network and time. Besides the efficient learn-
ing, generalization by means of transition between generated patterns and their mixture is still
possible in ESN with output feedback [120, 119]. Structurally, ESNs with output feedback can
be understood as combination of Elman- and Jordan-type networks with random weights from
input, hidden and output neurons to the hidden layer (compare Fig. 3.5 (c)).

3.3.4 Associative Reservoir Computing (ARC)

The Associative Reservoir Computing (ARC) model was introduced in combination with offline
learning in [22] and with online learning in [23]. In the outset of associative methods, there is
no dedicated input or output: with respect to the network architecture and the learning algo-
rithm, inputs x and outputs y are functionally equivalent (compare Fig. 3.1). It is nevertheless
convenient to name x as input and y as output, because generally there is a forward and inverse
relation in the data (compare to discussion in Chapter 2). The forward or inverse model is
queried by either driving the network by inputs, i.e. clamping the input neurons to the desired
value, and running the feedback dynamics at the output nodes, or by driving the networks by
outputs while the inputs run in a feedback loop (see (3.9)–(3.10)). Due to the functional equiv-
alence of inputs and outputs including the respective feedback dynamics, the network has the
same capabilities per direction as ESNs with output feedback. Moreover, associative completion
can be accomplished by driving only parts of inputs and outputs (see (3.11)).

ARC generalizes the random projection methods discussed above to a unified network model.
The subsumed non-linear random projection methods can be obtained by restricting the net-
work connection matrix Wnet of the associative reservoir model (see third column in Tab. 3.1
displaying Wnet for each model):

1. Linear random projections with R� D for dimension reduction have

Wnet =




0 0 0
Winp 0 0

0 (Wout) 0




and linear activation functions σ(ai) = ai. Optionally, a trained read-out connections
Wout can be attached to the dimension reduction for function approximation purposes.
Note that two linear mappings in series are only meaningful in terms of efficient learning,
i.e. in cases where D is very large.
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2. Extreme Learning Machines (ELMs) are associative reservoir networks with

Wnet =




0 0 0
Winp 0 0

0 Wout 0




and asynchronous update rules

y(k) = Woutσ(Winpx(k))

propagating activity layer-wise through the network. In particular, non-linear activation
functions σ(·) and a high-dimensional network state R � D distinguish ELMs from the
linear random projection approach.

3. Echo State Networks (ESNs) have in addition a recurrent reservoir and optionally output
feedback connections as discussed in Sec. 3.3.3. Hence, the network connectivity is given by

Wnet =




0 0 0
Winp Wres (Wfdb)

0 Wout 0


 .

4. Associative Reservoir Computing (ARC) networks in addition comprise trained connec-
tions Wrec from the reservoir to the input neurons:

Wnet =




0 Wrec 0
Winp Wres Wfdb

0 Wout 0




The additional read-out weights Wrec enable to estimate, i.e. ”reconstruct”, inputs when
driving the network outputs with an external signal. For this bidirectional association,
output feedback connections Wfdb 6= 0 are obligatory. Otherwise, the network state can
not be driven by feeding outputs into the network.

5. In the context of static data association, a tailored, “light-weight“ variant of ARC is
particularly efficient. This Associative Extreme Learning Machine (AELM) goes without
a dynamic reservoir, i.e.

Wnet =




0 Wrec 0
Winp 0 Wfdb

0 Wout 0


 .

Due to the non-recurrent hidden state, learning and recall of associations is not compli-
cated by internal transients. An asynchronous update rule of the network state, i.e.

a(k) = Winpx(k) + Wfdby(k) (3.20)

further tailors the model to efficient application on static data (compare with synchronous
update rule (3.2)).

The presence of output feedback, however, introduces dynamics to the originally pure
feed-forward ELM approach during network exploitation: The network is driven, for ex-
ample, by external inputs x, while the outputs are iteratively fed back into the network
until convergence. I.e. output feedback dynamics implement a dynamical associative com-
pletion mechanism in AELMs. The output feedback-driven mode utilizing asynchronous
update rules is structurally equivalent to Jordan-type networks (see Fig. 3.5 (b)).
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Although, the AELM has no transient dynamics of the “reservoir” layer itself, multi-stable
output feedback dynamics can act as attractor-based short-term memory (see Chapter 7).
Moreover, transient-based computation utilizing the output feedback dynamics can also
be exploited for movement generation (see Chapter 8). The AELM was first proposed by
the author in [55] for learning of ambiguous bidirectional mappings.

Sometimes short-cut connections between inputs and outputs are trained which constitute
a linear sub-model [30, 122, 23]. In backpropagation-decorrelation networks [71], also recurrent
connection between output nodes are considered. In [23], a full recurrent network with a fully
occupied block-matrix Wnet implements an associative reservoir network. Also, additional bias
units for each trained read-out layer can be added [122]. These additional elements are covered
by the ARC model presented here, however, I restrict considerations to the core model in the
following. Specific network models will be chosen from the presented repertoire of reservoir
methods in order to investigate particular aspects of associative reservoir computing. For in-
stance, analyzing the typical ESN with and without output feedback will give basic insights
into the role of output feedback dynamics.
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Tab. 3.1: Taxonomy of random projection methods.

Method Setup Wnet Projection Dynamics Application Citations

Random
Projection

x
x̃

Winp

(
0 0 0

Winp 0 0
0 (Wout) 0

)
• linear
•down-projection

•none •dimension reduction

[106],
[110],
[111],
[104],
[105]

Extreme
Learning
Machine
(ELM) x y

h

Winp Wout

(
0 0 0

Winp 0 0
0 Wout 0

)
•non-linear
•up-projection

•none • function approximation
[33], [114],
[95]

Echo State
Network
(ESN)

Wfdb = 0 x y

h

1

2
3

4

5

6

7

8

9

Wres

Winp Wout

(
0 Wrec 0

Winp Wres 0
0 Wout 0

) •non-linear
•up-projection
• spatio-temporal

• transients
•attractors

• function approximation
• sequence transduction

with transient-based short-term memory
• system identification

[30], [86],
[81]

ESN
Wfdb 6= 0

x y

h

1

2
3

4

5

6

7

8

9

Wres

Winp Wout

Wfdb (
0 0 0

Winp Wres Wfdb

0 Wout 0

) •non-linear
•up-projection
• spatio-temporal

• transients
•attractors

• (ambiguous) function approximation
•autonomous pattern generation
• sequence transduction

with transient-based short-term memory
• system identification

[30], [119],
[83]

Associative
Reservoir

Computing
(ARC) x y

h

1

2
3

4

5

6

7

8

9

Wres

Winp Wout

Wrec
Wfdb

(
0 Wrec 0

Winp Wres Wfdb

0 Wout 0

) •non-linear
•up-projection
• spatio-temporal

• transients
•attractors

•bidirectional function approximation
•autonomous pattern generation

and classification
•bidirectional sequence transduction

with transient-based short-term memory

[22], [23],
[24]

Associative
ELM

(AELM)
x y

h

Winp

Wrec

Wout

Wfdb

(
0 Wrec 0

Winp 0 Wfdb

0 Wout 0

)
•non-linear
•up-projection

•mainly
attractors

• transients

•bidirectional function approximation
•bidirectional sequence transduction

with attractor-based short-term memory
[55]



Output feedback dynamics and error amplification 33

3.4 Output feedback dynamics and error amplification

Output feedback is a crucial ingredient for reservoir computing applications like autonomous
pattern generation [118, 36, 120, 123] and bidirectional pattern association [23, 22]. But also
Jordan-type recurrent neural networks [48] and the more recent parameterized bias networks
[28] comprise an output feedback loop very similar to the reservoir networks discussed in this
thesis (see Sec. 3.3.3). In these models, feedback of estimated outputs can potentially amplify
small deviations from the target pattern. In this context, “staying close to a target pattern” is
often called stability without precise definition, e.g. [36, 120]. I formalize this loose notion by
introducing a definition of output feedback stability that is tailored to network configurations
with output feedback loops and ties learning and stability together. Then, strategies are outlined
how to cope with output feedback dynamics.

3.4.1 Output feedback and teacher-forcing

We first consider ESNs with and without output feedback connections to facilitate the further
discussion. Without output feedback (Wfdb ≡ 0), only inputs x(k) drive the reservoir dynamics
and the read-out weights Wout do not affect the reservoir state (compare ESN without output
feedback in Tab. 3.1). If Wfdb 6= 0, the network state is also driven by outputs y(k) (compare
(3.2) and Fig. 3.1). During learning, the outputs are typically teacher-forced [118, 31, 36, 120,
22], i.e. clamped to the desired output sequence y(k). In exploitation mode, the estimated
outputs ŷ(k) are fed back into the reservoir which I refer to as output feedback-driven mode.
The trained feedback loop parameterized by Wout and Wfdb can lead to error amplification
when the network is output feedback-driven [118, 36]. This error amplification is commonly
referred to as instability but without a precise definition what stability means.

More formally, teacher-forced dynamics for given inputs x and y can be written as

a(k+1) = f(x,y,a(k)) (3.21)

meaning that the next state is a function of given inputs and outputs plus the last state at the
previous time step. In Echo State Networks, for instance, the teacher-forced dynamics are

a(k+1) = Winpx + Wfdby + Wresσ(a(k)) (3.22)

= Iinp + Ifdb + Ires(k). (3.23)

Note that only the inflow Ires(k) from the reservoir exhibits “free“ dynamics in case of teacher-
forcing. That means the inflow from inputs and outputs is fixed and the teacher-forced network
dynamics will relax to an unique attractor if the reservoir network has the ESP. Note further that
in case of the AELM with Wres = 0, the teacher-forced network state is uniquely determined
by a single network update.

Partially releasing the teacher-forcing, e.g. driving the network only by inputs, alters the
situation to

a(k+1) = f(x, ŷ(k),a(k)), (3.24)

where ŷ(k) denotes the estimated model output from the last time step that is iteratively fed
back to fill in the missing teacher signal: The model exhibits output feedback dynamics. In
reservoir models with linear read-out neurons, we have

a(k+1) = Winpx + Wfdbŷ(k) + Wresσ(a(k))

= Winpx + WfdbWoutσ(a(k−1)) + Wresσ(a(k)). (3.25)

Equation (3.25) makes the output feedback dynamics explicit: The network is fed by estimated
outputs ŷ(k) at time step k which are read out from the previous reservoir state σ(a(k−1)). The
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Fig. 3.6: Output feedback stability: Consider the network state sequence for teacher-forced
outputs (black line). Releasing the trained network from teacher-forcing beginning at time step
k=1 results in the output feedback-driven state sequence (gray line). Output feedback stability
requires the output feedback-driven network state sequence to stay ε-close to the teacher-forced
state sequence.

network activity a(k−1) was itself driven by the estimated output at time step k−2. Moreover,
(3.25) shows that learning of the read-out weights Wout directly shapes the output feedback
loop in combination with the output feedback weights Wfdb: The inflow from the output into
the network is Wfdbŷ(k) = WfdbWoutσ(a(k−1)).

3.4.2 Output feedback stability

I formalize the concept of stability for ESNs with output feedback. Consider a teacher-forced
network state sequence h(k) with external inputs x(k) and y(k) for k = −∞, . . . , 0. Then,
duplicate the network and run one copy further with teacher-forced inputs and outputs. The
output neurons of the second copy are released from the teacher signal, i.e. estimated outputs
ŷ(k) are fed back into the network, yielding the output feedback-driven sequence hfdb(k). For
input and output sequences x(k), y(k) with k=−∞, . . . , 1, . . . ,K, the output feedback-driven
network is said to be ε-output feedback stable if it remains ε-close to the teacher-forced sequence,
i.e. ||h(k) − hfdb(k)|| < ε for k = 1, . . . ,K and some ε > 0. Fig. 3.6 illustrates the output
feedback stability criterion.

Note that output feedback stability is closely related to the task-specific performance and
ties both concepts together: Teacher-forced networks that can not fit desired outputs are not
output feedback stable, and non-output feedback stable networks fail to reproduce desired
outputs. The output feedback stability criterion is stricter than the related concept of orbital
stability which neglects the precise temporal coupling of input and network dynamics [124].
The Echo State Property [30] of the reservoir is a necessary prerequisite for output feedback
stability: The network state h(k) has to be uniquely determined by any left-infinite sequence
of external inputs x(k), y(k). Output feedback stability extends the notion of echo states to
networks with output feedback connections and thereby integrates learning and stability by
connecting teacher-forced with output feedback-driven dynamics.

3.5 Prospects and challenges

Output feedback stability is crucial for accurate performance in settings with output feedback
dynamics. These settings include feed-forward networks that are applied in a recursive predic-
tion loop [25, 26, 20, 27], and (associative) reservoir networks with output feedback connections.
Note that the notation and terms also generalize to associative completion and auto-encoder
neural networks by combining inputs and outputs to a generalized input vector u = (xT ,yT )T .
Auto-associative models in general can be executed in an output feedback-driven mode. How-
ever, convergence of the system, unique or multiple attractor states per driven input and other
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dynamic properties depend on many factors ranging from model-specific properties, learning,
and the task at hand (compare discussion in Sec. 2.2). In the context of bidirectional association
and associative completion, it is essential that the selected inputs have adequate influence on
the model, i.e. are sufficient to drive the system. In reservoir models with weak output feedback
connections Wfdb, output feedback can be neglected and acts rather as noise that perturbs the
internal reservoir representation. Reservoirs with small output feedback weights stay output
feedback stable despite feedback of erroneous outputs [83]. Then, however, the model can prob-
ably not be driven by outputs to recall inputs because the connections Wfdb are too weak. It
is therefore important to balance the contributions of inputs and outputs to the reservoir state.
This is typically achieved by scaling the matrices Winp and Wfdb appropriately, which, how-
ever, can be rather cumbersome if the input and output data have very different characteristics,
e.g. differ in dimensionality, range and energy.

The feedback of outputs into the network introduces a particular difficulty with respect to
offline learning. During learning, the outputs are typically teacher-forced to make the target
dynamics available for the learning [125, 30]. During network exploitation, estimated outputs,
which typically do not match the targets exactly, may result in very different network dynamics
[125]. Online learning without teacher-forcing can prevent this problem [23, 101, 102, 103].
Then, however, learning drives the network dynamics through bifurcations which prevents con-
vergence of the learning in the worst case [125]. One-shot programming of output feedback
stable dynamics does not suffer from bifurcations during learning. But then, it is essential to
cope with the difficulty of teacher-forcing in offline learning scenarios: Releasing the teacher
signal may result in error amplification caused by high sensitivity of the trained output feedback
dynamics to perturbations. It is therefore important to reduce the gain of the output feedback
dynamics in order to achieve a robust network performance. This thesis mainly contributes
to the discussion and presents a combination of regularization methods which enable robust
offline training of output feedback dynamics. The idea is (i) to implement stable output feed-
back dynamics by regularizing the reservoir and read-out layer, and (ii) to explicitly program
contractive output feedback dynamics. The basic methodology to implement both, reservoir
regularization and explicit shaping of attractor dynamics, is introduced in Chapter 4. Then,
it is shown in Chapter 5 that regularization of the reservoir actually reduces the gain of the
output feedback-driven system. Further, the deeper relation of regularized learning and sta-
bility is discussed. The issue of driving the representation equally by either inputs or outputs
is addressed in Sec. 5.6. Balancing of contributions is achieved by modeling the propagation
of activity in a dendritic extension to the formal neuron model. Robust association utilizing
the introduced regularization methods is demonstrated on several tasks in Chapter 6. Explicit
shaping of attractor dynamics is finally presented in Chapter 7.



Chapter 4

Programming dynamics of
input-driven recurrent neural

networks

In this chapter, a novel technique is introduced that programs desired state sequences into
recurrent neural networks in one shot. The approach unifies programming of transient and
attractor dynamics in a generic framework. The basic methodology and its scalability to large
and input-driven networks is demonstrated by shaping attractor landscapes, transient dynam-
ics and programming limit cycles. Then, the programming dynamics approach is adopted to
reservoir regularization.

4.1 Programming dynamics

It is a long outstanding question how to determine parameters of dynamical systems that
shall display desired behaviors. Traditionally, data-driven parameter estimation for recurrent
neural networks (RNNs) has been approached in one of the following contexts: (i) learning of
associative memory networks mostly based on correlation matrices, or (ii) learning of general
RNNs for approximation of input-output mappings by temporal generalization of supervised
backpropagation learning. Learning in the latter case is based on gradient descent with respect
to some error criterion. Backpropagation through time and related variants [68, 69] suffer
from high computational load, bifurcations of the network dynamics during learning [125], and
the typical gradient descent problems like vanishing gradients, local minima, etc. Research in
this direction was widely concerned with minimizing the computational load and accelerating
convergence of the gradient descent [69], but these efforts can not free learning by gradient
descent in recurrent settings from its serious drawbacks.

One-shot learning of RNNs, like it is traditionally applied in the context of associative
memory networks [4], is therefore promising. However, attractor and sequence learning are
strictly separated in these networks and learning does not easily generalize to input-driven
settings. The combination of both, one-shot learning of input-driven RNNs and shaping of
transients in addition to desired attractor dynamics, has not yet been accomplished.

In [126], I introduced a generic paradigm to program RNNs efficiently in one shot that
applies to a wide range of neural network architectures. Based on the idea to program the state
transitions of an observed system into a parameterized model, learning can be formulated as a
simple regression problem and can be accomplished efficiently in one shot without descending
a gradient. This state prediction approach is applicable whenever state transitions can be
formulated as linear system of equations with respect to the model parameters. Together

36



State Prediction 37

with a trajectory-based sampling strategy, the method unifies programming of transient as
well as attractor dynamics in a generic formulation. The combination of sampling desired
sequences and one-shot learning solves three problems: First, bifurcations during learning are
prevented. Second, shaping of transient and attractor behavior is unified, and third, linear
regression is efficient to compute, yields the best parameter estimates with minimal norm and
scales to complex network configurations. State Prediction is related to the recently introduced
regularization approach for input-driven RNNs [127, 115] and the approach taken by Jaeger in
[128] to program the functionality of an external controller into a reservoir network.

The principles of this previous work are presented in a coherent framework for one-shot
learning of input-driven RNNs. We first focus on the learning paradigm, its implications,
and practical aspects. It is then shown that State Prediction can shape transients, attractor
landscapes and input-driven dynamics in a range of scenarios and the results are linked to
dynamical system theory.

4.2 State Prediction

Consider a system with state s(k) ∈ RR at time step k that unfolds in time according to
a mapping

Φ : R
R+D → R

R

Φ(s(k),u(k)) 7→ s(k+1),

where u(k) ∈ RD are additional input signals that parameterize the transition. Assume one can
sample typical flows {(si(k),ui(k))}i of the system, where k = 1, . . . ,Ki for the i-th sequence.
The observed state sequences are modeled with the input-driven recurrent network dynamics

s(k+1) = σ(W̃s̃(k)), (4.1)

where σ is a non-linear activation function, s̃(k) = (s(k)T ,u(k)T , 1)T is the combined input and
system state, and W̃ = (W Winp b) are the model parameters. The recurrent neural network
model is illustrated in Fig. 4.1 (left).

Typically, learning is approached by minimizing the error

E =
1

K

∑

k

||s∗(k)− s(k)||2,

where the model parameters W̃ are adapted in order to bring the sequence s(k) closer to the
desired sequence s∗(k). Gradient-based approaches lead to recursive dependencies of the states
on the weights, i.e.

∂E(k)

∂wij
=−(s∗i (k)−si(k))sj(k−1)σ′(k)

∂si(k−1)

∂wij
.

In contrast to the separation of the model dynamics and the target dynamics, the basic idea of
State Prediction is to find parameters W̃ that explain the transitions between successive states
s∗(k) and s∗(k+1) best. That means parameters W̃ are searched that minimize

||s∗(k+1)− σ(W̃s̃∗(k))|| for k = 1, . . . ,K, (4.2)

where s̃∗(t) = (s∗(t)T ,u(t)T , 1)T . This formulation directly incorporates the sampled system
transitions Φ(s∗(k),u(k)) = s∗(k+1) for parameter estimation. This state prediction is parame-
terized by the input u(k). Note that the prediction in (4.2) is based on the observed state s∗(k),
not on the dynamics of a partially trained model. This optimization by utilizing harvested target
state sequences is inspired from the reservoir computing paradigm (see Sec. 3.1) and generalized
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Fig. 4.1: Input-driven recurrent neural network (left). State Prediction (right) models the
transitions between successive states given sequences of inputs and states.

to the entire recurrent neural network model in this chapter. Once a desired state sequence
is collected, constructive modeling of the sequence s∗(k) by a RNN for k = 1, . . . ,K can be
accomplished using regression techniques. The idea of predicting the next network state given
inputs and the last state is illustrated in Fig. 4.1 (right).

To prevent the non-linear activation function σ from cluttering the optimization of the model
parameters W̃, I rephrase the state prediction problem (4.2) as a linear system

a∗(k+1) ≡ σ−1(s∗(k+1)) = W̃s̃∗(k). (4.3)

This linearization is possible if (i) σ is invertible and (ii) the observed data is transformed into
the output range of σ. Condition (i) is fulfilled by all common sigmoidal activation functions like
the hyperbolic tangent (3.5) or the logistic function (3.4). The second condition can be fulfilled
without restriction for all bounded sequences. With one eye on reservoir computing, harvesting
state sequences of a recurrent network itself makes targets a∗(k) in (4.3) directly available.

We are now in a position to solve the linear state prediction problem by simply collecting
all R sampled trajectories in a matrix

S̃∗ =




s̃∗1(1)T

...
s̃∗1(K1−1)T

...
s̃∗R(1)T

...
s̃∗R(KR−1)T




and the corresponding targets in A∗ =




a∗1(2)T

...
a∗1(K1)T

...
a∗R(2)T

...
a∗R(KR)T




.

The optimal solution in the least squares sense to the state prediction problem ||A∗− S̃W̃T || is

W̃T
opt =

(
S̃∗T S̃∗ + β1

)−1
S̃∗TA∗, (4.4)

where β ≥ 0 weights the contribution of a regularization constraint R(W̃) =
∑

i,j w̃
2
ij corre-

sponding to a Gaussian prior distribution for the model parameters [129, 130].

4.2.1 Sampling dynamics for State Prediction

Programming dynamics by State Prediction can be understood as a three-staged process: Ob-
servation of the desired system yields a data corpus which is used in a second step to determine
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the model parameters by solving the state prediction problem (4.2) by means of W̃T
opt. Then,

the programmed model dynamics are ready for exploitation. One can substitute the first stage
by synthesizing training data that represent the desired behavior. Observation of the desired
dynamics is a key step and there are three basic ways how to sample dynamics for State Pre-
diction:

Sampling velocities

Spatial sampling of states s with corresponding velocities v(s) of the system at that particular
point in state space is one way to acquire training data. Simple integration yields the required
pair of successive states s(k) and s(k+1) = s(k) + v(s(k)). State transitions s(k) → s(k+1)
can also be observed directly. Sampling velocities or state transitions means to observe the
system dynamics stepwise for selected states and inputs. This approach elucidates the need for
generalization: The programmed model has to operate also in areas of the state space where
no training examples are present. A local modeling approach is hopeless because extrapolation
is impossible. The network (4.1) models state transitions globally and thus can generalize the
system behavior to novel states. However, sampling has to be done carefully: All important
regions of the state space have to be included and the number of samples in each region should
be sufficiently balanced. This is difficult for high-dimensional systems and therefore restricted
sampling can be advantageous.

Sampling attractor conditions

Focusing on the target of implementing a specific behavior leads to the idea of sampling only
particular conditions. For instance, attractor conditions can be easily formulated in terms of
State Prediction using that s(k+1) = s(k) if s is an attractor state. This approach is typically
applied to imprint memories into associative networks. Though conceptually curing the problem
of sampling from the entire velocity field, there is a serious drawback: The differential equation
is only sampled at special points in state space with zero velocity. Surrounding states s+ν might
not be attracted, i.e. the basin of attraction is too narrow and leaves space for spurious states.

Sampling flows

A conceptually and practically appealing way of sampling dynamics is a trajectory-based ap-
proach. Simply recording representative flows si(k) for k = 1, . . . ,Ki and sequences i of the
system provides exemplary descriptions of the dynamics including, for instance, the size of at-
tractor basins. Recording or synthesizing exemplary state sequences (or a combination of both)
solves the previous problems by collecting state transitions only at relevant regions of the state
space while preventing degenerated sampling. In addition, trajectory data is typically available
in physical systems.

4.2.2 State Prediction, associative learning and auto-regression

The state prediction approach combines several ideas from the areas of neural networks and
auto-regressive modeling.

State Prediction and learning in associative memories

Regarding dynamical associative memories, State Prediction can be understood as generaliza-
tion to input-driven recurrent neural networks: In addition to a recurrent layer, the model
considered here has input neurons that bias, i.e. parameterize, the network dynamics. The
discussion above and the experiments that follow this discussion show that State Prediction
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conceptually unifies the programming of fixed-point and “sequential” dynamics. From a se-
quence programming viewpoint, imprinting fixed-point attractor dynamics is a special case
where simply attractor conditions are sampled for learning.

Moreover, the formulation of a linear system of equations that is solved by linear regression
with additional regularization constraints has not been proposed in this field of research. Al-
though the least squares solution for non-dynamical associative memories has been identified
as “optimal auto-associative recollection” [37, 7], research on dynamical associative memories
focused on Hebbian and related, local learning rules (see [4, 131] and many others). In the
context of dynamical associative memories, learning by linear regression is rarely applied and
typically without regularization of the network parameters [132]. Regularization is a common
model selection technique in machine learning aiming at improved generalization by preventing
over-fitting of the model to the training data. In the context of recurrent neural networks, reg-
ularization of learning is important also for stability and therefore recommended. In Chapter 5,
the link between regularization and stability is discussed more deeply.

State Prediction and learning in general recurrent neural networks

From a recurrent neural network viewpoint, State Prediction unfolds the network dynamics
in time (compare Fig. 4.1 (right)). However, standard gradient-based learning in recurrent
networks assumes that supervised targets are only available for the output neurons and thus
makes backpropagation of errors to the hidden layer necessary. In contrast, the complete state
sequence is available in the state prediction framework. This seems to be a strong restriction in
the first place, but State Prediction is also applicable to networks with hidden representations.
For instance, consider the approach by Atiya and Parlos in [69] who reformulated learning in
recurrent networks to implement “virtual” targets in the hidden layer. Even though these virtual
targets are mediated by the supervised error at the output neurons, the implementation of these
target state sequences, i.e. finding weights that exhibit the desired dynamics, is formalized by
the state prediction problem (4.2). The application of State Prediction to reservoir networks
without propagating supervised errors is shown later on in this thesis.

State Prediction and auto-regressive modeling

From an system identification viewpoint, State Prediction is a special case of non-linear auto-
regressive modeling with exogenous inputs (NARX) [133]. Auto-regressive (AR) models with
“exogenous“ inputs u(k) have the form

s(k) = F (s(k−1), s(k−2), . . . ,u(k),u(k−1), . . . ) + ε(k),

where the sequence s(k) is subject of the modeling and ε(k) is the error of the non-linear model
F typically due to noise. If F is a non-linear function of the previous sequence steps s(k−t)
and inputs u(k−t) with t ∈ N and t ≤ p, F is said to be a non-linear auto-regressive exogenous
model of order p.

State Prediction can be understood as an auto-regressive problem with exogenous inputs
of order p = 1: Only the last ”state“ s(k−1) and input u(k−1) is utilized for predicting s(k)
(compare Fig. 4.1 (right)). The recurrent model is also non-linear, and thus State Prediction
is a NARX model. Note, however, that learning is linear with respect to the parameters
(compare (4.3)).

There are also non-linear auto-regressive (NAR) approaches that incorporate recurrent neu-
ral networks for non-linear modeling of the state transitions, e.g. [134]. In [134], however, the
recurrent network (a Jordan-type network with input delay-line and a delay-line of prediction
errors) is trained by standard gradient-based backpropagation methods to approximate the next
sequence state at its outputs.
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In State Prediction, the perspective is different: We aim at finding recurrent neural network
parameters that explain the observed state sequences given external inputs, i.e. the sequence
itself is modeled by the state sequence of the recurrent network. The modeling capabilities are
therefore restricted by the class of dynamics that the recurrent network can exhibit. This raises
the question which kind of dynamics can be learned by State Prediction.

Modeling power of State Prediction

A necessary condition for successful learning by State Prediction is that the desired dynamics
belong to the class of dynamics which input-driven recurrent neural networks span. In [135, 136],
a taxonomy of ”classes of dynamics” that recurrent neural networks can display are discussed
(for small networks only). Attempts to model state sequences that are not part of this set of
dynamics will necessarily fail. If the state sequences can be modeled by the recurrent neural
network, it is important that the sampled observations capture the relevant dynamic behavior
sufficiently well for learning to be successful (this is also confirmed in experiments in Sec. 4.4).
Programming dynamics by State Prediction seems to result in a limited memory capacity of the
programmed networks in the first place due to the restricted order (p = 1) of the auto-regressive
modeling. Note, however, that learning takes state transitions at all time step into account and
that the desired state sequence may comprise transients prolonged over several time steps. It is
shown in Sec. 4.4 that modeling of state sequences that stem from a recurrent neural network
(re-)implements also transient dynamics accurately. In this case, it is clear that the observed
dynamics can be modeled by a recurrent network because they have been produced by such
a network. Therefore, learning by State Prediction can in principle fully exploit the memory
capacity of recurrent neural networks.

4.3 Programming dynamics by predicting states

Sampling of velocities and sampling of flows for programming dynamics is demonstrated in
this section.

4.3.1 Programming the dynamics of a single neuron

We start with the minimal possible scenario and program the dynamics of a single neuron with
σ ≡ tanh and apply the sampling of velocities approach. A single neuron is used without bias
or inputs such that (4.1) has only one parameter w. The dynamics of the neuron can be uni-
stable, i.e. a single globally and asymptotically stable fixed-point exists, or bi-stable, i.e. two
fixed-points are separated by a saddle [137, 138, 139].

I create training data by sampling states s and their respective velocities v(s) from a poten-
tial field

P (s) = −0.1

2∑

i=1

(5(pi − s)2 + 1)−1

with two desired attractors located in state space at p1 and p2. I move p1 and p2 = −p1

from zero (potential field with a unique basin) to 0.7 (two detached basins) and train for each
potential field a network model. The State Prediction is conduct by modeling

s∗ + v(s∗) = tanh(ws∗), where v(s∗) = − ∂

∂s
P (s∗)

are the respective velocities. States and velocities are sampled near to the charges p1 and p2,
and β = 0 is used in (4.4) for training.
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Fig. 4.2: Bifurcation of dynam-
ics depending on the distance
d between the charges. Pro-
grammed networks (black) and
analytic dynamics (gray).
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Fig. 4.2 (left) shows the attractor states h̄ = s(∞) of the programmed networks (black) and
the potential field dynamics (gray) for different initial conditions as function of the distance
d = |p1 − p2| between the two charges. Note that the discrete dynamics given by s(k+1) =
s(k)+v(s(k)) as well as the programmed network dynamics bifurcate at d ≈ 0.5. The bifurcation
introduces a saddle, i.e. is a saddle-node bifurcation, which explains the peak number of steps
until convergence shown in Fig. 4.2 (bottom right). When both charges are separated further,
this effect vanishes and the number of iterations until convergence decreases again. The weight
of the programmed system is shown in Fig. 4.2 (top right) and also displays the point of
bifurcation: When the weight surpasses unity, global asymptotic stability of the linearized
system is not guaranteed anymore [93, 30].

4.3.2 Programming two-neuron circuits

In this section, we focus on two-neuron circuits without inputs. It is shown that a variety of
behaviors can be programmed into such circuits by simply providing some example sequences,
i.e. sampling flows. The sequences are generated synthetically by a simple strategy: For each
fixed-point attractor s̄∗, I select random perturbations νi ∈ RN and generate sequences by
setting

s∗i (k) = s̄∗ + (1− k/Ki)
2νi with k = 0, . . . ,Ki.

For each fixed-point, I typically use Ki = 20 for i = 1, . . . , 50 and chose perturbations νi
uniformly distributed in [−0.2, 0.2]2. The neurons have σ ≡ tanh and β = 0 is used in (4.4) for
training.

Tab. 4.1 shows various mappings from target sequences (2nd col.) to programmed dynamics
(3rd col.). The network parameters are given in the fourth column. For fixed-point attractors,
the desired attractor positions (red dots) and the actual attractors of the programmed networks
(green circles) show that the fixed-point conditions are accurately implemented by the networks.
Generally, a few example sequences or even a single sequence is sufficient to implement the
desired behavior (see rows 4 and 5 in Tab. 4.1). Note that the training data does not only
shape the dynamics in the limit case k → ∞, i.e. the location of the attractor, but also the
transient behavior as can be seen in case of the spiral pattern in the fourth row of Tab. 4.1. In
the second row of Tab. 4.1 I used

s∗i2(k) = s̄∗2 + (1− k/Ki)
4νi2
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Tab. 4.1: Programming networks with two neurons. The second column shows the training data
and the third column shows the resulting phase portrait of the programmed network dynamics
with exemplary flows. The desired fixed-point attractors are displayed by red dots and the actual
attractors of the trained networks are shown as green circles. The fourth column gives the actual
network parameters and the spectral radius λ of the recurrent weights W. Rounded values are
presented for the network parameters which nonetheless describe very similar dynamics.
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Fig. 4.3: Parameterized network dynamics programmed from training data (left). Phase
portraits with flows for u = 0 (2nd col.) and u = 0.2 (3rd col.). The attractor states for
u ∈ {0, 0.01, . . . , 1} approximate the shape present in the training data (right).

for training data generation. The trained network displays the changed speed of convergence
along the second dimension. State Prediction shapes both, the transient dynamics and the
behavior in the limit case, which is fundamentally different from learning of associative memories
where auto- and temporal hetero-association are strictly separated.

We observe that all uni-stable systems have a spectral radius λ, the maximal absolute
eigenvalue of W, below unity. Bi-stability and cyclic attractors are indicated by spectral radii
greater or close to unity. Note, however, that a spectral radius greater unity does not strictly
imply loss of global stability if b 6= 0 [93, 30].

4.3.3 Programming input-driven network dynamics

In a next step, we program the dynamics of an input-driven RNN that comprises a single
input neuron and two internal neurons similar to the network structure shown in Fig. 4.1
(left). Training data is generated as in Sec. 4.3.2 using the same parameters, but this time a
sigmoidal structure is hidden in the training data which is only implicitly represented by the one
dimensional network input u (see Fig. 4.3 (left)). The phase portraits of the trained network
with exemplary flows are shown in Fig. 4.3 for input signals u = 0 (2nd col.) and u = 0.2 (3rd
col.). The flows and velocities reveal that the network has a unique fixed-point for each input.
Fig. 4.3 (right) shows the attractor states of the network for a fine-grained sampling of inputs in
range [0, 1]. The sigmoidal structure is captured well by the parameterized network dynamics.
In [127, 115, 128] and this thesis, the functioning of the state prediction approach is confirmed
for large networks with multivariate and time-varying inputs.

The example presented in this section is based on the idea to program a parameterized
attractor into the network. There is an implicit continuity assumption in the outset of the
example: Small changes of the input map to small changes of the attractor position. Learning
can be further biased to continuous state prediction mappings by increasing the regularization
parameter β in (4.4). This will be important for regularization of reservoir networks in the later
discussion.

4.3.4 Storing sequences in a large network

In this section, I demonstrate the scalability of the approach to recall long and high-dimensional
sequences. I program a network with 784 neurons to recall two sequences of digit images taken
from the MNIST database [140] (see Fig. 4.4 rows 1 and 5). Samples s1(1) ≡ s1(11) and
s2(1) ≡ s2(11) are used for training to close the respective sequence loop. The images are scaled
into the range [0.01, 0.99]784 and σ(a) = 1/(1 + exp(−a)) is used as activation function. The
regularization parameter β = 0.1 in (4.4) is used for training.

The second and sixth row in Fig. 4.4 show the generated state sequences of the trained
network. The network state was initialized with the first pattern of the respective sequence.
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Fig. 4.4: Sequence generation. The 1st and 5th row show the target sequences s1(k) and s2(k).
The 2nd and 6th row show the generated sequences, where s(1) = s1(1) and s(1) = s2(1),
respectively. The corresponding instantaneous error is plotted in the 4th and 8th row. The 3rd
and 7th row show the robustness against perturbations: The sequences are still recalled when
occluding 75% of the initial state or adding noise.

Then, the network update equation (4.1) was iterated without external inputs. Note that the
sequences are stably reproduced for hundreds of time steps. There is no amplification of the
error in successive cycles which can be seen in the instantaneous error plots in rows 4 and 8.
Also, when the network is initialized with strongly corrupted states, the network is attracted
to the trained limit cycles (see rows 3 and 7 in Fig. 4.4). This example shows that – in contrast
to correlation-based learning of associative memory networks [4] – one-shot storage and robust
recall of long sequences is possible with the state prediction approach. Note further that in
this example exact prediction of the next state is targeted, i.e. a classical associative memory
task. Comparing the rather different tasks of learning input-driven attractor dynamics that
generalize to new inputs (see Sec. 4.3.3), or the storage of sequences set up by discrete patterns
(this section) shows the unifying character of the state prediction approach.

4.3.5 Conclusion

At the advent of dynamical approaches to cognition (see [135] for instance), a lot of attention
was directed to the qualitative behavior of RNNs. The main goal was to understand their
dynamics, for instance by building up equivalence classes of dynamics and bifurcation manifolds
[137], [136], and then construct networks with desired dynamics on demand. This approach is
tightly bound to the analytic analysis of dynamical systems, which, unfortunately, is not feasible
even for small networks and consequently restricts network construction. The state prediction
paradigm in contrast is not restricted to small networks or by architectural assumptions like
only piecewise constant inputs. The state prediction approach to program observed dynamics
into a parameterized network model circumvents descending a gradient, is efficient to compute,
and enables the one-shot construction of dynamical systems. Shaping of transient and attractor
dynamics is unified by the state prediction paradigm in a generic framework.

In the next chapter, the state prediction approach is exploited for regularization of random
projection networks to cope with error amplification of output feedback dynamics. Before I
tackle the output feedback stability problem, a related approach for reservoir regularization is
introduced and compared to the state prediction methodology.
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4.4 Constrained regularization of reservoir networks

In this section, another approach related to State Prediction is introduced that is explicitly
derived for regularization of input-driven recurrent neural networks. Based on a Gaussian prior
for the network weights, the main idea is that the regularization is additionally constrained
to implement a previously harvested network state trajectory. This approach emphasizes the
regularization of the network and therefore this explicit regularization approach is conceptually
complementary to the State Prediction method where regularization is introduced as additional
cost to the State Prediction equation.

Technically, I start with a Gaussian prior for the network parameters, which is natural
in many respects: Gaussian distributed network parameters (i) are energy efficient, (ii) are
found in biological neural networks [70], and (iii) improve generalization of a model to new
data because over-fitting is prevented. This is particularly important in the context of random
projection methods: As the recurrent dynamics are fixed after initialization, the question of how
to guarantee generalization to new inputs is intuitively even more serious and in practice there is
often considerable variance in performance with respect to initialization. However, a Gaussian
prior distribution of network parameters alone will force all parameters to be zero when the
regularization is not constrained to a target behavior. I constrain the regularized network to
implement recorded state sequences following the reservoir computing idea of harvesting states.
In doing so, recurrence is cut off and the regularization can be accomplished by solving a linear
system of equations without risking bifurcations during adaptation.

First, the reservoir network model in its simplest variant, the ESN without output feedback,
is recalled. A slightly adopted notation is used in this section to simplify the further calcu-
lations. Then, the constrained optimization problem using the Lagrange multiplier method is
formulated. In a series of experiments, it is shown that the method is capable to reimplement the
network dynamics with regularized weights from a previously harvested state trajectory. That
means the regularized network also behaves similar in comparison to the original network when
it is excited with novel inputs not used for training. Finally, reservoir regularization improves
task-specific generalization on a combined prediction and non-linear sequence transduction task.

4.4.1 The basic reservoir network model

Consider the recurrent neural network model depicted in Fig. 4.5. Input, reservoir and output
neurons are denoted by x ∈ RD, h ∈ RR and y ∈ RO, where D, R and O are the respective
numbers of input, reservoir and output neurons. The network is governed by discrete dynamics

h(k+1) = σ
(
Winp x(k) + Wres h(k)

)
, (4.5)

y(k+1) = Wout h(k), (4.6)

where σ(·) are sigmoidal activation functions hi(k) = σi(ai(k)) that are applied component-wise
to the network activity a(k) = Winp x(k−1) + Wres h(k−1) ∈ RR. The outputs y(k) are a
linear projection of the reservoir state h(k−1). We collect all reservoir excitation weights in

Wnet =
(
Winp Wres

)
∈ RR×N (4.7)

in order to simplify further calculations. Accordingly, the combined input-reservoir state at
time step k ∈ N is denoted by s(k) = (x(k)T ,h(k)T )T ∈ RN where N = D +R.

4.4.2 The Lagrangian approach to reservoir regularization

Consider the Lagrangian

L(Wnet, λ) = R(Wnet)− C(Wnet, λ), (4.8)
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Fig. 4.5: The Echo State Network with reservoir neurons h(k) that are excited by the input
signal x(k). The network outputs y(k) are read out from the reservoir state.

where R(Wnet) regularizes the solution by punishing large weights. Let R(Wnet) take the
simple quadratic form

R(Wnet) =
1

2

R∑

i=1

N∑

j=1

(
wnetij

)2
, (4.9)

which corresponds to a Gaussian prior for the weights Wnet. wnetij denotes the connection
strength from neuron j to neuron i.

The second term in (4.8) is a set of constraints ci(k)=0 with Lagrange multipliers λi(k) per
neuron i and time step k:

C(Wnet, λ) =
K∑

k=1

R∑

i=1

λi(k)ci(k). (4.10)

While the regularizer R(Wnet) in (4.8) forces the weights to be Gaussian distributed, the con-
straints ci(k) = 0 enforce that the network weights implement the desired, harvested state
trajectory. The network update equation (4.5) can be used to derive a constraint for each
neuron i and time step k:

ai(k + 1) = wnet
i s(k)

⇔ 0 = wnet
i s(k)− ai(k + 1) ≡ ci(k),

where wnet
i denotes the i-th row of matrix Wnet. Note that a(k+1) and s(k) are assumed

to be given and fixed for k = 1, . . . ,K, which allows to resolve the recurrent dependency
ai(k+1) = wnet

i (x(k)T , σ(a(k))T )T . The minus sign in (4.8) is due to the fact that the overall
Lagrangian L is minimized. In the following, the optimality of weights Wnet is understood in
the sense that Wnet minimizes the Lagrangian L.

4.4.3 Derivation of the optimal network parameters

This section outlines the derivation of the closed-form solution for the optimal network weights
Wnet

opt . Basically, a candidate solution Wnet
can is derived first that depends on the Lagrange

multipliers λ ∈ RK×R. Then, the primary problem of optimizing L(Wnet, λ) is transformed
into its dual form which only depends on λ ∈ RK×R. The dual problem boils down to a linear
system of equations which can be solved efficiently and allows to calculate the optimal network
weights Wnet

opt .
Necessary for an extremum of L is

∂L

∂wnetij

=
∂L

∂λi(k)
= 0
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for i=1, . . . , R, j=1, . . . , N and k=1, . . . ,K. The candidate that optimizes the Lagrangian L
is obtained by partial derivation of L with respect to wnetij :

wnetij =

K∑

k=1

λi(k)sj(k), ∀i=1, . . . , R ∧ j=1, . . . , N. (4.11)

The candidate solution for wnetij now depends on the Lagrange multipliers associated with neuron
i for all time steps k.

Substituting all wnetij in equation (4.8) with the candidate solution (4.11) yields the dual
form of the primary problem which only depends on λ. Then, partial derivation with respect
to a specific λm(l) yields the following equation:

∂Ldual
∂λm(l)

= am(l + 1)−
K∑

k=1

λm(k)

N∑

j=1

sj(l)sj(k) = 0. (4.12)

The detailed derivation of this step is carried out in Appendix A.1.
The equation (4.12) can be reformulated in matrix notation using

λm = (λm(1), . . . , λm(K))T (4.13)

and

am = (am(2), . . . , am(K + 1))T (4.14)

for all reservoir neurons m = 1, . . . , R. Then, (4.12) becomes the linear system of equations

Cλm = am, (4.15)

where

C =




s(1)T s(1) . . . s(1)T s(K)
...

...
s(K)T s(1) . . . s(K)T s(K)


 . (4.16)

Solving the system (4.15) for each neuron m ∈ R yields a set of Lagrange multipliers λm that
solves the dual problem. Finally, rewriting equation (4.15) and (4.11) yields a closed-form
solution for Wnet

opt . Defining

S =




s(1)T

...
s(K)T


 and λ =



λ1(1) . . . λR(1)

...
...

λ1(K) . . . λR(K)


 ,

equation (4.11) writes for all i=1, . . . , R and j=1, . . . N

(Wnet
can)T = STλ. (4.17)

Now, solve (4.15) for λ by

λ = C−1A, (4.18)

where

A =




a1(2) . . . aR(2)
...

...
a1(K + 1) . . . aR(K + 1)


 .



Constrained regularization of reservoir networks 49

Algorithm 4.3 Constrained regularization of input-driven RNNs

Require: initialize network
Require: set k=1

1: for k < K do
2: inject external input x(k) into the network
3: update network state according to (4.5)
4: save x(k),h(k) and a(k)
5: k=k+1
6: end for
7: update network weights Wnet according to (4.19)

Combination of (4.17) and (4.18) yields the closed-form expression

(Wnet
opt )

T = STC−1A = ST
(
SST

)−1
A. (4.19)

The right hand side of (4.19) is the right pseudo-inverse of S, i.e. SST
(
SST

)−1
= 1. This

right-sided solution is obtained since the number of Lagrange multiplier, the free variables here,
is dim(λ) = K ·R which exceeds the number of constraining equations K. There are generally
infinitely many solutions in this case, and the pseudo-inverse solution is the one that minimizes
||Wnet||. Algorithm 4.3 presents the network optimization process.

4.4.4 Discussion of the solution

The main contribution of this section is the analytic, closed-form solution for regularized weights
Wnet

opt of an input-driven recurrent network. The derivation is based on a constrained regular-
ization approach which punishes large reservoir weights Wnet and constrains the solution to
implement a harvested, i.e. recorded, state trajectory. The derivation of a closed-form solution
for the network weights Wnet

opt is feasible because of the combination of three ingredients: (a)
the quadratic regularizer R(Wnet) that allows to have an explicit expression for the candidate
solution Wnet

can, (b) the idea of harvesting states used for the constraints C(Wnet, λ), which cuts
off the recurrent dependence of the network state h(k + 1) = σ(Wnet s(k)) by assuming the
recorded states s(k) for k = 1, . . . ,K as fixed, and (c) the differentiation of internal reservoir
and read-out weights, which is natural in many respects [72].

Generally, the extremum Wnet
opt is a global minimum of L because the Lagrangian L is

convex in the parameters Wnet due to the quadratic regularizer R(Wnet) and the constraints
C(Wnet, λ) that depend only linearly on the parameters Wnet. Furthermore, (4.15) is an
inhomogeneous linear system of equations and the optimal solution does either (i) not exist
at all, (ii) is not unique, or in the best case (iii) the system is uniquely solvable. On the one
hand, C is a square and symmetric matrix allowing efficient matrix inversion techniques. On
the other hand, problems (i) and (ii) can occur depending on the concrete C, for example if C
has not full rank. Unfortunately, C is typically rank deficient because rank(C) = rank(S) = R
for K > R. I present a common technique to cope with rank deficient matrices C in the next
section. Moreover, this indicates that the optimization based on a harvested state trajectory
depends on how well the recorded trajectory captures the dynamic network behavior. I expect
the regularized network to implement the same dynamic behavior on new inputs depending on
how well the training data captures the overall dynamic behavior of the initial network.

Note also that the solution for each neuron depends on the same matrix C. Specialization
of neurons is defined by the inhomogeneous part of the linear system (see the right hand side
of equation (4.15)). The solution can be understood as a temporal decorrelation of the network
activations, because the Lagrange multipliers and thus the optimal weights depend on the inverse
of the temporal state correlation matrix C.
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Another interpretation of the solution (4.19) can be obtained by utilizing that A = S(Wnet)T

since a(k + 1) = Wnet s(k − 1). We obtain

Wnet
opt = WnetST

(
SST

)−1
S, (4.20)

where now the optimal reservoir weights are expressed in terms of the initial weights Wnet.
The optimized reservoir weights Wnet

opt are the projections of the initial weights Wnet onto the
row space of S. Directions of the initial weights perpendicular to the row space of S, i.e.
projections of the weights onto the null space of S, are removed from the initial weight matrix.
This geometric interpretation of the reservoir optimization process can be grasped intuitively:
Weight contributions in the null space of the actually visited reservoir states are removed in
order to reduces the overall weight norm while still implementing the harvested state sequence.

4.4.5 Regularization of the Lagrange multipliers

Solving the linear system of equations (4.15) can cause numerical difficulties in case it is ill-
conditioned. A common approach to prevent such numerical problems is to also regularize the
Lagrange multipliers [141]. I punish large values for λi(k) by introducing an additional term
R(λ) to the Lagrangian (4.8):

R(λ) = γ
1

2

K∑

k=1

R∑

i=1

λi(k)2. (4.21)

Scaling the regularization by γ allows to smoothly adjust the contribution of the regularizer.
Derivation of the optimal solution is straight forward and we yield a slightly modified form of C:

C̃ = C + γ1.

The closed-form solution (4.19) adapts to

(Wnet
opt )

T = ST
(
SST + γ1

)−1
A. (4.22)

This solution is similar to ridge regression or Tikhonov regularization, where γ corresponds to
the Tikhonov factor.

4.4.6 Proof of concept and method properties

In this section, the feasibility of the Lagrangian approach to reservoir regularization is demon-
strated on a simple example that focuses on the reimplementation of a state trajectory. I face
the following questions: Does the optimized network reimplement the harvested state trajectory
and does the network behave similarly when it is excited with a different input trajectory? How
does the reimplementation of the state trajectory depend on the number of reservoir neurons
and the number of training samples?

Setup

The network is excited with a two dimensional random signal sampled from a uniform distri-
bution in [−1, 1]2. Thus the reservoir network has two input neurons D=2. First, a randomly
initialized reservoir with reservoir weights Wnet

ini is created. Then, the network is excited with
input trajectories xtrain(k) and xtest(k). The resulting reservoir state trajectories Htrain

ini and
Htest
ini are recorded. Application of the regularization method (4.19) results in a new set of

weights Wnet
opt . I excite the regularized network with the same input trajectories xtrain(k) and

xtest(k) again and compare the new state trajectories Htrain
opt and Htest

opt with the original trajec-
tories Htrain

ini and Htest
ini . I also investigate the absolute change of the weight matrices Winp and
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Fig. 4.6: Difference Hdif of the reservoir state trajectories for the training set (left) and test set
(right) as function of the number of reservoir neurons R and number of training samples K.

Wres before and after regularization. Details of the regularized reservoir weights are discussed
later on. To account for the random reservoir initialization, the results are averaged over 10
different network weight initializations.

In order to explore the amount of samples needed to reimplement a network behavior suf-
ficiently, I increase the number of training samples from 5 to 150 with step width 5. The test
set consists of 1000 samples. In addition, the reservoir network size R is increased from 1 to 21
neurons with step width 2. The hyperbolic tangent function hi(k)= tanh(ai(k)) for i=1, . . . , R
is used to calculate the activations of the reservoir neurons. The reservoir weights Wnet are
initialized with values from a uniform distribution in the range [−0.1, 0.1]. For reservoir reg-
ularization by (4.22), the regularization parameter γ = 0.001 is used. Using γ = 0 will cause
numerical instabilities when the temporal state correlation matrix C is rank deficient, whereas
γ�0 causes the solution to be inaccurate. Therefore, I use a small constant to assure numerical
stability of the matrix inversion and do not optimize γ explicitly by performing a line search
for instance.

Results

We first focus on the reimplementation of the state dynamics. Fig. 4.6 shows the difference

Hdif =

√
1

K ·R ||Hini −Hopt||2 (4.23)

between the trajectories generated by the original and the regularized network for the training
set (left) and test set (K = 1000) (right). I average the difference between the state trajectories
with respect to the number of reservoir neurons R and the number of samples K in order to
obtain comparable results over different reservoir and training set sizes. Fig. 4.6 indicates that
a small training set results in a not well reimplemented state trajectory, whereas for a sufficient
amount of samples the state difference Hdif is very small. This confirms the expectation I
derived from the matrix inversion needed by Algorithm 4.3. In addition, the comparative small
errors on the (huge) test set show that the dynamics rather than only the harvested state
trajectory are reimplemented. I hypothesize that the precise reimplementation of the dynamic
behavior is due to the very well sampled network dynamics: In this example, the network is
driven by a low-dimensional random signal covering the whole input space and almost all possible
transitions therein. However, Algorithm 4.3 reimplements the network dynamics accurately also
for novel input series, if enough training samples are provided.



52 Programming dynamics of input-driven recurrent neural networks

Fig. 4.7: Difference Wdif of the reservoir weight matrices Winp (left) and Wres (right) as
function of the number of reservoir neurons R and number of training samples K.

Fig. 4.7 shows the difference

Wdif =

√
1

rows · columns ||Wini −Wopt||2

between the weight matrices before and after optimization. I show the difference Wdif for input
weights Winp and recurrent weights Wres separately. Again, I average over the number of
reservoir neurons to keep Wdif comparable for different reservoir sizes. A different behavior
for input and recurrent reservoir weights can be observed in Fig. 4.7: While the input weights
are not changed significantly in case of sufficient sampling of the dynamics (see Fig. 4.7 (left)),
the reservoir weights are significantly changed by Algorithm 4.3 irrespective of the number of
training samples (see Fig. 4.7 (right)). Note that the dramatically changed reservoir weights
implement very similar state trajectories (see Fig. 4.6). I argue that increasing the reservoir
size increases the degrees of freedom to implement the same state dynamics as well. Reservoir
regularization then choses the weight configuration with the smallest norm. In case of very
small networks, the state trajectory can only be implemented with the initial reservoir weights,
whereas larger networks can implement basically the same network state trajectory with sig-
nificantly different reservoir weights. This strongly indicates that the mapping from reservoir
parameters to (input-driven) state dynamics is redundant, i.e. at least two parameter settings
implement the same dynamics for the given set of (task related) input sequences. The presented
method selects the solution which satisfies both, the regularizer R(Wnet) and the constraints
C(Wnet, λ), to reimplement the harvested state trajectory. Thereby, the Lagrangian L pro-
vides a means to prefer the regularized network to all other possible reservoir weights Wnet

that implement the same dynamics.

4.4.7 Task-specific generalization and network properties

In this section, I demonstrate the utility of the constrained reservoir regularization method in an
illustrative input-output mapping scenario. I show the regularization effect on the task-specific
performance but also elaborate on network properties in more detail. The following questions
are tackled: Does the network implement the same dynamics with a different set of weights also
in case of rather smoothly changing time-series inputs? Does the proposed method actually
produce weights that are Gaussian distributed, and how does the optimization technique affect
the network structure?
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Fig. 4.8: The multi purpose robot arm PA-10 (left). Circular motion in task and joint
space (right).

Setup

We focus on a temporal input-output mapping task from the robotics domain. The network
is trained to approximate the inverse kinematics of the PA-10 general purpose manipulator
(shown in Fig. 4.8 (left)) from a set of training examples. Inputs x(k) = (x1(k), x2(k), x3(k))T

are Cartesian coordinates of the end effector at time step k. Outputs y(k) = (y1(k), . . . , y7(k))T

are the corresponding joint angles of the robot arm. The inverse kinematic function IK of the
PA-10, which maps end effector coordinates to joint angles, is not unique due to redundant
degrees of freedom of its kinematic structure. For generation of supervised training data, I use
a consistent redundancy resolution scheme such that the inverse kinematics are convex. Note
further that the network has to predict joint angles from end effector coordinates at the previous
time step. Hence, the task combines prediction and sequence transduction (instantaneous time-
series mapping), both particularly suited for recurrent neural networks. Note further that the
network predicts joint angles from target positions in a feed-forward manner without knowledge
about the current state of the robot arm.

I define a desired end effector trajectory and solve the inverse kinematics analytically accord-
ing to [142, 143] in order to generate training data. The end effector trajectories are defined by

x1(k) = r sin(ωk), x2(k) = r cos(ωk), x3(k) = 0.9,

where I set ω = ∆
r to control the speed of the end effector independently from the circle’s

radius r. A single period of such a circular pattern is shown in Fig. 4.8 (right) in joint and
task space (end effector coordinates). For training, the radius r is set to 0.1m and the end
effector speed ∆ to 0.005. The network gets end effector coordinates x(k) in decimeters to
excite the network with values in a reasonable range, while results are presented in meter for
convenience. The seven joint angles y(k) are specified in radians. I use six pattern periods (k=
1, . . . ,K=62πr

∆ ) for training, preceded by two periods to washout initial transients. For testing
the reimplementation of state dynamics and the performance on the input-output mapping task,
ten pattern periods are used. The reservoir network has three input neurons which correspond
to the three dimensional end effector coordinates, and seven output neurons which correspond to
the seven joints of the robot arm. The reservoir itself consists of R=50 neurons with hyperbolic
tangent activation functions hi(k) = tanh(ai(k)), i= 1, . . . , R. The reservoir weights Wnet are
initialized with values sampled from a uniform distribution in range [−0.1, 0.1]. For network
optimization, I use αout=0.01 in (3.14) and γ=0.001 in (4.22).

I basically follow the same test procedure as described in the previous section. However,
this time generalization is tested more systematically by varying either the radius r or the
end effector speed ∆. The radius r is increased from 0m to 0.25m in 1cm steps, where I set
K=102π0.1

0.005 in case of r=0. The end effector speed ∆ is increased from 0.001 to 0.03 with step

width 0.001. We also investigate properties of the regularized weight matrices Winp
opt and Wres

opt
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Fig. 4.9: Reservoir state trajectories h(k) for the initial network (solid lines) and the regularized
network (dashed lines): training pattern (top left), maximal radius r=0.25 (top right), minimal
end effector speed ∆ = 0.001 (bottom left), and maximal end effector speed ∆ = 0.03 (bottom
right). The regularized network produces qualitatively the same dynamics.

in more detail. To account for the random reservoir initialization, all experimental results are
averaged over 100 different network weight initializations.

Reimplementing dynamics

Fig. 4.9 (top left) shows a single period of the state trajectories for the training pattern before
and after adaptation of Wnet. Fig. 4.9 further shows the state trajectories for the maximal
radius r= 0.25m (top right), minimal (bottom left) and maximal (bottom right) end effector
speeds ∆. Visual investigation indicates that the same state trajectories are implemented with
different weights (overlapping solid and dashed lines in Fig. 4.9). This impression is confirmed
by measuring the difference of the trajectories for the whole sequence length by (4.23) again.

Fig. 4.10 shows the difference Hdif of the state trajectories before and after reservoir regu-
larization as function of the radius r (left) and end effector speed ∆ (right). Surprisingly, the
optimized network behaves almost identically for a wide range of radii and end effector speeds.
The difference Hdif of state trajectories is clearly minimized for the training pattern (r= 0.1
and ∆ = 0.005), while setting the radius to zero results even in a lower state difference. The
latter is particularly interesting with respect to network stability and worth further attention
in the future: The case of r = 0 shows that the regularization method reimplements also the
attractor states, at least for the constant input x=(0, 0, 0.9)T , although this network behavior
is not captured by the training data. However, the dynamics are qualitatively very similar for
the entire set of input patterns (see Fig. 4.9 and Fig. 4.10). The very similar state trajectories
confirm the results presented in the previous section also for smooth input time-series. Again,
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Fig. 4.10: Averaged difference Hdif of reservoir state trajectories with standard deviations
before and after adaptation by Algorithm 4.3 as function of the circle’s radius (left) and effector
speed ∆ (right).

the results indicate that the regularization method implements the same dynamic behavior to
a far extent rather than only reimplementing the same state trajectory used for training.

Network properties

Fig. 4.11 shows the weight matrix Wnet (top) of a single reservoir and the distribution of values
(bottom) before (left) and after (right) network regularization by Algorithm 4.3. The weights
have changed significantly while they still implement the same dynamics (see previous section).
Remarkable is the structure of Wnet

opt : A decomposition into external excitation weights Winp

and recurrent connections Wres is clearly visible in Fig. 4.11 (top right). This decomposition
occurred throughout the experiments. Note that the decomposition is not explicitly enforced by
the Lagrangian L. I hypothesize that the decomposition roots in a spatial (and non-temporal)
contribution of the input to the reservoir state trajectory (implemented by Winp

opt ) and a temporal
contribution by modeling the transients of the reservoir state trajectory with the recurrent
weight matrix Wres

opt . The recurrent weights show a further substructure: Positive self-recurrent
connections wresii are visible in Fig. 4.11 (top right) for almost all reservoir neurons i=1, . . . , R.

We further analyze the distribution of the adapted weights by regarding each entry of the
weight matrix as a sample. Then, applying statistical tests is straight forward: I test the
hypothesis of Gaussian and Laplacian distributed weights by the Kolmogorov-Smirnov test,
where the tested probability density function is fitted to the data first. I also present mean,
standard deviation and excess Kurtosis of the weights. The latter measures how Gaussian the
distribution is. Zero excess Kurtosis indicates a Gaussian distribution, while higher values stand
for leptokurtic or sparse distributions. Platykurtic distributions have negative excess Kurtosis.
However, the excess Kurtosis is sensitive to outliers and it is not a very confident measure:
Non-Gaussian distributions can also have zero excess Kurtosis.

Regarding the weight distribution, I expect a Gaussian distribution with zero mean due to
the regularizer R(Wnet). Tab. 4.2 lists the results averaged over 100 different network initial-
izations. All properties are presented for the entire optimized reservoir matrix Wnet

opt and its

parts Winp
opt and Wres

opt to account for the functional decomposition into reservoir excitation and
recurrent weights we observed in Fig. 4.11 (top right). Tab. 4.2 shows that the reservoir opti-
mization technique results in a weight distribution with approximately zero mean irrespective
of the considered matrix part. The excess Kurtosis differs strongly for the sub-matrices Winp

opt

and Wres
opt as well as for the combined matrix Wnet

opt . While the Kurtosis of the input matrix

Winp
opt indicates a rather Gaussian distribution, the recurrent weights Wres

opt are leptokurtic which
indicates a sparse distribution. The standard deviations and the statistical tests confirm this
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Fig. 4.11: Weight matrix Wnet before (top left) and after (top right) adaptation by Algo-
rithm 4.3 and corresponding weight distributions (bottom row). The weights have changed
dramatically, while they still implement the same dynamics (see Fig. 4.10).

indication: The last two rows of Tab. 4.2 show the percentage of optimized weight matrices
that do not allow to reject the null-hypothesis of a Gaussian or Laplacian distribution (using a
significance level of 0.05). The input weights are Gaussian distributed for most of the networks,
while the recurrent weights are mostly Laplacian distributed. The statistical tests do not yield
meaningful results for the entire reservoir weight matrix Wnet

opt . I suggest the reason for a not
always Gaussian distributed weight matrix is the trade-off between regularization R(Wnet) and
the constraint C(Wnet, λ) to implement a given state trajectory. However, the sparse distribu-
tion of the recurrent reservoir weights Wres

opt justifies the utility of sparse network initializations
often used for reservoir networks [70, 86, 144]. Note that the optimization approach does not
explicitly enforce a sparse distribution such as the Laplacian distribution. Sparseness could also
be achieved by explicitly using a L1-norm for regularization, but then a closed-form solution is
not feasible anymore and iterative optimization techniques have to be applied.

I conclude that the introduced method reimplements the same dynamics with a different,
regularized set of weights. The results show a functional decomposition into input and recur-
rent weights. This input-reservoir decomposition is complementary to the decomposition into
reservoir and read-out weights found earlier in [72], the basic idea of reservoir computing.

Input-output mapping

The experiments presented in the previous sections demonstrate the feasibility of reimplement-
ing the same dynamics with regularized reservoir weights. We now investigate the effects of
reservoir regularization on the task-specific performance: Does the regularized network perform
better on the inverse kinematics? Firstly, I do not expect any improvement as long as the state
trajectories of the original and the regularized network do not differ significantly. However,
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Winp
opt Wres

opt Wnet
opt

mean −0.00017± 4 · 10−3 0.00022± 2 · 10−4 0.00019± 3 · 10−4

std. dev. 0.054± 1 · 10−3 0.012± 7 · 10−4 0.017± 6 · 10−4

Kurtosis −0.97± 0.13 3.71± 1.45 9.52± 1.34

Gaussian 97% 9% 0%

Laplace 77% 96% 7.5%

Tab. 4.2: Different properties of the regularized reservoir weight matrices with standard devia-
tions. Results are averaged over 100 network initializations.

reservoir regularization should result in a smaller variance of the task error. For inputs that
result in a slightly different state trajectory, I expect the performance to increase.

The read-out weights Wout are optimized by (3.14) with αout = 0.01 in order to approximate
the inverse kinematics from the training pattern (r = 0.1 and ∆ = 0.005). I measure the
performance of the networks on the inverse kinematics in task space by calculating the error

RMSE =

√√√√ 1

K

K∑

k=1

||x(k)− FK(ŷ(k))||2, (4.24)

where FK : y 7→ x is the actual forward kinematic function that maps the joint angles estimated
by the network back into the task space. In doing so, the error of the end effector position is
presented in Cartesian coordinates conveniently. Note that ambiguities of the inverse kinematic
function are implicitly resolved by the training data.

Fig. 4.12 shows the errors and standard deviations of the initial and regularized networks.
The result confirms that there is no significant difference of the task-specific error (4.24) for the
radii and end effector speeds where the regularized network behaves very similar to the original
network (compare Fig. 4.10 and Fig. 4.12). Variation of the radius does not seem to have a
significant effect on the state difference (Fig. 4.10) and the difference of the task-specific per-
formance (Fig. 4.12) at all. However, the regularized networks actually outperform the original
networks slightly on average for different radii r and end effector speeds ∆. Fig. 4.12 shows
very small error variances for the initial and regularized networks. This excellent generalization
behavior and robustness of learning confirms earlier results [98]. Note that the network is only
trained on the kinematics for radius r= 0.1m and end effector speed ∆ = 0.005. The network
regularization has no significant impact on the generalization for different radii indicating that
the distributed input representation in the reservoir state is well-suited for spatial generaliza-
tion. However, reservoir regularization improves the variance of the task-specific generalization
error significantly with respect to varying speeds of the input signal (see Fig. 4.12 (bottom
right)). This is interesting, since the regularization results in a sparsified network connectivity.
The regularized network seems to be more agile and can follow the faster changing input more
easily. This result points out the task-specific benefit of the reservoir regularization method.

Conclusion

A constrained regularization approach for input-driven recurrent neural networks was derived
using a Gaussian prior distribution for reservoir weight regularization and constraining the solu-
tion to implement recorded network dynamics. This section tackled the question whether state
dynamics of random networks can be reimplemented. The method is capable of reimplementing
the dynamics of an initial network to a far extent if sufficient training samples are provided.
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Fig. 4.12: Generalization performance of original and regularized networks for variation of the
radius (left column) and variation of the end effector speed ∆ (right column). Absolute errors
(top row) and standard deviations (bottom row) are shown.

The derived method further provides a generic criterion to prefer a reservoir to another
one: Optimality is based on the reservoir weight matrix itself in contrast to a supervised error
criterion like for most other approaches on reservoir optimization. The regularized networks
show a typical decomposed structure dividing the reservoir weights into reservoir excitation
and recurrent connections. While the reservoir excitation matrix has Gaussian distributed
entries, the recurrent reservoir weight matrix shows a sparsified structure. This result sheds
light on the internal reservoir structure and gives reason to typical rules of thumb for reservoir
initialization. I also compared the task-specific generalization of the regularized networks with
the initial ones: Since the state trajectories differ only slightly, no significant error reduction
can be achieved. However, error variances are reduced, in particular when the speed of the
input signal is increased.

The Lagrangian approach to reimplement harvested reservoir state sequences emphasizes
regularization. State prediction solves a very similar problem but the approach focuses more gen-
erally on programming input-driven recurrent neural network dynamics: While the Lagrangian
method regularizes an initial network with a hidden layer utilizing only input sequences, State
Prediction programs desired state sequences without the need of an initial network. In the next
section, it is shown that State Prediction is closely related to the Lagrangian approach and that
implementing reservoir regularization by State Prediction solves the aforementioned drawbacks
of the Lagrangian method (see Sec. 4.4.4).
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4.5 Constrained regularization and State Prediction

In a first step, it is shown that State Prediction can serve as reservoir regularization technique
similar to the explicit Lagrangian approach to reservoir regularization. Then, the relation of
both, State Prediction and constrained reservoir regularization, as well as their advantages with
respect to numerical computation are discussed in this section.

4.5.1 Reservoir regularization based on State Prediction

The state prediction approach can be adopted for regularization of reservoir networks. Basically,
the state prediction equation (4.2) can be understood as the reimplementation constraints of
the Lagrangian approach. In addition, we can regularize the solution to the state prediction
problem. This can be simply accomplished by increasing the weight β of the regularization term
||Wnet||2, which was already assumed in (4.4). In this way, reimplementation constraints can
be reduced in weight in favor of smaller, regularized reservoir connections.

The regularized reservoir weights then are

(Wnet
reg)

T =
(
STS + β1

)−1
STA, (4.25)

where S = (s(1), . . . , s(K))T with s(k)T = (x(k)T ,h(k)T ) are the harvested states together
with the inputs x(k). The reservoir targets A = (a(2), . . . ,a(K + 1))T with a(k + 1) =
Winpx(k) + Wresh(k) are the neural activities before application of non-linear activation func-
tions σ one time step ahead. Note that reimplementing harvested network dynamics by State
Prediction obviates the application of the inverse activation function to the state sequence
because network activities a(k) can directly be collected. Similar to read-out learning with
Tikhonov regularization, β corresponds to the Tikhonov factor which trades off reimplementa-
tion constraints against weight norm.

Reservoir Regularization by State Prediction is conducted before read-out learning: First,
reservoir states are harvested. Then, the reservoir is regularized according to (4.25). In a last
step, read-out learning is applied, which can optionally be computed with freshly harvested
states to fully exploit the approximation capabilities of the network.

4.5.2 Equivalence of constrained regularization and State Prediction

Interestingly, both, the Lagrangian approach to reservoir regularization and the one based on
State Prediction, are equivalent in the limit of β = γ → 0. It holds that

For any n×m matrix A,

PA = lim
δ→0

(ATA+ δ2I)−1AT = lim
δ→0

AT (AAT + δ2I)−1 (4.26)

always exists. (see [145], page 19)

In the context of State Prediction and Lagrangian reservoir regularization, A is the row-
wise collection of the harvested network states (compare (4.25) and (4.22)). Both, the left and
right pseudo-inverse of A, are then used for the regression of the network weights according
to targeted neural activities in the next time step. This equivalence makes intuitively sense,
because in both cases the solution fulfills the reimplementation constraints as accurately as
possible and the solution has the minimal norm. However, the Lagrangian approach introduces
too many auxiliary variables such that the system of equations becomes underdetermined. While
both approaches are, in the limit case, equivalent, they differ in practical execution with respect
to computational efficiency.
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4.5.3 Computational complexity

The solution of the state prediction equation is based on the left pseudo-inverse that is cal-
culated using typically more equations than parameters. That means the system of equations
is overdetermined which circumvents the numerical difficulties of the matrix inversion of the
Lagrangian approach. Considering the numerical difficulties and rather inefficient calculations
of the Lagrangian approach to reservoir regularization discussed in Sec. 4.4, reservoir regular-
ization based on State Prediction is a computationally significantly more efficient:

In case of reservoir regularization by (4.20), a K ×K matrix has to be inverted, where K is
the number of time steps the reservoir is simulated. In case of reservoir regularization by (4.25),
a N × N matrix has to be inverted, where N is the number of input and reservoir neurons
in the network. Typically, K � N and therefore (4.25) is preferred in the remainder of this
thesis. The Lagrangian approach conceptually emphasizes the idea of regularization, whereas
State Prediction is superior with respect to numerical and computational properties.

4.5.4 Conclusion

A unifying methodology of implementing recurrent neural network dynamics in one shot was
presented and demonstrated to be feasible in a series of experiments. Regularization of the model
parameters, i.e. the recurrent neural network weights, is in the focus of the Lagrangian approach
to State Prediction. However, the introduced Lagrange multipliers render the optimization
problem ill-posed with respect to the number of parameters in relation to the number of training
samples. The regularized least squares formulation used in the state prediction formalism
reduces the computational complexity of the regularization process and is utilized for reservoir
regularization in the remainder of this thesis.

Regularization generally diminishes the effective parameters of the model, i.e. is a model
selection mechanism, and improves generalization. Although a gain in performance for Echo
State Networks without output feedback on a sequence transduction task was rather restricted,
regularization of recurrent networks is a versatile tool for stabilizing trained output feedback
dynamics which is demonstrated in the next chapter. I conclude that the well-behaved networks
obtained in this chapter by applying the presented methodology already shows that learning of
complex dynamics is possible in one shot. The absence of networks that, for example, drive into
saturation or exhibit totally different dynamics than the desired dynamics shows the robustness
of the method and ”stability” of the regularized networks. The connection of regularization,
learning and stability is in the focus of the next chapter. In particular, it is shown that reservoir
regularization stabilizes output feedback dynamics.



Chapter 5

Output feedback stabilization by
regularization

Output feedback is crucial for autonomous and parameterized pattern generation with reservoir
networks. Read-out learning affects the output feedback loop and can lead to error amplifi-
cation. Regularization is therefore important for both, generalization and reduction of error
amplification. In this chapter, I show that regularization of the reservoir and the read-out
layer reduces the risk of error amplification, mitigates parameter dependency and boosts the
task-specific performance of reservoir networks with output feedback. The deeper connection
between regularization of the learning process and stability of the trained network is discussed.

5.1 Regularization and stability in reservoir networks with out-
put feedback

Output feedback stability, like it was introduced in Sec. 3.4.2, has been achieved in reservoir com-
puting by using heuristics [118], regularization of the read-out learning [36], or online learning
techniques like BPDC [23] and FORCE learning [101]. However, the deeper connection be-
tween the applied mechanism and stability was not investigated systematically, although Jaeger
already observed a relation of weight norm and stability in a series of experiments [118] and
the work in [36] is based on the implicit hypothesis that regularization stabilizes networks with
output feedback. An exception is the mechanism proposed in [123], which rescales the network
weights during online learning such that input-output stability is maintained. However, the
stabilization mechanism does not directly inform learning and is therefore not suited for offline
training. I show the explicit relation between stability of the output feedback-driven network
dynamics and read-out regularization of the learning process in theory and experiments.

I additionally use a generic and efficient regularization approach for the inner reservoir
to further reduce the risk of error amplification. Regularization of recurrent neural networks
based on gradient descent was already proposed by Wu and Moody in [35]. They also related
regularization to input-output stability in the context of prediction tasks. I pursue a one-shot
learning method that is based on the recently introduced reservoir regularization for input-driven
recurrent networks ([146] and Sec. 4.4). The idea of reservoir regularization is to reimplement a
previously harvested reservoir state sequence with the smallest weights possible, i.e. introducing
a Gaussian prior distribution with zero mean for the reservoir weights while constraints require
to implement the desired state sequence. In this chapter, the improved version of the original
constrained optimization formulation of reservoir regularization in [146] is used (see discussion
in Sec. 4.5).
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Very recently, Jaeger took a similar approach in order to compile the functionality of an
external controller into the reservoir [128]. An early variant of this methodology was already
described by Mayer and Browne in [147] to “internalize” an input signal into the reservoir
network. Both approaches, however, do not tackle the problem of error amplification and do
not use regularization of the learning process to promote stability in networks with output
feedback. I show that the minimized weight norm of regularized networks is particularly useful
for reservoirs with output feedback: Networks with smaller weight norm are more robust against
erroneous feedback but also allow to relax regularization constraints of the read-out learning
which in turn increases the task-specific performance.

The effects of regularization on output feedback stability are analyzed in a sequence trans-
duction and autonomous pattern generation scenario. Note that the results can then be general-
ized to bidirectional, associative reservoir computing: Feeding back inputs (driving the outputs),
or feeding back outputs (driving the inputs) is structurally equal with respect to the learning
and stability. Therefore, it is sufficient to show that regularization stabilizes the output feed-
back dynamics of an unidirectional reservoir with output feedback connections. However, the
analysis and experiments in this chapter are restricted to learning of single-valued functions
(but multi-dimensional), i.e. the training data contains no multiple solutions and the unidi-
rectional reservoir is not required to learn multi-stable output feedback dynamics. Read-out
learning is modified to train multi-stable output feedback dynamics in Chapter 7. Nevertheless,
the general connection of learning, regularization and stability transfers also to multi-stable
network dynamics.

First, the Echo State Network (ESN) with output feedback is briefly recapitulated including
a decent notation that shows the parallels between reservoir regularization and regularized read-
out learning. Then, a series of experiments shows the stabilizing effect of regularization and the
relation between stability, learning and regularization are discussed.

5.2 Echo State Networks with output feedback

We focus on ESN architectures with output feedback as depicted in Fig. 5.1. The network
comprises a recurrent reservoir network of non-linear neurons which are connected randomly
with small connection strengths. We consider the discrete and synchronous recurrent network
dynamics

h(k+1) = σ
(
Winpx(k) + Wresh(k) + Wfdby(k)

)
, (5.1)

y(k+1) = Wouth(k). (5.2)

x,h and y are the input, reservoir and output neurons, where h is obtained by applying sig-
moidal activation functions σ(·) component-wise. All connections to the reservoir are sub-
sumed in

Wnet =
(
Winp Wres Wfdb

)
.

In this chapter, the cases of autonomous pattern generation (Winp = 0) and input-driven
pattern generation (Winp 6= 0) are considered.

5.3 Regularization of the read-out layer

Originally, learning of ESNs is restricted to the supervised optimization of the read-out weights
Wout in order to infer a desired input-to-output mapping from a set of training examples. The
reservoir states h(k) as well as the target outputs t(k) are recorded for k = 1, . . . ,K time steps
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Fig. 5.1: Echo State Network with output feedback connections Wfdb.

in a reservoir state matrix

H = (h(1), . . . ,h(K))T ∈ RK×R and target matrix T = (t(1), . . . , t(K))T ,

respectively. Optimization of the read-out weights Wout is conducted with respect to the task-
specific mean square error

Etask =
1

K

K∑

k=1

||t(k)−Wouth(k)||2 + α||Wout||2 (5.3)

including an additional regularization term. The optimal read-out weights are then determined
by the least squares solution

(Wout)T =
(
HTH + α1

)−1
HTT,

where the Tikhonov factor α≥0 weights the contribution of the regularization term.
Whereas Tikhonov regularization is typically meant to improve generalization of the approx-

imated mapping to novel inputs, the preference for small weights also reduces the potential for
error amplification by the output feedback loop [118, 36]. Thus, regularization of the read-out
weights is motivated by both, good generalization and output feedback stability. The Tikhonov
factor α in (5.3) is tuned to reduce the potential error amplification on the one hand, while
implementing the desired output pattern on the other hand. This can be accomplished by con-
ducting a line search over α for each network, where in the test condition the network is output
feedback-driven (see Algorithm 5.4 and [36]). Note that tuning of regularization constraints is
typically performed on a validation test in order to optimize the generalization ability of the
model. In the context of output feedback stability, tuning of α is also meaningful on the training
set in order to stabilize the network dynamics.

Note that online learning of the read-out layer, for example by (3.17), has a regularizing
effect on the learning even without explicit decay term. Small learning rates act as a smoothing
over several training patterns and thus online learning regularizes by “averaging“ errors where

Algorithm 5.4 Line search for read-out regularization

Require: training data (x(k), t(k)) with k = 1, . . . ,K, set of α’s, network
Require: harvest teacher-forced states H

1: for α ∈ {10−6, 5× 10−6, 10−5, 5× 10−5, . . . , 1.5, 2} do

2: read-out learning by (Wout)T =
(
HTH + α1

)−1
HTT using α

3: output feedback-driven testing yields task-specific error
Etask(α) = 1

K

∑K
k=1 ||t(k)− ŷ(k)||2

4: end for
5: return trained reservoir network using αopt that yields smallest error Etask
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offline regression will come up with a more precise solution at the costs of a larger weight norm.
This explains why regularization and thus stability is not a big issue in the respective literature
on online learning of output feedback dynamics [48, 15, 20, 101, 102, 23]. For offline training of
output feedback dynamics, however, regularization is crucial [36, 118].

5.4 Reservoir regularization

In addition to the read-out regularization, I propose to also regularize the reservoir in order to
mitigate the dependency on the read-out regularization parameter α. I apply the previously
introduced reservoir regularization method (see Chapter 4) and adopt it to Echo State Networks
with output feedback connections in the following. The idea is to express a preference for small
weights conditioned on the constraint to reimplement a previously harvested network state
sequence. This can be formulated by the mean square error

Estate =
1

K

K∑

k=1

||a(k+1)−Wnetz(k)||2 + β||Wnet||2 (5.4)

with a(k+ 1) = Wnet
ini z(k), where Wnet

ini is the initial reservoir weight matrix and z(k) =
(x(k)T ,h(k)T , t(k))T is the combined input, reservoir and output vector. I denote the first
term of this objective function by state prediction error because it demands the optimized
weights to model the state transitions of the harvested state sequence. The second term serves
as regularizer which is weighted by β. Note the close relation of the state prediction objective
(5.4) to the task-specific objective (5.3): The optimization assumes that the network states
are given and fixed, i.e. harvested beforehand, such that recurrence is cut off. We obtain the
regularized reservoir weights

(Wnet
reg)

T =
(
ZTZ + β1

)−1
ZTA, (5.5)

where Z = (z(1), . . . , z(K))T are the harvested states together with the inputs x(k) and target
outputs t(k). The reservoir targets A = (a(2), . . . ,a(K+1))T are the neural activities before
application of non-linear activation functions σ one time step ahead. Reservoir regularization is
conducted before read-out learning using the initial reservoir weights Wnet

ini , i.e. reservoir states
are harvested, the reservoir is regularized and then Algorithm 5.4 is applied.

5.5 Regularization stabilizes dynamics and improves performance

In this section, I show that the proposed reservoir regularization facilitates learning in Echo State
Networks with output feedback in two complementary scenarios. All results are averaged over
200 independent trials. The reservoirs comprise 50 neurons with tanh(·) activation functions.
The weight matrix Wnet is randomly initialized according to a uniform distribution in range
[−0.5, 0.5]. The spectral radius of the reservoir sub-matrix Wres is scaled to 0.9.

5.5.1 Learning inverse kinematics

We first consider a combined prediction and sequence transduction task from the robotics do-
main. The ESN learns the inverse kinematics of a planar robot arm with two degrees of freedom
from a training sequence (see Fig. 5.2), i.e. the network has to map Cartesian end effector
coordinates to joint angles. A circular and a figure eight-like motion are used as training
and test data (compare Fig. 5.2). Each sequence comprises K = 500 samples. Joint an-
gles are encoded in a coordinate representation for reasons of normalization, i.e. y(q1, q2) =
(sin(q1), cos(q1), sin(q2), cos(q2))T .



Regularization stabilizes dynamics and improves performance 65

−0.3 0 1
0

1

1.7

x
1
 [m]

x
2
 [

m
] Fig. 5.2: Robot arm with two degrees of freedom. Training

and test patterns are shown in gray and light gray, respec-
tively.

Reservoir regularization stabilizes dynamics

I first show that reservoir regularization stabilizes the output feedback-driven dynamics for a
wide range of read-out regularization parameters α. I calculate the difference

Estate =
1

K ·R ||H−Hfdb||2 (5.6)

between the state trajectories H in the teacher-forced case (the network outputs are set to the
target values t(k)) and the output feedback-driven case Hfdb (the predicted outputs y(k) are fed
back into the reservoir). Fig. 5.3 (left) reveals that without reservoir regularization the network
state trajectory H in the teacher-forced case is only achieved in the output feedback-driven case
if the read-out regularization α is strong enough (Estateini ). Note that Estate is closely related to
the output feedback stability criterion introduced in Sec. 3.4.2 by measuring the mean deviation
of the output feedback-driven state sequence Hfdb from the teacher-forced state sequence H.
The large values of Estate in Fig. 5.3 (left) and Fig. 5.5 (left) for α < 10−4 thus indicate non
output feedback stable networks because the mean deviation is larger than a small ε > 0. Reser-
voir regularization mitigates this dependency on α and makes reservoirs with output feedback
more robust against the choice of the parameter α (Estatereg shown for β ∈ {10−6, 10−4, 10−2} in
Fig. 5.3 (left)). The reservoir regularization parameter β forces the reservoir weights to have
a smaller norm (compare Fig. 5.3 (right)) which damps the amplification of deviations at the
output. With reservoir regularization, the network is more robust against deviations of the
output trajectory.

Output feedback stability, classical stability criteria and regularization

In this section, I show that the hypothesized relation of regularization and stability can be made
explicit with respect to classical stability criteria. The notion of output feedback stability is
discussed in more detail.

We first investigate global asymptotic stability of the output feedback-driven network dy-
namics depending on regularization of the read-out learning and the inner reservoir. Global
asymptotic stability of the output feedback-driven system means that the reservoir state with
outputs (h(k)T ,y(k)T )T gradually approaches an equilibrium as k → ∞ for any initial state
(h(0)T ,y(0)T )T and constant input x [148, 93, 149], i.e. the output feedback-driven network
dynamics have a unique fixed-point attractor depending on the external input x. The output
feedback-driven network dynamics are generated by the weight matrix

Wofd =

(
Wres Wfdb

Wout 0

)
∈ RN×N ,

where N=R+O. A sufficient criterion for global asymptotic stability is based on the maximal
singular value

σmax(Wofd) = ||Wofd|| < 1, (5.7)
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Fig. 5.3: Deviation Estate of the output feedback-driven state sequence from the teacher-forced
state sequence for the training scenario as function of the read-out regularization parameter α
(left). Matrix norm of weights Winp, Wres and Wfdb as function of the reservoir regularization
parameter β (right). Subscripts indicate whether the networks where regularized (reg) before
read-out training, or not (ini).

which is equal to the spectral norm for the square matrix Wofd [93, 30]. The left-hand side of
(5.7) is plotted in Fig. 5.4 (top left) averaged over all networks. Regularization of the read-out
learning strongly reduces the spectral norm of the output feedback-driven networks and thus
increases the “degree” of stability. Regularization of the inner reservoir additionally reduces the
spectral norm. However, none of the networks is stable with respect to criterion (5.7), but they
are output feedback stable for sufficiently large regularization parameters α and β (compare
Fig. 5.3 (left)). The sufficient criterion based on the spectral norm is very strict, discards
possibly stable networks, and proves convergence to a single fixed-point for constant inputs.
However, the conservative criterion (5.7) already links weight norm and thus regularization
to stability.

Let us further consider a necessary global asymptotic stability criterion based on the spectral
radius λmax(Wofd) of the output feedback-driven system, i.e. the maximal absolute eigenvalue
of matrix Wofd. A spectral radius of Wofd smaller than unity is necessary for global asymptotic
stability but not sufficient [93, 30]. It holds that

λmax(Wofd) ≤ σmax(Wofd) [93].

Fig. 5.4 (bottom) shows the average spectral radius of the output feedback-driven networks
for different read-out and reservoir regularization parameters α and β. Regularization has
also significant impact on the spectral radius and I conclude that regularization increases the
degree of stability in the classic sense of global asymptotic stability. Note, however, that the
global asymptotic stability criterion is not directly related to the meaning of output feedback
stability and I therefore do not expect global asymptotic stability for non-trivial output feedback
dynamics: Convergence to a single fixed-point for each input is sufficient but not necessary for
output feedback stability. Output feedback stability is non-conservative in the sense that it
assigns stability to not globally asymptotically stable networks and it is local because stability
is connected to a specific domain of inputs. Output feedback stability ties stability to task-
specific inputs and outputs, which makes it useful for practical application to adaptive dynamical
systems with output feedback loops. The global asymptotic stability criterion, however, is well-
suited to inform learning by means of regularization in a soft constrained optimization manner:
Reduction of the spectral norm of Wofd brings the system closer to the border of stability.

In [123], a sufficient input-output stability criterion was derived from a small gain criterion.
Interestingly, this criterion is based solely on matrix norms of the reservoir network’s sub-



Regularization stabilizes dynamics and improves performance 67

10
−6

10
−4

10
−2

10
0

0

5

10

15

20

25

30

α

σ
m

ax
(W

o
fd

)

 

 

W
net

ini

W
net

reg
 β=10

−6

W
net

reg
 β=10

−4

W
net

reg
 β=10

−2

10
−2

10
−1

10
0

0

1

2

3

 

 

10
−6

10
−4

10
−2

10
0

−400

−350

−300

−250

−200

−150

−100

−50

0

α

1
 −

 (
||W

o
u
t || 

||W
fd

b
||)

/(
1
 −

 λ
m

ax
(W

re
s ))

 

 

W
net

ini

W
net

reg
 β=10

−6

W
net

reg
 β=10

−4

10
−2

10
−1

10
0

−20

−10

0

 

 

10
−6

10
−4

10
−2

10
0

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

α

λ
m

ax
(W

o
fd

)

 

 

W
net

ini

W
net

reg
 β=10

−6

W
net

reg
 β=10

−4

W
net

reg
 β=10

−2

Fig. 5.4: Stability criteria applied to the
output feedback-driven reservoir networks
depending on the read-out regularization
α and for different reservoir regularization
parameters β: spectral norm (top left),
spectral radius (bottom) and small gain
criterion (top right).

matrices. Stability is guaranteed if the inequality

1− ||W
out|| ||Wfdb||

1− ||Wres|| > 0 (5.8)

holds, where || · || denotes a matrix norm and ||Wres|| < 1. This criterion directly connects
input-output stability of the network with regularization of the weight sub-matrices: A smaller
norm of the weights implies a smaller gain of the overall system. For evaluation, I substitute
||Wres|| by λmax(Wres) according to the relation λmax(Wres) ≤ σmax(Wres) between spectral
radius and spectral norm to assure a positive denominator in (5.8). Fig. 5.4 (top right) displays
the approximated left-hand side of the stability criterion (5.8) depending on the regularization
parameters α and β. Regularization of both the read-out learning and the inner reservoir brings
the network dynamics closer to the border of input-output stability which is consistent with
Fig. 5.3 (right) which shows the decreased weight norm with increased reservoir regularization.

I conclude that output feedback stability is an input-specific, non-conservative stability
criterion that, in contrast to classical global asymptotic stability and input-output stability
criteria, is closer related to task-specific learning and restricted input domains. This section
also highlights the deeper connection between regularization and stability. Spectral norm and
input-output stability based on the small gain criterion show the connection between stability
and regularization explicitly: They demand upper bounds on the weight norms which are part
of the learning process in form of regularizers in the objective functions (5.3) and (5.4).

Reservoir regularization improves performance

Fig. 5.5 (left) clearly points out the connection between learning, regularization and stability.
Without output feedback (Wfdb = 0), increasing the regularization parameter α increases the
training error – there is no interdependency between dynamics and learning. The integration
of the read-out learning into the network dynamics by the output feedback loop changes the
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β = 10−2 is used in both plots.

picture completely: Regularization of the read-out layer decreases the training error because
regularization stabilizes the output feedback-driven network dynamics. But regularization also
decreases the contribution of the task-specific error term in (5.3) which gives rise to an intimate
dependency of regularization of the read-out layer, stability and performance. Regularization
of the inner reservoir mitigates this interdependency by shifting stabilization of the dynamics
to the reservoir: The regularized reservoir weights reduce the effective gain of the system and
cause the grid search Algorithm 5.4 to yield smaller values for α (see Fig. 5.5 (right)). This in
turn improves the task-specific performance while keeping the network stable (compare Fig. 5.3
(left) and Fig. 5.5 (left)). I observe a highly significant correlation (Spearman rank correlation
test with significance level 0.01) between the change of the read-out regularization parameter
∆α = αoptreg−αoptini and the change of the task-specific error ∆Etask = Etaskreg −Etaskini (plotted using
ranks for ∆α in Fig. 5.5 (right)). This means that with reservoir regularization, the read-out
regularization can be reduced which consequently results in smaller task-specific errors. The
combination of both small task-specific errors and regularized reservoir weights minimizes the
risk of error amplification due to the output feedback loop.

Properties of the regularized network weights

We finally investigate the properties of the regularized network weight matrices. The weight
distributions of each sub-matrix for all networks are shown in Tab. 5.1 (first three columns).
The weights and their distribution has changed significantly while they still implement the same
input-to-state mapping (compare Fig. 5.3 (left)). The initially uniform weight distributions are
approximately Gaussian after reservoir regularization.

We investigate statistical properties of the weights for all 200 independent network initializa-
tions. I expect a Gaussian distribution of the weights with zero mean due to the regularization
term in (5.4). Tab. 5.2 displays different variates of the weights and confirms that the average
mean value of the weights is close to zero. I also present the standard deviation of the weights
which shows that the reservoir weights Wres have generally more peaked weight distributions.
Further, I analyze the distribution of the adapted weights by regarding each entry of a weight
matrix as sample. Then, application of statistical tests is straight forward: I test the hypothesis
of Gaussian distributed weights by the Kolmogorov-Smirnov test, where the observed samples
are compared to a Gaussian probability density function that is fitted to the data first. The
last row in Tab. 5.2 shows the percentage of optimized weight matrices that do not allow to
reject the null-hypothesis of a Gaussian distribution (using a significance level of 0.05). The
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Weight Uniform Distribution Gaussian Distribution

Matrix Initial Regularized Initial Regularized

Winp

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6

Wres

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

Wfdb

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 −0.6 −0.4 −0.2 0 0.2 0.4 0.6

Tab. 5.1: Distributions of the network connection weights Winp, Wres and Wfdb: Initial distri-
butions (uniform in second column, Gaussian in fourth column) and after reservoir regularization
using β = 10−2 (third and fifth column).

statistical tests indicate Gaussian distributions for the input, reservoir and feedback weights for
most of the network initializations. This confirms the results presented earlier in Sec. 4.4.

In Tab. 5.1, the last two columns show that reservoir regularization recomputes the weights
also when starting initially from Gaussian distributions. The respective results for the criterion
(5.6) are appended to the thesis (see Appendix A.2) and show that reservoir regularization
stabilizes the output feedback dynamics also in the case of initially Gaussian weight distribu-
tions. Essentially, we obtain the same qualitative result: Reservoir regularization mitigates the
dependence of output feedback stability on the read-out regularization parameter α (see Ap-
pendix A.2). That this is also the case for initially Gaussian weight distributions emphasizes the
effectiveness of reservoir regularization to recompute the weights with smaller norm to reduce
the gain of the output feedback loop.

5.5.2 Autonomous generation of a unit circle

To complement the results for the input-driven case, I also show that reservoir regularization
improves the stability in case of autonomous pattern generation. In this scenario, the networks
have no input neurons and shall produce a unit circle pattern at their outputs autonomously.
All other parameters are initialized as described above. Five periods of a unit circle y(k) =
(sin(ωk), cos(ωk))T with ω = 2π

200 are presented for training, where the first four periods are used
as wash-out phase. I apply reservoir regularization with β=10−2 and optimize α with respect
to the training error according to Algorithm 5.4. For testing, the networks have to reproduce
the circle running freely for 106 steps within an error margin of 5% (compare Fig. 5.6). I neglect

Winp Wres Wfdb

mean 0.0014 0.0019 −0.00003

std. dev. 0.19 0.061 0.17

Gaussian 100% 94.5% 99.5%

Tab. 5.2: Statistics of the
weight matrices Winp,
Wres and Wfdb after reser-
voir regularization using
β = 10−2.
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Fig. 5.6: Pattern generation scenario:
The circular pattern has to be gen-
erated for 106 steps within the error
bound δ.
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phase lags typically occurring during long-term recursive prediction, i.e. monitor the orbital
stability of the output pattern ŷ(k) with respect to the target pattern y(k). Orbital stability
can be understood as temporal relaxation of the output feedback stability criterion, which is
reasonable for autonomous and parameterized pattern generation.

Without reservoir regularization, only 69% of the networks comply with the 5% error bound
for 106 steps, whereas 94% of the networks satisfy this tight criterion if the reservoir is regularized
with β = 10−2. This confirms the previous result that reservoir regularization improves the task-
specific performance and makes ESN learning more robust in scenarios where output feedback
is crucial. Additionally, I count the number of cycles the networks reproduce the target motion
and relate this actual frequency to the frequency of the target pattern. This yields a frequency
reproduction factor

f=
number of generated periods

number of desired periods
,

where the number of desired periods is derived from the number of steps per period of the
target pattern and the number of time steps the network produced the pattern within the error
bound δ. Considering the frequencies of the reproduced patterns, the regularized networks stick
much closer to the target frequency than the initial networks: While the initial networks display
an average frequency reproduction factor fini = 0.63 ± 0.09, the regularized networks achieve
freg = 0.85 ± 0.05 which indicates a higher frequency of the reproduced circular pattern on
average that matches the target pattern significantly better. I hypothesize that regularization
reduces the “inertia” of the network by pruning unnecessary weights that tend to slow down
the network dynamics. A similar connection between regularization and network “agility” was
already observed when using the Lagrangian approach to reservoir regularization (see [146] and
Sec. 4.4).

I also evaluate global asymptotic stability of the networks trained for autonomous gener-
ation of the circular pattern. Note that sustained dynamics are required for ongoing pattern
generation and thus global asymptotic stability is not directly targeted. However, the trained
network dynamics should be as close as possible to the border of global asymptotic stability
such that pattern generation is robust against perturbations and error amplification is reduced.
Tab. 5.3 shows that regularization decreases the weight norm of the output feedback-driven
system significantly (compare σmax(Wofd) for initial and regularized networks in Tab. 5.3). On
the one hand, regularization of the reservoir brings the value of the spectral norm much closer
to the sufficient stability bound. On the other hand, learning keeps connections that are impor-
tant for sustained network dynamics large: Though the spectral norm is heavily decreased, the
spectral radius of the system stays almost equal on average (compare λmax(Wofd) for initial
and regularized networks in Tab. 5.3). Regularization yields to nearly optimal network configu-
rations in the sense that sustained dynamics are implemented with small gains, i.e. optimizing
the global asymptotic stability criterion under the necessary condition that λmax(Wofd) ≥ 1.
Finally, I remark that autonomous pattern generation clearly exemplifies the tight relation of



Balancing contributions by distributing activities 71

σmax(Wofd) λmax(Wofd)

ini 2.37± 0.11 1.09± 0.03

reg 1.29± 0.14 1.11± 0.03

Tab. 5.3: Global asymptotic stability crite-
ria of the output feedback-driven networks
before and after reservoir regularization.

learning and stability by demanding the ongoing reproduction of an oscillatory pattern trained
from an exemplary trajectory.

5.6 Balancing contributions by distributing activities

In the previous sections, it turned out that reservoir regularization stabilizes learning of Echo
State Networks with output feedback. This methodology is important for robust bidirectional
association with ESNs. However, there is another open issue concerning the balancing of con-
tributions of inputs and outputs to the overall reservoir dynamics. In this section, this issue is
tackled by explicitly balancing the contributions of inputs and outputs to the reservoir dynam-
ics. To facilitate the further discussion, inputs, outputs and also the reservoir state are more
generally referred to as (input) modalities in this section.

Typically, the contribution of input and output modalities to the reservoir state is deter-
mined by the initialization ranges of the respective weight matrices. However, it is quite difficult
to balance these contributions, in particular when input and output signals have different di-
mensions or energy spectra. Moreover, the contribution of the reservoir to the neural activities
depends non-trivially on the scaling of inputs and outputs as well as the reservoir size and its
spectral radius. Finally, the reservoir regularization methods as introduced in Sec. 5.4 do not
necessarily respect the initial weighting of the diverse input modalities: The regression solution
assigns weights to each variable, i.e. input, reservoir or output neuron, in order to predict the
desired network activity in the next time step. This can result in an unintended re-weighting of
the respective modalities despite the initialization. Although this effect depends on the data at
hand and did not cause problems in the experiments presented in Sec. 4.4 and Sec. 5.5, the ex-
plicit weighting of each modality is recommended in bidirectional association scenarios because
then the balanced contribution of each modality is particularly important for the performance.

I complement the reservoir regularization approach with an additional concept to balance the
contribution of inputs and outputs in this section. The balancing of contribution is integrated
in the regularization process such that both can be accomplished in one step. The scheme can
be applied in case of attractor- as well as transient-based computation.

5.6.1 State Prediction with activity distribution

I apply the idea of controlling the contribution of each modality to the reservoir activity a(k)
in the state prediction framework. Consider inputs x(k), outputs y(k), and the reservoir states
h(k) for k = 1, . . . ,K. Note that these variables can also correspond to attractor states of the
system for certain inputs x(k) and y(k). According to the synchronous network update (3.2),
the activity in the next time step is computed by

a(k+1) = Winp
ini x(k) + Wres

inih(k) + Wfdb
ini y(k)

= Iinpini (k) + Iresini (k) + Ifdbini (k).

The target of state prediction learning is the activity a(k+ 1) which is predicted from the
combined system state z(k) = (x(k)T ,h(k)T ,y(k)T )T . The regression (5.5) computes new

weights Winp
reg , Wres

reg and Wfdb
reg which generally yield different contributions from each modality

(Iinpini (k) 6= Iinpreg (k), Iresini (k) 6= Iresreg(k) and Ifdbini (k) 6= Ifdbreg (k)) even though the target a(k+1) is
approximated accurately.



72 Output feedback stabilization by regularization

The approach for balancing contributions is to split up the regression into separate compu-
tations for each modality. Consider weights ginp, gres and gfdb such that ginp + gres + gfdb = 1.
Then, the target activity a(k+1) can be split into a weighted sum

a(k+1) = ginpa(k+1) + gresa(k+1) + gfdba(k+1)

which yields target contributions g?a(k+1) from each modality ? to the entire activity a(k+1).
The regularized reservoir weights per modality are then given by

(Winp
reg)

T = ginp
(
XTX + βinp1

)−1
XTA (5.9)

(Wres
reg)

T = gres
(
HTH + βres1

)−1
HTA (5.10)

(Wfdb
reg )T = gfdb

(
YTY + βfdb1

)−1
YTA. (5.11)

Balancing of inflows by g? and regularization of weights by β? can now be controlled separately
per modality.

The weighted contribution of the input modalities can be understood as modeling the den-
dritic structure of neurons. Fig. 5.7 illustrates the introduction of a dendritic tree structure to
the common model of a neuron. Each reservoir neuron receives influx from the input neurons
x, reservoir neurons h and the output neurons y. In the standard formal neuron model (see
Fig. 5.7 (top left)), the weighted sum a =

∑
iwizi is computed which does not distinguish

between the origin of each input zi. The equal weighting of each input is made explicit in
Fig. 5.7 (top right), where a = g

∑
iwizi =

∑
i(gwi)zi. This scaling of the entire weights to that

particular neuron by g is equivalent to the slope s of the neuron’s activation function (see (3.4)
and (3.5)). The intrinsic plasticity mechanism presented in Sec. 3.2.5 scales the weights in a
coupled manner which corresponds to scaling g. The idea of balancing contributions is to break
this coupled scaling to achieve distinct scalings of weights per modality (see Fig. 5.7 (bottom)).
Then, the activity of a single reservoir neuron is calculated according to

a = ginp
D∑

i=1

winpi xi + gres
R∑

i=1

wresi hi + gfdb
O∑

i=1

wfdbi yi.

The inflows from each modality can be scaled such that each modality contributes in a con-
trolled fashion to the neuron’s activity, for instance equally. This balancing of contributions
is integrated into the reservoir regularization methodology by (5.9)–(5.11) and is particularly
helpful for bidirectional association. Note that (5.9)–(5.11) directly include the scaling into
the computed weights such that there is no additional computation of weightings g? necessary
during network exploitation.

5.6.2 Balancing contributions for bidirectional association

In this section, the principle functioning of the weighting mechanism to balance contributions
of modalities to the reservoir activity is shown for the same kinematic learning scenario as in
Sec. 5.5. This time, however, the forward and inverse kinematics are learned in a single network
and both mappings are queried for evaluation of the balancing approach.

Setup

Fig. 5.8 (top left) shows the kinematic setup for the robot arm with two degrees of freedom.
End effector positions x are mapped to joint angles y using the righty elbow solution of the
inverse kinematics. The forward mapping from inputs x to outputs y is the inverse kinematic
mapping (following the typical setup of networks), and the backward mapping from outputs y
to inputs x is the forward kinematic mapping. Both mappings will be evaluated in the following
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Fig. 5.7: Formal neuron model with a dendritic tree of depth 1 (top left). The neuron’s activity
is calculated by the weighted sum a =

∑
iwizi. Explicit illustration of tree structure with

unique branch and corresponding weighting factor g = 1 (top right). Generalized dendritic tree
model of neuron with depth 2 (bottom): For each modality, the weighted sum per modality is
weighted by the corresponding gating factor g?.

experiment depending on the weighting factors g? for the contributions of inputs and outputs
to the reservoir activity. That means the network is either driven by inputs x and network
estimates are read-out at the outputs y or vice versa. Note that training data is provided
comprising a righty elbow solution only, which renders the mapping from inputs to output
bijective and invertible.

The training trajectory (gray line in Fig. 5.8 (top left)) is used for reservoir regularization
and read-out learning, where the validation trajectory (light gray line in Fig. 5.8 (top left))
is used to tune the regression parameters. I use a grid search over α = αout = αrec and
β = βinp = βres = βfdb analogously to Algorithm 5.4, where for each network initialization
the configuration of α and β that minimizes the validation error is determined in a brute-
force manner. In addition to the error of the forward mapping in Algorithm 5.4, the error
of the backward mapping is also considered in order to select the optimal configuration of α
and β. Such brute-force tuning of β is typically not necessary, but in this example the model
changes dramatically with the weights g? of the modalities which renders an explicit search of
the regularization constants necessary.

The test error is evaluated on a grid of target points (light gray dots in Fig. 5.8 (top left))
using attractor-based computation. That is, the network is driven by inputs (outputs) until
convergence of the network dynamics before the estimated outputs (inputs) are used for error
calculation. To account for random network initialization, the results are averaged over ten
independent trials. Initialization proceeds as described in the kinematic setting in Sec. 5.5.

The performance for the forward and inverse kinematics is evaluated depending on the factor
of input and output weighting. For g ∈ {0, 0.2, . . . , 1}, the input and output contributions are
weighted according to ginp = 0.6(1− g) and gfdb = 0.6g, while the contribution of the reservoir
gres = 0.4 is held constant. I expect that for extreme values of g, e.g. g = 0 and g = 1, the
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Fig. 5.8: Robot arm with two degrees of freedom (top left) with training, validation and test pat-
terns shown in gray and light gray, respectively. Normalized root mean square errors (NRMSE)
for the inverse and forward kinematic mappings depending on the activity distribution factor
g (top right). Weight matrices Wnet of a reservoir network after reservoir regularization with
different activity distribution factors g. The model is tuned to an input-driven (g = 0), output-
driven (g = 1), or associative (g ≈ 0.5) mode which is reflected by the corresponding errors and
weight matrices. The sub-matrices of Wnet display increased values depending on the model
directionality (see (3.1) for the construction of Wnet).

network will either resemble a forward or a backward model between the input and joint space.
In between, values of g ≈ 0.5 result in a mixed forward and backward model, i.e. an associative
model that bidirectionally connects input and joint space.

I use the normalized root mean square error (NRMSE)

NRMSE =

√√√√ 1

K

K∑

k=1

1

D

D∑

i=1

1

σ2
i

(yi(k)− ŷi(k))2, (5.12)

for evaluation, where yi(k) is the i-th component of target y(k) ∈ RD and ŷi(k) the corre-
sponding estimation of the model. σ2

i is the variance of the target signal y(k) in the i-th
component. If the variance is zero, then σ2

i is set to unity, which, however, does not apply in
the following experiments.

Note that y plays the role of the currently queried model output modality. For instance,
when the backward model is queried, the outputs are driven by the external signal and the
estimated inputs x are evaluated according to (5.12). In the context of bidirectional association,
the NRMSE has the advantage to be comparable between input and output modalities which
typically differ in dimensionality and distribution of values.

Results

Fig. 5.8 (top right) shows the NRMSE for the forward and inverse kinematic mappings depend-
ing on the gain g. The errors for the forward and backward model depend on the weighting
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factor g as expected: For g = 0, only the inverse kinematics are approximated while the for-
ward kinematics are effectively turned off (gfdb = 0). For g = 1, the model operates well in the
backward direction, i.e. approximating the forward kinematics, whereas the model receives no
contributions from the input neurons (ginp = 0). The value of g for which both error curves in-
tersect is the optimal regime for associative computation: The combined errors for both forward
and backward model take their minimal values approximately at g = 0.4.

The results can be related to the work in [23] which showed that learning the backward
mapping in addition to the forward mapping does not affect the performance if both network
variants have output feedback. In the experiments presented here, models range from purely
unidirectional to bidirectional which can be parameterized continuously by g. Although the
unidirectional forward or backward models yield the best performances on their respective
tasks, the associative models are still competitive. Moreover, the associative models have es-
sentially more computational power than the purely unidirectional models: Output feedback
dynamics in associative models can represent ambiguities of the inverse mapping, whereas unidi-
rectional models without output feedback dynamics can not. The representation of ambiguities
in associative reservoir computing networks is demonstrated later on in Chapter 7.

5.7 Concluding remarks

Reservoir regularization enables robust offline training of ESNs with output feedback. By
minimizing the norm of the weights that excite the reservoir, reservoir regularization mitigates
the sensible balance of task-specific performance and read-out regularization. This in turn allows
to increase the weight norm of the read-out weights and consequently improves the task-specific
performance and stability. Although reservoir regularization introduces extra computational
costs and an extra parameter, the gained robustness of learning is a necessary prerequisite for
the convenient application of reservoir networks with output feedback. The presented results
point out the close relation of stability and regularization which is of major importance for
many application areas where adaptive recurrent systems generate patterns autonomously or
implement feedback mechanisms.

In a second step, I extended the reservoir regularization approach to balance contributions of
input, reservoir and output neurons to the hidden representation. Balancing of contributions to
the reservoir activity assures that the regularized model is still responsive to inputs or outputs,
i.e. can be driven by the respective modality. In particular, balancing the distribution of
activities in a controlled manner is a powerful tool for bidirectional association. Setting the
weighting factors ginp, gres and gfdb enables the continuous adjustment of the model to a desired
functionality. The activity distribution approach thereby elucidates the trade-off between pure
forward or backward models and bidirectional association.

In conclusion, the problem of output feedback stability stated in Sec. 3.4.2 is resolved to
a considerable extent by the reservoir and read-out regularization techniques described in this
chapter. In particular, offline learning of associative reservoir networks can be accomplished
robustly, which is demonstrated in a series of examples in the following chapter.



Chapter 6

Robust offline learning of associative
reservoir networks

6.1 Combined forward and inverse models

The previous chapter deeply discussed the stabilization of reservoir networks with output feed-
back by regularization techniques. The networks were mostly trained as unidirectional function
approximators. In this chapter, we focus on robust offline training of bidirectional mappings
with invertible forward models. That is, the forward and inverse mapping are one-to-one. The
associative capabilities of the networks with output feedback connections are extensively eval-
uated and demonstrated on a set of tasks.

First, a simple example demonstrates the principle functioning of bidirectional association by
associative reservoir computing for an invertible, one-dimensional function. Then, the combined
forward and inverse kinematic models of two robotic manipulators are learned and evaluated.
The first one is a simple planar arm with two degrees of freedom. The other one is the industrial
Puma robot arm with six degrees of freedom. Also the release of controlled variables and
mixed constraints in input and output space are evaluated. In both cases, the inverse model is
trained on a single solution of the inverse kinematics. Learning multiple solutions of the inverse
model is subject to the next chapter. Finally, the combination of dimensionality reduction and
the backward reconstruction of high-dimensional data samples is demonstrated on images of
handwritten digits. In all examples, static relations between inputs and outputs are trained in
Associative Extreme Learning Machines (AELM, Sec. 3.3.4) and attractor-based computation
is applied.

6.1.1 A tiny example

Learning the bidirectional mapping of a non-linear input-output relation is demonstrated on
a simple example in this section. Additionally, the role of noisy observations with respect to
invertibility is discussed and evaluated.

Consider the non-linear function shown in Fig. 6.1 (a). Because the function y(x) is bijec-
tive, it has an inverse function x(y) (compare Fig. 6.1 (a) and (d)). Training of an AELM with
50 hidden neurons using reservoir regularization and a line search for read-out regularization
parameters αout and αrec in (3.14) and (3.16) results in robust association of the noisy data
(see Fig. 6.1 (c) and (f)). More details about the network initialization can be found in Ap-
pendix A.3.1. Note that the noisy data in Fig. 6.1 (b) and (e) does not corrupt learning of a
smooth bidirectional mapping by the AELM.

76
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Fig. 6.1: Invertible relationship between two variables x and y: Variable y(x) as a function of x
(a) and variable x(y) as a function of y (d). Noisy observations of relationship y(x) + ν (b) and
their inversion x(y + ν) (e). Network approximation of the forward and inverse function from
noisy data (c) and (f).

6.1.2 Noise and invertibility

However, noisy observations of the forward function violate its uniqueness: Typically, multiple
output samples are observed for the same input, although the function underlying the data
generation process may be one-to-one. Thus, the mapping implied by the data is – strictly
speaking – not invertible (compare Fig. 6.1 (b) and (e)). In fact, this is true for both, the
forward and the inverse mapping. Moreover, noise is amplified by the projection from one space
to the other unless the mapping is y = f(x) = x. Since noisy data of an invertible relation is
principally ambiguous, it is important to discuss the influence of noise in the context of learning
bidirectional associations.

Generally, noisy data sampled from the forward relation yield a convex solution set. There-
fore, the average of the output samples for the same input is a valid solution. At the same time,
several outputs for the same input render the inverse mapping non-injective: Several outputs
map to the same input value, i.e. the forward model is ambiguous (see Sec. 2.2).

For a more systematic evaluation of the robustness of associative learning to noise, the
following experiment is conducted: Consider the linear relationship y(x) = x+ ν with additive
Gaussian-distributed noise ν and x ∈ [0, 1]. The variance of the Gaussian noise is increased from
0 to 0.09 which creates heavily noisy data. 50 independent networks are trained per noise level
and the data is randomly split up into training and test set for each trial in a cross-validation
manner. The networks are initialized and trained with the same parameters as above (see
Appendix A.3.1).

Fig. 6.2 shows the mean square error for the forward and backward mappings on the training
and test set, respectively. The straight line in Fig. 6.2 shows the noise level. Errors below this
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Fig. 6.2: Fitting of bidirectional mappings
to a linear relation with noise. MSE on
training (solid) and test set (dashed line)
for the forward (B) and backward mapping
(C), respectively.
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line indicate over-fitting of the model to the data. Fig. 6.2 shows that the bidirectional mapping
behaves as expected with respect to the increased noise level, i.e. the overall error increases
smoothly with the noise level. The strictly non-invertible training samples do not corrupt
learning in a catastrophic manner.

Note that I used the identity as forward and backward mapping in this example to not
amplify noise in one direction. For this reason, a symmetric relation and similar errors for
both, the forward and the backward mapping, are obtained (compare Fig. 6.2). Moreover,
Fig. 6.2 shows that over-fitting is rather moderate. Tuning of the regularization parameters
with respect to output feedback stability on the training set by Algorithm 5.4 typically yields
to a good generalization performance on the test set.

6.2 Learning kinematics of a planar robot arm

We now come back to the kinematics example of a planar robot arm with two degrees of freedom
encountered previously. In this section, the robustness of learning forward and backward models
of invertible relations is evaluated for a range of parameters. In particular, I analyze the effects
of the training set size and the hidden layer size on the learning systematically. Moreover,
associative completion is demonstrated and evaluated in this section.

6.2.1 Experiment setup

−0.5 0 1
0

1

2

x
1
 [m]

x
2
 [

m
]

Fig. 6.3: Robot arm with two de-
grees of freedom. Training and
test patterns are shown in black
and gray, respectively.

The inverse kinematics of the planar arm (see Fig. 6.3)
has two discrete solutions when controlling the end effec-
tor position only: The righty or lefty elbow solutions. In
this section, the redundancy of the inverse kinematics is re-
solved by explicitly providing only righty elbowed solutions
for training (see Appendix A.4 for details). Data is collected
on a grid G of task space coordinates with 15×15 vertices
(see Fig. 6.3).

I evaluate properties of the AELM when learning asso-
ciative mappings. I vary the network size and amount of
training data systematically. All results are averaged over
100 independent trials per network size and training set size.
In each trial, the network is initialized with random weights,
and training and test set are randomly chosen from the grid
G. The size of the training and test set is parameterized by
the percentage p, i.e. 100p percent are selected as training
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and 100(1− p) percent as test set. Fig. 6.3 shows such a distribution of the samples on the grid
G in training and test set for p = 0.5.

Each network is initialized with weights Winp and Wfdb drawn from an uniform distribution
in ranges ainp = 1/D and afdb = 1/O, respectively. The biases b and slopes s of the activation
functions (3.5) are initialized also uniformly in [−1, 1] and [0.1, 1.1]. These parameters have
proven to work fine if the input and output data resides in a reasonable range, e.g. [−1, 1]. The
latter is achieved for the joint angle values by using the coordinate representation of each joint
angle qi, i.e. qi → (yi1 ,yi2) = (sin(qi), cos(qi)), as described in Sec. 5.5.1. In the following,
qi denotes the respective output components in the network. This normalization strategy in
combination with the activity distribution method presented in Sec. 5.6.2 makes further tuning
of the scaling of input and output weights in most cases dispensable. Here, only the number of
input and output dimensions is considered to achieve a rather equal-ranged inflow from input
and output neurons into the hidden layer. Due to the static input-output training data, the
internal dynamics of a reservoir for transient encoding is not required, i.e. Wres = 0, and
therefore I use the lightweight AELM in the following.

Training is done offline applying the regularization technique with activity distribution
(Sec. 5.6.2) first. The contributions of inputs and outputs are set to be equal, i.e. ginp = gfdb =
0.5 in (5.9) and (5.11), and the respective regularization parameters are βinp = βout = 0.1.
Then, the read-out weights Wout and Wrec are trained using the grid-search for the regular-
ization parameter αout and αrec according to Algorithm 5.4 to assure output feedback stability.

The trained models are evaluated with respect to the forward and inverse kinematics. Errors
of the forward kinematics are calculated by

EFK =
1

N

N∑

n=1

||xn − F̂K(yn)|| (6.1)

and of the inverse kinematics by

EIK =
1

N

N∑

n=1

||xn − FK( ˆIK(xn))|| (6.2)

for samples (xn,yn) with n = 1, . . . , N , where FK and F̂K denote the actual and estimated for-
ward kinematics, respectively. The same notation applies to the inverse kinematics IK and ˆIK.

6.2.2 Robust association

Fig. 6.4 shows the average test errors of the networks on the forward (a) and inverse kinematics
(b) as function of the network and training data size. Already a few training samples and a
medium sized network are sufficient to train accurate forward and inverse models.

To investigate the influence of both, network and training set size, more deeply, Fig. 6.5
displays the statistics of the trained models in boxplot diagrams. Increasing the network size
improves the model accuracy as expected. Note further that there are compact error distribu-
tions in Fig. 6.5 which indicates a robust training of networks irrespective of the rather large
range of network and training set sizes. Regularization of the network weights and the grid-
search for read-out weight regularization make robust learning of associative models possible:
While the regularization of weights Winp and Wfdb mitigates a strong dependency on the
read-out regularization, the line search for the read-out regularization parameters fine-tunes
the weight norm to the range of output feedback stability. This robust learning behavior of the
highly dynamic output feedback-driven systems is a key contribution of this thesis.
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Fig. 6.4: Average test errors of the forward and inverse kinematic models depending on network
and training set size. The errors (coded in gray scale) are presented in meters.
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Fig. 6.5: Statistics of test errors for the forward (left column) and inverse (right column)
kinematic models. For p = 0.75, the top row shows the influence of the network size on the
performance of both models. For R = 100, the bottom row shows the influence of the amount
of data used for training on the performance of both models.
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6.2.3 Unconstrained control variables

In a next step, the flexibility of the associative approach is demonstrated. In the following
experiments, control variables are released, i.e. instead to query joint angles for a specific po-
sition x, the solution is only constrained to fulfill x1 = 0.5 for instance. The remaining control
variables, x2 in case of the planar arm, remain unconstrained. Then, also the released input
runs in a recurrent loop in addition to the the output feedback loop, i.e. x2 is associatively com-
pleted (see Sec. 2.4 and (3.11)). Note that the networks are not trained and the regularization
parameters are not tuned for the release of inputs.

Note further that the inverse kinematics are then no longer unique: A manifold of joint angles
fulfill the required constraint. The output feedback dynamics become continuous attractors:
The unconstrained input was trained for a quasi-continuous set of its values from which one
is now dynamically selected. Continuous attractor dynamics can be understood as elongated
valleys with the same energy of the feedback dynamics. In practice, continuous attractors are
never perfectly level in the valley which results in a slow drift along the attractor manifold
[27, 57, 150]. It is therefore meaningful to stop iterating the dynamics as soon as the change
of the state becomes small, i.e. the dynamics reach the attractor valley. This can already
be accomplished using Algorithm 3.1 with an increased threshold δ. In this section, however,
I use an adopted convergence criterion based on the acceleration of the network state (see
Algorithm 6.5). This convergence criterion yields to more accurate identification of slow drifts
of the network state along continuous attractor valleys and results in early stopping of the
network iteration.

The network performance is evaluated in case of solely controlling either x1 or x2. Errors are
calculated with respect to the controlled variable: For controlling x1 only, the error is computed
according to

E(x1) = ||x1 − FK( ˆIK(x1))1||, (6.3)

where FK is the actual forward kinematic mapping and ˆIK is the learned inverse kinematic
mapping. Fig. 6.6 shows the error of the inverse estimate with respect to the controlled variable
in meters. For both task dimensions x1 and x2, the constraints are fulfilled accurately. Although
there is a slow drift along the manifold of solutions, the network stays in the range of learned
configurations using Algorithm 6.5. This can also be explained by the fact that there is a –
though output feedback-driven – rather stable estimate of the unconstrained variable at the
input which is sufficient to slow down the drift.

Exemplary solutions are displayed for controlling x1 or x2 in Fig. 6.7 (a) and (b), respectively.
The constraints are visualized as gray lines in Fig. 6.7, where in the case of controlling only one
task space variable the line represents the set of solutions fulfilling the constraint. Although the
associative model was not trained to operate in these novel configurations of driven inputs, the
results show that the model still accurately resolves the ambiguous inverse mapping. I.e. the
model generalizes to associative completion settings with infinitely many solutions.

Algorithm 6.5 Associative completion with convergence criterion for continuous attractors

Require: get combination of external inputs components xi and yi
Require: set t=0, ∆2h=∞, δ=10−6 and tmax=1000

1: while ∆2h > δ and k < kmax do
2: inject external inputs into network
3: execute network iteration (3.11) and (3.3)–(3.7)
4: compute state change ∆h(k) = ‖h(k)− h(k−1)‖2
5: compute state acceleration ∆2s = ‖∆h(k)−∆h(k−1)‖2
6: k=k+1
7: end while
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Fig. 6.6: Inverse model performance when control variables are unconstrained. Error of the con-
strained control variable x1 (left) and x2 (right) with standard deviations over all 100 networks
with R=100 and trained using p = 0.5.

6.2.4 Mixed constraints: Flexible control by associative completion

In a second step, the application of mixed constraints in task and joint space is demonstrated.
This means that for example x1 and q2 should fulfill certain constraints at the same time. Note
that the combination of task and joint constraints does typically not lead to a manifold of
solutions, but rather is often ill-posed in the sense that no joint configuration exists that fulfills
both constraints at the same time. The network is expected to find a rather exact solution when
the constraints are not ill-posed, or an approximate solution that tries to fulfill both constraints
in the ill-posed case.

Fig. 6.7 (c) - (h) show joint configurations estimated by the network for various combinations
of constraints. In Fig. 6.7 (c), the constraint for the first joint q1 is held fixed while the network
is queried to fulfill a set of desired values for x2. In Fig. 6.7 (d), the opposite is the case: For
various joint angles q1, the network is demanded to keep the height x2 constant. In both cases,
the network generates accurate solutions in the sense that both constraints are satisfied. In
particular, the sequence Fig. 6.7 (e) - (g) shows this effect strikingly: For the same set of task
space constraints x1, three different values for the second joint angle q2 are given to the network.
While in Fig. 6.7 (e) and (g) the constraint in joint space results in a slightly ill-posed problem,
the joint space constraint q2 =70◦ allows to fulfill task and joint constraints (see Fig. 6.7 (f)).

In case of ill-posed constraints, it remains an open question whether one constraint can
dominate another one or if both constraints influence the solution equally. The presented
network configuration, however, seems to prefer task space constraints as one can see in Fig. 6.7
(d) and (h). This might be due to a slight imbalance of contributions from the input and
outputs to the network activity. Although the activity distribution method can balance the
contributions of inputs and outputs to a great extent, differences in the input statistics of the
respective modalities can cause a slight imbalance.

For robotic applications, it is of interest to weight the different constraints during system
operation. This requires additional mechanisms to parameterize the network dynamics. To
this end, the learning of forward and inverse kinematics in an associative model enables flexible
combination of constraints in task and joint space.
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(h) x1 =−0.05 and q2

Fig. 6.7: Reduced constraints for the inverse kinematic mapping by releasing driving inputs
(a-b): Controlling left-right position of the end effector only by driving x1 (a). Controlling the
height over ground by driving only x2 (b). The gray lines display the (here one-dimensional)
manifold of end effector positions that satisfy the respective constraint of the input variable.
Mixed constraints in task and joint space (c-h): The network is externally driven with one
component from each input and output modality. One constraint is held fixed while the other
is varied. (c) The height over ground x2 is varied (see gray horizontal lines) and joint angle
q1 = 40◦ is held constant. (d) The height over ground x2 is held fixed and joint angle q1 is
varied. Read (e-h) analogously. The gray lines at the joint angles display the desired angle
configuration. This angle is fed into the network’s output neurons in addition to the task space
constraint (horizontal or vertical lines).
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6.3 Learning kinematics of the Puma robot arm

Finally, the associative capabilities of the AELM are demonstrated on an industrial robotic
platform, namely the Puma 560 robot. In contrast to the planar robot arm which was so far
well-suited to illustrated the principle functioning of the associative approach to learn combined
forward and inverse models, the Puma robot arm has six degrees of freedom and scales the
problem of inverse kinematics to application level.

6.3.1 The Puma robot arm

Fig. 6.8: The Puma robot arm
with six degrees of freedom.

The end effector of the Puma robot (see Fig. 6.81) is
controlled in a three dimensional cube, while the orienta-
tion of the end effector is held constant. Hence, there is also
variance in the last three wrist joints which is learned by
the network. The capability of reservoir networks to learn
the inverse kinematics of the Puma arm and also the entire
upper body of the humanoid Honda Research Robot com-
prising the orientation of the end effector was previously
demonstrated in [152] and [98, 153], respectively. While in
the cited work only the inverse kinematics have been learned
online in a backpropagation-decorrelation network with out-
put feedback, here both forward and inverse kinematics are
trained offline in an AELM.

6.3.2 Experiment setup

The training data is generated on a three-dimensional grid in task space which builds up a
cube of 50×50×50cm. The corresponding joint angles are produced with the analytical inverse
model provided by the MATLAB robot toolbox [154]. Again, in this chapter we focus on a
unique solution of the inverse kinematics which is in this case the default lefty upper elbow
configuration without wrist flip (see ikine560.m of Corke’s toolbox [154]).

All results are averaged over 100 independent trials. The networks have 200 hidden neurons
and 50% of the data in the cube are randomly selected for training per trial. The remaining
data samples serve as test set such that the model performance is evaluated in a cross-validation
manner. The networks are initialized and trained as described in section Sec. 6.2.

6.3.3 Robust association

Again, the capability to learn forward and inverse kinematics in a single network is first evalu-
ated. Fig. 6.9 displays the performance statistics of the AELMs for forward (left) and inverse
(right) kinematics on the training and test set. Both mappings are approximated accurately,
where the trained inverse models are slightly worse than the forward models. This offset reflects
the different difficulties of both tasks. However, in both cases no over-fitting behavior can be
observed, i.e. training and test errors are comparable, although no tuning of regularization
parameters with respect to a validation set has been applied and only half of the data in the
cube is used for training. This confirms the previous result that the selection of read-out regu-
larization parameters αrec and αout on the training set but with respect to the output feedback
stability criterion tested by Algorithm 5.4 is also beneficial for task-specific generalization. As
pointed out in Chapter 5, output feedback stability and task-specific generalization are tightly
coupled: Over-fitting networks to the data will affect generalization as well as output feedback

1Visualization of the robot was done with help of the software made available by Don Riley [151].
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Fig. 6.9: Errors of the learned forward (left) and inverse (right) kinematic models on the training
and test set, respectively. Errors are presented in task space.
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Fig. 6.10: Performance statistics for task space constraints for all 100 networks: Single con-
strained input (left) and combination of two constrained inputs (right).
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Fig. 6.11: Performance errors (6.3) when only one task dimension is controlled. Errors are
averaged over all 100 network configurations and are displayed with standard deviations.
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Fig. 6.12: Spatial resolution of performance errors (6.3) for combinations of two task constraints
averaged over all 100 networks.
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stability due to larger weight norms. Hence, regularization of the read-out weights with re-
spect to the output feedback stability criterion by Algorithm 5.4 on the training set renders
association robust and supports generalization.

6.3.4 Unconstrained control variables

Finally, the performance of the inverse estimate is evaluated for flexibly queried constraints.
All combination of task space constraints are investigated, where for each configuration there is
at least a one-dimensional manifold of solutions that fulfills the constraints. This multiplicity
of solutions results in continuous attractor dynamics of the output feedback-driven network.
Again, the modified convergence criterion in Algorithm 6.5 (see discussion in Sec. 6.2.3) is
applied to stop the network iteration as soon as the manifold of solutions is reached and the
network slowly drifts along this continuous attractor. I sample driving inputs regularly from a
line or grid for a single constrained input or two constrained inputs, respectively. The network is
then queried to associatively complete the other components, where the samples are presented
in a random order to the network.

First, only one task input is driven externally such that two other task inputs remain uncon-
strained. In this case, the network has to choose a solution from a two-dimensional manifold.
Fig. 6.11 shows the resulting performance error (6.3) on the respective constraint averaged over
all 100 network initialization. The constraints are kept rather accurately. Only for x1 < 0.4, the
error is slightly increased. Note that the networks are not trained or tuned for their exploitation
by associative completion.

A compact representation of the results is displayed in Fig. 6.10 (left), where for each
constraint configuration the performance statistics are computed according to (6.3). The task
constraints are fulfilled in the range of the inverse model precision for single controlled inputs
besides for x1 (compare Fig. 6.9 (right) and Fig. 6.10 (left)).

Interestingly, for the combined constraints – controlling two task space inputs at a time –
the performance depends also on the combination of driven input variables (compare Fig. 6.10
(right)). While the combination of x1 ∧ x2 and x2 ∧ x3 yield good results, the combination of
x1∧x3 is significantly worse than in the other cases. Some networks display outlier performances
with errors up to 10cm on average. This statistically robust effect of deteriorated performance
indicates an underlying regularity of this particular combination of constraints.

Investigating the spatial distributions of errors more closely in Fig. 6.12 (and also Fig. 6.11
(left) for driving only x1), sheds light on this issue. We obtain smooth error surfaces (compare
Fig. 6.12 (left) and (right)) with moderate errors which means that we can expect similar errors
for nearby targets. At the borders of the cube, however, errors increase rather rapidly. In
particular, the error increases for small inputs x1. Note that the distribution of inputs x1

is not centered around zero. This configuration seems to have a rather destructive influence
on the approximated mapping. Note, however, that the networks are not trained for this
variable selection of control inputs and hence associative completion may be limited in some
application scenarios. In particular, continuous attractor dynamics of the output feedback loop
due to released control inputs are naturally brittle [150]. Further tuning of the regularization
parameters by Algorithm 5.4 for different control configurations may alleviate these difficulties.
Another approach to cope with multi-stable and continuous attractor dynamics is presented in
the next chapter. Then, the associative model is also more robust when operated in associative
completion modes. However, the results presented in this chapter show that robust offline
learning of bidirectional association and, to some extent, associative completion is achieved by
the combination of read-out and reservoir regularization with balancing of contributions.
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6.4 Dimensionality reduction and data reconstruction

In this section, the scalability of the AELM approach is demonstrated in an dimension reduction
scenario. The network is trained to embed handwritten digits into a plane and to reconstruct
digits from their low-dimensional representation. This scenario shows that learning of bidirec-
tional mappings of unequal dimensioned input and output variables is possible in the AELM.

Besides the exemplifying character of this task with respect to learning of bidirectional map-
pings, there is an upcoming thread of papers that considers neighborhood-preserving embedding
functions [155, 156]. This approach is appealing because embedding new data points after learn-
ing of the function does not require to rerun the embedding algorithm with the additional data
points. In this thesis, bidirectional mappings are learned that additionally to the embedding
function enable the reconstruction of data in the original space by ”navigating” through the
embedding space.

First, the data and the embedding method to generate supervised training data in the
embedding space are presented. Then, the performance of trained bidirectional mappings is
evaluated on the embedding and reconstruction function.

6.4.1 Embedding handwritten digits using t-SNE

I consider images of handwritten digits from the MNIST data set. The MNIST data set is
commonly used to benchmark image reconstruction and classification methods. For the follow-
ing experiments, a subset of the “MNIST-basic” data set [157] is used, which comprises 2.000
images x of handwritten digits from 0 to 9 in a centered and normalized 28×28 pixel format.

I embed the data into the two-dimensional plane by t-Stochastic Neighbor Embedding (t-
SNE) [158] in order to generate training data pairs (x,y). The t-SNE embedding yields for each
image x a two-dimensional embedding vector y. The MATLAB implementation of t-SNE [159]
is used with default parameter configuration. The resulting embedding is shown in Fig. 6.13
(left) for some example images and in Fig. 6.13 (right) the embedding is shown for all 2000
images (black dots). Note that the embedding tries to preserve the topology of the data in both
spaces with a rather smooth relation, i.e. similar images are mapped to similar positions, which
indicates an homeomorph mapping between both spaces. Thus, an unique inverse mapping to
the embedding function exists and can be learned by an AELM.

Note that t-SNE is used for training data generation only. It is also possible to integrate
a neighbor-preserving criterion directly in the optimization of the parameterized function [155,
156]. Here, however, I focus on the principle functioning of the bidirectional mapping approach
in case of high-dimensional data and leave the integration of the embedding process into the
network training to future work.

To learn both, the embedding projection and the inverse mapping, 100 independently ini-
tialized AELM networks with R = 400 hidden neurons are used. Thus, the hidden layer is a
non-linear down-projection of the combined, 786-dimensional input-output space. The hidden
neurons have tanh activation functions (3.5) and the input weights Winp and Wfdb are initial-
ized in [− 1

784 ,
1

784 ] and [−1, 1], respectively. For training, a randomly chosen subset of the data
comprising 75% of the samples are chosen. The remaining 500 samples are used to evaluate the
generalization abilities of the learned mapping.

Read-out learning is conducted with αout = αrec = 0.1. I balance input and output contribu-
tions to the network activity with ginp = gfdb = 0.5 and regularization parameters βinp = 0.01
and βfdb = 0.1. This balancing is particularly important in this scenario in order to compensate
for the strong inequality of the input and output dimensions.
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Fig. 6.13: Exemplary images plotted according to the t-SNE embedding (left). Positions of
images in embedding space for the entire data set (right): t-SNE (black dots) and trained
AELM (gray dots).

6.4.2 Learning to project handwritten digits to a plane

We first consider the embedding projection from the image space to the plane. The estimated
projections for the entire data set are shown in Fig. 6.13 (right, gray dots) for an exemplary
network and in Fig. 6.14 (left) for a subset of the input images. The embedding is not as clustered
as the output of the t-SNE algorithm, but nevertheless shows a decent, smooth embedding with
similar inputs at similar positions in the embedding space.

To access the network performance quantitatively, I compute the dimension-normalized
mean square error

NMSE =
1

K

K∑

k=1

1

O
||yk − ŷk||2, (6.4)

where K is the number of samples, O is the dimension of the outputs, yk are the embeddings
according to t-SNE and ŷ the approximated embedding by the AELM. The error statistics
of the AELM embeddings with respect to the embedding generated by t-SNE is displayed in
Tab. 6.1 for training and test sets. The errors and their variances are small indicating robust
learning of the output feedback-driven network dynamics. The overall topology of the t-SNE
embedding is captured well by the trained networks.

6.4.3 Learning to reconstruct handwritten digits

We now consider the inverse mapping of the embedding which maps coordinates in the two-
dimensional plane to data samples x̂, i.e. reconstructs images. Fig. 6.14 (right) shows recon-
structions of images for a subset of the embedded data points. The characteristics of all ten
digits are reproduced well and variations of the digit shape and orientation are also associated
with neighboring positions in the embedding space.

The average reconstruction errors according to (6.4) calculated for input images x and
reconstructed images x̂ are listed in Tab. 6.1. The errors show a similar approximation capability
of the networks for the backward reconstruction in comparison to the learned forward embedding
on the test set. Slight blurring of edges in the reconstructed images (see Fig. 6.14) is due to
the “noisy“ embedding by t-SNE which causes averaging effects in the read-out learning of the
associative network: Quite different images are mapped to very similar positions y by t-SNE,
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Fig. 6.14: Embedding and generation of digits by the trained associative network: Input images
x are plotted at estimated positions ŷ (left). Reconstructed images ŷ are queried from and
plotted at embedding positions y of t-SNE (right).

resulting in a good inter/intra cluster variance ratio. In contrast to this sample-based clustering,
the connectionist representation in the AELM is biased towards more continuous mappings
which can be seen also in the forward, embedding mapping direction (compare stretching of
clusters in Fig. 6.13 (right)).

Picking up the discussion about learning, regularization and stability, I conclude from the
small error variances in Tab. 6.1 that bidirectional mappings of invertible mappings can be
robustly learned in AELM networks. I.e. error amplification of the output feedback dynamics
are prevented by applying regularization of the hidden layer in combination with balanced
contributions of inputs and outputs to the network activity. The unequal number of dimensions
of inputs and outputs can be handled and do not disturb the bidirectional mapping. This
final example of learning embeddings and their inverse mapping for data reconstruction is a
promising application domain for AELM networks.

Embedding Reconstruction

Train 0.012± 3.58 · 10−4 0.044± 7.15 · 10−4

Test 0.047± 4.01 · 10−3 0.043± 2.54 · 10−4

Tab. 6.1: Normalized mean square errors
(6.4) of the embedding and reconstruc-
tion mapping averaged over 100 network
initializations with standard deviations.

6.5 Discussion

The combination of read-out and reservoir regularization introduced in Chapter 4 and Chapter 5
yields robust performance when learning bidirectional mappings of invertible problems. The
balancing of contributions from the inputs and outputs to the hidden layer contribute to this
robust performance. I report that conducting the experiments above without these mechanisms
fails in the sense that almost none of the trained networks achieves a comparable performance.
The presented results show also that regularization to achieve output feedback stability tunes
the model into a range of excellent generalization. That is, stability and generalization benefit
from regularization.



Chapter 7

Representing and resolving
ambiguity with output feedback

7.1 Learning and selecting multiple solutions

The previous chapter considered the associative learning of invertible models by providing data
with a unique inverse mapping for learning. This restriction to invertible relations between
inputs and outputs is, however, not the typical case. There are often multiple valid solutions to
the inverse problem due to a non-injective forward mapping, e.g. multiple joint configuration
that cause the same end effector position. It is particularly difficult to cope with multiple
solutions in learning architectures: The non-convexity of inverse mappings typically causes the
average of two valid solution to be an invalid solution.

In this chapter, it is first shown that output feedback resolves the non-convexity problem
and principally enables the representation of multiple solutions of an inverse model in a single
network. During network exploitation, ambiguities are resolved dynamically by iterating the
output feedback loop, i.e. the network settles to an attractor that represents a particular
solution depending on initial conditions. The recall of one of the stored solutions, however,
largely depends on the network initialization: If learning only imprints fixed-point conditions
into the output feedback dynamics, the basins of attraction can be arbitrary in size and shape.
I therefore propose an algorithm to program attractor dynamics that shapes the basins of
attraction to each solution manifold explicitly. In a next step, desired features of output feedback
dynamics to represent and resolve ambiguities are derived which address important issues that
I identify in the initial discussion. Finally, the dynamical approach to cope with ambiguous
mappings is demonstrated in a series of experiments and properties of the proposed methodology
are analyzed.

We focus on Associative Extreme Learning Machines (AELMs, Sec. 3.3.4) in this chapter
and concentrate on the output feedback dynamics of the forward path first. Then, full AELM
training of forward and ambiguous inverse models is presented in kinematic learning scenar-
ios. In these examples, static forward and inverse mappings are trained using attractor-based
computation. Finally, the AELM with multi-stable output feedback dynamics is compared to
transient-based resolution of ambiguities in a sequence transduction task.

7.1.1 Output feedback resolves ambiguity

Consider a real-valued inverse mapping with two solution branches. For instance, the inverse
mapping of a parabola has two solutions (see gray data points in Fig. 7.1 (a)). If a pure feed-
forward model is trained on such an ambiguous data set, learning averages over both solution
branches (see black dots produced by a feed-forward network in Fig. 7.1 (a), details of the

90



Learning and selecting multiple solutions 91

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x

y

(a)

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x

y

(b)

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x

y

(c)

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

y

 

 

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(d)

Fig. 7.1: Learning an ambiguous mapping with two solution branches. Pure feed-forward models
average both solution (a). AELM with output feedback but without Algorithm 7.6 (b)–(d):
Training imprints fixed points at the data examples (b). Switching ambiguity resolution for
smoothly varying input x from −1 to 1 (c). Point of attraction ŷ (coded in gray scale) as
function of the input x and initial condition y (d). Additionally, the phase portrait of the
output feedback dynamics is shown by arrows in (d).

training and initialization can be found in Appendix A.3.2). This can be understood as the
common behavior of feed-forward networks with least squares learning to noisy data: Variation
of target outputs for the same input are assumed to be due to noise and are averaged. The
average solution, however, is not necessarily a valid solution if the valid output set is non-convex
(see Fig. 7.1 (a) and discussion in [15]).

More formally, consider a feed-forward network, e.g. an Extreme Learning Machine (ELM,
see Sec. 3.3.2 for details of the model). Then, ambiguous data pairs (xn,yn) and (xm,ym) with
xn = xm and yn 6= ym are mapped to the same hidden state and thus ambiguous outputs can
not be distinguished:

ŷn(xn) = Wouth(xn)

= Woutσ(Winpxn)

= Woutσ(Winpxm) = ŷm(xm)

Learning of the feed-forward model can consequently not disentangle both solutions and averages
the target outputs for the same inputs [15].

Averaging effects can be prevented by utilizing a combined representation of inputs and
outputs, for example in the associative variant of Extreme Learning Machines (AELM, see
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Sec. 3.3.4 for details of the model). The associative setup resolves the non-convexity problem
arising from ambiguous data pairs by utilizing a mixed representation h(xn,yn) 6= h(xm,ym)
of inputs and outputs in the hidden layer. We have

ŷn(xn,yn) = Wouth(xn,yn)

= Woutσ(Winpxn + Wfdbyn)

= Woutσ(Winpxm + Wfdbyn)

6= Woutσ(Winpxm + Wfdbym) = ŷm(xm,ym)

for ambiguous data pairs with xn = xm and yn 6= ym as well as Wfdb 6= 0. Therefore, learning
of Wout can disentangle the ambiguity based on the different hidden states.

During network exploitation, outputs y are not available and the trained network is therefore
applied in an output feedback-driven mode, i.e. estimated outputs are fed back into the network
(compare Fig. 3.2 and (3.9)). I show that successful training according to Sec. 3.2.4 causes
ambiguous data pairs to be fixed-points of the output feedback dynamics. Assume the outputs
are reproduced sufficiently accurate by the trained network, i.e. ŷ(k) = Wouth(k,x,y) ≈ y,
if the network state h(k,x,y) is teacher-forced to the desired input-state-output configuration
at time step k. Then, releasing the output neurons from teacher-forcing fulfills the fixed-point
condition h(k+1,x, ŷ(k)) = h(k,x,y). We have

ŷ(k) = y

⇔Wouth(k,x,y) = y

⇔WfdbWouth(k,x,y) = Wfdby

⇔Winpx + WfdbWouth(k,x,y) = Winpx + Wfdby

⇒ σ(Winpx + Wfdbŷ(k)) = σ(Winpx + Wfdby)

⇔ h(k+1,x, ŷ(k)) = h(k,x,y).

That is, the training samples are fixed-points of the output feedback dynamics.
Fig. 7.1 (b) shows the estimated outputs of an AELM (black dots) after convergence of the

output feedback dynamics. The network was initially teacher-forced to the training data (gray
dots). Fig. 7.1 (b) shows that the training samples are fixed-points of the network dynamics,
i.e. the training patterns were imprinted into the output feedback dynamics. This confirms the
calculation above empirically and shows that the output feedback dynamics are not globally
asymptotically stable: The output feedback dynamics have at least two fixed-points for the
same input.

I analyze the local stability of the output feedback dynamics at the training samples in more
detail. I therefore consider the eigenvalues of the linearized output feedback dynamics. That
is, I calculate the Jacobian

J =




∂y1(k+1)
∂y1(k) . . . ∂y1(k+1)

∂yO(k)
...

...
∂yO(k+1)
∂y1(k) . . . ∂yO(k+1)

∂yO(k)


 ∈ R

O×O with
∂yi(k+1)

∂yj(k)
=

R∑

r=1

woutir w
fdb
rj σ

′
r(a(k+ 1))

of the output feedback dynamics

y(k+1) = Woutσ(Winpx + Wfdby(k)),

where the input x is externally driven and remains constant during network iteration. The
Jacobian J is a linear approximation of the change at the outputs y(k+1) for a small perturbation
of the outputs y(k) in the previous iteration step. The linearized system is locally stable if all
eigenvalues of J(x,y(k)) stay inside the unit circle of the complex plane [148].
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For the AELM shown in Fig. 7.1, which was trained by the standard learning described
in Sec. 3.2.4, most of the absolute eigenvalues stay in the region of local stability. We yield a
distribution of absolute eigenvalues with mean 0.99 and standard deviation 10−3. However, for
nine percent of the training samples, the absolute eigenvalue is greater than one which indicates
an instable linear system for this training sample. The maximal absolute eigenvalue of J for all
inputs and outputs in the data is 1.0026. Although absolute eigenvalues above unity indicate
that the network was not programmed to have a fixed-point at these samples, note that this is
only a linear approximation of the true output feedback dynamics. It might be that the output
feedback dynamics have an equilibrium very close to the training samples with eigenvalues of
the Jacobian greater than unity and in this sense learning of fixed-point conditions is successful
in Fig. 7.1 (b).

The important question is whether these fixed-points have a local basin of attraction. For
example, does the network reside in the same solution manifold if the input to the network
changes smoothly? Fig. 7.1 (c) shows the network output for a linearly increasing input x =
−1, . . . , 1 starting from the lower solution. First, the network stays in the lower solution branch.
But then the dynamics bifurcate with increasing x, i.e. a small change of the input causes to
switch the ambiguity resolution scheme and the upper solution branch is selected. This indicates
that the basin of attraction of the lower solution becomes narrow for inputs x ≈ 0.1 which
results in an undesired bifurcation. That this is indeed the case can be seen in Fig. 7.1 (d)
which illustrates the point of attraction (coded in gray scale) depending on initial states h(x, y)
in the input-output plane. The basin of attraction of the lower solution for x ≈ 0.25 (along the
vertical slice in Fig. 7.1 (d)) is much smaller than the basin of attraction for the upper solution
at this input. The key question is how basins of attraction be shaped more robustly.

7.1.2 Programming multi-stable output feedback dynamics

Although the associative network setup is sufficient to prevent averaging of ambiguous data
samples during learning, the output feedback dynamics will not exhibit equally spread basins of
attraction when only the fixed-point conditions are programmed. To imprint multiple basins of
attraction for a single input, I follow the programming dynamics approach introduced in [126]
(Sec. 4.2 of this thesis) and extend the training data set by synthesized sequences to promote
attraction to the data samples. For a given input sample xn, synthesized output sequences

ỹsn(k)=yn + (1− k/K)2νs with k = 0, . . . ,K (7.1)

are generated, where s = 1, . . . , S denotes the index of the sequence and νs ∈ RO is a small
perturbation. Note that also different sequence generation rules than (7.1) can be considered.
In particular, modeling the kind of attraction to the fixed-points by utilizing trajectory data
is possible. In this thesis, however, I focus on sequence generation by (7.1). The concept of
sequence generation to program multi-stable attractor dynamics is illustrated in Fig. 7.2.

For each sequence, the corresponding network states h(xn, ỹ
s
n(k)) are collected. Attraction

to the desired output yn is enforced by mapping states h(xn, ỹ
s
n(k)) to outputs ỹsn(k+1). This

can be accomplished by the linear regression

Wout = (HTH + αout1)−1HT Ỹ, (7.2)
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ỹ1
4(k) and ỹ2
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Fig. 7.2: Programming multi-stable attractor dynamics. Consider a scalar input-output map-
ping with two solution branches set up by data points (x1,y1) and (x2,y2) with x1 = x2 and
y1 6=y2. Attraction to manifolds is promoted by synthesized sequences ỹsn(k) for each data point
n=1, . . . , N . The border of attractor basins will be formed between both solution manifolds.

where

H=




h1
1(0)T

...
h1

1(K−1)T

...
hS1 (0)T

...
hSN (K−1)T




and Ỹ=




ỹ1
1(1)T

...
ỹ1

1(K)T

...
ỹS1 (1)T

...
ỹSN (K)T




collect all hidden states and desired outputs in respective matrices. The parameter αout in
(7.2) weights the contribution of a regularization constraint. Multiple attractors for the same
input are trained if there are data samples (xn,yn) and (xm,ym) with xn = xm but yn 6= ym.
Note that there is no additional knowledge about the data necessary to implement uni-, bi- or
multi-stable attractor dynamics.

Algorithm 7.6 summarizes the attractor programming technique, which is analogously also
applied to the input reconstructing weights Wrec of the backward model: Then, input sequences
x̃sn(k) are synthesized and the resulting hidden states h(x̃sn(k),yn) are harvested. Equation (7.2)
alters accordingly to

Wrec = (HTH + αrec1)−1HT X̃. (7.3)

I apply a simple scheme to chose perturbations νs such that the sequences ỹsn(k) cover all
directions in the output space by generating two sequences along each dimension (compare
Fig. 7.2). I yield S=2 ·O sequences for the forward model from inputs to outputs with νs = lei,
where ei is the canonical basis vector with the i-th component equal to unity and l scales the
length of the sequence. Thus, Algorithm 7.6 enlarges the training set by factor S · (K−1),
where I typically use S=2 · O and K=3. Learning is nevertheless feasible due to the efficient
read-out training by linear regression. Note that for K = 1 or l = 0, Algorithm 7.6 is equal to
the standard attractor-based learning discussed in Sec. 3.2.4.
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Algorithm 7.6 Programming fixed-point attractor dynamics

Require: network, training data (xn,yn) with n = 1, . . . , N ,
sequences per sample S, steps per sequence K

1: for n = 1, . . . , N do
2: for s = 1, . . . , S do
3: synthesize sequence ỹsn(k) = yn + (1− k/K)2νs for k = 0, . . . ,K
4: harvest states h(xn, ỹ

s
n(k)) for k=0, . . . ,K−1

5: append harvested states to H and outputs ỹsn(k) for k = 1, . . . ,K to Ỹ
6: end for
7: end for
8: read-out learning by (7.2)

7.1.3 Robust solution selection by output feedback dynamics

The application of algorithm Algorithm 7.6 results in larger and more equally distributed basins
of attraction. Fig. 7.3 shows results for the AELM trained using Algorithm 7.6 on the inverse
parabola example. Fig. 7.3 (a) displays the fixed-points of the output feedback dynamics if the
network is teacher-forced to the training samples first. In comparison to Fig. 7.1 (b) where
almost each training samples is a fixed-point on its own, the training samples are merged to
smooth solution manifolds in the network using Algorithm 7.6. The fused attractor mani-
fold is important for generalization along the manifold which will be demonstrated later on in
this chapter.

Fig. 7.3 (b) and (c) show further that both solution branches are robustly imprinted into
the network dynamics in the sense that changing the input x does not change the ambiguity
resolution scheme. The robust attraction to both solutions is confirmed by the results displayed
in Fig. 7.3 (d) which shows the point of attraction (coded in gray scale) depending on the initial
condition h(x, y). Both solutions have a well-distributed basin of attraction with a sharp border
which minimizes the risk for spurious states and the spatial extension of saddle nodes.

I again analyze the linearized output feedback dynamics by means of the eigenvalues of
the Jacobian as in Sec. 7.1.1. The distribution of absolute eigenvalues for all training samples
displays a decreased mean value of 0.58 with a standard deviation of 0.15. The maximal absolute
eigenvalue resides below the border to instability at 0.998, i.e. the eigenvalues of the linearized
system indicate that all training samples are fixed-points of the output feedback dynamics.
Note, however, that the analysis based on the Jacobian is a linear approximation of the non-
linear output feedback dynamics and the trainings samples are actually merged to a solution
manifold (compare gray data samples and black fixed-points of the output feedback dynamics
in Fig. 7.3 (a)). However, the decreased eigenvalues of the linear system show that learning of
multi-stable output feedback dynamics is clearly more robust if Algorithm 7.6 is used.

Note that in case of a single solution branch it is not necessary to shape attractor basins of the
output feedback dynamics explicitly. The results in Chapter 6 clearly show that the fixed-point
conditions are sufficient for training globally stable output feedback dynamics in combination
with regularization of the hidden and read-out layers. Algorithm 7.6 enables to program bi-
stable output feedback dynamics such that the network can represent two solution branches.
That is, the network learns a multi-valued function. Moreover, the synthesized sequences make
the fine-tuning of regularization parameters αout and αrec for each network, e.g. according
to Algorithm 5.4, dispensable. The synthesized sequences by themselves act as regularization
by providing data pairs in the vicinity of the original data samples. Therefore, learning is
rather robust for sufficiently large reservoir regularization (β? in (5.9)–(5.11)) and read-out
regularization parameters (α? in (3.14) and (3.16)). The generation of many output sequences
can even make output regularization dispensable. However, without reservoir regularization, I
could not achieve (locally) stable output feedback dynamics in the presented example.
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Fig. 7.3: Learning an ambiguous mapping with two solution branches in an AELM using Algo-
rithm 7.6. Starting from teacher-forced network states on the training samples, the dynamics
are attracted to the learned solution manifolds (a). Both solutions are robustly recalled de-
pending on the initial condition (inputs x from 1 to −1) (b)–(c). Point of attraction ŷ (coded
in gray scale) as function of the input x and initial condition y (d). Additionally, the phase
portrait of the output feedback dynamics is shown by arrows in (d).

7.1.4 Multi-stable and continuous attractor dynamics

The initial example in Sec. 7.1.1 and Sec. 7.1.3 demonstrates the capability of learning two
solution branches with an AELM, i.e. the output feedback dynamics are bi-stable. The output
feedback dynamics are further parameterized by an input which enables to smoothly query
outputs along each solution branch. In this section, I show that multi-stable output feedback
dynamics can be trained by Algorithm 7.6. Moreover, in the limit of many desired attractors
with decreasing spatial distance, Algorithm 7.6 programs continuous attractor dynamics (for an
introduction of continuous attractor dynamics Sec. 2.3.6). In particular, I tackle the following
questions: How many solutions can be stored by the output feedback dynamics? How does
the number of solutions depend on their spatial distribution in output space? And, are there
spurious attractor states?

We focus on the output feedback dynamics only for visualization purposes, i.e. the AELM
has no inputs. The results nevertheless transfer to network dynamics parameterized by inputs.
The output space is two-dimensional and the AELM has two output neurons accordingly. Con-
sider a set of desired outputs {yn} that shall be attractors of the output feedback dynamics. I
train AELMs with R = 300 hidden neurons according to Algorithm 7.6 using regularization of
the hidden layer. Detailed model parameters can be found in Appendix A.3.3.
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Starting with a single training sample y1 = (0, 0), we obtain a single fixed-point of the output
feedback dynamics shown in the first row of Tab. 7.1: The second column in Tab. 7.1 shows
the effective point of attraction starting from several initial conditions in the output space.
The third column in Tab. 7.1 displays the phase portrait of the output feedback dynamics.
The fourth column in Tab. 7.1 shows the absolute values of the change in the output neurons
which corresponds to the step width the network dynamics descent the energy landscape in
one iteration of the output feedback dynamics. The single fixed-point dynamics correspond
to the case of global attractor dynamics shown in Fig. 2.8 (left). Parameterizing the point of
attraction by an additional input enables the approximation of a single solution branch. This
is the typical case demonstrated throughout Chapter 6.

If we add an additional sample to the training set, we obtain the bi-stable dynamics illus-
trated in the second row of Tab. 7.1. The concept of bi-stable attractor dynamics is illustrated
in Fig. 2.8 (middle). I successively increase the number of training samples placed along a non-
linear manifold to show that multi-stable output feedback dynamics can be imprinted into the
network by Algorithm 7.6 (see remaining rows in Tab. 7.1). I use a constant parameter setting
throughout the experiments, in particular l = 0.1, which shows the robustness of programming
multi-stable output feedback dynamics with the proposed approach. A more detailed analysis
of the effect of K and l on the performance of Algorithm 7.6 follows in Sec. 7.3.

With decreasing distance between desired attractor states, it becomes more and more dif-
ficult to separate attractor basins. In particular for initial conditions in between the basins of
attraction, i.e. starting in the saddle nodes, convergence to a desired attractor can fail (see ar-
rows that end in between training samples in the third and fourth row of Tab. 7.1). The saddle
node between attractors can be seen in the fourth column of Tab. 7.1: The rate of change is
low in between two attractor states and starting close to saddle nodes may result in very slow
convergence. However, the outputs ”get stuck“ at the saddle nodes in the worst case which
is far more desirable than divergence of the outputs to some undefined state. Saddle nodes
and their effects are an intrinsic property of the dynamical approach to multi-valued function
approximation and not specific to the presented model.

Fig. 7.4: Two data points with syn-
thesized sequences in the output space
(top). If data points are closer to
each other, synthesized sequences may
overlap (bottom).

In the limit of many training samples along a con-
tinuous manifold, the attractor basins merge to a con-
tinuous attractor manifold. These continuous attractor
dynamics emerge first for N = 7 and generalize to the
manifold hidden in the training data for N = 10 and
N = 30 (compare last three rows in Tab. 7.1). Con-
tinuous attractor dynamics model the limit case of in-
finitely many solution to a problem, i.e. a multi-valued
function whose set of solutions is a continuum, and cor-
respond to the illustration in Fig. 2.8 (right). A con-
tinuous valley of attraction with small state changes
can also be observed in the fourth column in Tab. 7.1
for N ≥ 7. To understand the shaping of continuous
attractor dynamics by Algorithm 7.6, consider overlap-
ping sequences produced by Algorithm 7.6 for nearby
outputs yn ≈ ym and the same input x. We then have
similar network states h(x, ỹn(k)) ≈ h(x, ỹm(k)) for
the overlapping sequences ỹn(k) and ỹm(k) that are
mapped to conflicting outputs ỹn(k+1) 6= ỹm(k+1).
Along anti-parallel directions, learning will effectively
average out the desired changes of the outputs. Similar
directions of the sequences still shape the output feedback dynamics. We obtain effective target
sequences for the learning which approach a line orthogonal to the connecting line between two
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output samples yn and ym of the original data set. Fig. 7.4 illustrates the overlap of synthesized
sequences ỹsn(k). Overlapping sequences can occur if the sequence length l is increased, or data
points are close to each other. Note that the choice of a particular solution on the non-linear
manifold in output space is not determined by an input but by initial conditions of the output
feedback dynamics. That is, the network models infinitely many solutions to a single (in this
case constant) input.

Tab. 7.1: Multi-stable output feedback dynamics. For the same input, say x = 0, the number
of ambiguous outputs N (left column) is increased (see red markers in columns two and three).
In the second column, the arrows show the point of attraction for initial conditions in the
output space: The network is first teacher-forced to h(y). Then, the output feedback dynamics
are iterated until convergence according to Algorithm 6.5 which yields the estimated output ŷ.
Arrows in the second column are drawn from y to ŷ. In the third column, the respective phase
portrait of the system is shown by means of the vector field set up by arrows y→ ŷ(2). That is,
the network is teacher-forced to the initial condition h(k = 1,y) and then iterated for a single
step which yields the estimated output ŷ(2). Finally, the fourth column displays the absolute
state change ||ŷ(2)− y||, the length of the arrows in the third column.

N Attractor Dynamics Phase Portrait Absolute State Change
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In this section, I use the adopted convergence criterion in Algorithm 6.5 to stop iteration of
the dynamics early: Learned continuous attractor basins are never perfectly level (see discussions
in [57] and [150]) and dynamics typically drift slowly along the attractor valley. Algorithm 6.5
stops iteration of the output feedback dynamics approximately when the outputs reach the
attractor valley, i.e. the closest (in terms of the number of network iterations) output in the
attractor valley is returned by Algorithm 6.5. Note that Algorithm 6.5 is applied throughout
the experiments displayed in Tab. 7.1 and performs well also in case of fixed-point attractor
dynamics. It is not necessary to select a specific convergence criterion for each network iteration
which would be cumbersome because one then needs to know the kind of attractor in advance.

7.2 Properties of the dynamical approach to ambiguity

The previous section demonstrated the basic capabilities of output feedback dynamics to rep-
resent multi-valued functions trained from ambiguous data samples. To proceed in a more
principled way, I define desired properties of the output feedback dynamics and thus the ap-
proximated multi-valued functions in this section.
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7.2.1 Robustness of solution branches to input perturbations

An important property of output feedback dynamics in the context of multiple, continuous
solution branches is that for a small change of the input, the output resides on the same solution
branch. That is, the output feedback dynamics shall be robust against small perturbations
of the input and generalize along a solution manifold rather than switching the ambiguity
resolution scheme.

More formally, if ŷ(x) belongs to a particular solution manifold defined by the set Y1, then
the output ŷ(x + ν) for a small perturbation ν of the input shall reside in the same solution
branch, i.e. ŷ(x + ν) ∈ Y1. This property can be understood as robustness of the output
feedback dynamics to small perturbations of the input and is illustrated for the first exemplary
input in Fig. 7.5 (left).

7.2.2 Transition properties

The previous property demands the output feedback dynamics to stay in the same basin of
attraction if the input is varied. The following properties focus on the ways of switching the
ambiguity resolution scheme. That is, how can output feedback dynamics switch the solution
branch if the output feedback dynamics are robust to perturbations of the input according to
Sec. 7.2.1. There are two ways of switching the output feedback dynamics’ basin of attraction:
Either by forcing the outputs to a different basin of attraction, i.e. solution branch, or by
driving the network inputs in a certain manner.

Output feedback-driven transition

If ŷ(x) ∈ Y1, then perturbation of the actually fed back output, i.e. ŷ := ŷ(x)+ν, shall result in
ŷ(x) ∈ Y1 for small perturbations ν. This robustness of the output feedback dynamics to small
perturbations is illustrated in the middle of Fig. 7.5 (left). For larger perturbations ν that drive
the network output into another basin of attraction, e.g. corresponding to the solution branch
Y2, the output feedback dynamics will switch the ambiguity resolution scheme, i.e. ŷ(x) ∈ Y2.
The transition of the solution branch by strong perturbation of the output is shown in the right
example in Fig. 7.5 (left).

Input-driven transition

The transition from one solution branch to another one can also be initiated in an input-driven
manner under certain conditions. Consider two solution branches f1(x) and f2(x) defined on
the same domain of inputs X1 and X2 with X1 = X2 = X. Then, according to the robustness
to perturbation property stated above, the output feedback dynamics will reside in one of the
branches for all inputs from the domain X. That is, the ambiguity resolution scheme is cyclic:
Driving the network with a cyclic trajectory x(k) in input space for k = 1, . . . ,K and with
x(1) = x(K), the same ambiguity resolution scheme is applied at time step k = 1 and k = K.
In other words, if ŷ(x(1)) ∈ Yb then also ŷ(x(K)) ∈ Yb. A transition between solution branches
can only be initiated by forcing the outputs to the other basin of attraction.

However, if X2 is a subset of X1, i.e. X2 ⊂ X1, then there exist paths x(k) in input space
for k = 1, . . . ,K and with x(1) = x(K) such that ŷ(x(1)) ∈ Y2 and ŷ(x(K)) ∈ Y1. That
means the ambiguity resolution scheme is not cyclic and the transition between solutions can
be initiated in an input-driven manner. Even necessary criteria for the input sequence x(k)
to result in a switching of the ambiguity resolution scheme can be defined: If robustness to
inputs and outputs according to Sec. 7.2.1 and Sec. 7.2.2 apply, then ŷ(x(K)) ∈ Y1 can only
be achieved if the input sequence x(k) leaves the domain X2 for some x(k). The input-driven
transition from solution branch Y2 to Y1 is illustrated in Fig. 7.5 (right).
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Fig. 7.5: Robustness properties of input-driven multi-stable output feedback dynamics (left):
For small changes of the input, the output feedback dynamics shall stay in the same solution
branch. Small perturbations of the output shall not result in switching the solution branch.
Output feedback-driven transition of solution branch shall occur only for larger perturbations.
Input-driven transition between solution branches (right): Driving the inputs out of the domain
of a solution branch and back again results in a non-cyclic output sequence. The output remains
in the same solution branch if the input sequence stays in the domain of this branch and the
output feedback dynamics are robust against changes of the input.

Otherwise, the output feedback dynamics remain in the same solution attractor: The am-
biguity resolution scheme is cyclic, i.e. ŷ(x(K)) ∈ Y2, if the input sequence x(k) does not leave
the domain X2 and the criterion from Sec. 7.2.1 and Sec. 7.2.2 apply. This is illustrated by the
second example input in Fig. 7.5 (right).

The input-driven transition property applies more generally if X1∩X2 6= ∅ and (X1∩X2) ⊂
X1 as well as (X1 ∩X2) ⊂ X2. This scheme can be analogously generalized to multiple solution
branches with respective input domains. The selected solution depends then on two factors:
The boundaries of overlapping domains and the closeness of solution branches in output space.
That is, if the input drives the network out of the domain of the current solution branch into
a region of two solution branches for instance, the selected solution branch depends on the
distances of the current outputs to both solution branches.

Moreover, the kind of switching between solution branches can be classified. Following the
terminology introduced in Sec. 2.3.6, we have a flip node transition from one solution branch to
the other if the solution branches in the output space do not merge smoothly into each other.
Then, the output dynamics quickly approach the other solution branch as will be shown in
Sec. 7.3. For smoothly merging solution branches, there is no particularly observable transition
between both solution branches when driving inputs from a region with a single solution branch
into a region with smoothly forking solution branches, the current estimated output and also
external perturbations of the outputs decide which branch is followed after the fork.

7.2.3 Attractor-based short-term memory

I combine the properties described in Sec. 7.2.1 and Sec. 7.2.2 into a formulation of attractor-
based short-term memory. Output feedback dynamically binds inputs to one of possibly many
outputs. If the output feedback dynamics reside in a particular input-parameterized attractor,
i.e. solution branch, for perturbations of inputs and outputs according to the criteria described
in Sec. 7.2.1 and Sec. 7.2.2, this binding of outputs to inputs can be understood as an attractor-
based memory: The ambiguity resolution scheme is memorized over time as long as the inputs
do not leave the domain of a solution branch or output perturbations force the dynamics to
select another solution branch. The memory is attractor-based because solution branches are
modeled by multi-stable attractor dynamics. The memory is short-term because association
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of inputs to solution branches is based on the network activity, not the network connectivity.
The latter refers to knowledge that is invariant to the current system state. See [160, 161] for
an analogous notion of short-term and long-term memory. A similar notion of attractor-based
short-term memory has been described in [150], [31] (p. 25) and [162] (p. 1219).

There are also transient-based short-term memories implemented by transient system states.
This is the typical case in transient-based computation with reservoir networks [144, 87].
Transient- and attractor-based short-term memories have different properties: While transients
are temporally elusive, i.e. appear only in a confined time span, attractor states are invari-
ant over time (as long as they are not perturbed too much). Sec. 7.5 compares the transient-
and attractor-based approaches to short-term memory in reservoir and AELM networks with
each other.

Multi-stable output feedback dynamics and output feedback stability

We finally discuss how multi-stable output feedback dynamics relate to the definition of output
feedback stability in Sec. 3.4.2. Due to the input-output specific formulation of output feedback
stability, the definition in Sec. 3.4.2 also covers the case of multi-stable output feedback dynamics
to some extent:

Consider a teacher-forced network state sequence h(x(k),y(k)) for k = −∞, . . . , 0, where
y(k) belongs to a particular solution branch Y1. Then, releasing outputs from teacher-forcing
yields an output feedback-driven state sequence h(x(k), ŷ(k)). The system is output feedback
stable if ||h(x(k),y(k))−h(x(k), ŷ(k))|| < ε for k = 1, . . . ,K and a small ε > 0. This is fulfilled
if the network was trained to have at least a single stable attractor of the output feedback
dynamics (conditions from Sec. 7.2.1 and Sec. 7.2.2 are fulfilled) that matches the solution
branch in the target sequence, i.e. ŷ(k) ∈ Y1, and x(k) does not leave the domain of solution
branch Y1.

However, the definition of output feedback stability has to be restricted for the case of
switching solutions in the target sequence y(k). It depends on many factors which solution is
selected by the output feedback-driven network (see discussion in Sec. 7.2). A match between
the ambiguity resolution in the target sequence y(k) and the estimated output sequence ŷ(k) can
generally not be expected for arbitrarily switch solutions of the target sequence y(k). Different
ambiguity resolution schemes imply large differences ||h(x(k),y(k)) − h(x(k), ŷ(k))|| > ε if
y(k) ∈ Y1 and y(k) /∈ Y1. Then, the network is not output feedback stable, although it might
fulfill the more general properties outlined in Sec. 7.2.1 and Sec. 7.2.2.

7.3 Forward and inverse kinematics of a planar arm revisited

The previous examples in Sec. 7.1 and Sec. 7.1.4 showed the principles of representing multiple
solutions in a network using output feedback connections and Algorithm 7.6. In this section, the
kinematics of the planar robot arm are revisited to evaluate the impact of Algorithm 7.6 and its
parameters systematically. Moreover, the desired properties of the output feedback dynamics
stated in Sec. 7.2 are shown to be implemented by the proposed method. In particular, it is
shown that output feedback dynamics allow smooth generalization along a solution branch, i.e.
the network is robust to perturbations of the input also in areas where no training samples
are presented.

7.3.1 Experiment setup

Although the planar robot arm has only two degrees of freedom and also two degrees of freedom
are controlled, i.e. the end effector position in the plane, the inverse kinematics have two distinct
solutions: a “lefty” elbow and a “righty” elbow solution (compare Fig. 7.6). Data is generated
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Fig. 7.6: Inverse kinematics with two solutions in overlapping rectangles: Lefty solution in the
left rectangle and righty solution in the right rectangle. In the overlapping region (dark gray),
both solutions are present in the training data.

with both solutions in overlapping rectangles (see Fig. 7.6) with

x ∈X1 = {(x1, x2)|x1 ≥ −1 ∧ x1 ≤ 0.5 and x2 ≥ 0.5 ∧ x2 ≤ 1.5} and

x ∈X2 = {(x1, x2)|x1 ≥ 0.5 ∧ x1 ≤ 1 and x2 ≥ 0.5 ∧ x2 ≤ 1.5}

on equally spaced grids with 15×10 vertices using the inverse kinematics described in Ap-
pendix A.4. The lefty solution is applied throughout X1, and the righty solution in X2.

Properties of trained networks are evaluated for 20 independent trials. The data is randomly
split into training and test set per trial with 75% of the data for training and 25% for testing.
Each trial is conducted with a freshly initialized network that comprises 100 hidden neurons
with tanh activation functions (3.5). The weights Winp and Wfdb are initialized uniformly in
[−0.75, 0.75] and [−0.5, 0.5], respectively. Biases b of the hidden neurons are initialized in [−1, 1].
In each trial, performance measures are evaluated depending on the parameters of Algorithm 7.6,
i.e. the network is retrained with different numbers of sequence steps K = 1, . . . , 5 and noise
scales l = 0.1, . . . , 0.5. Prior to read-out learning according to Algorithm 7.6, contributions
of the inputs and outputs to the hidden layer are balanced and regularized on the training
data (without synthesized sequences) using ginp = gfdb = 0.5 and βinp = βfdb = 0.01 in
(5.9) and (5.11), respectively. Read-out learning is conducted according to Algorithm 7.6 and
Algorithm 5.4, i.e. the network states and outputs are harvested for the synthesized sequences
and then the optimal regularization parameter αout is determined by a line search. Training
of the backward model proceeds analogously: The network is driven by the synthesized input
sequences and the network states are harvested. Then, the optimal regularization parameter
αrec is determined by a line search. Note that optimization of the read-out regularization
parameters αout and αrec is accomplished on the training set which is meaningful due to the
output feedback stability problem (see discussion in Sec. 5.3).

7.3.2 Role of parameters K and l in Algorithm 7.6

In the following, we evaluate the task-specific performance, number of steps required for con-
vergence and the robustness of solution branches depending on the parameters K and l in Al-
gorithm 7.6. The role of these parameters and their effect on the properties stated in Sec. 7.2.1
and Sec. 7.2.2 are discussed.

Robustness of the task-specific performance

First, the task specific errors are considered depending on parameters K and l in Algorithm 7.6.
Errors of the forward kinematics are calculated by (6.1) and (6.2).
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Fig. 7.7: Mean error in task space (meters) depending on l and K. Forward kinematics (left)
and inverse kinematics (right).

Fig. 7.7 shows test errors in meters for the forward (left) and inverse kinematics (right). Note
that the inverse model comprises two different solutions to the inverse kinematics, which is not
considered by this error measure. The actual solution selection mechanism and the robustness
of both solutions with respect to perturbations of the input is discussed in more detail later on.
For sequences with a single step (K = 1), errors for the forward and inverse model are rather
high. Similarly, rather small sequence lengths l < 0.3 yield to inferior performance. Single step
sequences imprint only fixed-point conditions into the output feedback dynamics and are not
sufficient to program the spatially extended attractor basins. However, choosing l ≥ 0.3 and
K ≥ 2 yields robust results. Sufficiently long and spatially extended sequences are necessary to
shape multi-stable output feedback dynamics.

Speed of output feedback convergence

Sequence length l and the number of steps per sequence K affect the speed of network con-
vergence in a coupled manner. Intuitively, increasing the sequence length l and keeping the
number of steps constant yields to an increased speed or step width. Note that this step width
directly shapes the output feedback dynamics according to Algorithm 7.6. Thus, one can ex-
pect increased speed of convergence in this case which depends on both sequence length and
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Fig. 7.8: Average number of iterations until the output feedback dynamics converge as function
of l and K. Forward kinematics (left) and inverse kinematics (right).
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number of steps. Fig. 7.8 illustrates this relation by showing the average number of iterations
until the network state converges depending on l and K. Note that in case of a single sequence
step (K = 1), increasing l does not have the expected effect because then only the fixed-point
condition is programmed, i.e. there is no sequence and hence the parameter l has no effect.
For K ≥ 2, the expected dependency of convergence speed and sequence length l can be ob-
served. Note that less iterations until convergence decrease the computational load for network
exploitation. The iteration speed smoothly varies for many pairs of l and K which shows a
robust behavior of Algorithm 7.6.

Robustness of solution branches

In the context of learning and resolving multiple solutions of a mapping, it is particularly
important to fulfill the robustness criterion stated in Sec. 7.2.1. The output feedback dynamics
shall not switch solutions arbitrarily for small changes of the input. A solution should be
switched only by forcing the network at the output to change the redundancy solution scheme
or by feeding the network with a sequence of inputs that leaves the domain of the current
solution branch.

Starting from a teacher-forced solution, e.g. y ∈ Y1, I query joint angles for all target
positions x randomly chosen from a grid in the respective input domain, e.g. x ∈ X1. The
estimated outputs ŷ(x) are then classified into lefty or righty solution based on the value of the
second joint angle ŷ2 (see Appendix A.4 for more details). More formally, let

idY1(ŷ(x)) =

{
1 if ŷ(x) ∈ Y1

0 else

be an indicator function that returns unity if the estimated output is element of the respective
solution branch Y1. I calculate the average of the correct solution branch over all input targets
xn with n = 1, . . . , N depending on the training parameters K and l by

Y1(l,K) =
1

N

N∑

n=1

idY1(ŷ(xn)) ∀ xn ∈ X1.

The results for all queried targets and both solution branches are combined in a single measure
that reflects the robustness of the trained solutions to perturbations of the input depending on
the parameters of Algorithm 7.6:

R(l,K) =
1

2
(Y1(l,K) + Y2(l,K)) (7.4)

where for Y1(l,K) the network was initially forced to the lefty and for Y2(l,K) to the righty
solution.

Fig. 7.9 (left) shows the results for the measure (7.4). For K = 1 or small sequence lengths
l, solutions are switched rather frequently. Only ten to twenty percent of the estimated out-
puts have the same redundancy resolution scheme as in the initial teacher-forced condition for
these parameter configurations. This confirms the observation of flipping solution branches in
Sec. 7.1.1: For training fixed-point conditions only (K = 1 or l = 0), training samples may be
fixed-points of the output feedback dynamics but their basin of attraction is rather small. Then,
driving the network with several inputs easily causes a switch of the solution branch. For K ≥ 2
and l ≥ 0.2, however, more than ninety percent of the queried targets stay within the initially
teacher-forced redundancy resolution scheme. In this range of parameters of Algorithm 7.6,
Fig. 7.9 (left) indicates a stable redundancy resolution scheme which allows to query outputs
smoothly along a solution branch.

The robustness of solution branches to perturbations of the input is shown spatially for
K = 3 and l = 0.4 in Fig. 7.9 (right). There is only very small variance of the upper solution
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Fig. 7.9: Robustness of solution branches against perturbations of the input as function of the
parameters l and K (left). Robustness of each solution branch shown spatially for K = 3 and
l = 0.4 (right), where results are averaged over the second task dimension −1

2 and all networks.

branch in Fig. 7.9 (right) which confirms that most of the trained networks stay in the solution
branch they were initially forced to. It is worth mentioning that solution branches are “holey“
and unbalanced in training data due to the random selection of training samples. The fact
that solution branches are nevertheless robustly represented in the networks shows that gen-
eralization along solution branches is possible also if parts of the manifolds are missing in the
training data.

7.3.3 Hysteresis of bi-stable output feedback dynamics

Finally, I show that the attractor-based solution selection can result in hysteresis effects during
network exploitation. Due to the only partially overlapping regions for each solution in task
space (compare Fig. 7.6), the hysteresis effect can be easily shown by feeding the network with
target trajectories that cross the border of the three areas in Fig. 7.6 from different directions.
The following results were obtained using one of the trained networks above with K = 3 and
l = 0.4. The network is fed with input trajectories x(k) and the outputs ŷ(k) are read out
immediately. That is, I do not let the output feedback dynamics converge.

Fig. 7.10 shows the hysteresis of the output feedback dynamics in joint (left) and task
space (right). Target movements from x = (−1, 1)T to x = (1, 1)T and backward result in
different redundancy resolution schemes for the same network input x: Starting with the lefty
solution from the left corner in Fig. 7.6, the network remains in the lefty solution until the
target position reaches the end of the rectangle X1 with the lefty training data at x1 = 0.5. For
x1 > 0.5, only the righty solution was trained and is dominant such that the dynamics switch
to the righty solution.

Going on with the reverse movement from right-to-left in Fig. 7.6, the network remains in
the righty solution until the target position reaches the left end of the rectangle with the lefty
training data only for x1 < −0.5. Note that the previous solution is kept slightly behind the
end of the respective rectangles (see Fig. 7.10 (left)) which shows that the network extrapolates
the current solution to a certain extent also into the area of the other solution. The hysteresis
of the output feedback dynamics in this particular configuration of input and output domains
illustrates also the memory of the system: The history of previous states is retained in the
attractor dynamics of the output feedback loop during the movement.
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Fig. 7.10: Hysteresis of output feedback dynamics in joint space (left) and task space (right).
Linear target movements from x(1) = (−1, 1)T to x(K) = (1, 1)T and backward result in differ-
ent redundancy resolution schemes for the same network input x. Left: Joint angle trajectories
(y1(k), y2(k)) are shown for both, forward direction (k = 1, . . . ,K, solid lines), and backward
direction (k = K, . . . , 1, dashed lines). Right: Black and gray lines are the respective end
effector trajectories of the forward and backward movement in task space.

7.4 Forward and inverse kinematics of the humanoid robot iCub

In this section, an AELM is trained to learn the forward and inverse kinematics of the right
arm of the humanoid robot iCub (shown in Fig. 7.11). I restrict the model to four degrees of
freedom of the upper arm and control the end effector position only. First, the data collection
and network training procedure is outlined. Then, I statistically evaluate the performance of the
trained networks on the forward and inverse kinematics, the combined application of task and
joint space constraints, and analyze the selection of solutions to the inverse kinematic mapping
depending on the initial condition.

7.4.1 Sampling of kinematic data

Data is generated by sampling the four-dimensional joint space according to an equally spaced
grid with seven steps per dimension yielding 2401 data points. I calculate the forward kinematics
for each sample and remove samples with self-collision joint configurations. I finally obtain
N=2202 samples, which are randomly split into training and test set per network initialization.
Hereby, I assure that samples with ambiguous solutions to the inverse kinematic mapping are
included in the training set for consistent evaluation.

To obtain normalized inputs for the network, I preprocess joint angles and task space co-
ordinates by linearly transforming them to the range [−1, 1]. Joint angles are transformed
according to the robot’s joint limits and task space coordinates according to their minimal and
maximal values.

7.4.2 Network initialization and training

The network is set up with three neurons x for the end effector position and four neurons y
which encode the shoulder and upper arm joint angles. I use networks with R= 300 neurons
with Fermi-activation functions (3.4) in the hidden layer. The input weights Winp and Wfdb are
initialized uniformly in [−2, 2] and [−1, 1], respectively. The biases b of the activation functions
are drawn uniformly from [−1, 1].

To balance contributions of task space and joint angle inputs to the hidden representation
and to reduce the potential gain of the output feedback loop, I recompute the weights Winp
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Fig. 7.11: The iCub robot [163]: Real robot (left) and robot simulation [164] (right).

and Wfdb with smaller values according to (5.9) and (5.11) on the training data. I set βinp =
βfdb = 0.1 and ginp = gfdb = 0.5 in (5.9) and (5.11) throughout the experiments.

Learning of the read-out weights Wout and Wrec is accomplished according to Algorithm 7.6
with regularization parameters αout = αrec = 10−3 and perturbations ν of length l= 0.6 and
K = 3. I train 100 networks in a cross-validation manner on randomly selected subsets of the
data comprising 75% of its samples.

7.4.3 Forward and inverse kinematics

I evaluate forward and inverse kinematics in task space according to (6.1) and (6.2), respectively,
and present errors in meters. To account for the different solutions to the inverse kinematics in
the data, the network is teacher-forced to the input-output pair from the data first, i.e. driving
the network to state h(x,y). Then, the output feedback loop is iterated until convergence.

Tab. 7.2 displays errors with standard deviations of the forward and inverse kinematic mod-
els averaged over 100 network initializations. Note that the training data covers a cube of
approximately 58×56×61cm in task space. Tab. 7.2 confirms previous results for learning one
solution only [98, 24] and underlines the generalization capabilities of the distributed represen-
tation in neural networks. Typically, the forward kinematics are approximated more accurately
than the inverse mapping which reflects the different difficulties of both mappings.

7.4.4 Dynamical selection of solutions to the inverse kinematics

I evaluate the dynamic solution selection mechanism of the trained networks for a bi-stable
attractor corresponding to an elbow up and elbow down configuration of the arm that is con-
tained in the training set. Network-produced solutions for both joint configurations are shown
in Fig. 7.12 (a) and (b). For a systematic evaluation of the dynamical solution selection mecha-
nism by the output feedback dynamics, I generate initial conditions y(α) on the connecting line
between both solutions y1 and y2 in joint space according to y(α) = y1 + α(y2 − y1). Then,
the networks run output feedback-driven until convergence where only the desired end effector
position x is kept constant at the inputs.

Tab. 7.2: Mean error of the forward
and inverse kinematic mapping in
meters averaged over 100 network ini-
tializations.

Fwd. Kin. FK [m] Inv. Kin. IK [m]

Train 0.0062± 2.38 · 10−4 0.0068± 3.37 · 10−4

Test 0.0067± 2.93 · 10−4 0.0072± 4.08 · 10−4
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Fig. 7.12: Elbow up and elbow down solutions to the inverse kinematics reproduced by a trained
network (frontal view (a) and lateral view (b)). Mixed task and joint space control ((c) – (e)).
Exemplary postures when constraining x1, x2 and y1 (c), x1, x2 and y2 (d), and x1, x3 as well
as y4 (e).

Fig. 7.13 shows the selection of solution y1 or y2 depending on α averaged over all trained
networks. Both solutions have a basin of attraction and are fixed-points of the network dy-
namics. The border of attractor basins is rather clearcut on average for α ≈ 0.5. The steep
slope in Fig. 7.13 confirms a statistically consistent behavior of the networks: The geometrically
closest solution in joint space is approached which indicates evenly spread basins of attraction
implemented by Algorithm 7.6.

7.4.5 Mixed task and joint space control

Finally, I demonstrate the combination of task and joint space constraints through associative
completion according to (3.11). The remaining, unconstrained components run in the output
feedback loop. I evaluate the mixed constraint satisfaction performance for three scenarios:
Fig. 7.12 (c) shows exemplary postures obtained for constraining x1, x2 and y1, which means
that the end effector should reside on the vertical line through (x1, x2) while y1 controls the
anteversion of the upper arm. In Fig. 7.12 (d) x1, x2 and y2 are constrained, i.e. the end
effector shall be positioned on the vertical line through (x1, x2) while y4 controls the abduction
of the elbow. Finally, in Fig. 7.12 (e) x1, x3 and y4 are constrained, i.e. the end effector shall
be positioned on the horizontal line through (x1, x3) while y4 controls the flexion of the elbow.

I evaluate the accuracy of the constraint satisfaction for all 100 networks systematically.
The rows in Fig. 7.14 display the error in task (left column) and joint space (right column) for
the three scenarios illustrated in Fig. 7.12 (c) – (e). Errors are evaluated with respect to the
constrained variables, i.e. Etaskx1x2 = ||(x1, x2)−FK( ˆIK(x1, x2, y1))x1,x2 || is the error in task space
evaluated for the constrained dimensions x1 and x2. The networks comply with the constraints
in the range of the overall accuracy of the trained models. Application of mixed task and joint
space constraints emphasizes the flexibility of the associative network.
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Fig. 7.13: Dynamical selection of a solution
depending on the initial condition param-
eterized by α (see text). Results averaged
over 100 networks.
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Fig. 7.14: Accuracy of the mixed constraint satisfaction in task (left column) and joint space
(right column) averaged over all network initializations. Constrained variables in rows: x1, x2

and y1; x1, x2 and y2; x1, x3 and y4.

7.5 Transient- and attractor-based short-term memory

Originally, reservoir networks were introduced for temporal pattern processing like time-series
transduction, classification and generation where the explicit focus resides on the transient-
based short-term memory implemented by the dynamical reservoir [144, 30]. Due to the Echo
State Property (see Sec. 3.2.3), which implies global stability of the reservoir, these transients
are rather restricted in their temporal length and thus is memory. Local stability of the output
feedback dynamics provides a more sustained and resistant type of short-term memory based on
attractor states. In this section, the concept of attractor-based short-term memory presented
in Sec. 7.2.3 is demonstrated in an inverse graphics example and compared to the traditional
transient-based short-term memory approach in Echo State Networks (ESNs).

7.5.1 Lissajous figures that virtually rotate

A sequence of Lissajous figures provides an illustrative example for resolution of ambiguity
based on the input history. Lissajous figures [165, 166] have been discovered by Nathaniel
Bowditch in 1815 who studied movements of coupled pendulums. The curves such a pendulum
draws are better known as Lissajous figures due to the French physicist Jules Antoine Lissajous
(1822–1880). The (simplified) parametric form of Lissajous figures is

x = acos(ϕt+ θ) (7.5)

y = bcos(ωt), (7.6)

where a and b are amplitudes, ϕ and ω frequencies and θ the phase of the respective oscillations.
I use ϕ = 2 and ω = 1 to obtain a figure eight-like pattern with a = b = 1. Drawing all points
produced by these equations in a plane for sampling over t, a single “image“ x as shown in
Fig. 7.15 is obtained. I project such Lissajous figures onto 13×13 pixel images, i.e. x ∈ R169.
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Fig. 7.15: Lissajous figures. The generating variable θ results in equal stimuli at k = 15 and
k = 40 (marked images). The ”inverse graphic” mapping that estimates θ from the images
above is therefore ambiguous.

Following the images along the lines in Fig. 7.15 provokes the impression of a rotation of
the Lissajous figure. Virtual rotation is induced by shifting the phase θ in (7.5) at successive
time steps k. I sample θ in small steps, i.e. x(k) = x(ϕ, ω(θ(k)), θ(k)) with θ(k) = 2π

50k and
k = 0, . . . , 49. The length of the input sequence x(k) is denoted by K. Note that there are
two identical images in the sequence at k = 15 and k = 40 (see marked images in Fig. 7.15).
This means that there is the same stimulus which is caused by different angles θ(15) = 100
and θ(40) = 280 degrees, i.e. the inverse model from Lissajous figures x to rotation angles θ is
ambiguous. All other images in the sequence can be uniquely mapped to the angular variable θ
which I explicitly enforce by introducing an additional oscillation in ω(θ) = ω+ 1

10(sin(4θ)+1).

7.5.2 Disentangling ambiguous rotation angles

The task is to estimate the rotation angle θ(k) from input images x(k), i.e. to learn the inverse
model of the data generation process given by (7.5)–(7.6). The ambiguity at k = 15 and k = 40
can be resolved by utilizing the temporal context: At previous and succeeding time steps, inputs
x(k) uniquely map to angular variables θ(k). Integration of the temporal context also uniquely
determines the correct angle at the time steps k = 15 and k = 40 with ambiguous stimuli.
This temporal context can be represented by transients in the network state trajectory or by
dynamical attractor selection depending on initial conditions, i.e. multi-stable output feedback
dynamics. Depending on the mechanism that implements the memory functionality, I expect
different performances of the models in particular when considering variations of the input
sequence. How is the memory influenced by temporal elongation and contraction of the input
sequence, i.e. increasing or decreasing the number of samples per period?

Before we start with this comparison, I present the memoryless baseline performance on this
task achieved with an Extreme Learning Machine. More details about the initialization and
training of the models can be found in Appendix A.3.4. Training a pure feed-forward model
yields pure approximation of the inverse problem. In particular for k = 15 and k = 40, the
trained ELM outputs the same rotation angle averaged over both target angles, i.e. θ(15) = 100
and θ(40) = 280 yields θ̂(15) = θ̂(40) = 190. Ambiguous samples therefore result in an error of
90 degrees (see Fig. 7.16 (a) and (d)). This is due to the same network state that is calculate
in a feed-forward manner from the same input (compare discussion in Sec. 7.1.1). Fig. 7.17
shows the pairwise differences ||h(i) − h(j)|| of the hidden representation for time steps i 6= j
and confirms that the network states h(15) and h(40) (and thus the input patterns x(15) and
x(40)) are identical (see black dot in upper triangle in Fig. 7.17 (a) and (d)).
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(f) AELM, test

Fig. 7.16: Target rotation angle θ(k) (gray lines) and estimated rotation angle θ̂(k) (black lines)
for the training sequence (top row) and test sequence with K = 100 (bottom row): Pure feed-
forward Extreme Learning Machine (left), Echo State Network with transient-based short-term
memory (middle), and Associative Extreme Learning Machine with attractor-based short-term
memory (right).

7.5.3 Transient- versus attractor-based memory

To resolve the ambiguity in the sequence of Lissajous figures, two different implementations of a
short-term memory are considered. The transient-based short-term memory is implemented by
a standard ESN without output feedback connections. The network is teacher-forced to wash
out initial transients using an entire period of the pattern before training or testing is applied.
The ESN operates using transient-based computation.

The attractor-based short-term memory is implemented by an AELM trained with Algo-
rithm 7.6 which exhibits no transient dynamics in the hidden layer since Wres = 0. However,
dynamics are introduced by the output feedback loop in the AELM. Learning shapes bi-stable
attractor dynamics of the output feedback loop for the ambiguous training samples. Initializa-
tion of the attractor-based memory is simply achieved by driving the network with an input
that uniquely maps to an rotation angle. This means that there is no supervised information re-
quired to initialize the memory. The AELM operates in an attractor-based computation mode,
i.e. the output feedback dynamics are iterated until convergence for each input sample x(k).

Both networks with transient- and attractor-based memory are capable of estimating the am-
biguous rotation angle from the input stimuli in the training sequence accurately (see Fig. 7.16
(b) and (c)). The pairwise distances of the network states on the training sequence are greater
than zero at time steps k = 15 and k = 40 (see Fig. 7.17 (b) and (c)). Therefore, the read-out
layer can disentangle the ambiguity and estimate the angle θ(k) correctly throughout the train-
ing sequence. Note, however, that there are distinct reasons for the different states of the ESN
and AELM in Fig. 7.17: In the Echo State Network, transient dynamics induced by recurrent
connections in the reservoir unfold over time and render states distinguishable at k = 15 and
k = 40. In the AELM, there is no recurrent reservoir, but output feedback of estimated rotation
angles at the previous time steps drive the output feedback dynamics into distinct attractors
which cause also different hidden states at k = 15 and k = 40. That is, ambiguous rotation
angles for the same input stimulus are disentangled by multi-stable attractor dynamics.

Both approaches to memory result in distinct behavior of the models in test scenarios: If the
speed of the rotation is varied, i.e. K in θ(k) = 2π

K k is increased, the transient-based memory
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Fig. 7.17: Pairwise distances ||h(i)− h(j)|| between the hidden states at time steps i and j on
the training sequence (top row) and test sequence (bottom row): Pure feed-forward Extreme
Learning Machine (left), Echo State Network with transient-based short-term memory (middle),
and Associative Extreme Learning Machine with attractor-based short-term memory (right).

implementation fails, as long as not a considerable amount of sequences with different K is used
for training (compare Fig. 7.16 (e)). The transients do not generalize to the slower changing
inputs and the hidden states become very similar for the ambiguous samples (see enlarged dark
area in the upper triangle in Fig. 7.17 (e)). The attractor-based short-term memory, in contrast,
retains the ambiguity resolution scheme also over several iteration steps and can therefore resolve
the ambiguity robustly on the test sequence (compare Fig. 7.16 (f)). This is also reflected in
the large distances between network states in Fig. 7.17 (f).

I evaluate the generalization performance of the networks systematically for a range of se-
quence lengths K ∈ {10, 20, 30, . . . , 100, 150, 200, 300, 400, 500}. I calculate the mean deviation
from the target angle in degrees for each sequence by

E =
1

K

K∑

k=1

||θ(k)− θ̂(k)||,

where θ̂(k) is the estimated rotation angle decoded from the coordinate representation in the
two output neurons (see Appendix A.3.4 for details).

The generalization performance averaged over 200 independent network initializations is
displayed in Fig. 7.18 (left). Echo State Networks and Associative ELMs achieve similar esti-
mation errors on the training set. But for temporally prolonged or shortened image sequences,
the Echo State Networks rapidly drop in performance. In the limit of fast input sequences,
Echo State Networks perform even worse than the pure feed-forward network (compare dashed
lines in Fig. 7.18). The attractor-based short-term memory implemented in the AELM, in con-
trast, achieves a rather stable performance irrespective of the sequence length (see solid lines in
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Fig. 7.18: Generalization performance of networks in degree for several sequence lengths (sam-
ples per period K). Direction of rotation same as in the training set (left) and reverse rotation
(right). Training sequence indicated by vertical line (left).

Fig. 7.18). This confirms the observations in [31] that multi-stable output feedback dynamics
implement an attractor-based short-term memory that maintains information over longer time
spans than pure transient-based short-term memories.

In addition, the attractor-based memory is not sensitive to the order of inputs. That is,
the output feedback dynamics can be driven into one of the two attractors, which represent the
ambiguous rotation angle, from both forward and reverse rotation directions. The generalization
errors for reverse presentation of the input sequences are shown in Fig. 7.18 (right). The
transients of the Echo State Network are sensitive to the temporal order of the inputs and thus
can only resolve ambiguity in the direction of the training data (see large errors in Fig. 7.18
(right)). The AELM generalizes to reverse presentation of inputs (see Fig. 7.18 (right)) which
emphasizes the flexibility of the attractor-based short-term memory.

7.6 Concluding remarks

In this chapter, I showed the capability of output feedback dynamics to disentangle ambiguous
outputs dynamically. The associative setup resolves the non-convexity problem of learning
multi-valued mappings. Solution branches are represented by multi-stable output feedback
dynamics where the points of attraction are additionally parameterized by the network input.
For robust imprinting of multi-stable dynamics, I introduced an algorithm based on the State
Prediction approach presented in Chapter 4. Solution branches are dynamically selected by the
network dynamics depending on the current network state. I demonstrated that the associative
network model enables the combined satisfaction of constraints in both, the input and output
space. Several properties that a dynamical approach to ambiguity resolution shall fulfill were
identified. The presented scenarios emphasize the potential of trainable dynamical systems
to represent multiple solutions of ambiguous mappings. In particular, there is no supervised
information about the number of solution branches necessary: Uni-, multi- and continuous
attractor dynamics are covered within a single framework.



Chapter 8

Movement generation with output
feedback dynamics

In Echo State Networks, the standard approach for movement generation is to program cyclic
attractors into the output feedback dynamics [34, 86, 167]. This autonomous pattern generation
is equivalent to recursive time series prediction (see Sec. 3.3.3). The network dynamics can also
be parametrized by additional inputs, e.g. to switch between different gaits [119] or antennae
movements for a simulated stick insect in [120], which is conceptually similar to the recurrent
neural network with parametric bias (RNNPB, [28, 121, 168, 169]). It has recently been shown
that even initially unstable output feedback dynamics can be trained for autonomous pattern
generation using the FORCE learning [101] or an unsupervised, reward-modulated Hebbian
learning rule [102]. All these approaches target non-stable network configurations, where the
output nodes display a trained and desired non-stationary behavior in closed loop operation.
In contrast to this work, I make use of transient dynamics for movement generation while the
overall network state approaches a fixed-point attractor. Attractor-based movement generation
with reservoir networks has been introduced by the author in [67, 24, 55].

8.1 Forward and inverse models for movement generation

Dexterous and flexible movement generation is a prerequisite for sophisticated and intelligent
robots. Learning a representation of movement primitives that enables generalization and adap-
tation has been proposed as key concept to cope with new situations [13, 170]. Several compu-
tational models that integrate movement primitives as building blocks for movement generation
have been proposed, in part relating to findings on the motor system of higher vertebrates.
One of the most influential ones has been proposed in [13] assuming that forward and inverse
models are needed and provide the building blocks for more complex behavior. The models
themselves were realized as feed-forward neural networks in [13] and assumed to be trained by
error correction. The general idea has been picked up also in the computational HAMMER
model [171], which comprises feed-forward and feedback modules in a control architecture.

A particularly interesting approach for movement generation based on dynamical systems
has been proposed under the notion of Dynamic Movement Primitives (DMPs) [170, 172].
Attractor-based dynamical systems are an appealing approach to movement generation, because
they intrinsically generalize to new situations, are robust against perturbations, and can be
trained to produce a desired behavior [170, 173, 174, 172]. Basically, the DMP approach focuses
on movement representation by means of movement primitives in task or joint space that can
be combined and modulated to generate new movements. Representing movements in task
space makes task-oriented adaptation simple. However, it is not straight forward to translate
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movements represented in task space to joint angle trajectories for execution as this requires
to solve the highly non-linear and typically redundant inverse kinematics of the robot [175]. A
task-based representation lacks the ability to exploit redundancies of a manipulator for task-
specific movement optimization. Representation of movements in joint space circumvents this
difficulty, but planning and generalization is hardly solvable in a task-related manner without
projecting trajectories into task space. Combinations of attractor-based movement generation
following the vector integration to endpoint model (VITE, [176]) with Jacobian-based analytic
inverse kinematic solvers have been proposed [177, 178], but there is also no deeper connection
between solving the inverse kinematics and movement generation.

A recent probabilistic approach for joint optimization of movements in task and posture
space was introduced by Toussaint [179]. Planning on a trajectory level is however computation-
ally demanding, requires updates in case of unforeseen perturbations and natural movements are
rather achieved by tuning the contribution of constraints than by providing a computational
model which exhibits these properties generically. Although the approach in [179] considers
task and joint space simultaneously, it does not learn this transformation and assumes that
the inverse kinematic problem is solved independently. The SURE Reach model is capable of
integrating mixed constraints in task and joint space by using a hierarchy of representations
[180]. In this approach, connections between representation layers are plastic and trained by
Hebbian learning. However, the SURE Reach model suffers from the curse of dimensionality
and requires demanding computations between layers.

8.1.1 Neural Dynamic Movement Primitives (NDMP)

When DMPs were introduced, it was already pointed out by Ijspeert that recurrent neural
networks may provide an alternative implementation for DMPs but “the complexity of train-
ing these networks to obtain stable attractor landscapes, however, has prevented a widespread
application so far” [181]. In my opinion, this account is still correct with respect to standard
recurrent networks [32]. However, it can be revised in view of the efficiently trainable reservoir
networks, in particular the echo state approach, which restricts learning to adaptation of output
weights by linear methods. I use a particular flavor of reservoir networks, which combine reser-
voir computing with ideas from associative learning to implement Neural Dynamic Movement
Primitives (NDMPs).

NDMPs couple task and joint space by means of a paired forward and inverse model in an
associative reservoir network (see Fig. 8.1, [24, 55] and Sec. 3.2 in this thesis). The associative
nature of the neural model allows for learning of forward and inverse kinematics in parallel and
in a single network. The mapping is bidirectional: The network takes task coordinates as input
and joint space coordinates as output or vice versa. These two mappings functionally implement
a pair of internal forward and inverse model as described in [13, 182]. The NDMP framework
further integrates afferent motor copies for sensory prediction of the input and feedback con-
trol. The presented approach avoids explicit model selection during learning and execution,
which is typically the main difficulty in architectures of expert modules as proposed in [13].
The selection of a particular inverse model is accomplished dynamically by the attractor-based
short-term memory mechanism implemented in the network. While the kinematic mapping be-
tween end effector coordinates and joint angles is static in nature, I show that representing this
relation within a recurrent neural network enables movement generation. The basic idea is to
exploit the network’s transient dynamics when approaching an attractor state for smooth and
robust movement generation. I start by training the dynamic network with trajectories, e.g.
demonstrated by a teacher, or by sampling joint angle configurations and their corresponding
end effector position, in order to learn the kinematic mapping. This training makes no explicit
reference to the form of the trajectory, which consequently is not stored directly in the network.
However, the representation of kinematics in a dynamical system provides a generic movement
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Fig. 8.1: The Associative Reservoir Computing architecture connects task and joint space vari-
ables bidirectionally. Thereby the inverse and forward kinematic models can be be queried
continuously for generalization.

primitive that is robust to perturbations and exploits ambiguities of the inverse kinematics for
flexible movement generation.

Similar to the DMP approach, generalization in NDMPs is achieved by modification of the
targeted attractor and using the transient behavior of the network to generate a respective
movement. A conceptually similar approach using non-linear spring-damper systems is also
proposed to model data of human straight point-to-point reaching movements in the VITE
system [176]. Even in a simple version, VITE models kinematic properties of human reach-
ing movements such as bell-shaped velocity profiles. A recent extension in [183] shows that
by addition of a non-linear goal-dependent term, which acts as an additional force field, more
complex self-touching human movements can be modeled. The strength of the VITE models is
their ability to explain the characteristic properties of human movements which is not possible
in the DMP framework. However, the VITE models lack a mechanism to learn more complex
movements. I demonstrate that the trajectories generated with the NDMP framework have
to some degree the kinematic features of human movements despite being learned and lacking
explicit control of their geometrical shape. In this respect, NDMP has features of both the
DMP and VITE-like approaches. NDMPs differs from those approaches in that DMPs are
trained to reproduce movement shape and velocities from sample trajectories in a single space,
whereas NDMPs learn static coordinate transformations, i.e. the kinematics, only. The VITE
model lacks a mechanism to learn particular movement shapes but models properties of human
movements like velocity profiles in task space. NDMPs learn the static kinematic mapping and
generate movements with properties of human reaching movements generically. Even though
NDMPs are not explicitly trained to reach a target, I show that the generation of straight
reaching movement in task space is possible without explicit trajectory training or planning.
Contrary to target adaptation in the DMP framework, the presented approach generates addi-
tionally the appropriate trajectories in joint space. Flexible movement generation exploiting the
manipulator’s redundant degrees of freedom without explicit trajectory planning is the main
benefit of a coupled representation of task and joint space within a dynamical system.

NDMPs implemented by associative reservoir networks have a strong connection to biolog-
ical networks: Yamazaki and Tanaka point out strong similarities of the reservoir computing
approach to the cerebellum [184], and Mass et al. model cortical microcolumns with reservoir
networks [185]. I do not aim at precise modeling of brain structures, but the principle structure
and functional similarities remain. The cerebellum is involved in motor learning, and it was
shown that the cerebellum enables smooth and accurate movements of humans even without
feedback (see [186] for a review). I apply the reservoir model in a similar manner to motor
learning in robotics and is has been shown that whole body motions can be learned in similar
reservoir models with impressive precision [98, 152, 153]. In contrast to [98], where the reservoir
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is driven by a smooth target trajectory in task space, I show that movements can be generated
by providing a target position only while the network dynamics solve the trajectory formation
problem automatically.

8.1.2 Attractor-based movement generation

In this section, attractor-based movement generation with associative reservoir networks is
introduced. We start with a notational convention to facilitate the further discussion. In the
outset of associative methods, there is no dedicated input or output: With respect to the network
architecture and the learning algorithm, task space variables x and joint space variables y are
functionally equivalent (compare Fig. 8.1). For kinematics learning, it is nevertheless convenient
to name task space coordinates x as input and joint angles y as output, because generally it
is required to drive the robot towards targets (inputs) in task space coordinates. With respect
to this convention, the inverse kinematic (IK) mapping y = IK(x) is from left to right in
Fig. 8.1 (input-to-output) and the forward kinematic (FK) mapping x = FK(y) from right to
left (output-to-input).

I exploit the attractor-based representation of the kinematics in the reservoir network for
reaching movement generation. Assume that the network has settled to an attractor state
associated with an arbitrary position, i.e. h(x,y). Assume furthermore that a new target x∗

is selected by a random (or ultimately higher-level) process, e.g. for grasping. To query the
corresponding joint angles y, the network input x is clamped to the new target position x∗.
Due to the reservoir and output feedback dynamics, the network needs some iterations until
the new attractor state is reached. The idea is to generate end effector movements of the robot
by retracing these network transients during convergence to the attractor state. Note that
movement generation has not explicitly been trained and all properties of the trajectories are
generic to the dynamic network model.

I use a quasi-continuous variant of the network dynamics that slow down the network’s
convergence to the target attractor state in order to generate smooth trajectories at the output
neurons for movement generation. The network update equations (3.3)–(3.7) change to

h(k+1) = σ((1−∆t)a(k) + ∆ta(k+1)) (8.1)

y(k+1) = (1−∆t)y(k) + ∆tWouth(k) (8.2)

x(k+1) = (1−∆t)x(k) + ∆tWrecx(k) (8.3)

where ∆t parameterizes the network step width per iteration. Parametrization of movement
speed by ∆t during network exploitation raises the question whether a change of ∆t corrupts
the input-output relation learned by the network.

It is straightforward to show that this quasi-continuous variant of the network dynamics
does not affect the fixed-point conditions. We obtain from the quasi-continuous version of the
network dynamics using the compact notation from (3.8) with

ã(k+1) = (1−∆t)ã(k) + ∆tWnetz(k)

that the dependency on ∆t vanishes for the fixed-point conditions ã(k+1) = ã(k):

ã(k+1) = (1−∆t)ã(k) + ∆tWnetz(k)

= (1−∆t)ã(k+1) + ∆tWnetz(k)

= ã(k+1)−∆tã(k+1) + ∆tWnetz(k−1)

⇔ ã(k+1)− ã(k+1) = −∆tã(k+1) + ∆tWnetz(k)

⇔ ∆tã(k+1) = ∆tWnetz(k) = 0

⇔ ã(k+1) = Wnetz(k)
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Fig. 8.2: Exemplary movements to different targets in a two-dimensional task space, i.e. x =
(x, y): Target x∗ = (0, 0) (left) and x∗ = (1

4 ,
1
4) (right).

where ã(k) = (x(k)T ,a(k)T ,y(k)T )T is the combined activity vector before application of the
non-linearity. Though this argument applies strictly only if the system is already in a fixed-point,
the empiric results in this section show that the network also approaches the same attractor
states independent of the chosen 0 < ∆t ≤ 1.

Fig. 8.2 illustrates the movement generation capabilities of the the attractor-based network.
When the network dynamics (3.2), (8.1)–(8.3) are iterated with a fixed target position x∗ at the
input, straight reaching trajectories as shown in Fig. 8.2 are generated. Note that the movement
speed depends on the relative distance between current position and the target (compare step
widths between dots in Fig. 8.2 (left) and (right)) which is a general feature of the presented
movement generation scheme and is quantitatively investigated in Sec. 8.2.4.

8.1.3 Feedforward-feedback control framework

I integrate the attractor-based movement generation into a control scheme for autonomous
reaching and introduce a convergence criterion that measures if the network has settled to an
attractor state based on feedback of actual sensory values. Fig. 8.3 illustrates the concept of the
proposed approach. A target position x∗ is clamped to the network input and estimated joint
angles ŷ(k) are read out. The estimated joint angles ŷ(k) serve as targets for the robot hardware
controller. Upon execution, sensory feedback y about the true robot’s joint positions is acquired
and fed back to the network. Based on this proprioceptive feedback of joint angles, the network
computes an internal sensory prediction x̂(k) of the task space position utilizing the learned

target
position

error  t

_
current 
position

set
joint angles

feedback
joint angles

x

yx

y

*

Fig. 8.3: The associative reservoir network integrated in a feedforward-feedback controller for
reaching movement generation. Target positions x∗ and current joint angles y are fed into the
network. Estimated joint angles ŷ and end effector position x̂ are read out. Parameterizing the
network dynamics by ∆t allows to control the speed of the movements.
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Algorithm 8.7 Generation of reaching movements

Require: get target position x∗

Require: set ∆e=∞, δtarget=10−6 and k=0
1: while ∆e > δtarget do
2: inject target x∗ into network
3: execute network iteration (3.2), (8.1)–(8.3)
4: compute error change ∆e = |e(k)− e(k−1)|,

where e(k) = ‖x∗ − x̂(k)‖
5: execute (non-blocking) movement to joint angles ŷ(k)
6: feedback actual joint angles into network (optional)
7: k=k+1
8: end while

forward model. The notion of feedforward-feedback control is due to the fact that the network
can estimate control variables directly from the command variables in a feed-forward manner. In
combination with the slowed down network dynamics and integration of proprioceptive signals
from the control variables, the control scheme is also iterative and incorporates feedback.

In order to detect whether the target is reached, I calculate the task space error e(k) =
||x∗−x̂(k)|| based on the learned forward model. The absolute error change ∆e(k)= |e(k)−e(k−1)|
serves as stopping criterion: If the error change ∆e(k) becomes smaller than a constant δtarget,
the controller assumes that the target is reached. Though explicit stopping of the network
iteration is generally not necessary, this mechanism can provide feedback of the overall reaching
progress to higher level processes and defines a clear segmentation of generated reaching move-
ments. The control framework for reaching movement generation is condensed in Algorithm 8.7.

8.2 Online learning of kinematics for movement generation

In this section, I outline how NDMP networks are trained online from trajectory data in order
to generate reaching movements with the humanoid robot iCub (see Fig. 8.4 (left)).

8.2.1 Network Setup and Training

All experiments in this section are conducted using a reservoir network with 200 hidden neurons.
The network is set up with three inputs corresponding to the end effector position of iCub’s right
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Fig. 8.4: The iCub robot [163] (left). Training data for the right arm of iCub in task space with
network response (right).
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arm in task space, and seven output neurons encoding the respective joint angles. The weight
matrices Winp,Wres and Wfdb, which excite the reservoir, are sparse and randomly initialized.
I initialize only 40% randomly chosen entries of Winp and Wfdb with values according to uniform
distributions in [−0.4, 0.4] and [−0.1, 0.1], respectively. 20% of the entries in Wres are initialized
in range [−0.05, 0.05]. Read-out weights Wout and Wrec are fully connected and set to zero
initially. The reservoir comprises parameterized Fermi-neurons (3.4) that I train by intrinsic
plasticity (IP, see Sec. 3.2.5). IP provides a parameter to adjust the desired mean activity
level µ of the reservoir neurons. I set µ= 0.2, corresponding to a sparse network activity, and
use the learning rate ηIP =0.00002. Supervised learning of Wout and Wrec is conducted online
according to (3.17) with ∆t=1 and learning rate η=0.01. In the training phase, network inputs
x(k) and outputs y(k) are teacher forced: Input and output neurons are clamped to the target
values before iterating the network dynamics. Initial transients are washed out prior to learning
by a teacher-forced convergence phase with the first data sample (x(1),y(1)). Note that ∆t=1
is used during learning because then the network can follow the input sequence more rapidly
and thus training programs the static kinematic mappings into the attractor states even though
it is driven by a time-series (see [83] and compare discussion on transient and attractor-based
computation in Sec. 3.2.4).

A spiral-like motion is used as training pattern in this scenario. In task space, end effector
positions are defined by

x1(k) = −0.08 (0.5 sin(ω̄ k) + 0.5) (8.4)

x2(k) = 0.08 cos(6 ω̄ k) (8.5)

x3(k) = 0.08 sin(6 ω̄ k). (8.6)

This motion is constrained to a cylinder of 8cm in length and with a diameter of 16cm (see
Fig. 8.4 (right)). The Cartesian end effector coordinates (x1, x2, x3) are presented in meters and
have their point of origin at the end effector position of iCub’s right arm in the home position.
To excite the network with values in a reasonable range, the network gets task space inputs
in decimeters and joint angles in radians. I set ω̄ = 2π/400 and record two pattern periods
(K = 800 samples) as training data (x(k),y(k)) using a Jacobian-based inverse kinematics
solver: I compute for each task space input (x1(k), x2(k), x3(k)) the seven corresponding joint
angles (y1(k), . . . , y7(k)) of iCub’s right arm using a variable gain controller in combination with
a steepest descent method1. Basically, the joint angle velocities q̇ are calculated according to

q̇ = −J+(x∗ − x), (8.7)

where J+ is the pseudo-inverse of the Jacobian J of the forward kinematics. x∗ and x are the
desired and actual end effector position. Equation (8.7) is iterated until convergence to obtain
the final pair of end effector position x(k) and corresponding joint angles y(k) = q̄.

I train the network for 1000 epochs on the two periods of the training pattern shown in
Fig. 8.5 (left) with the corresponding end effector positions defined by (8.4), (8.5) and (8.6).
Note that I apply online learning from the training sequence without permutation of examples
such that learning has to cope with temporally correlated training data.

Fig. 8.5 (left) shows the joint angle trajectories obtained by iterating (8.7) for each target
of two pattern periods (periodicity shown by vertical line in Fig. 8.5). The controller does not
use constraints to resolve the redundancy which results in a drifting joint angle controlling the
rotation of the forearm (bold line in Fig. 8.5 (left)). This method yields ambiguous data for
the learner, i.e. same inputs are mapped to different outputs. Due to the output feedback, the

1The implementation is part of the iCub software repository. The particular module was written by
Ugo Pattacini and first released in June 2008. See http://eris.liralab.it/iCub/main/dox/html/group_

_iKinInv.html and http://eris.liralab.it/iCub/main/dox/html/classiCub_1_1iKin_1_1VarKpSteepCtrl.

html for more details.

http://eris.liralab.it/iCub/main/dox/html/group__iKinInv.html
http://eris.liralab.it/iCub/main/dox/html/group__iKinInv.html
http://eris.liralab.it/iCub/main/dox/html/classiCub_1_1iKin_1_1VarKpSteepCtrl.html
http://eris.liralab.it/iCub/main/dox/html/classiCub_1_1iKin_1_1VarKpSteepCtrl.html
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Fig. 8.5: Joint angle trajectories corresponding to the pattern shown in Fig. 8.4 (right): ana-
lytic inverse kinematic controller (left) and network outputs (right). Note that online learning
resolves the drift present in the training data by adopting the samples of the second period to
a stable solution.

reservoir network copes with ambiguous training data (compare discussion in Chapter 7). Al-
though online learning does not form bi-stable output feedback dynamics due to its regularizing
nature (compare discussion in Sec. 5.3), the network approximates the solution present in the
second period of the training data very well. That is, the network does not form a compromise
(average) between both solutions. I found a consistent behavior over several network initializa-
tion that the networks decide for the solution of the second period in the data. This seems to
be due to the combination of online learning and sequential data presentation.

8.2.2 Movement generation

Movement generation proceeds by applying reaching targets in task space to the input of the
network. Exemplary movements are shown in Fig. 8.6 (a)–(b) which have been generated by the
control framework presented in Sec. 8.1.3 using ∆t=0.1 and δtarget=10−9 (movement direction
from left to right). Target positions are always reached up to small residual errors due to the
approximation of the kinematic model. Fig. 8.6 (a)–(b) also confirm that the stopping criterion
based on the estimated error in task space performs as demanded. Remarkable is the smooth
trajectory generation in areas where no training data was presented to the network. Fig. 8.6
(c)–(d) shows a similar reaching movement on the real robot iCub.

In the following, I systematically investigate the properties of the proposed approach. For
association, I measure the generalization performance of the static inverse kinematics. For
movement generation, I investigate dynamic properties of the generated trajectories. I address
the following key questions: How well does the network generalize to untrained target positions?
What is the typical velocity profile of a generated movement? What is the impact of different
values of ∆t on the convergence behavior, and is the network robust to perturbations?

8.2.3 Static properties

I first test the generalization performance to unlearned targets systematically in simulation. I
calculate the positioning error for the iCub arm movements in task space by

E(x1, x2, x3) = ||(x1, x2, x3)− FK( ˆIK(x1, x2, x3)))||,

where FK denotes the known analytic forward kinematics and ˆIK the learned inverse kinematics.
I compute errors in task space since errors in joint space can be misleading: the network could
find a different solution of the redundant kinematics than the analytic model in order to approach
the same target position.

The iCub arm kinematics are trained on the spiral data shown in Fig. 8.4 (right), where
the positions corresponding to the estimated outputs of the network for the training set are
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Fig. 8.6: Generalized reaching movements on iCub. The network state contracts from 50 exem-
plary start positions to a target attractor (a). 50 exemplary reaching movements to different
targets (b). Network generated reaching movement performed on the real iCub: frontal view
(c), lateral view (d).

also shown. To test the network’s generalization of the inverse kinematic mapping, I query
network outputs for targets sampled from a three dimensional and equally spaced grid with
50x50x50 vertices that spans a cuboid of 20x20x10cm in task space. The error histogram and
cumulative distribution for all 125.000 targets in the cuboid are shown in Fig. 8.7 (left). 75%
of the 125.000 target positions are reached with an residual error less than 1cm. The maximal
error is below 5cm.

In order to visualize the error distribution spatially in Fig. 8.7 (right), I project errors in the
cuboid onto the frontal plane by marginalization with respect to the x1 axis. The error surface
is smooth, which means that similar errors can be expected for nearby targets. Additionally,
the network displays a graceful degradation of performance away from the training data. The
reservoir network generalizes well in the cuboid and achieves a mean reaching precision of
0.8cm, although the training samples cover only a small subset of the three dimensional volume
(compare Fig. 8.4 (right)).

8.2.4 Gain control

In terms of control theory, the jump of the target at the network input when a new movement is
initiated is equivalent to a step of the command variable. Fig. 8.8 (a) shows the responses of the
network to a step of the target position from x2 = 0.0 to x2 = 0.08 for ∆t ranging from 0.02 to
1.0 with step width 0.02. The step response gets continuously steeper with increasing ∆t which
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Fig. 8.7: Generalization errors of the learned inverse kinematics. Error histogram and cumula-
tive distribution in the cuboid (left). Reaching errors in the cuboid projected onto the frontal
plane (right).

shows that ∆t enables a smooth parametrization of the controller’s gain. Note that for this
evaluation it is crucial that the attractor states are not modified by ∆t, which was shown for
the fixed-points in Sec. 8.1.2. The empiric results in Fig. 8.8 (a) show that the network actually
approaches the same attractor state independent of the chosen 0 < ∆t ≤ 1: The same end
effector position in response to the step at the input is finally reached in Fig. 8.8 (a) irrespective
of the applied ∆t.

I also compute the speed profile produced by the controller when a reaching movement is
performed. I record network responses during reaching movements, i.e. estimated joint angles
and resulting end effector trajectories, and calculate the corresponding velocities. Fig. 8.8
(b) shows the speed profiles for different values of ∆t averaged over fifty reaching movements
similar to those shown in Fig. 8.6. The velocities first reach a peak and then decay exponentially.
This is a generic feature of the first order dynamics (8.1)–(8.2) that govern the neural model.
The typical decay behavior shows that NDMPs are robust to strong jumps of the command
variable. Decreasing ∆t leads to a damped peak of the velocities at the onset of the movements
(see Fig. 8.8 (b)).

Interestingly, a linear dependency between the distance of a target and the peak velocity
can be observed which is very similar to data of monkey arm movements [187]. Fig. 8.8 (c)
illustrates this relation for different values of ∆t: The more distant a target is, the higher is
the maximal velocity of the reaching movement. The linear regression lines fitted to the data
for each ∆t show a highly significant correlation. Note that this is a generic property of the
network dynamics and not the result of any optimization criterion. Steeper slopes and offsets
of the regression lines in Fig. 8.8 (c) also reflect the increased gain of the controller when ∆t
is increased.

Conceptually, ∆t remains a hyper-parameter of NDMPs and is therefore depicted as external
input to the reservoir network in Fig. 8.3. Parametrization of the reservoir dynamics by a
temporal scaling factor has previously been performed to speed up or slow down the autonomous
generation of an oscillatory “figure eight” pattern [118]. Because of error amplification, this
can easily cause instability and a significant deviation of the output feedback dynamics from
the target pattern. In contrast, NDMPs utilize fixed-point attractor dynamics to new targets
for movement generation that are robust for a wide range of values of ∆t and, in practice,
variation of ∆t only speeds up or slows down convergence. Consequently, ∆t can be used to
robustly regulate the sensitivity of the system ranging from slow movements (∆t� 1) up to
high sensitivity with fast response times (∆t≈1) without affecting the basic functionality.
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Fig. 8.8: Dynamic properties of generated reaching movements for different gains ∆t (a)–(c).
Step response of the network (a). Averaged speed profiles of reaching movements with standard
deviations (b). Linear correlation between target distance and peak velocity (c). Feedback of
joint angles allows to continue with a smooth movement after perturbation of reaching move-
ments (d).

8.2.5 Robustness to perturbation

To illustrate the robustness against perturbations of attractor-based movement generation with
NDMPs, I disturb the system during reaching. A random deviation of up to five degrees per
joint is applied for 50 iteration steps to simulate a strong hit on the arm. Fig. 8.8 (d) shows
the effect of the perturbations for ten exemplary reaching movements (movement direction from
left to right): The robot arm deviates strongly from the original position. Then, the neural
controller picks up the reaching trajectory again when the external force is released. In this
scenario, feedback of the actual joint angles into the network (see Fig. 8.3) is essential for the
reaching process to respond to perturbations. Otherwise, Algorithm 8.7 would terminate if the
network has converged to the attractor state even though the target position was not reached.
Closing the loop enables to estimate the current end effector position and to evaluate the error
change ∆e(k) such that Algorithm 8.7 can iterate the network further until convergence. Due
to the attractor-based computation of the network, perturbations do not harm convergence
because the attractors can be approached from arbitrary directions (compare Fig. 8.6 (left)).



126 Movement generation with output feedback dynamics

8.3 Movement generation with multiple inverse solutions

In the previous section, forward and inverse kinematics have been trained online for movement
generation in the NDMP framework. Thereby, only a single solution was learned by the net-
work from trajectory data. In this section, movement generation by the NDMP framework is
demonstrated also for the case of multiple solutions and offline training of forward and inverse
kinematics from temporally non-contiguous data. We continue with the trained Associative
Extreme Learning Machines from Sec. 7.4.

8.3.1 Movement generation with multi-stable NDMPs

I demonstrate the movement generation capabilities of NDMP when multiple solutions of the
inverse kinematics have been stored in the network. The networks are trained as described
in Sec. 7.4 and already represent multiple solutions to the inverse kinematics by multi-stable
output feedback dynamics (see Fig. 7.12 (a)). The networks in Sec. 7.4 were trained on the first
four joint angles of iCub’s right arm. Note that the AELM utilizes an asynchronous update of
the network (compare (3.20) in Sec. 3.3.4). AELMs can nevertheless be utilized in the NDMP
framework analogously to the online trained network with synchronous update equations above.
In contrast to [24] and the NDMP model discussed in the previous section, I use a decreased
network speed ∆t = 0.05 only for the hidden layer and ŷ (see (8.1) and (8.2)) whereas the
estimated end effector position x̂ is not low-pass filtered. In doing so, I obtain an instantaneous
estimation x̂(k) of the current end effector position (equation (3.7) remains unchanged).

Exemplary reaching movements with estimated end effector positions are shown in Fig. 8.9
(left). The trajectories are smooth and straight. The end effector position is accurately esti-
mated during reaching (compare black and gray lines in Fig. 8.9 (left)).

Additionally, I show movement generation utilizing different redundancy resolution schemes.
I generate movements starting from an elbow up and down solution like shown in Fig. 7.12 (a)
and (b). Fig. 8.9 shows the generated movements in task (middle) and joint space (right)
and confirms that two distinct solutions to the inverse kinematics are applied throughout the
movement (compare black and gray lines for each joint angle in Fig. 8.9 (right)). That is, the
output feedback dynamics memorize the current redundancy resolution scheme (see discussion
on attractor-based short-term memory in Sec. 7.2.3). Feedback of actual joint angles into the
network directly acts as constraint in joint space and can cause the network dynamics to switch
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Fig. 8.9: Movement generation. Generated movements in black with estimated end effector
positions in gray (left). Movement generation in task (middle) and joint space (right) utilizing
two different solutions of the inverse kinematics (black and gray line). Perturbation of the
robot arm can result in switching the redundancy resolution scheme (light gray line). Start of
perturbation is indicated by the dashed horizontal line (right).
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the redundancy resolution scheme.
To illustrate the switching of solutions by external perturbations, I generate a movement

starting from the elbow up solution and then apply a perturbation in direction of the elbow
down solution. The network switches smoothly to the elbow down solution (see light gray
lines in Fig. 8.9 (middle) and Fig. 8.9 (right)). This output feedback-driven transition of the
redundancy resolution scheme is formally described in Sec. 7.2.2.

In NDMP, movements are solely parameterized by the desired target position in task space
and the speed parameter ∆t. Attractor-based movement generation in combination with flexible
redundancy resolution, which is responsive to external perturbations, is the main conceptual
strength of the NDMP model.

8.3.2 Properties of the controller

In this section, I show that the trajectories generated by the AELM network display properties
of human reaching movements. I therefore calculate the velocity profile of each movement.
Fig. 8.10 (left) and (middle) show the raw and normalized speed profiles with movement onset
at t = 0, where I normalized the velocity profiles according to [188] in order to account for
different target distances and maximal speeds.

The profiles in Fig. 8.10 show an asymmetric, bell-shaped form with a more steep acceler-
ation phase and a slightly prolonged deceleration. This is qualitatively similar to the results
reported in [188, 176] for human reaching movements. Note, however, that there are also sym-
metrically velocity profiles reported in the literature [189, 187]. Symmetric velocity profiles
are typically observed for tasks with low spatio-temporal accuracy constraints, whereas asym-
metrical velocity profiles are observed for movements with spatial accuracy constraints (see
[188] for a more detailed discussion). Adaptive control of the network step width ∆t during
reaching could in principal be implemented in the future to interpolate between symmetric and
asymmetric velocity profiles. However, the proposed NDMP model generically exhibits speed
profiles that are structurally similar to those observed for human reaching movements with
spatial accuracy constraints.

Another strong similarity to human reaching movements can be observed with respect to
the relation between target distance and peak velocity. Fig. 8.10 (right) displays this rela-
tion for 100 reaching movements and confirms the results in Sec. 8.2.4 also for offline trained
NDMPs with multi-stable output feedback dynamics. The linear correlation between target
distance and peak velocity of the generated movements is highly significant (Spearman rank
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Fig. 8.10: Speed profiles with movement onset at t = 0: Raw profiles (left) and normalized
profiles (middle). Linear relation between target distance and peak velocity (right).
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correlation test with significance level 0.01). This relation is also known to rule human and
monkey reaching movements [188, 187], and is closely related to Fitts’ law [190] which predicts
movement duration from target distance and size. The attractor-based movement generation
with generic properties of human motion in combination with flexible incorporation of feedback
and redundancy resolution are key features of NDMPs.

8.4 Concluding remarks

I conclude that NDMPs based on the associative reservoir computing paradigm provide a flex-
ible model for movement generation with dynamical systems. Attractor-based computation in
a feedforward-feedback controller is utilized for smooth movement generation where the speed
of motion is controlled by a single parameter. The associative network underlying the NDMPs
solves the inverse kinematics and provides an estimate of the current end effector position based
on proprioceptive feedback of joint angles. NDMPs can exploit the redundancy of the actuator
by utilizing multi-stable output feedback dynamics. The attractor-based short-term memory
implemented by the output feedback dynamics thereby resolves redundancies consistently dur-
ing movement generation. Proprioceptive feedback may result in switching between solution
branches, i.e. switching the basin of attraction. Perturbations therefore “write” a particular
redundancy resolution scheme to the memory: The output feedback dynamics respond to the
external forces in a compliant fashion by adopting their dynamical regime. Finally, the NDMP
framework generates rather straight movements which share properties of human reaching move-
ments. An more detailed evaluation of this relation is subject to future research. NDMPs are
dynamical primitives for robust movement generation based on coupled forward and inverse
kinematic models.



Chapter 9

Conclusion

In this thesis, I proposed a dynamical system approach to bidirectional association based on
the concept of output feedback in reservoir networks. Reservoir networks comprise a hidden
representation based on non-linear random projections and thereby render learning efficient.
Association in these networks is input-driven which resolves the restriction of traditional asso-
ciative memories to piecewise constant functions and enables the learning of and generalization
to smooth forward and inverse mappings.

Success of learning in these reservoir networks with output feedback crucially depends on
the ability to robustly shape the output feedback loop. Even though the general network
configuration with output feedback has been proposed in previous work, the problem of error
amplification in trained output feedback dynamics has not been tackled sufficiently. I formalized
the problem of error amplification in these networks under the notion of output feedback stabil-
ity. I addressed the issue of output feedback stability by a rigorous regularization concept of the
read-out learning and the reservoir. Regularization of the reservoir is accomplished efficiently
and in one shot based on the novel state prediction learning scheme. I showed that this two-
fold regularization of the read-out layer and the reservoir indeed enables robust offline training
of networks with output feedback. Moreover, the proposed state prediction approach applies
more generally to input-driven recurrent neural networks and enables the efficient shaping of
dynamics by solving a linear regression problem.

In the context of bidirectional association, it is essential to balance contributions of inputs
and outputs to the hidden representation in order to assure that the model can be exploited in
an forward and backward modus. This is particularly important in cases with very different in-
put and output dimensionalities. I addressed this issue by integrating the constraint of balanced
contributions into the reservoir regularization process. Then both, the regularization of the hid-
den representation and the balancing of contributions to this representation, are accomplished
in one shot utilizing the efficient state prediction method.

In a next step, I demonstrated the modeling power of output feedback dynamics by imprint-
ing multiple solution branches into the network. I showed that output feedback in principle
copes with multiple outputs for the same input but suffers from narrow basins of attraction
which typically results in poor generalization along a solution branch. Stabilization of solution
branches is achieved by explicitly shaping attractor dynamics of the output feedback loop. The
learning of ambiguous inverse problems is demonstrated on a series of experiments which show
that single, multiple or even infinitely many solutions to a problem can be represented by output
feedback dynamics. In particular, the number of solutions can change over the input domain
of the ambiguous model which is achieved by the learning in an unsupervised manner, i.e. the
number of solution branches must not be known in advance. Moreover, multi-stable output
feedback dynamics implement an attractor-based short-term memory functionality which is in
some respects superior to the traditional transient-based short-term memory approach in reser-
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voir networks. The efficient and robust modeling of ambiguous mappings by output feedback
dynamics is a key contribution of this thesis and demonstrates the capabilities of dynamical
systems in comparison to pure feed-forward models.

I integrated the presented methodology into a control framework for movement generation
under the notion of neural dynamic movement primitives. The coupled representation of forward
and inverse kinematics in the associative network is thereby exploited as feedforward-feedback
controller. Besides solving the coordinate transformation problem, the dynamical system setup
provides a generic primitive for human-like reaching movement generation which is respon-
sive to perturbations. Multi-stable output feedback dynamics, moreover, add flexibility to the
movement generation process by exploiting manipulator redundancies.

The NDMP framework is a first step towards integration of the proposed methodology into
a larger system context. One of the the main future challenges is to build larger architectures of
the rather compact model presented in this thesis. For example, the extension of the presented
method to shallow, localized modules can be considered to cover larger areas of a robot’s
workspace. In such systems, the robustness of the basic modules is a necessary prerequisite.
The methods and formalizations presented in this thesis provide a promising starting point for
this purpose. But also the refinement of aspects already mentioned in this thesis imply future
research directions. In particular, the parametrization of contributions from input modalities to
the hidden representation in order to flexibly weight their influence by means of a parameterized
constraint satisfaction mechanism, and the refinement of the algorithm to imprint multi-stable
output feedback dynamics for improved capturing of specific properties of solution branches are
particularly interesting. In the context of movement generation, a next step is the incorporation
of trajectory information to shape the specific convergence behavior to solution branches such
that additional characteristics of demonstrated movements can be integrated into the neural
dynamic movement primitives.

It is widely accepted that dynamical systems provide a decent methodology for computation
but practical issues, in particular the combination of adaptability and stability, impeded their
application to a great extent. The presented examples show that it is feasible to model complex
relationships with dynamical systems if the problems of stability and learning are tackled. This
thesis provides a coherent framework to address these issues in a connectionist model and the
results are promising for future applications of adaptive dynamical systems to problems that
can no be solved in a pure feed-forward manner.
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Appendix

A.1 Solving the dual problem

Insertion of (4.11) into (4.8) yields the dual form of the primary optimization problem L(Wnet, λ):

Ldual(λ) = R(Wnet
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Optimization requires partial derivation of Ldual(λ) with respect to all λm(l) for m= 1, . . . R
and l=1, . . . ,K. We have

∂

∂λm(l)
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In the following, I calculate the partial derivatives for the regularizer R(Wnet
can) and constraints

C(Wnet
can, λ) separately.

The partial derivative of the regularizer R(Wnet
can, λ) is
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For partial derivation of C(Wnet
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We concentrate on the last term:
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Inserting the partial derivatives (A.2) and (A.3), where (A.4) is the partial derivative of the last
term in (A.3), into (A.1) yields the solution
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A.2 Reservoir regularization for initially Gaussian distributed
weights

In this section, results for the same inverse kinematics learning example as described in Sec. 5.5
are presented where initially Gaussian distributed network weights are used. That is, the
weights Winp, Wres and Wfdb are initialized according to a Gaussian distribution with standard
deviation 0.5. Then, the spectral radius of Wres is scaled to 0.9.

Fig. A.1 (left) shows the results for the output feedback stability-related measure (5.6).
Increasing the read-out regularization parameter α stabilizes the output feedback dynamics.
Reservoir regularization mitigates this parameter dependence: For stronger reservoir regular-
ization by increasing β, the error (5.6) is much smaller for a wide range of read-out regularization
parameters α. Fig. A.1 (right) confirms that reservoir regularization reduces the weight norm
with increasing regularization parameter β also in case of initially Gaussian distributed weights.
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Fig. A.1: Deviation Estate of the output feedback-driven state sequence from the teacher-forced
state sequence for the training scenario as function of the read-out regularization parameter α
(left). Matrix norm of weights Winp, Wres and Wfdb as function of the reservoir regularization
parameter β (right). Subscripts indicate whether the networks where regularized (reg) before
read-out training, or not (ini).

A.3 Network initialization and learning parameters

In this section, details of the initialization and training procedures omitted in the main text are
given. The weight matrices are densely initialized if not stated otherwise.

A.3.1 A tiny example

An AELM (see Sec. 3.3.4) with R = 50 Fermi-neurons (3.4) is initialized using ainp = afdb = 1
and ρinp = ρfdb = 1. Learning proceeds offline according to Sec. 3.2.4. The regularization
parameters are set to αout = αrec = 10−3 and βinp = βfdb = 0.1, where I use the activity
distribution method described in Sec. 5.6.2 with ginp = gfdb = 0.5.

A.3.2 Introductory example to resolving ambiguity with output feedback

The data is produced by normalizing a parabola with 50 noisy samples per branch. Networks
have R = 100 hidden neurons with hyperbolic tangent activation functions (3.5) and different
connectivity patterns: First, an Extreme Learning Machine is considered with input weights
Winp initialized uniformly in [−1, 1]. Then, an Associative Extreme Learning Machine is applied
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which comprises additional output feedback weights Wfdb that are also initialized uniformly in
[−1, 1]. The biases b and slopes s of the activation functions are initialized uniformly in [−1, 1].

Reservoir regularization with balancing of contributions according to Sec. 5.6.2 is applied
to all networks with the following parameters depending on the network configuration: (a) In
the ELM, only inputs excite the hidden layer. I nevertheless use the reservoir regularization
technique according to (5.9) using ginp = 1 and βinp = 0.01. (b) In the AELM, inputs and
outputs excite the hidden layer. I use ginp = gfdb = 0.5 as well as βinp = βfdb = 0.01 in
(5.9) and (5.11) in order to balance their contribution to the hidden state. Read-out learning
is conducted in all models using αout = 10−3 in (3.14). The explicit imprinting of multiple
solutions by Algorithm 7.6 is conducted with K = 3 and l = 0.1, where αout = 10−3 is used
in (7.2).

A.3.3 Multi-stable and continuous attractor dynamics

An AELM (see Sec. 3.3.4) with R = 300 hidden Fermi-neurons (3.4), no input (consider x(k) ≡
0) and two output neurons is used. The feedback weights Wfdb as well as the biases b are
initialized uniformly in [−1, 1].

Training of multi-stable output feedback dynamics proceeds offline according to Algorithm 7.6
with K = 10, l = 0.1 and read-out regularization parameter αout = 10−4. Note that in this
example the reservoir regularization technique is not applied due to the few training samples.
The output feedback dynamics are nevertheless (locally) stable because of the rather many se-
quence steps (K = 10 in Algorithm 7.6) which explicitly enforce the output feedback dynamics
to have attractor states.

A.3.4 Inverse graphics: Disentangling Lissajous figure rotations

All networks considered in this section, i.e. Extreme Learning Machines, Echo State Networks
and Associative Extreme Learning Machines, comprise a hidden layer with R = 200 neurons
and hyperbolic tangent activation functions (3.5). The input images have 13×13 pixels which
are concatenated row-wise into vectors x(k) ∈ R169. Outputs encode the virtual rotation angle
θ of the Lissajous figures using a coordinate representation, i.e. y(k) = (sin(θ), cos(θ))T ∈ R2,
to prevent discontinuities or diverging output values for the angular variable.

The network weights are initialized in the same intervals for all network models. However,
each model may comprise only some of the weights: (a) The input weights Winp are initialized
uniformly in [− 1

169 ,
1

169 ] (ELM, ESN, AELM). (b) The Echo State Networks have in addition
recurrent reservoir connections Wres which are initialized in [−1, 1] and then scaled such that a
spectral radius of λmax(Wres) = 0.95 is achieved. (c) The AELM has, in addition to the input
weights Winp, output feedback connections Wfdb which are initialized uniformly in [−2, 2].
Biases are set to zero (b = 0) and slopes to unity (s = 1) for all models.

Read-out training is preceded by reservoir regularization using balancing of contributions
according to Sec. 5.6.2. Different weightings of the contributions from input modalities to the
hidden layer are applied depending on the network model: In the ELM, only inputs contribute
to the hidden layer and I thus set ginp = 1. In the ESN, the reservoir receives inflow from
the input neurons and from the reservoir layer itself. I set ginp = gres = 0.5 which expresses
an equal contribution from inputs and recent reservoir states to the hidden representation. In
the AELM, inputs and outputs excite the hidden representation and I set ginp = gfdb = 0.5.
The regularization of the weights according to (5.9)–(5.11) is conducted with βinp = βres =
βfdb = 10−3.

Read-out training is conducted offline according to (3.14) using αout = 0.01 for the ELM
and ESN. The AELM is trained according to Algorithm 7.6 using K = 3 and l = 0.3. The
regularization parameter αout of the read-out learning is also set to 0.01 for the AELM.
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A.4 Kinematics of a planar robot arm with two degrees of free-
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Fig. A.2: Planar robot arm with
two degrees of freedom.

In this section, the forward and inverse kinematics of a
planar robot arm with two degrees of freedom are described
in detail. The setup of the arm annotated with the variables
used in the following is shown in Fig. A.2. The length of the
first link l1 = 1m and length of the second link l2 = 1m are
constant throughout this thesis. The joint angles q1 and q2

are specified in radians and the end effector position (x1, x2)
in meters (red dot in Fig. A.2).

A.4.1 Forward kinematics

The forward kinematics FK : (q1, q2) 7→ (x1, x2) map joint
angles to Cartesian end effector coordinates as follows

x1 = l1cos(q1) + l2cos(q1 + q2)

x2 = l1sin(q1) + l2sin(q1 + q2).

A.4.2 Inverse kinematics:

The inverse kinematics IK : (x1, x2) 7→ (q1, q2) map desired end effector positions to joint
angles. Although the number of controlled variables equals the number of degrees of freedom,
the inverse kinematics of the planar arm are ambiguous: There exist two solutions per position
which can be described as a lefty or righty elbow configuration according to the angle of the
second joint. If q2 ≥ 0, then the elbow is right of the end effector, i.e. the arm is in a righty
configuration (this case is shown in Fig. A.2). If q2 < 0, the elbow is left of the end effector in
a lefty configuration. A flag s ∈ {0, 1} determines which solution is applied, i.e. s = 0 is the
lefty and s = 1 the righty configuration.

The inverse solution is calculated according to

q1 = arctan2(x2, x1)− arctan2(k2, k1)

q2 = arctan2(a2, a1),

where

a1 =
‖x‖2 − l21 − l22

2l1l2

a2 =

{ √
1− a2

1 if s = 1

−
√

1− a2
1 else

and

k1 = l1 + l2a1

k2 = l2a2.

The modified inverse tangent function arctan2(y, x) uses the sign of the inputs x and y to
determine the specific quadrant in contrast to using arctan(y/x).
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