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Abstract

Results of psychological experiments have shown that humans make assumptions, which
are not necessarily valid, that they are influenced by their background knowledge and
that they reason non-monotonically. These observations show that classical logic does
not seem to be adequate for modeling human reasoning. Instead of assuming that hu-
mans do not reason logically at all, we take the view that humans do not reason classical
logically. Our goal is to model episodes of human reasoning and for this purpose we
investigate the so-called Weak Completion Semantics. The Weak Completion Semantics
is a Logic Programming approach and considers the least model of the weak completion
of logic programs under the three-valued  Lukasiewicz logic.

As the Weak Completion Semantics is relatively new and has not yet been extensively
investigated, we first motivate why this approach is interesting for modeling human reas-
oning. After that, we show the formal correspondence to the already established Stable
Model Semantics and Well-founded Semantics. Next, we present an extension with an
additional context operator, that allows us to express negation as failure. Finally, we
propose a contextual abductive reasoning approach, in which the context of observations
is relevant. Some properties do not hold anymore under this extension.

Besides discussing the well-known psychological experiments Byrne’s suppression task
and Wason’s selection task, we investigate an experiment in spatial reasoning, an ex-
periment in syllogistic reasoning and an experiment that examines the belief-bias effect.
We show that the results of these experiments can be adequately modeled under the
Weak Completion Semantics. A result which stands out here, is the outcome of model-
ing the syllogistic reasoning experiment, as we have a higher prediction match with the
participants’ answers than any of twelve current cognitive theories.

We present an abstract evaluation system for conditionals and discuss well-known ex-
amples from the literature. We show that in this system, conditionals can be evaluated
in various ways and we put up the hypothesis that humans use a particular evaluation
strategy, namely that they prefer abduction to revision. We also discuss how relevance
plays a role in the evaluation process of conditionals. For this purpose we propose a se-
mantic definition of relevance and justify why this is preferable to a exclusively syntactic
definition. Finally, we show that our system is more general than another system, which
has recently been presented in the literature.

Altogether, this thesis shows one possible path on bridging the gap between Cognitive
Science and Computational Logic. We investigated findings from psychological exper-
iments and modeled their results within one formal approach, the Weak Completion
Semantics. Furthermore, we proposed a general evaluation system for conditionals, for
which we suggest a specific evaluation strategy. Yet, the outcome cannot be seen as the
ultimate solution but delivers a starting point for new open questions in both areas.
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1. Introduction

In the last century classical logic has played an important role as a normative system for
psychologists investigating human reasoning. Psychological research, however, showed
that humans systematically deviate from the classical logically correct answers, and
therefore classical logic does not seem to be appropriate to model human reasoning.
Until now there are no widely accepted theories that express formal representations of
human reasoning.

As the area of human reasoning is versatile and complex, we will only deal with one of its
aspects, namely the question how can we adequately model episodes of human reasoning
with respect to conditionals. Our goal is to develop a methodology that allows us to
formalize episodes of human reasoning with respect to conditionals. Before we can form-
alize reasoning that models human behavior we need to understand how humans draw
certain conclusions given some specific information. Conventional formal approaches
such as classical logic are not appropriate for this purpose because they deal with the
elementary aspects that humans face when reasoning, such as incomplete, inconsistent
or updated information in a way completely different from human behavior.

Let us consider a famous psychological study from the literature, Byrne’s suppression
task [Byrne, 1989]. This experiment shows that people with no prior exposure to
formal logic suppress previously drawn conclusions when additional information becomes
available. Interestingly, in some instances the previously drawn conclusions were valid
whereas in other instances the next drawn conclusions were invalid with respect to clas-
sical logic. Consider the following example: ‘If she has an essay to finish, then she will
study late in the library ’ and ‘she has an essay to finish.’ Most participants (96%) con-
clude: ‘she will study late in the library.’ If participants, however, receive an additional
conditional: ‘if the library stays open, she will study late in the library ’ then only 38%
of them conclude: ‘she will study late in the library.’ This shows that, although the
conclusion is still correct with respect to classical logic, the conclusion is suppressed by
an additional conditional. This is an excellent example of the human capability to draw
non-monotonic inferences. The participants received the following three conditionals:

Simple If she has an essay to finish, then she will study late in the library.

Alternative If she has a textbook to read, then she will study late in the library.

Additional If the library stays open, then she will study late in the library.

The participants were divided into three groups: the first group received the simple
conditional; the second group received the simple and the alternative conditional, and

11



1. Introduction

Fact Simple Alt. Add.

I She has an essay to finish (E) L (96%) L (96%) L (38%)

She does not have an essay to finish (E) L (46%) L (4%) L (63%)

II She will study late in the library (L) E (53%) E (16%) E (55%)

She will not study late in the library (L) E (69%) E (69%) E (44%)

Table 1.1.: The results of Byrne’s suppression task.

the third group received the simple and the additional conditional. The task was split
into two parts. The first part was as follows: The participants got either the fact ‘she has
an essay to finish’ (E) or the negation of it, ‘she does not have an essay to finish’ (E).
In the second part part the participants got either the fact ‘she will go to the library ’
(L) or the negation of it, ‘she will not study late in the library ’ (L). Based on the given
information, they had to draw conclusions. Table 1.1 presents the experimental findings
of Byrne for each case, with percentages in brackets. Similar results are shown among
others by Dieussaert, Schaeken, Schroyens, and D’Ydewalle [2000].

Psychological results which confirm that humans do not reason according to classical
logic could be used as an evidence against the suitability of logic in general for modeling
human reasoning. Do humans reason logically in the first place? We are convinced that
they do so and instead claim that it is the classical logic which is not adequate. Hu-
mans might have in mind a particular representation of conditionals and might reason
with a logic that is different than the classical one. Some alternatives to classical logic
have already been proposed in the area of Computational Logic such as non-monotonic
logics, commonsense reasoning or many-valued logics. Furthermore, in the field of Arti-
ficial Neural Networks human reasoning processes are attempted to be understood and
simulated. These approaches are more expressive than classical logic. Unfortunately,
most of them are purely theoretical and have never been applied to real case studies. In-
stead, artificial examples are constructed, which only show that the theory works within
that very specific context. But what is the value of a theory for human reasoning that
has never been tested on how humans actually reason?

In Artificial Intelligence, one commonly used requirement is that if computational models
are biologically plausible then they should also exhibit behavior similar to that of the
biological brain [Herrmann and Ohl, 2009]. In Cognitive Science it is common to evaluate
theories by performing reasoning experiments on subjects. For instance, Knauff [1999]
and Renz, Rauh, and Knauff [2000] investigate which kind of information humans use
when representing and remembering spatial arrangements in Allen’s interval calculus.

In the last century, scientists from various fields, for instance in social sciences, have
investigated human behavior and reasoning in general. These fields have a great expertise
in the area of human reasoning. However, their theories are usually formulated in natural
language and are not formalized. Yet in the area of Computer Science the knowledge
about human reasoning is not existing or very limited. Only a few have actually made the
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1.1. Intuitive and Reflective Minds

effort to investigate the literature from Cognitive Science or Psychology to understand
the cognitive theories presented there. An exchange would be a great opportunity for
both areas: On the one hand, investigating the current psychological results can help
computer scientists to understand what human reasoning is about and why it is too
complex for being evaluated by a few toy examples, as has been done in the past. On
the other hand, the formal approaches of Computer Science and the flexible techniques
of Artificial Intelligence can offer the required tools to formalize the elaborated cognitive
theories. These formalizations would possibly facilitate communication and theories
could be formally compared to one another.

In order to cope with the goal of this thesis, to develop a methodology that allows us to
formalize episodes of human reasoning with respect to conditionals, we need to investig-
ate the findings in both areas, in Cognitive Science and in Computational Logic. We try
to bridge the gap between these areas by understanding and formalizing psychological
results on the one hand and by evaluating the differences and the suitability of formal
techniques on the other hand.

1.1. Intuitive and Reflective Minds

Kowalski [2011] argues that the relationship between logic and thinking lies in that logic
deals with formalizing the laws of thoughts. Logic is mainly concerned with normative
theories, that is, how people ought to think. In Cognitive Psychology on the other hand,
the focus lies on descriptive theories, that is, how people actually think. Their thoughts
are not subject to any judgment, but the central questions are about how they think and
why they come to certain conclusions. According to Kowalski, Computational Logic is
a dual process theory which combines both theories.

Evans [2012] explains and discusses extensively the conflict between logic and belief in
human reasoning. He says that rationality is instrumental, in the sense that we act in
a certain way to achieve our goals. In his book, he distinguishes between the old and
the new mind rationality, or the intuitive and the reflective mind, respectively. The be-
haviour of the intuitive mind is instrumentally conditioned to reward and punishment.
Its rationality is primarily that of the genes and it does not adapt to the given circum-
stances. Additionally, it is entirely driven by individual past experience and therefore
it is unsuitable for reflection. This makes the intuitive mind vulnerable when the envir-
onment changes. On the other side, the reflective mind is primarily directed by goals
motivated by us as individuals. It is driven by curiosity and it is deliberate. This allows
us to think flexibly and solve problems in new and unforeseen settings, which also gives
us the ability to react against unacceptable circumstances. As the intuitive mind, it
is also instrumental, however it differs with respect to the goals which are pursued and
with respect to the mental resources that are necessary. The reflective mind’s motivation
is influenced by complex emotions, where the goals are directed towards the future, and
which can imagine possibilities, make suppositions and simulate future events. This is
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1. Introduction

done by having explicit knowledge, working memory, meta-representation, the ability
to engage in novel thinking and reasoning. Evans calls this dual view on the human
mind the two minds hypothesis. It is supported by experiments that have shown the
belief-bias effect [Evans, 2012]: The belief-bias effect is the conflict between the reflective
and intuitive minds when reasoning about problems involves real-world beliefs. It is the
tendency to accept or reject arguments based on own beliefs or prior knowledge rather
than on the reasoning process. The belief-bias effect has been detected in a number of
psychological experiments about deductive reasoning. These experiments demonstrated
possibly conflicting processes at the logical and psychological level. Chapter 8 investig-
ates a psychological experiment about the belief-bias effect.

The distinction between normative and descriptive theories by Kowalski [2011] and
Evan’s two minds hypothesis seems to have some similarity. Normative theories cor-
respond roughly to reflective thinking and descriptive theories correspond roughly to
intuitive thinking.1

1.2. Cognitive Adequacy

Just modeling is not satisfying: Strube [1992] argues that knowledge engineering should
also aim at being cognitively adequate. Accordingly, when evaluating computational ap-
proaches which try to explain human reasoning we insist on assessing their cognitive
adequacy. Strube distinguishes between weak and strong cognitive adequacy : Weak cog-
nitive adequacy requires the system to be ergonomic and user-friendly, whereas strong
cognitive adequacy involves an exact model of human knowledge and reasoning mech-
anisms that follows the relevant human cognitive processes.

The concept of adequacy has originally been defined in a linguistic context to compare
and explain language theories and their properties, for which there are two different
measures: conceptual adequacy and inferential adequacy . Conceptual adequacy reflects
on how far the language represents the content correctly. Inferential adequacy is about
the procedural part when the language is applied to the content [Strube, 1996].

Knauff, Rauh, and Schlieder [1995] and Knauff, Rauh, and Renz [1997] define cognit-
ive adequacy in the setting of qualitative spatial reasoning, where they make a similar
distinction: The authors distinguish between conceptual cognitive adequacy and infer-
ential cognitive adequacy. The degree of conceptual adequacy reflects to what extent
a system corresponds to human conceptual knowledge. Inferential adequacy focuses on
the procedural part and indicates whether the reasoning process of a system is struc-
tured similarly to the way humans reason. This is analogous to the proposal made
by Stenning and van Lambalgen [2005, 2008] to model human reasoning by a two step

1Lúıs Moniz Pereira states yet another view, namely that reactive thinking may be the result of mere
intuition, or else the result of a prior compilation of reflective thinking that avoids repeating (reflectively)
thinking about it. (personal communication, February 10, 2016)
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1.3. A Novel Cognitive Theory

approach: First, human reasoning should be modeled by setting up an appropriate rep-
resentation (conceptual adequacy) and, second, the reasoning process should be modeled
with respect to this representation (inferential adequacy).

McCarthy [1977] foresaw epistemological issues of artificial intelligence and illustrates
this with the paradox of AI-systems which solve simple problems slower than difficult
ones. Accordingly, Bibel [1991] states that a method is adequate if ‘for any given know-
ledge base, the model solves simpler problems faster than more difficult ones’. Shastri
and Ajjanagadde [1993] present SHRUTI, a connectionist model that efficiently encodes
a large amount of facts and rules while performing fast on it by efficiently implement-
ing inferences. Their main motivation is an attempt to resolve the paradox McCarthy
stated, namely, the gap between the ability of humans to “draw a variety of inferences
effortlessly, spontaneously, and with remarkable efficiency” on the one hand and the “res-
ults about the complexity of reasoning reported by researchers in artificial intelligence”
on the other hand [Shastri and Ajjanagadde, 1993]. They say that the intuitive mind
has to deal with a huge amount of data from the facts and rules point of view. Hence,
they state that the complexity of an algorithm that simulates this reasoning process
should be in the best case optimal or independent from the amount of data someone
has to deal with. Similar to the distinction in Cognitive Science, Shastri and Ajjand-
agadde implicitly differentiate between conceptual and inferential adequacy. Their rules
and facts are encoded in first-order logic. First, they discuss the representation of facts
in the program. They consider static and dynamic bindings and short- and long-term
facts. After that, they consider the approach of how to dynamically encode rules and
propagate dynamic bindings.

By taking Bibel’s [1991] approach as a starting point, Beringer and Hölldobler [1993]
show that Shastri and Ajjandagadde’s approach is not more than reasoning by reduc-
tions. They conclude that if it is really the case that the effortlessly and spontaneously
reasoning processes of humans can be expressed as Shastri and Ajjandagadde have done
it, then these problems are just reasoning by reductions and do not present an AI paradox
at all, but are much simpler than the AI community thought. Hölldobler and Thielscher
[1994] state that adequacy implies massive parallelism and Herrmann and Reine [1996]
discuss adequate learning in neural networks.

1.3. A Novel Cognitive Theory

Let us consider again the suppression task. It is straightforward to see that classical
logic cannot model this task adequately. At least some kind of non-monotonicity is
needed. As appropriate representation to model the suppression task, Stenning and van
Lambalgen [2005, 2008] propose logic programs under completion semantics based on
the three-valued logic used by Fitting [1985], which itself is based on the three-valued
logic of Kleene [1952]. Unfortunately, some technical claims made by Stenning and
van Lambalgen are wrong. Hölldobler and Kencana Ramli [2009a,b] have shown that
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1. Introduction

the three-valued logic proposed by Stenning and van Lambalgen is inadequate for the
suppression task, but that the suppression task can be adequately modeled if the three-
valued logic of  Lukasiewicz [1920] is used instead. The computational logic approach
in [Hölldobler and Kencana Ramli, 2009b, Dietz, Hölldobler, and Ragni, 2012a] models
the suppression task by means of logic programs under the so-called Weak Completion
Semantics, a three-valued variation of Clark’s completion. They show that the conclu-
sions drawn with respect to least models correspond to the findings by Byrne [1989] and
conclude that the derived logic programs under the three-valued  Lukasiewicz semantics
are inferentially cognitively adequate for the suppression task.2 We will discuss this
formalization of Byrne’s suppression task in Chapter 5.1. Motivated by these findings,
we decide to take the Weak Completion Semantics as starting point and as underlying
approach for the investigations in this thesis.

1.4. Contributions

The thesis attempts to further link Cognitive Science and Computational Logic. We
point to related work in both fields and give a comprehensive overview of the state-of-
the-art research. The goal of this thesis, to develop a methodology that allows us to
formalize episodes of human reasoning with respect to conditionals, has been carried out
as follows: We investigated conditionals in human reasoning and attempted to formalize
the results within a Logic Programming approach, the Weak Completion Semantics.

Background and Correspondence to other (three-valued) Semantics

• Background

We provide the first introduction to a novel cognitive theory, the Weak Completion
Semantics and an implementation thereof in Prolog. Additionally, we investigate
how two-valued abduction can be extended to three-valued abduction and show
their correspondence. Moreover, we give a new characterization of integrity con-
straints under the Weak Completion Semantics.

• Correspondence to other Semantics [Dietz, Hölldobler, and Wernhard, 2014]

– We consider several well-established approaches in Logic Programming such
as the Well-founded Semantics and the Stable Model Semantics and show the
formal correspondence to the Weak Completion Semantics. Two main dif-
ferences can be identified: One difference lies on the treatment of undefined
atoms in programs, where the Well-founded Semantics and the Stable Model

2Wernhard [2011, 2012] discusses the application of different logic programming semantics to model
human reasoning tasks according to the approach by Stenning and van Lambalgen and the roles of
three-valuedness in this context, within a different technical framework based on circumscription.
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Semantics assume the closed-world assumption, whereas the Weak Comple-
tion Semantics assumes the open-world assumption. The second difference is
about tight programs: Under certain circumstances, atoms that are involved
in a positive cycle in a program, are false under the Well-founded Semantics,
whereas they stay unknown under the Weak Completion Semantics.

– We further establish an overview of related semantics and show the relations
to the well-known two-valued semantics, such as the (Well)-supported Model
Semantics and Clark’s Completion Semantics.

• Psychological Investigation on Cycles [Dietz, Hölldobler, and Ragni, 2013]

As the Weak Completion Semantics and the Well-founded Semantics deal differ-
ently with positive cycles in logic programs, we carried out a psychological study
about positive cyclic conditionals. It seems that the participants understood pos-
itive cyclic conditionals of length 1 differently than positive cyclic conditionals of
length 2 or 3. In the first case, they understood the conditionals as facts, whereas in
the second case they understood the conditionals as actual conditionals. Prelimin-
ary results show that the participants’ understanding of positive cyclic conditionals
seems to be in favor of the way how the Weak Completion Semantics treats positive
cycles in logic programs.

Contextual Reasoning

• Contextual Programs [Dietz Saldanha, Hölldobler, and Pereira, 2017]

– We extend the programs under the Weak Completion Semantics with an
additional truth-functional operator, ctxt, and introduce so-called contextual
programs and provide an implementation thereof in Prolog. The ctxt operator
can be seen as a mapping of three-valuedness to two-valuedness and allows
us to express negation as failure under the Weak Completion Semantics.

– We reconsider former formal results of the Weak Completion Semantics and
show that for contextual programs the ΦP operator is not monotonic anymore.
Further, the ΦP operator does not necessarily have a least fixed point for this
class of programs. However, we can guarantee that a least fixed point exists
for the class of acyclic contextual programs.

• Contextual Abduction [Pereira, Dietz, and Hölldobler, 2014a,b, Dietz Saldanha,
Hölldobler, and Pereira, 2017]

– We present a contextual abductive approach, that allows us to express a
preference among explanations, where the context in which information is
observed plays a central role.
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– Further, this approach allows us to define more fine-grained relations between
observations. We specify when an observation is a contextual (contestable)
side-effect of another observation or whether they are both (jointly supported)
contextual consequences of one another.

Modeling Human Reasoning Tasks

• Byrne’s Suppression Task and the Well-founded Semantics
[Dietz, Hölldobler, and Ragni, 2012a, Dietz, Hölldobler, and Wernhard, 2014]

We reconsider Byrne’s suppression task and discuss open questions with respect
to the formalization. Furthermore we show how the respective logic programs
need to be adapted in order to adequately model the task within the Well-founded
Semantics.

• Wason’s Selection Task [Dietz, Hölldobler, and Ragni, 2013]

We model Wason’s selection task by taking Kowalski’s interpretation of the differ-
ences between the social and the abstract case as starting point for our formaliza-
tion.

• Spatial Reasoning [Dietz, Hölldobler, and Höps, 2015a]

We model a spatial reasoning task by taking the ideas of the Preferred Model
Theory as starting point. For this purpose a logic program representation of the
first free fit technique is provided: The idea is that a new to be included object will
be either placed directly next to the already existing one, provided that there is
space left, or otherwise this new object will be placed in the next available space.
As psychological experiments have shown, this technique seems to be cognitively
adequate. Our results on the spatial reasoning task complies with the results of
these psychological experiments.

• Modeling Quantified Statements [Dietz, Hölldobler, and Ragni, 2015d, Costa, Di-
etz, Hölldobler, and Ragni, 2016]

– We develop five principles for the representation of quantified statements mo-
tivated by Logic Programming techniques and findings from Cognitive Sci-
ence. We then propose a representation of the four possible quantified state-
ments as logic programs.

– We predict the answers of 64 syllogistic premises and compare them to the
results of psychological experiments. The Weak Completion Semantics has a
matching of 85%, which is quite a good result, considering that the best of
12 other recent cognitive theories, only has a matching of 84%.

– The achievement of this contribution stands out here. For the first time we can
evaluate the performance of the Weak Completion Semantics and compare our
results to the results of other state-of-the-art approaches. This achievement
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emphasizes that the Weak Completion Semantics has to be taken seriously as
a competitive cognitive theory.

• Belief-Bias Effect [Dietz, 2017]

– We develop an adequate modeling approach for Evans, Barston and Pollard’s
syllogistic reasoning task, taking the previous developed representations of
quantified statements as starting point. We investigate the belief-bias effect
and argue that the belief bias can occur either in the representational part or
the reasoning part when modeling human reasoning.

– For the representational part, we model the belief bias by means of abnormal-
ity predicates. For the reasoning part, we propose a new principle, in which
we suggest that humans search for alternative models, when in the current
one, no conclusion seems possible. For this purpose, we apply abduction,
and show that by explaining the available information about the presented
syllogistic premises, the belief bias can be adequately modeled.

The logic program representation of all human reasoning tasks in this thesis and their
results under the Weak Completion Semantics have been implemented in Prolog or Java.
To the best of our knowledge, no one has shown a formalization of so many different
human reasoning episodes within a single approach. Furthermore, we are not aware of
any formalization, that has attempted to model Evans, Barston and Pollard’s syllogistic
reasoning task or the belief-bias effect. We show for all tasks which steps need to be
taken and motivated them by experimental findings from psychology. Summing up,
the key findings are that the weak completion of a program should be favored over the
completion of a program, that skeptical abduction should be favored over credulous
abduction and that explanations should be minimal.

On Conditionals

• Evaluation System for Conditionals [Dietz, Hölldobler, and Pereira, 2015b]

– We develop a novel system for the evaluation of conditionals in human reas-
oning. For this purpose, we introduce a simple revision operator and together
with abduction, we show with the help of a few examples from the literature
that we can basically model any outcome on how a conditional should be eval-
uated. The outcome depends mainly on the order in which we consider the
conditions of a conditional. Moreover, in difference to the literature, where
a conditional is either evaluated to true or false, the proposed system allows
the possibility that conditionals can be evaluated to unknown.

– We additionally discuss the issue of relevance within conditionals. We identify
differences between weak relevance and strong relevance and suggest a se-
mantical definition of the concept of relevance.
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– We conjecture that humans prefer abduction over revision, which seems to go
along with what is assumed in the Cognitive Science literature.

• Correspondence to Schulz’s Approach [Dietz and Hölldobler, 2015]

We further show the correspondence of our system to another approach and show
that our approach is more general.

1.5. Structure

The reason why the central parts of the thesis are divided into three parts might not
be self-explanatory: Even though all three parts deal with human reasoning and in
particular all parts take the Weak Completion Semantics as underlying approach, they
have different subgoals.

The first part consists of three chapters. Chapter 2 introduces the preliminaries, includ-
ing the Weak Completion Semantics, illustrated by examples of the defined notions and
notations. Chapter 3 shows a formal correspondence between the Weak Completion Se-
mantics and other semantics, in particular with respect to the Well-founded Semantics.
We additionally show the relation between two- and three-valued approaches in general.
Motivated by the limitations of the Weak Completion Semantics when modeling the
famous Tweety example, Chapter 4 proposes to extend the Weak Completion Semantics
with a new truth-functional operator and develops a contextual abductive approach.
The goal of this first part is to allow the reader an easy access to the Weak Completion
Semantics. We clarify where to categorize the Weak Completion Semantics in relation
to the other already existing approaches. Furthermore, the last chapter of this part in
which the Weak Completion Semantics is extended, shows why former formal properties
of the Weak Completion Semantics do not hold anymore.

The second part is about modeling well-known human reasoning tasks within the Weak
Completion Semantics. This part consists of the formalizations of Byrne’s suppres-
sion task and Wason’s selection task in Chapter 5, reasoning with spatial relations in
Chapter 6, reasoning with quantified statements in Chapter 7 and reasoning with the
belief-bias effect in Chapter 8. We apply various Logic Programming techniques such as
abduction and integrity constraints for the formalization of these tasks. The goal of this
part is to show how findings from Cognitive Science can be adequately modeled under
the Weak Completion Semantics.

The goal of the third part emerges from the results of the first two parts: A general
system for the evaluation of conditionals. We propose an abstract reduction system in
Chapter 9 and motivate a preferred derivation with the help of examples from the literat-
ure. Finally, Chapter 10 shows a formal correspondence to another Logic Programming
approach for the evaluation of conditionals.
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1.6. Reading Paths

Not every reader might be equally interested in every chapter and section presented in
this thesis. We suggest the following reading paths, depending on the readers’ focus:

• For a general non-technical overview about the topic, the following chapters and
sections may be considered:

1 −→
3.1 −→ 3.4 −→ 3.5 −→ 4.1 −→ 4.6 −→

6.1 −→ 6.2 −→ 6.6 −→ 7.1 −→ 7.2 −→ 7.5 −→ 8.1 −→ 8.2 −→ 8.3 −→ 8.5 −→
9.1 −→ 9.4 −→ 9.7 −→

11 −→ 12

• For a general introduction on the Weak Completion Semantics and the correspond-
ence to related semantics, the following sections may be considered:

2.1 −→ 2.2 −→ 2.3 −→ 3.2 −→ 3.3

• The reader who is interested on how integrity constraints, abduction and further
extensions work under the Weak Completion Semantics, may additionally consider
the following chapters and sections:

4x
2.4 −→ 2.5 −→ 9 −→ 10

where

– Section 2.4 and 2.5 are about how integrity constraints and abduction work
under the Weak Completion Semantics,

– Chapter 4 presents a contextual abductive reasoning approach, and

– Chapter 9 presents an abstract reduction system for conditionals that is com-
pared to another approach in Chapter 10.

• The reader who is interested in the psychological reasoning tasks and their formal
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representations, may consider the following chapters and sections:

5.3 ←− 5.2x x
5.1 ←− 2 −→ 7 −→ 8y

6

where

– Chapter 2 is an elaborate introduction about the Weak Completion Semantics
including abduction and integrity constraints,

– Section 5.1 is about the suppression task,

– Section 5.2 is about the selection task,

– Section 5.3 concludes with a few open questions about the Weak Completion
Semantics and a summary,

– Chapter 6 is about a spatial reasoning task,

– Chapter 7 is about reasoning with quantified statements, and

– Chapter 8 is about a syllogistic reasoning task and the belief-bias effect.

• Readers who are interested in the technical aspects of the thesis, while avoiding
the human reasoning tasks, can consider the following chapters and sections:

2 −→ 3.2 −→ 3.3 −→ 4 −→ 9 −→ 10

where

– Chapter 2 is an elaborate introduction about the Weak Completion Semantics
including abduction and integrity constraints,

– Section 3.2 and Section 3.3 show the correspondence of related semantics to
the Weak Completion Semantics,

– Chapter 4 presents a contextual abductive reasoning approach, and

– Chapter 9 presents an abstract reduction system for conditionals, where in

– Chapter 10, the correspondence of this system to another approach for con-
ditionals is shown.
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Weak Completion Semantics
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2. Preliminaries

We start with introducing the general notation and terminology that will be used
throughout the thesis, which is based on [Lloyd, 1984, Hölldobler, 2009]. Section 2.2
introduces three-valued semantics. In Section 2.3, we discuss different least fixed point
operators for the computation of least models. After that, we introduce integrity con-
straints and explain how they can be understood under three-valued semantics in Sec-
tion 2.4 and extend two-valued abduction to three-valued abduction in Section 2.5.1

We assume that the reader is familiar with logic and logic programming. We consider an
alphabet that consists of finite disjoint sets of constants and predicate symbols, the truth-
value constants true >, false ⊥ and unknown U, a separate infinite set of variables,
the quantifier symbols ∀ and ∃ and the usual connectives negation ¬, disjunction ∨,
conjunction ∧, implication ←, equivalence ↔ and punctuation symbols “(”, “,”, “)”.
If a letter or the first letter of a word is written with an upper case, it is a variable;
otherwise it is a constant or a predicate symbol.

The set of terms consists only of constants and variables. A ground term is a constant.
Formulas are constructed in the usual way from the predicate symbols and terms, the
truth-value constants, the quantifiers and the connectives. An atomic formula is called an
atom. If A is an atom, then A and ¬A are literals, the positive literal and the negative
literal, respectively. A ground formula is a formula not containing free variables. A
language L given by an alphabet consists of the set of all formulas constructed from the
symbols of this alphabet.

2.1. Logic Programs

A logic program P is a finite set of clauses.

A ← L1 ∧ . . . . . . ∧ Ln (2.1)

A ← > (2.2)

A ← ⊥ (2.3)

A is an atom and the Li with 1 ≤ i ≤ n are literals. The atom A is called head of
the clause and the subformula to the right of the implication symbol is called body of

1Section 2.4 has first been published in [Pereira, Dietz, and Hölldobler, 2014a,b]. Some parts of
Section 2.5 have not been published and are contributions of this thesis.
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the clause. Let us first consider clauses of the form (2.1): It is a definite clause if
it only contains atoms in its body. A program that contains only definite clauses is
a definite program. As we restrict terms to be either constants or variables only, we
consider so-called data logic programs. If the clause contains variables, then they are
implicitly universally quantified within the scope of the entire clause. For instance, the
clause p(X) ← q(X) represents the formula (∀X)(p(X) ← q(X)). Therefore, a clause
never contains free variables. Accordingly, a ground clause is a clause that does not
contain variables. Clauses of the form (2.2) and (2.3) are called facts and assumptions,
respectively. The notion of falsehood appears to be counterintuitive at first sight, but
programs will be interpreted under their weak completion where this implication sign is
replaced by an equivalence sign. We restrict the head of the facts and assumptions to
be ground atoms, that means, they do not contain variables.

We introduce the following notation in order to refer to the positive and negative part
of a body: If formula F is of the form A1 ∧ · · · ∧ An ∧ ¬B1 ∧ · · · ∧ ¬Bm where Ai with
1 ≤ i ≤ n are atoms and ¬Bj with 1 ≤ j ≤ m are negated atoms, then pos(F ) =
A1 ∧ · · · ∧ An and neg(F ) = ¬B1 ∧ · · · ∧ ¬Bm. An empty conjunction is semantically
equivalent to true, therefore, if F does not contain any literal, pos(F ) = neg(F ) = >.
Accordingly, pos(>) = neg(>) = >. To let pos and neg also be applicable to bodies
of assumptions, we define additionally pos(⊥) = neg(⊥) = >.

A normal program – in the standard sense used in the literature on logic programming
– is a program that does not contain assumptions, that is, a program whose clauses are
all of the form (2.1) or (2.2). If P is a program, then P+ denotes the normal program
obtained from P by deleting all assumptions. Obviously, for normal programs P it holds
that P = P+.

Here, a propositional program P corresponds to a ground program. If P is not proposi-
tional, then gP denotes ground P, which means that P contains exactly all the ground
clauses with respect to the alphabet. As the set of constants is finite and P is finite, gP
is finite as well. As we are in particular interested in ground programs, the following
definitions will always be referring to gP.

We assume a fixed non-empty and finite set of ground atoms, denoted by At. If P is
a program, then atoms(P) denotes the set of all atoms occurring in gP. If not stated
otherwise, we assume that At = atoms(P).

An atom A is defined in gP if and only if gP contains a clause whose head is A; otherwise
A is said to be undefined. The set of all atoms that are defined in gP is denoted
by defined(P). The set of all atoms that are undefined in gP, that is At \ defined(P), is
denoted by undef(P). The definition of L in gP is

def(L,P) = {A← body ∈ gP | A ∈ L or ¬A ∈ L},

where L is a set of (ground) literals. L is said to be consistent if and only if it does not
contain a pair of complementary literals. The complementary literal of a literal L, is a
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Example 2.1. Consider the program P consisting of three clauses:

p(X) ← q(X) ∧ ¬r(X) ∧ s(X).
q(a) ← >.
r(a) ← ⊥.

The second clause is a fact and the third clause is an assumption. Applying pos and
neg to the body of the first clause gives the following result:

pos(q(X) ∧ ¬r(X) ∧ s(X)) = q(X) ∧ s(X)

and
neg(q(X) ∧ ¬r(X) ∧ s(X)) = ¬r(X).

The set of constants is

C = constants(P) = {a}.

The ground program, gP, consists of the following three clauses:

p(a) ← q(a) ∧ ¬r(a) ∧ s(a).
q(a) ← >.
r(a) ← ⊥.

The set of atoms, of defined atoms and of undefined atoms, are

At = atoms(P) = {p(a), q(a), r(a), s(a)},
defined(P) = {p(a), q(a), r(a)},

undef(P) = {s(a)}.

The definition of L = {q(a), r(a)} in P is

def(L,P) = {q(a)← >, r(a)← ⊥}.

The corresponding normal program gP+ consists of the following two clauses:

p(a) ← q(a) ∧ ¬r(a) ∧ s(a).
q(a) ← >.
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literal corresponding to the negation of L, i.e. ¬L. When writing sets of literals we will
omit curly brackets if the set has only one element.

We assume a fixed set of constants, denoted by C, which is non-empty and finite. If P
is a program, then constants(P) denotes the set of all constants occurring in P. If
not stated otherwise, we assume that C = constants(P). Example 2.1 clarifies the just
introduced definitions. We assume that each non-propositional program contains at least
one constant symbol. The language L underlying a program P contains precisely the
predicate and constant symbols occurring in P, and no others.

When mechanisms of non-monotonic reasoning are applied to model human reasoning,
it seems essential that only certain atoms are subjected to the closed-world assumption,
while others are considered to follow the open-world assumption. Under the closed-world
assumption all atoms are expected to be false if not stated otherwise.

Consider the following transformation for a given program P:

1. For all A ∈ atoms(P) replace def(A,P) = {A← body1, A← body2,
. . . , A← bodyn}, where n ≥ 1, by A← body1 ∨ body2 ∨ . . . ∨ bodyn.

2. For all A ∈ undef(P) add A← ⊥.

3. Replace all occurrences of ← by ↔.

The resulting set of equivalences is the well-known Clark’s completion of P, denoted
by cP [Clark, 1978]. If step 2 is omitted, then the resulting set is the weak completion
of P, denoted by wcP [Hölldobler and Kencana Ramli, 2009b]. As we will see later,
the weak completion of a program allows both, closed-world assumption and open-world
assumption, to coexist within a logic program. Consider Example 2.2 for which we show
the completion and the weak completion of a program. In the following, we are interested
in the weak completion of programs.

2.2. Three-valued Semantics

Under two-valued semantics, a two-valued interpretation I of a program P is a mapping
of atoms(P) to {>,⊥}. I(F ) = > denotes that interpretation I maps formula F to >
according to the corresponding logic. A two-valued model M of P is a two-valued
interpretation where for which each clause C occurring in P it holds thatM(C) = >.

We extend two-valued semantics to three-valued semantics, where the corresponding
truth values are >, ⊥ and U, which mean true, false and unknown, respectively. A three-
valued interpretation I is a mapping from atoms(P) to the set of truth values {>,⊥,U}.
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Example 2.2. Consider the program P consisting of the following clauses:

p(X) ← q(X).
p(X) ← r(X).
q(a) ← ⊥.

Then gP consists of the following clauses:

p(a) ← q(a).
p(a) ← r(a).
q(a) ← ⊥.

The set of atoms, of defined atoms and of undefined atoms, are

At = atoms(P) = {p(a), q(a), r(a)},
defined(P) = {p(a), q(a)},

undef(P) = At \ {p(a), q(a)} = {r(a)}.

The completion of P, c gP, consists of the following equivalences:

p(a) ↔ q(a) ∨ r(a).
q(a) ↔ ⊥.
r(a) ↔ ⊥.

and the weak completion of P, wc gP, consists of the following equivalences:

p(a) ↔ q(a) ∨ r(a).
q(a) ↔ ⊥.
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The truth value of a given formula under a given interpretation is determined ac-
cording to the corresponding logic. A three-valued interpretation is represented as a
pair I = 〈I>, I⊥〉I = 〈I>, I⊥〉 of two disjoint sets of ground atoms, where

I> = {A | I(A) = >} and I⊥ = {A | I(A) = ⊥}.

Atoms which do not occur in I> ∪ I⊥ are mapped to U.

There are two common ways to order three-valued interpretations, which, following Ruiz
and Minker [1995], we call truth ordering (�t) and knowledge ordering (�k). Given two
interpretations, I and J ,

I �t J if and only if I> ⊆ J> and I⊥ ⊇ J⊥.

The positive interpretation I> is minimized and the negative interpretation I⊥ is max-
imized. This is different for the knowledge ordering. Again, given that I and J are two
interpretations,

I �k J if and only if I> ⊆ J> and I⊥ ⊆ J⊥.

Here both, the positive interpretation I> and the negative interpretation I⊥, are mini-
mized. The intersection and the union of two interpretations I = 〈I>, I⊥〉 and J =
〈J>, J⊥〉 are defined as

I ∩ J = 〈I> ∩ J>, I⊥ ∩ J⊥〉

and
I ∪ J = 〈I> ∪ J>, I⊥ ∪ J⊥〉,

respectively. A three-valued model M of P is a three-valued interpretation where for
each clause A ← body occurring in P it holds that M(A ← body) = >. Analogously, a
three-valued model M of the weak completion of P is a three-valued interpretation where
for each equivalence A↔ body1 ∨ body2 ∨ . . . ∨ bodyn, n ≥ 1, occurring in wcP it holds
that M(A ↔ body1 ∨ body2 ∨ . . . ∨ bodyn) = >. Three-valued models that are minimal
with respect to the truth ordering or knowledge ordering are called truth-minimal or
knowledge-minimal models, respectively. If there only exists one minimal model, then
this model is called the least model. Likewise, three-valued models which are least with
respect to the truth ordering or knowledge ordering are called truth-least or knowledge-
least models. In the sequel, we implicitly assume all interpretations and models to be
three-valued, if not explicitly stated otherwise. The distinction between both orderings
are made clear in Example 2.3.

Since the first three-valued logic has been invented by  Lukasiewicz [1920], various dif-
ferent interpretations of the three-valued connectives were proposed. Table 2.1 gives
some common truth tables for negation, conjunction and disjunction. For implication
and equivalence it shows different versions: Kleene [1952] introduced the implication
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Example 2.3. Consider program P with the following two clauses:

p(a) ← q(a).
q(a) ← ⊥.

atoms(P) is {p(a), q(a)} and accordingly, under three-valued logics, there are nine
possible interpretations:

I1 = 〈∅, ∅〉 I2 = 〈{p(a)}, ∅〉 I3 = 〈∅, {p(a)}〉
I4 = 〈{q(a)}, ∅〉 I5 = 〈∅, {q(a)}〉
I6 = 〈{p(a), q(a)}, ∅〉 I7 = 〈∅, {p(a), q(a)}〉
I8 = 〈{p(a)}, {q(a)}〉 I9 = 〈{q(a)}, {p(a)}〉

Only I1, I2, I5, I6, I7 and I8 are models of P. The following graph shows the truth
ordering of the nine interpretations:

I7

I3

I5

I9

I8

I1

I4

I2

I6

where I7 ← I3 means that I7 �t I3. The next graph shows the knowledge ordering of
the nine interpretations:

I3

I4

I2

I1

I5

I6

I7

I8

I9

Here, I1 ← I2 means that I7 �k I3.
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F ¬F

> ⊥
⊥ >
U U

← L > U ⊥

> > > >
U U > >
⊥ ⊥ U >

↔ L > U ⊥

> > U ⊥
U U > U
⊥ ⊥ U >

∧ > U ⊥

> > U ⊥
U U U ⊥
⊥ ⊥ ⊥ ⊥

←S > U ⊥

> > > >
U ⊥ > >
⊥ ⊥ ⊥ >

↔S > U ⊥

> > ⊥ ⊥
U ⊥ > ⊥
⊥ ⊥ ⊥ >

∨ > U ⊥

> > > >
U > U U
⊥ > U ⊥

←K > U ⊥

> > > >
U U U >
⊥ ⊥ U >

↔K > U ⊥

> > U ⊥
U U U U
⊥ ⊥ U >

Table 2.1.: Truth tables for three-valued logics. The >’s highlighted in gray indicate that
formulas of the form A ← B which are true under ← L are true under ←S,
and vice versa.

(←K), whose truth table is identical to  Lukasiewicz implication (← L) except in the case
where precondition and conclusion are both mapped to U: In this case, the value of ←K

is U, whereas the value of ← L is >. The further common variant ←S of three-valued
implication is called seq3 introduced by Gottwald [2001].

The displayed versions of equivalence (↔ L, ↔S, ↔K) are derived by conjoining the
respective implications with flipped arguments. We say that we consider the formula
under  Lukasiewicz semantics if we understand operators in a formula with the meaning
specified in Table 2.1 for {¬,∧,∨,← L,↔ L}. Example 2.4 shows a particular case where
← L and ←S are different from ←K.

Fitting [1985] combined the truth tables for ¬, ∨, ∧ from  Lukasiewicz with the equi-
valence ↔S for investigations within logic programming. The set of connectives Fitting
used is {¬,∧,∨,↔S}.2 Stenning and van Lambalgen [2008] suggested to model Byrne’s
suppression task by extending the logic used by Fitting with ←K. If we understand
operators in this way, that is, with the meanings of {¬,∧,∨,←K,↔S}, we call this SvL-
semantics. Hölldobler and Kencana Ramli [2009b] showed that SvL-semantics leads to
technical errors. They proposed to use  Lukasiewicz semantics (cf. Table 2.1), which
corrects these and allows to adequately model Byrne’s [1989] suppression task. The
erroneous effects of the original suggestion by Stenning and van Lambalgen [2008] will
be demonstrated by two examples in Chapter 5.

2Note that Fitting considered logic programs under their completion and did not specify the inter-
pretation for the implication.
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Example 2.4. Consider again P from Example 2.3:

p(a) ← q(a).
q(a) ← ⊥.

Under  Lukasiewicz semantics, all interpretations except of I3 and I4, are models of gP.
I1 is its knowledge-least and I7 is its truth-least model.
One should observe that in contrast to two-valued logic

p(a) ← L q(a) and p(a) ←S q(a)

are not semantically equivalent to p(a)∨¬q(a). For interpretation I1, where I1(A) =
I1(B) = U, the following interpretations of disjunction and implication are

I1(A ∨ ¬B) = U whereas I1(A← L B) = I1(A←S B) = >.

However, this is different for the ←K implication:

I1(A←K B) = U.

Under the Well-founded Semantics, which we will discuss later, the interpretation of the
implication corresponds to ←S [Przymusinski, 1989], which belongs to the three-valued
logic S3 [Rescher, 1969], that is, {¬,∧,∨,←S,↔S}. If we understand operators in a
formula with these meanings, we say that we consider the S-semantics. Example 2.5
shows yet another way of understanding the truth values. As indicated by the high-
lighted > signs in Table 2.1, whenever a formula is evaluated under S-semantics, is true
under ←S then this formula evaluated under  Lukasiewicz semantics, is true under ← L,
and vice versa. The same holds for ↔ L and ↔S . From this follows that the models of a
program or a set of equivalences obtained by completing a program under S-semantics
are exactly the same as under  Lukasiewicz semantics. Table 2.2 gives an overview of
the three-valued semantics together with the sets of connectives. In the following, if not
specified otherwise, we consider them as underlying semantics.

2.3. Computing Least Models

A logic program can have several models. How to know which model is the intended
one? In Logic Programming and Computational Logic the intended models are often
least models, if they exist. Least models of logic programs can often be specified as least
fixed points of appropriate semantic operators [Apt and van Emden, 1982].

TP(I) = {A | A← body ∈ def(A,P) and I(body) = >}
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Example 2.5. Consider P consisting of the following clause:

p(a) ← q(a).

Except of I3 = 〈∅, {p(a)}〉 and I4 = 〈{q(a)}, ∅〉 from Example 2.3, all other interpret-
ations are models of P under  Lukasiewicz semantics and S-semantics. I1 = 〈∅, ∅〉 is
the knowledge-least model and I7 = 〈∅, {p(a), q(a)}〉 is the truth-least model.
Note that, under SvL-semantics, I1 = 〈∅, ∅〉 is not a model: Both, p(a) and q(a) are
mapped to unknown, which according to Table 2.1, maps the implication to unknown
as well.
Przymusinski [1989] proposed to view an interpretation I = 〈I>, I⊥〉 as a mapping
from atoms(P) to the set V = {0, 1

2 , 1}.

I(A) =


1 if A ∈ I>

0 if A ∈ I⊥
1
2 otherwise

If I(A) is 1 or 0, then I(¬A) is 0 or 1, respectively. In case I(A) = 1
2 , I(¬A) = 1

2 as
well. The interpretation of a conjunction of literals is the smallest value among all of
its literals. Przymusinski then defines that

I(A← body) =

{
> if I(A) ≥ I(body)

⊥ otherwise

A clause is true if and only if the truth value of the head is bigger or equal to the
interpretation of the body, otherwise it is false. This corresponds to the interpretation
of the implication under S-semantics.
Consider again I3 and I4: According to Przymusinski’s ordering, I(p(a)) is smaller
than I(q(a)) and therefore I(p(a)← q(a)) = ⊥.
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Semantics Abbreviations Set of Connectives

Fitting (F) ¬ ∧ ∨ ↔S

Kleene (K) ¬ ∧ ∨ ←K

 Lukasiewicz ( L) ¬ ∧ ∨ ← L ↔ L

S-semantics (S) ¬ ∧ ∨ ←S ↔S

SvL-semantics (SvL) ¬ ∧ ∨ ←K ↔S

Table 2.2.: Overview of the three-valued semantics together with the sets of connectives.

I is a two-valued interpretation and P a program. The least fixed point of the TP
operator (lfp TP) corresponds to the least two-valued model of P (lm2P), if it exists.
Let us define the consequence relation, |=TP , where, given a program P and an atom A,
P |=TP A if and only if A ∈ lfp TP . If P is definite, then it has always a least model.
However, this does not necessarily hold, if P is not definite.

As already mentioned, Hölldobler and Kencana Ramli [2009b] proposed the Weak Com-
pletion Semantics, an approach that extends the two-valued semantics to (three-valued)
 Lukasiewicz semantics. The model intersection property holds for logic programs and
their weak completion under  Lukasiewicz semantics.

∩{I | I |= L P} |= L P and ∩ {I | I |= L wcP} |= L wcP,

given that I is an interpretation and P a program, I |= L P holds if and only if each clause
occurring in P is true under  Lukasiewicz semantics. Analogously, I |= L wcP holds if
and only if each equivalence occurring in wcP is true under  Lukasiewicz semantics. This
property guarantees that each logic program and its weak completion has a (knowledge-)
least model. Additionally, the least model of the weak completion of a program P under
 Lukasiewicz semantics (lm wcP) is identical to the least fixed point of the following
semantic operator, ΦP , which was introduced by Stenning and van Lambalgen [2008] for
propositional programs and has been generalized for first-order programs in [Hölldobler
and Kencana Ramli, 2009a]. Let I be an interpretation and P be a program. Then the
application of Φ to I and P, denoted by ΦP(I), is the interpretation J = 〈J>, J⊥〉.

J> = {A | A← body ∈ def(A,P) and I(body) = >}
J⊥ = {A | def(A,P) 6= ∅ and

for all A← body ∈ def(A,P) we find that I(body) = ⊥}

Proposition 3.21 in [Kencana Ramli, 2009] shows that the ΦP operator is monotonic,
i.e. given a program P and two interpretations I and J , if I ⊆ J then ΦP(I) ⊆ ΦP(J).
Additionally, the ΦP operator guarantees a least fixed point for all programs, which has
been shown in [Hölldobler and Kencana Ramli, 2009b]. Example 2.6 shows for some
program, how the least fixed point of ΦP (lfp ΦP) can be computed.
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Example 2.6. Consider again gP from Example 2.2:

p(a) ← q(a).
p(a) ← r(a).
q(a) ← ⊥.

Let us start computing ΦP with I0 = 〈∅, ∅〉:

ΦP(I0) = 〈∅, {q(a)}〉 = I1,
ΦP(I1) = 〈∅, {q(a)}〉 = I1.

I1 is the least fixed point.

The consequence relation |=wcs , which will be used in the following, is defined as follows:
Given a program P and a formula F , P |=wcs F iff lm wcP(F ) = >.

Proposition 2.1. Given a definite P and an atom A, the following holds:

P |=TP A if and only if P |=wcs A.

Proof.
According to the definition for the TP operator, P |=TP A if and only if at some moment
during the fixed point iteration of TP there exists a clause A ← body ∈ def(A,P) with
I(body) = >. If this is the case, and only then, according to the definition for the ΦP
operator, A ∈ I> at some moment during the fixed point iteration of ΦP . As ΦP is
monotonic, A is also true in lm wcP.

The operator defined by Stenning and van Lambalgen [2008] differs in a subtle way from
the well-known operator ΦF, introduced by Fitting [1985]. Let I be an interpretation
and P be a program. Then the application of ΦF to I and P, denoted by ΦF,P(I), is the
interpretation J = 〈J>, J⊥〉.

J> = {A | A← body ∈ def(A,P) and I(body) = >}
J⊥ = {A | for all A← body ∈ def(A,P) we find that I(body) = ⊥}

The definition of ΦF,P is like that of ΦP , except that in the specification of J⊥ the
first line “def(A,P) 6= ∅ and” is dropped in ΦF. The least fixed point of ΦF,P corres-
ponds to the least model of the completion of Punder S-semantics, or equivalently under
 Lukasiewicz semantics. If an atom A is undefined in the program P, then, for arbitrary
interpretations I it holds that A ∈ J⊥ in ΦF,P(I) = 〈J>, J⊥〉, whereas, if ΦP is applied
instead of ΦF,P , this does not hold. Example 2.7 discusses the weak completion of a
program, the completion of a program and the correspondence to the Fitting operator.
In the sequel, as we are mainly interested in the ΦP operator.

Summing up, the Weak Completion Semantics is the approach to consider weakly com-
pleted programs, to compute their least models, and to reason with respect to these
models.
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Example 2.7. The weak completion of gP from Example 2.2 consists of the following
two equivalences:

p(a) ↔ q(a) ∨ r(a).
q(a) ↔ ⊥.

I1, I2 and I3 are models of the weak completion of P.

I1 = 〈∅, {q(a)}〉
I2 = 〈∅, {q(a), r(a), p(a)}〉
I3 = 〈{r(a), p(a)}, {q(a)}〉

Its knowledge-least model, I1, also corresponds to the least fixed point of ΦP as shown
in Example 2.6. Consider the completion of gP:

p(a) ↔ q(a) ∨ r(a).
q(a) ↔ ⊥.
r(a) ↔ ⊥.

In this case, I2 is the only interpretation, which is a model of cP. This corresponds
to the least fixed point of ΦF,P , which always computes the least model of cP, if it
exists.

2.4. Integrity Constraints

Until now, integrity constraints have not been examined in the context of the Weak
Completion Semantics. Yet, they might be useful, and therefore we will explain how we
can understand them under three-valued logics and how we will deal with them. Usually,
under two-valued semantics a set of integrity constraints IC, consists of clauses of the
following form:

⊥ ← body ,

where body is a conjunction of literals. P satisfies IC if and only if P ∪IC is satisfiable.
Under two-valued semantics a set of clauses is satisfiable if there exists a two-valued
model. This implies that the body of each clause in IC is mapped to false under this
model.

Under three-valued semantics, there are different ways on how to understand integrity
constraints: Either we require that the body of the clause occurring in the set of integrity
constraints is false under the model under consideration or that the body is unknown.
At first glance, it might be natural to assume that the body of the IC should be false.
However, considering that we are interested in modeling human reasoning, this under-
standing of integrity constraints might not deliver the desired result. Assume that we
want to formalize the following conditional in a logic program:

If it rains then they will not go to the beach.
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The consequence of this conditional is the negation of they will go to the beach. Let us
assume that beach denotes they will go to the beach and rain denotes it rains. As we
do not allow negative literals in the head of clauses, we need to introduce an auxiliary
atom which represents the negation of the consequence, e.g. beach ′. The logic program
P representing the conditional consists of the following two clauses:

beach ′ ← rain.
beach ← ¬beach ′.

The second conditional states that beach will be true if beach ′ is false. If an interpreta-
tion 〈I>, I⊥〉 contains both beach and beach ′ in I> it should be invalidated as a model
of P in general. This can be specified by the following integrity constraint:

⊥ ← beach ∧ beach ′,

which, given Table 2.1, implies that either beach ′ or beach has to be false. Both cannot
stay unknown, even though possibly nothing is stated about the truth of them. As we
already have discussed in Section 2.2, we are not interested in finding the truth-least but
the knowledge-least model, that is, both I> and I⊥ should be minimized, or, in other
words, the unknown values should be maximized. Therefore, we understand integrity
constraints instead as

U ← body .

As in the following, we only consider integrity constraints under either  Lukasiewicz
semantics or S-semantics, the body of the integrity constraint can be either false or un-
known according to Table 2.1. For the example above we modify the integrity constraint
accordingly. The IC is defined as

U ← beach ∧ beach ′.

This understanding that the body can be either false or unknown is similar to the defin-
ition of the integrity constraints for the Well-founded Semantics in [Pereira, Apaŕıcio,
and Alferes, 1991b]. Of course, someone could think of allowing both kinds of ICs, ones
with U in the head the others with ⊥, depending on the representation someone wants
to choose for the knowledge under consideration. However, in the sequel, if we consider
ICs under three-valued semantics, we will refer to the kind of integrity constraints where
only U is allowed in the head of the clause, if not stated otherwise. Note that in the case
we will consider integrity constraints under two-valued semantics, they will necessarily
have to be understood as ⊥ ← body , i.e. only ⊥ is allowed in the head of the clause. In
the following, we will consider the ICs satisfying the least model of the weak completion
of the given program.

Given an interpretation I and a set of integrity constraints IC, I satisfies IC if and
only if all clauses in IC are true under I (according to either  Lukasiewicz semantics or
S-semantics being used). Accordingly, we extend the model intersection property for all
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models of the weak completion that satisfy IC.

Proposition 2.2. If there exists a model of the weak completion of program P that
satisfies a set of integrity constraints IC, then there exists a least model of the weak
completion of P that satisfies IC.

Proof.
This follows immediately from the fact that the model intersection property holds for
logic programs under their weak completion under  Lukasiewicz semantics.

2.5. Abduction

We will mainly focus on three-valued abduction and briefly show the correspondence
to two-valued abduction. Based on [Kakas, Kowalski, and Toni, 1993], an abductive
framework is a quadruple 〈P,A, IC, |=〉, consisting of a program P as knowledge base,
a finite set of abducibles AP , a finite set of integrity constraints IC, and a consequence
relation |=. A two-valued abductive framework is the quadruple 〈P,A2,P , IC, |=TP 〉, where
P is definite, |=TP is the consequence relation with respect TP and A2,P is defined as

{A← > | A ∈ undef(P)}.

Clauses in IC are of the form ⊥ ← body . Observation O is a non-empty set of literals.

Definition 2.1. Let 〈P,A2,P , IC, |=TP 〉 be a two-valued abductive framework where P
satisfies IC, E ⊆ A2,P and O is an observation.

O is two-valued explained by E given P and IC iff P ∪ E |=TP O and P ∪ E |=TP IC.

O is two-valued explainable given P and IC iff there exists an E
such that O is two-valued explained by E given P and IC.

Normally, only set inclusion minimal (or otherwise preferred) explanations are con-
sidered. We assume henceforth that explanations are minimal, that means, there ex-
ists no other explanation E ′ ⊂ E for O. Someone might possibly think of some other
preference criterion instead. Note that if P |=TP O then E is empty.

Similarly, for the three-valued semantics considered in this thesis, we define a three-
valued abductive framework as a quadruple 〈P,A, IC, |=wcs〉, consisting of a program P
as knowledge base, a set of abducibles A, a set of integrity constraints IC, and the
logical consequence relation |=wcs . Observation O is a non-empty set of literals. As we
are employing the Weak Completion Semantics, abducibles may now not only be facts,
but can also take the form of assumptions, otherwise they remain unknown. Therefore,
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the set of abducibles AP available for the three-valued abduction is extended with the
corresponding assumptions.

AP = {A← > | A ∈ undef(P)} ∪ {A← ⊥ | A ∈ undef(P)}

Proposition 2.3. Given a definite program P, the following holds:

If {A← >} ⊆ A2,P then {A← >, A← ⊥} ⊆ AP .

Proof.
This follows immediately from the definitions for A2,P and AP .

Definition 2.2. Let 〈P,AP , IC, |=wcs〉 be a three-valued abductive framework where P
satisfies IC, E ⊆ AP and O is an observation.

O is three-valued explained by E given P and IC iff P ∪ E |=wcs O and P ∪ E |=wcs IC.

O is three-valued explainable given P and IC iff there exists an E
such that O is three-valued explained by E given P and IC.

In abduction, we distinguish between credulous and skeptical reasoning . Credulous reaso-
ning means that there exists at least one model which entails the observation to be
explained. Skeptical reasoning demands that every model of the program entails the
observation.

F follows skeptically from P, IC and O iff O can be three-valued explainable given P
and IC, and for all E for O it holds that P ∪ E |=wcs F .

F follows credulously from P, IC and O iff there exists a E for O and
it holds that P ∪ E |=wcs F .

Three-valued abduction is illustrated in Example 2.8. P,O |=s
wcs F denotes that F

follows skeptically from P and O. P,O |=c
wcs F denotes that F follows credulously from

P and O. Note that in the case the abducibles are not abduced as facts or assumptions,
they stay unknown in the least model of the weak completion. If we do not want to
allow each undefined atom to be an abducible, i.e. if we want to allow for unknown and
non-abducible knowledge, we can simply add the clause A← A for any such atom A.

Proposition 2.4. Given a two-valued abductive framework 〈P,A2,P , IC, |=TP 〉,
a three-valued abductive framework 〈P,AP , IC, |=wcs〉, where P is definite,
E ⊆ A2,P and observation O is a non-empty set of literals. The following holds:

1. If E is a two-valued explanation for O given P and IC
then E is an explanation for O given P and IC.

2. If O is two-valued explained given P and IC
then O is three-valued explained given P and IC.
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Proof.
(2) follows from (1), so we show that (1) holds. Let us assume that E is a two-valued ex-
planation for O given P and IC, then P ∪ E |=TP O and P ∪ E |=TP IC. To show:
P ∪ E |=wcs O and P ∪ E |=wcs IC.

1. P ∪ E |=wcs O follows from P ∪ E |=TP O and Proposition 2.1.

2. P ∪ E |=wcs IC means that lm2(P ∪ E ∪ IC) is satisfiable. This implies that the
body of all clauses in IC is mapped to false in lm2(P ∪ E). If they were true in
lm wc (P ∪ E), then, according to Proposition 2.1, they would also have to be true
in lm2(P ∪ E). Therefore, the body of all clauses in IC is false in lm wc (P ∪ E).
Accordingly, P ∪ E |=wcs IC.

The other direction does not hold. Consider program P, which consists of one clause:

p← q.

Given O = {¬p}, the only three-valued explanation is E = {q ← ⊥}, where E ∈ AP .
However, E 6∈ A2,P and therefore E cannot be a two-valued explanation for O.

As in the following we will mainly consider three-valued semantics, we implicitly assume
all the abductive frameworks and explanations to be three-valued, if not explicitly stated
otherwise.3 The entailment relations |=s

wcs and |=c
wcs are abbreviations for expressing

that a formula follows skeptically or credulously, respectively.

3Lúıs Moniz Pereira observed that, different to the classical TP based definition, under the Weak
Completion Semantics we can also allow for both facts and assumptions in two-valued abduction. (per-
sonal communication, February 10, 2016)
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Example 2.8. Consider program P consisting of the following three clauses:

p(X) ← ¬q(X) ∧ r(X) ∧ t(X).
p(X) ← ¬s(X) ∧ r(X).
t(a) ← >.

Assume that IC = ∅ and that O = {p(a)}. gP consists of the following three clauses:

p(a) ← ¬q(a) ∧ r(a) ∧ t(a).
p(a) ← ¬s(a) ∧ r(a).
t(a) ← >.

Let us consider this observation in the three-valued abductive framework
〈P,AP , IC, |=wcs〉, where the set of abducibles AP consists of the following facts
and assumptions:

q(a) ← >.
q(a) ← ⊥.

r(a) ← >.
r(a) ← ⊥.

s(a) ← >.
s(a) ← ⊥.

There are two (minimal) explanations for O:

Erq = { r(a)← >, q(a)← ⊥ } and
Esr = { s(a)← ⊥, r(a)← > }.

As r(a) follows from all (minimal) explanations, it follows skeptically from P and O,
whereas ¬q(a) and ¬s(a) only follow credulously.
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As the Weak Completion Semantics is a novel technique in the field of Computational Lo-
gic, we are interested in how it corresponds to other already established non-monotonic
approaches. For this purpose we investigate the relation of the Weak Completion with
respect to the Completion and the (Partial) Stable Model Semantics in Section 3.2. Sec-
tion 3.3 shows the main result of this chapter, namely that the well-founded Semantics,
a widely accepted approach in the field of non-monotonic reasoning, corresponds to the
Weak Completion Semantics for a specific class of modified programs. We finally present
in Section 3.4 some initial results of a psychological study, where humans were asked to
reason with cyclic conditionals.1

3.1. Introduction

As often described in the literature, most logic programming approaches differ in the
way they behave with respect to cycles. A program is said to contain a cycle when
at least one atom depends on itself, in the following sense: For all clauses of the form
p← q1 ∧ . . .∧ qm ∧¬r1 ∧ . . .∧¬rn occurring in a program, the head atom p depends on
all atoms occurring in the body, that is, on q1, . . . , qm, r1, . . . , rn. In addition, depends
on is the least transitive relation that contains p, qi and p, rj for all i, 1 ≤ i ≤ m, and for
all j, 1 ≤ j ≤ n. Consider the following two normal logic program examples, adapted
from [Przymusinski, 1994]:

Pfly = {fly ← bird ∧ ¬abnormal , bird}

and
Pcycle = {abnormal ← irregular , irregular ← abnormal}.

The program Pcycle contains two cycles because abnormal and irregular depend on them-
selves. Przymusinski [1994] shows that programs with cycles might have models, which
might not seem intuitive. For instance, under Clark’s [1978] Completion Semantics we
can conclude fly from Pfly . However, if we extend Pfly with Pcycle , we cannot conclude fly
anymore. This seems to be counterintuitive. Moreover, under the Completion Semantics

1 The original idea for this chapter has been published in [Dietz and Hölldobler, 2012]. The main
results of Section 3.2 and Section 3.3 have been published in [Dietz, Hölldobler, and Wernhard, 2014].
Section 3.4 has been published in [Dietz, Hölldobler, and Ragni, 2013].
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as well as under the Stable Model Semantics [Gelfond and Lifschitz, 1988], cycles estab-
lished through an odd number of negated atom occurrences can lead to inconsistency,
that is, to programs which do not have a model: A program containing a clause p← ¬p
does not have a two-valued stable model and the completion of this clause, p ↔ ¬p, is
inconsistent.

A solution to these problems is to consider three-valued interpretations instead of two-
valued interpretations. Przymusinski [1990] proposed the three-valued Stable Model
Semantics, also known as the Partial Stable Model Semantics, a conservative extension
of the Stable Model Semantics, which preserves stable models. Under the Partial Stable
Model Semantics the program {p← ¬p} has a unique three-valued model in which p is
unknown. If we extend Pfly with

Pneg-cycle = {abnormal ← ¬regular , regular ← ¬abnormal}

we do not obtain just one unique three-valued stable model but three three-valued stable
models: One model where fly , bird and regular are true whereas abnormal is false,
another one where bird and abnormal are true whereas fly and regular are false, and
finally one where bird is true and all other atoms are unknown. Here, the challenge is to
find the model that corresponds most likely to the model a human would generate in a
certain commonsense setting, rather than the perfect model in a purely logical context.

The Well-founded Semantics introduced by Van Gelder, Ross, and Schlipf [1991] is a
widely accepted approach in the field of non-monotonic reasoning and coincides with the
least three-valued stable model [Przymusinski, 1990]. Compared to Clark’s (two-valued)
Completion or the (two-valued) Stable Model Semantics, the Well-founded Semantics is
considered to be more accurate for programs with positive or negative cycles [Przymus-
inski, 1994]. For instance, in the well-founded model of Pneg-cycle , abnormal and regular
are unknown and in the well-founded model of Pcycle , abnormal and irregular are false.
Under the Completion Semantics there is not even a model for Pneg-cycle . In general, un-
der the Well-founded Semantics, atoms involved in just positive cycles are false whereas
atoms involved in just negative cycles are unknown. The intuition behind this distinc-
tion is that the negation of abnormal or irregular shall not support the truth of any
other atom in the program. For instance let us consider Pfly ∪Pneg-cycle , where if regular
would be false in the well-founded model, then necessarily abnormal would have to be
true. But then the negation of abnormal would provide misleading support for further
positive conclusions.

As the Well-founded Semantics is a well-established approach in the literature, we want
to investigate how it relates to the Weak Completion Semantics. What are the similarities
and where do they differ? Can both approaches adequately represent human reasoning
episodes such as the suppression task?
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3.2. Related Semantics

In order to show the correspondence between the Weak Completion and the Well-founded
Semantics, we will now review the latter and the related Partial Stable Model Semantics.
We proceed by giving definitions of certain relevant program classes, which constrain the
allowed possibilities of circular dependency in programs. On this basis, we then develop
three-valued generalizations of the concepts of supported and well-supported models,
which have been originally specified just for two-valued semantics.

As has been discussed in Chapter 2.2,  Lukasiewicz semantics and S-semantics lead to
the same model relationship for the relevant classes of formulas. In the following, unless
specified otherwise, we implicitly consider them as underlying semantics. For simplicity,
in this chapter programs are assumed to be propositional.

3.2.1. Stable Model Semantics and Well-Founded Semantics

Stable models have been originally defined by Gelfond and Lifschitz [1988] in terms of a
program transformation that is often called Gelfond-Lifschitz transformation. Their ap-
proach has been extended by Przymusinski [1990] to the Partial Stable Model Semantics
in order to show the relationship to the Well-founded Semantics. Intuitively, a general
difference between the Weak Completion Semantics and the ones which will be presen-
ted here, is how negation is understood in the body of a clause: Under the (Partial)
Stable Model Semantics and the Well-founded Semantics, the closed-world assumption
is assumed, and therefore negation is assumed by default, the set of atoms that is false,
is tried to be maximized. On the other hand under the Weak Completion Semantics,
the open-world assumption is assumed and therefore negation is not assumed by default,
the set of atoms that is unknown, is tried to be maximized instead.

The reduct of a normal program P with respect to an interpretation I, denoted by P|I ,
is obtained from P by replacing in the bodies of all clauses P each negative literal ¬A by
I(¬A), that is, with the truth value constant corresponding to the value of ¬A under I.
Note that a reduct is still a set of clauses, although, because truth value constants
may now occur in bodies, it is possibly not a program according to our specification
in Chapter 2. However in this chapter, for the sake of simplicity, when we consider
models with respect to reducts of programs, we assume that >, U and ⊥ are atoms.
An interpretation I is a three-valued stable model of P if and only if I is a truth-
minimal model of P|I . Example 3.1 shows a programs reduct and its corresponding
stable models. In the sequel, when we discuss interpretations and models, we mean three-
valued interpretations and three-valued models, except if explicitly stated otherwise.

By analogy to the well-known TP operator for two-valued interpretations [Van Emden
and Kowalski, 1976], Przymusinski [1990] introduced an operator ΨP for three-valued
interpretations: Suppose that P is a normal logic program and I is an interpretation of
P: Define ΨP(I) = 〈J>, J⊥〉 to be the interpretation given by
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Example 3.1. Consider the program P1 consisting of the following clause:

p ← q.

where At = {p, q}. As P1 does not contain an occurrence of a negative literal in the
body of a clause, we get the reduct P1|I = P1 for any interpretation I. We obtain six
different models of P1.

I1 = 〈∅, {p, q}〉 I2 = 〈{p, q}, ∅〉 I3 = 〈∅, ∅〉
I4 = 〈{p}, {q}〉 I5 = 〈{p}, ∅〉 I6 = 〈∅, {q}〉

The only stable model is I1 because I1 �t Ij for all j ∈ [2, 6].
Let program P2 consist of the following two clauses:

p ← ¬q.
q ← ¬p.

P2 has three different models.

I1 = 〈{p}, {q}〉, I2 = 〈{q}, {p}〉 and I3 = 〈∅, ∅〉.

We obtain three reducts of P2 for each of these interpretations.

P2|I1 = {p← >, q ← ⊥}
P2|I2 = {p← ⊥, q ← >}
P2|I3 = {p← U, q ← U}

All three interpretations I1, I2 and I3 are truth-minimal models of the corresponding
reducts and, hence, they are stable models of P2. It is easy to see that they are the
only stable models of P2.
As I3 �k I1 and I3 �k I2, I3 is the knowledge-least stable model of P.

(i) A ∈ J> if there exists a clause A← body ∈ P such that I(body) = >,

(ii) A 6∈ (J> ∪ J⊥) if A 6∈ J> and if there exists a clause A← body ∈ P
such that I(body) = U,

(iii) A ∈ J⊥, otherwise.

This operator can be applied to the sets of implications obtained as reduct P|I . As
shown by Przymusinski, the least fixed point of ΨP|I is the truth-least model of P|I .

It has been further shown by Przymusinski that each normal program has a knowledge-
least stable model, which coincides with the well-founded model .

The Well-founded Semantics has been defined as follows [Van Gelder, Ross, and Schlipf,
1991]: A set of atoms U ⊆ atoms(P) is said to be an unfounded set of P with respect
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to interpretation I if each atom A ∈ U satisfies the following condition:

For each clause A← body ∈ P, at least one of the following holds:

1. I(body) = ⊥.

2. There exists a literal L in pos(body) with L ∈ U .

Given I and P, the transformations TP , UP , and WP are defined as follows:

TP(I) = {A | there exists a clause A← body ∈ P with I(body) = >},

UP(I) is the greatest unfounded set of P with respect to I, and

WP(I) = 〈TP(I), UP(I)〉,

where the greatest unfounded set UP(I) of P with respect to I is the union of all un-
founded sets of P with respect to I.2

TP , UP and WP are monotonic transformations. The least fixed point of WP(I) can be
recursively defined as follows: Let α range over all countable ordinals. The interpreta-
tions Iα and I∞ are defined recursively by starting with I0 = 〈∅, ∅〉:

1. For limit ordinal α, Iα =
⋃

β < α

Iβ.

2. For successor ordinal α = γ + 1, Iγ+1 = WP(Iγ).

3. Finally, define I∞ =
⋃
α
Iα.

Iα is the least fixed point of WP where Iα = WP(Iα). The least fixed point of WP(I)
is the well-founded model of P (wfm P). Example 3.2 demonstrates the least fixed
point computation of WP given a simple program. A constructive definition of the
Well-founded Semantics can be found in [Van Gelder, 1989].

3.2.2. Program Classes and Cycles

Let P be a program and A,B ∈ atoms(P). A depends negatively on B if and only if
P contains a clause of the form A ← body and ¬B appears in neg(body). A depends
positively on B if and only if A does not depend negatively on B and P contains a
clause of the form A ← body and B appears in pos(body). It is easy to see that A
depends on B if and only if A depends positively or negatively on B. As dependency is
transitive, if A depends on B and B depends on C, then A depends on C, where one
negative dependency is enough to define the whole dependency as negative. Consider
Example 3.3 for clarification. Different program classes with respect to the occurrence
of cycles are often defined through level mapping characterizations. A level mapping for
a program P is a function ` which assigns to each atom a natural number. It is extended

2In [Van Gelder, Ross, and Schlipf, 1991], three-valued interpretations are defined as sets of literals:
WP(I) was originally defined as WP(I) = TP(I) ∪ ¬ UP(I), where ¬ U = {¬A | A ∈ U}.
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Example 3.2. Consider program P consisting of the following three clauses:

p ← q.
t ← ¬s.
s ← >.

The greatest unfounded set U of P with respect to I0 = 〈∅, ∅〉 is

{q, p}.

Let us compute the fixed point of WP = 〈TP(I0),UP(I0)〉:

WP(I0) = 〈{s}, {q, p}〉 = I1,
WP(I1) = 〈{s}, {q, p, t}〉 = I2 = WP(I2).

I2 is the least fixed point and therefore I2 is the well-founded model of P.

Example 3.3. Consider the three programs below and their representations as
graphs, where the nodes represent the atoms and the arcs represent the depend-
encies: An arc labeled “+” represents a positive dependency and an arc labeled “−”
represents a negative dependency.

p q
+

p q
−

−

p q
+

+

P1 = {p← q} P2 = {p← ¬q, p← ¬q} P3 = {p← q, q ← p}

A program P contains a cycle if at least one atom occurring in P depends on itself.
The programs P2 and P3 contain cycles, whereas P1 does not.

48



3.2. Related Semantics

to literals as follows, where L is a literal and A a atom: `(¬A) = `(A). Additionally,
` is extended to the truth-value constants > and ⊥, where `(>) = `(⊥) = 0. In the
following, ` will refer to `?. A program P is acyclic with respect to a level mapping ` if
and only if for every clause A ← body ∈ P and for all literals L in body we find that
`(A) > `(L). A program P is acyclic if and only if it is acyclic with respect to some level
mapping. Consider again P1 in Example 3.3. With `(p) = 2 and `(q) = 1 we find that
P1 is acyclic, whereas P2 and P3 are not acyclic.

Stratified programs have been investigated by Przymusinski [1988] and by Apt, Blair,
and Walker [1988]. A level mapping characterization of this class of programs is given
by Hitzler and Wendt [2005]: A program P is stratified with respect to a level mapping
` if and only if for every clause A← body ∈ P we find that `(A) ≥ `(L) for all literals L
in pos(body), and `(A) > `(L) for all literals L in neg(body). A program P is stratified
if and only if it is stratified with respect to some level mapping. Programs which only
contain positive cycles are stratified. In Example 3.3, P1 and P3 are stratified, but P2

is not.

Fages [1994] introduced the term positive-order-consistent to define programs that do
not contain positive cycles. Nowadays, the term tight is often used to describe this
property [Erdem and Lifschitz, 2003]. A level mapping characterization for this class of
programs is defined as follows: A program P is tight with respect to a level mapping ` if
and only if for every clause A← body ∈ P we find that `(A) > `(L) for all literals L in
pos(body). A program P is tight if and only if it is tight with respect to some level map-
ping. Programs which only contain negative cycles are tight programs. In Example 3.3,
P1 and P2 are tight, but P3 is not. Under two-valued semantics, negative odd cycles lead
to inconsistency as shown by Example 3.4. Under the Partial Stable Model Semantics
atoms stay unknown when they are involved in negative cycles. Table 3.1 shows the
stable models, the models of the completion and the models of the weak completion
from the programs discussed in Example 3.3.

3.2.3. Supported Models and Well-Supported Models

In two-valued logic, the notion of supported models provides an alternate characteriza-
tion for the models of Clark’s completion [Apt, Blair, and Walker, 1988]. We adapt this
characterization for three-valued logics.

An interpretation I is supported with respect to a set of clauses P if and only if for all
atoms A with I(A) = > there exists a clause A← body ∈ P such that I(body) = > and
for all atoms A with I(A) = U there is no clause A← body ∈ P such that I(body) = >,
but there exists a clause A ← body ∈ P such that I(body) = U. Accordingly, as a
result, I(A) = ⊥ iff for all A ← body ∈ def(A,P), I(body) = ⊥. We say that I is a
supported models of P if and only if I is a model of P and is supported with respect
to P. Analogously to the two-valued case, completion and supported models coincide
for three-valued logics:
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Example 3.4. Consider program P consisting the following three clauses:

p ← ¬q.
q ← ¬r.
r ← ¬p.

There exists no two-valued stable model of P. If we assume q to be false, then p and r
have to be true. However because we have that r ← ¬p, r has to be false as well, but
then q has to be true, which makes p false again. The completion of P, cP, consists
of the following three equivalences:

p ↔ ¬q.
q ↔ ¬r.
r ↔ ¬p.

P does not have a two-valued model.

Lemma 3.1. For any program P and interpretation I the following two statements are
equivalent:

1. I is a model of the completion of P.

2. I is a supported model of P.

Proof
(1)→ (2): Assume that I is a model of the completion of P. Let A be an atom.

• If A ∈ I>, then there exists an equivalence A ↔ body1 ∨ body2 ∨ . . . bodyn in cP,
where at least for one body i, 1 ≤ i ≤ n, it holds that body i ∈ I>. Therefore, there
has to be a clause A← body i ∈ P such that I(body i) = >, and thus I is supported
with respect to this clause.

• If A 6∈ (I>∪I⊥), then there exists an equivalence A↔ body1∨body2∨· · ·∨bodyn in
cP, 1 ≤ i ≤ n, where for all body i 6∈ I> and for at least one body i 6∈ I⊥.Therefore,
there has to be a clause A ← body i ∈ P such that I(body i) = U, and thus I is
supported with respect to this clause.

(2)→ (1): Assume that I is a supported model of P. Let A be an atom.

• If A ∈ I>, then there exists a clause that supports I, i.e. A← body ∈ P such that
I(body) = >. Accordingly, A is also true in the model of the completion of P.

• If A 6∈ (I> ∪ I⊥), then there is no clause A← body ∈ P such that I(body) = > but
there exists a clause that supports I, i.e. A ← body ∈ P such that I(body) = U.
Accordingly, A is also unknown in the model of the completion of P.

In order to deal with positive cycles, in some approaches cyclic support for atoms is
eliminated: Their truth value is either left unknown or mapped to false. For two-valued
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Program P Stable Models of P Models of cP Models of wcP
P1 = {p← q} 〈∅, {p, q}〉 〈∅, {p, q}〉 〈∅, {p, q}〉

〈∅, ∅〉
〈{p, q}, ∅〉

P2 = {p← ¬q, q ← ¬p} 〈{p}, {q}〉 〈{p}, {q}〉 〈{p}, {q}〉
〈∅, ∅〉 〈∅, ∅〉 〈∅, ∅〉
〈{q}, {p}〉 〈{q}, {p}〉 〈{q}, {p}〉

P3 = {p← q, q ← p} 〈∅, {p, q}〉 〈∅, {p, q}〉 〈∅, {p, q}〉
〈∅, ∅〉 〈∅, ∅〉
〈{p, q}, ∅〉 〈{p, q}, ∅〉

Table 3.1.: Program examples and the corresponding stable models, models of the com-
pletion and models of the weak completion, under the assumption that
At = atoms(P) = {p, q}.

logics, this is captured for example by the notions of grounded models [Elkan, 1990] and
well-supported models [Fages, 1991], that is, models which are supported and assign
> only to atoms that are not involved in positive cycles. Well-supported models in
this sense are exactly the (two-valued) stable models. We now extend this concept to
three-valued logics:

An interpretation I is well-supported with respect to a level mapping ` and a finite set of
clauses P if and only if for all atoms A with I(A) 6= ⊥ there exists a clause A← body ∈ P
such that:

1. if A = >, then I(body) = > and for all literals L in pos(body) it holds that
`(L) < `(A), else,

2. if A = U then I(body) = U.

We call a clause A← body that meets the requirement of the definition for well-supported
interpretations, a supporting justification of A. We say that I is a well-supported model of
P if and only if I is a model of P and is well-supported with respect to P and some level
mapping. The following lemma follows immediately from the definitions of supported
and well-supported models:

Lemma 3.2. Well-supported models of a program P are supported models of P.

For two-valued logics, the correspondence between stable models and well-supported
models has been developed by Elkan [1990] in a stepwise way. We now adapt these steps
to our three-valued setting in the following Lemmas 3.3–3.7. As in the case of completion
and supported models, these propositions apply to both  Lukasiewicz semantics and S-
semantics.
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Lemma 3.3. Any model I of a normal program P is also a model of P|I .

Proof.
Immediate from the definition of P|I : We obtain P|I from P by replacing the body of
clauses with truth value constants corresponding to their value under I.

Lemma 3.4. Any well-supported model I of a normal program P is also a well-supported
model of P|I .

Proof.
The transformation of P given an interpretation I to a reduct of P|I does not change
the semantics of a program with respect to I. On the contrary, the semantics is included
into the program by replacing the bodies of the clauses with their truth values with
respect to I. Therefore, a well-supported model I of P is a well-supported model of P|I .
Let A ← body be a supporting justification of A in P with respect to I and a level
mapping ` such that `(A) < `(L) for each L ∈ pos(body). Given that neg(body) =
¬B1 ∧ . . . ∧ ¬Bn, for n ≥ 0, let body ′ = pos(body) ∧ I(¬B1) ∧ . . . ∧ I(¬Bn). The clause
A← body ′ is then a supporting justification in P|I : It is an element of P|I , it holds that
`(A) < `(L) for each L in pos(body ′) = pos(body) and the semantic requirements are met
since I(body ′) = I(body).

Lemma 3.5. Well-supported models of program are truth-minimal.

Proof.
We show the lemma by contradiction: Let P be a program and let I be a well-supported
model of P with respect to a level mapping `. Assume that I is not truth-minimal, i.e.
there exists a model J of P such that J �t I and J 6= I. Let IU = At \ (I> ∪ I⊥),
i.e. the set of atoms mapped to U by I, and analogously let JU = At \ (J> ∪ J⊥). The
condition J �t I and J 6= I is equivalent to (J> ∪ JU ) ⊂ (I> ∪ IU ). Then, we know
that the set of atoms ∆ = (I> ∪ IU ) \ (J> ∪ JU ) is non-empty, and that for all A ∈ ∆
it holds that J(A) = ⊥ and I(A) 6= ⊥.

Now, let A ∈ ∆ be an atom such that `(A) is minimal among ∆, i.e. the value `(A) is
least among the values of ` of the elements in ∆. Let A ← body ∈ P be a supporting
justification of A with respect to I. Then it holds that I(body) 6= ⊥ and that `(L) < `(A)
for each literal L in pos(body). Because J is a model of P and we have J(A) = ⊥, it
follows that J(body) = ⊥. Thus, there must be a literal L in body such that J(L) = ⊥
and I(L) 6= ⊥. Consider the following two cases:

1. In the case that L is a negative literal ¬B it must hold that J(B) = >. As I is not
truth minimal, i.e. there exists an interpretation J such that J �t I, accordingly,
J> ⊆ I>. It follows that I(B) = > and thus I(L) = ⊥, in contradiction to
I(L) 6= ⊥.

2. In the case that L is a positive literal, we know that J(L) = ⊥, which implies that
L 6∈ (J> ∪ JU ) and we know that I(L) 6= ⊥, which implies that L ∈ (I> ∪ IU ).
Therefore L ∈ ∆. But then `(L) < `(A) contradicts the fact that l(A) is a least
level mapping value among all elements in ∆.
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Lemma 3.6. For any normal program P and interpretation I, the truth-minimal model
of P|I is well-supported.

Proof.
This follows from the fixed point construction of the truth-minimal model of P|I by the
operator Ψ introduced in [Przymusinski, 1990] (see Section 3.2.1). Well-supportedness is
assured by any level mapping, where an atom is assigned level i if its value is determined
in the ith iteration of the application of Ψ.

Lemma 3.7. For any normal program P and interpretation I the following two state-
ments are equivalent:

1. I is a stable model of P.

2. I is a well-supported model of P.

Proof.
(1)→ (2): Let I be a stable model of P, i.e. I is a model of P and it is a truth-minimal
model of P|I . By Lemma 3.6, there exists a level mapping ` such that I is well-supported
with respect to P|I . Let A ← body be a justification of atom A with respect to P|I . It
then holds that I(A) = I(body) 6= ⊥ and `(A) > `(L) for all literals L in body . In P
there must be a clause A ← body ′ from which A ← body has been obtained in forming
the reduct. From the construction of P|I it follows that pos(body ′) = pos(body) and that
I is a model of neg(body ′) and thus A← body ′ is a justification of A with respect to P.
(2) → (1): By Lemma 3.4 and 3.5 any well-supported model I of P is a truth-minimal
model of P|I , and thus a stable model of P.

Lemma 3.8. Any stable model I of P is a model of the completion of P.

Proof.
By Lemma 3.7, any stable model I of P is a well-supported model of P. Accordingly,
by Lemma 3.2, I is a supported model of P. Finally, by Lemma 3.1, I is a model of the
completion of P.

The overview in Table A.1 in Appendix A summarizes the correspondences between
several two- and three-valued semantics, including results reported in the literature so
far. For instance, Fages [1994] showed that for tight logic programs under two-valued
semantics, the stable models coincide with the models of the completion. Przymusinski
[1990] showed that the knowledge-least stable model coincides with the well-founded
model.

3.3. Correspondence

With Theorem 3.9 below we now show that the knowledge-least model of the weak
completion is identical to the well-founded model of the program, after a transformation
that essentially effects simulation of the treatment of undefined atoms under the weak
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completion. This transformation is specified as follows: We assume that At is the union
of disjoint sets At′ and auxatoms = {A′ | A ∈ At′}. For program P we define

Pmod = P+ ∪
⋃

A∈undef(P)

{A← ¬A′, A′ ← ¬A}.

We assume that atoms in auxatoms only occur in programs Pmod resulting from the
indicated transformation. Again, also in this section our considerations apply to both
 Lukasiewicz semantics and S-semantics. The correspondence of the Weak Completion
Semantics and the Well-founded Semantics can now be stated as follows:

Theorem 3.9. For any tight program P and interpretation I the following two state-
ments are equivalent:

1. I is the knowledge-least model of the weak completion of P.

2. I is the well-founded model of Pmod.

In the rest of this section we develop the proof of Theorem 3.9, which involves further
auxiliary definitions and some intermediate results, in particular about the correspond-
ence between the Completion Semantics and the Stable Model Semantics.3 We first note
some properties of Pmod, which follow easily from its definition:

Proposition 3.10. Given a program P, the following holds:

(i) If P is tight, then Pmod is also tight.

(ii) Pmod is a normal program.

If we consider not just knowledge-least models, we have to map between interpretations
that assign to the members of auxatoms values as required by Pmod and interpretations
where the value of members of auxatoms is always unknown. To this end, we define the
two conversions for interpretations I and sets of atoms S. First, Imod

S is the interpretation
〈J>, J⊥〉 where J> (J⊥) contains I> (I⊥) together with the auxiliary atoms A′ if A ∈ S
and A ∈ I⊥ (A ∈ I>):

J> = I> ∪ {A′ | A ∈ S ∩ I⊥} and J⊥ = I⊥ ∪ {A′ | A ∈ S ∩ I>}.

Second, I invmod is the interpretation 〈K>,K⊥〉 where K> (K⊥) contains all atoms which
are in I> (I⊥) but not in auxatoms:

K> = I> \ auxatoms and K⊥ = I⊥ \ auxatoms.

3Pereira, Apaŕıcio, and Alferes [1991a] showed the correspondence between the contradiction free
extended Stable Model Semantics and the extended Stable Model Semantics, an extension of the Well-
founded Semantics by introducing a similar transformation as for Pmod where the transformed program
is extended with the following clauses: A← ¬A′, A′ ← ¬A and A′ ← ¬A′. A further early documented
use of A← ¬A′, A′ ← ¬A was presented by Satoh and Iwayama [1991].
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Note that for all sets of atoms S ⊆ At′, whenever an interpretation I is a model of
{A′ ↔ ¬A | A ∈ S}, then

I = (I invmod)mod
S .

We conclude from I |= Pmod that (I invmod)mod
undef(P) |= P

mod, and that for all interpret-

ations I such that I |= {A′ ↔ ¬A | A ∈ undef(P)} the statements I |= Pmod and
(I invmod)mod

undef(P) |= P
mod are equivalent. We state the following correspondence:

Lemma 3.11. For any program P and interpretation I the following two statements
are equivalent:

1. I is a model of the weak completion of P.

2. Imod
undef(P) is a model of the completion of Pmod.

Proof.
Note that if I is a model of wcP, it is not necessarily the case that I is a model of the
completion of P, because for all A ∈ undef(P) they could be either false, unknown or
true in I. However, by the definition of the completion every model of the completion
of P maps A to false, for all A ∈ undef(P).

Nevertheless, it is easy to see that all atoms, which are neither in undef(P) nor auxiliary
atoms of the form A′ (only occurring in Pmod), are mapped to the same truth values
under I and Imod

undef(P). Therefore, we only need to show that I and Imod
undef(P) correspond

with respect to all A ∈ undef(P) and auxiliary atoms A′.

(1)→ (2): Assume that I is a model of wcP. What needs to be shown, is that Imod
undef(P),

is a model of the completion Pmod. By the definition of Pmod, for all A ∈ undef(P), Pmod

contains the two clauses A ← ¬A′ and A′ ← ¬A. Accordingly, for all A ∈ undef(P),
A and A′ can be either false, unknown or true under any model I of the completion of
Pmod. These models are expressed by Imod

undef(P). We distinguish between three cases.

1. If A ∈ undef(P) and A 6∈ (I> ∪ I⊥), then A and A′ are unknown in Imod
undef(P).

2. If A ∈ undef(P) and A ∈ I>, then A′ is false in Imod
undef(P).

3. If A ∈ undef(P) and A ∈ I⊥, then A′ is true in Imod
undef(P).

The three cases cover all the possible truth values A and A′ and show that in each case
Imod
undef(P) is a model of the completion Pmod.

(2) → (1): Assume that Imod
undef(P) is a model of the completion of Pmod. I is I invmod =

Imod
undef(P)\auxatoms. P is Pmod without the clauses {A← ¬A′, A′ ← ¬A | A ∈ undef(P)}.

As we assume that atoms in auxatoms only occur after the transformation of P in the
programs Pmod, we know that all A′ do not occur in any model of the weak completion of
P. Thus I cannot contain any A′ ∈ auxatoms, which corresponds to I invmod. Under the
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weak completion of P all A ∈ undef(P) can be either true, false or unknown. Accord-
ingly, if Imod

undef(P) is a model of the completion of Pmod, then Imod
undef(P) without auxiliary

atoms, that is I, is a model under the weak completion of P.

The relationship between Imod
S and I invmod indicated above allows to express Lemma 3.11

equivalently also with respect to interpretations I and I invmod:

Lemma 3.12. For any program P and interpretation I such that
I |= {A′ ↔ ¬A | A ∈ undef(P)} the following two statements are equivalent:

1. I invmod is a model of the weak completion of P.

2. I is a model of the completion of Pmod.

We now transfer Lemma 3.11 to knowledge-least models:

Lemma 3.13. For any program P and interpretation I
the following two statements are equivalent:

1. I is the knowledge-least model of the weak completion of P.

2. I is the knowledge-least model of the completion of Pmod.

Proof.
(1) → (2): Assume that I is the knowledge-least model of wcP. By Lemma 3.11 we
know that Imod

undef(P) is a model of the completion of P. By results from [Hölldobler and

Kencana Ramli, 2009b] it follows for the knowledge-least model I of the weak completion
of P, that for all atoms A ∈ undef(P) it holds that I(A) = U. Thus, if I satisfies (1),
then I = Imod

undef(P). Hence, I is also the knowledge-least model of P.

(2)→ (1): Assume that I is the knowledge-least model of the completion of Pmod. Ac-
cording to Lemma 3.12 I invmod is a model of the weak completion of P. As I is knowledge-
least for the completion of Pmod, for all atoms A ∈ undef(P) it holds that I(A) = U. Ac-
cordingly, for all auxiliary atoms occurring in Pmod A′ 6∈ (I>∪I⊥). But then I = I invmod

and I is also a knowledge-least model of the completion of P.

The following proposition follows immediately from Lemma 3.13 and from the model
intersection property for the Weak Completion Semantics shown in [Hölldobler and Ken-
cana Ramli, 2009a] and discussed in Chapter 2.3:

Proposition 3.14. The knowledge-least model of the completion of Pmod is
the intersection of all models of the completion of Pmod.

Fages [1994] showed that under two-valued semantics the models of the completion of a
normal logic program P coincide with the two-valued stable models of P if P is tight. In
the following lemma, we transfer this result, which is sometimes called Fages’ theorem,
to three-valued semantics.
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Lemma 3.15. For any tight and normal program P and interpretation I
the following two statements are equivalent:

1. I is a model of the completion of P.

2. I is a stable model of P.

Proof.
(1)→ (2): This follows immediately from Lemma 3.8.
(2)→ (1): By contradiction: Let P be a tight program, I a model of the completion of
P, and assume that I is not a stable model. By Lemma 3.1 and 3.7, interpretation I
is supported but not well-supported. Then for all level mappings ` there exists an
atom A 6∈ I⊥ such that for all clauses A ← body ∈ P with L in pos(body) such that
`(L) < `(A) does not hold. Because I is a model of the completion of P such a clause
must indeed exist. But then there is a positive cycle in the program, in contradiction to
the precondition that P is tight.

In the following corollary, we instantiate Lemma 3.15 with Pmod:

Corollary 3.16. For any tight and normal program P and interpretation I
the following two statements are equivalent:

1. I is a model of the completion of Pmod.

2. I is a stable model of Pmod.

Proof.
By Lemma 3.10 it holds for all tight programs P that Pmod is normal and tight. The
corollary then is an immediate consequence of Lemma 3.15.

The following proposition follows immediately from Proposition 3.14 and from Corol-
lary 3.16:

Proposition 3.17. Given that P is a tight and normal program, the knowledge-least
stable model of Pmod is the intersection of all stable models of Pmod.

In the following corollary, restrict the considered interpretations to knowledge-least mod-
els.

Corollary 3.18. For any tight and normal program P and interpretation I
the following two statements are equivalent:

1. I is the knowledge-least model of the completion of Pmod.

2. I is the knowledge-least stable model of Pmod.

Proof.
Corollary 3.16 states that the set of stable models of Pmod and the set of models of the
completion of Pmod are the same. This Corollary follows immediately given Proposi-
tion 3.14 and Proposition 3.17.
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Przymusinski [1990] has shown that knowledge-least stable models coincide with well-
founded models:

Lemma 3.19. For any normal program P and interpretation I
the following two statements are equivalent:

1. I is the knowledge-least stable model of P.

2. I is the well-founded model of P.

In the following corollary we instantiate this result by Przymusinski with Pmod.

Corollary 3.20. For any program P and interpretation I
the following two statements are equivalent:

1. I is the knowledge-least stable model of Pmod.

2. I is the well-founded model of Pmod.

Proof.
Follows as corollary from Lemma 3.10(ii) and Lemma 3.19.

Finally we combine the material developed in this section to prove Theorem 3.9:

Proof of Theorem 3.9.
Let P be a tight program and let I be an interpretation. Then the following four
statements are equivalent:

1. I is the knowledge-least model of the weak completion of P.

2. I is the knowledge-least model of the completion of Pmod (by Lemma 3.13).

3. I is the knowledge-least stable model of Pmod

(by Lemma 3.10(i) and Corollary 3.18).

4. I is the well-founded model of Pmod (by Corollary 3.20).

Appendix B shows the correspondence between the knowledge-least model of the weak
completion and the well-founded model with another proof technique, where level map-
ping characterizations of both semantics are directly compared. While this only shows
the correspondences between knowledge-least models, with the techniques applied in this
section, we have been able to prove results that apply to three-valued models in general,
in particular Lemma 3.11 and 3.15.

3.4. Evaluation: A Psychological Study

There are two main differences between the Weak Completion and the Well-founded
Semantics: First, how they deal with positive cycles in logic programs and, second, that
Well-founded Semantics adopts the closed-world assumption for undefined atoms. While
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under the Well-founded Semantics atoms are false if they are not facts and involved in
positive cycles, they stay unknown under the Weak Completion Semantics. A natural
way to determine which semantics is more adequate for human reasoning, is to investigate
which conclusions are typically drawn by human reasoners with respect to (positive)
cyclic conditionals. For this purpose, we carried out a psychological study.

Participants We tested 35 participants on an online website (Amazon Mechanical
Turk). They were paid for their participation.

Material, Procedure and Design Participants were presented with 17 problems con-
sisting of cyclic conditionals of length 1, 2 and 3. Consider the following cyclic conditional
of length 1:

If they open the window, then they open the window.

Participants were asked about the consequences of this conditional and could choose
between one of the following three offered conclusions:

� They open the window.

� They do not open the window.

� It is unknown whether they open the window.

Another example is the following positive cyclic conditional of length 3:

If they open the window, then it is cold.
If it is cold, then they wear their jackets.

If they wear their jackets, then they open the window.

We investigated three kinds of facts, namely whether they open the window, whether
it is cold, and whether they wear their jacket; each of them under the three conditions
positive, negative, and unknown.

Results and Discussion The results summarized in Table 3.2 indicate two kinds of
groups each taking a different interpretation of the statements: One group consists of
participants understanding the programs as a conditional, which in our approach, for
positive cycles of length one, is modeled by the following clause:

p ← p ∧ ¬ab.
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Length Chosen Answer in Percentage Mean Response
of Cycle Positive Negative Unknown Times in Msec4

1 75 0 25 5267
2 60 3 37 11516
3 55 4 41 11680

Table 3.2.: The results of the participants’ answers.

For cycles of length 2, it is modeled by the following two clauses:

p ← q ∧ ¬ab1.
q ← p ∧ ¬ab2.

For cycles of length 3 it is modeled by three clauses, analogously. If we assume that
nothing abnormal is known, (i.e. ab ← ⊥), then the least model of the weak comple-
tion is 〈∅, {ab}〉. In contrast, the Well-founded Semantics always and independently
of the truth value of ab concludes ¬p, a conclusion almost no participant had drawn.
The other interpretation, where participants’ chose to give a positive answer, apparently
treats the statement as a fact, p← >. If we consider this as the result of the first step of
the Stenning and van Lambalgen procedure (reasoning towards an adequate represent-
ation), then both, the Weak Completion and the Well-founded Semantics, seem to be
adequate. The findings show that the chosen answers associated with facts decrease from
cycles of length 1 (75% positive answers) to cycles of length 3 (55% positive answers)
accompanied by a raise in choosing the truth-value unknown. The response times indic-
ate a higher degree of uncertainty in case of problems involving cycles of length 2 and 3
in contrast to the simpler problems involving a cycle of length 1. Taken together, the
increase in choosing the truth value unknown and the increase in response time shows an
increasing likelihood of the participants to respond in accord with the Weak Completion
Semantics.

When participants were given conditionals with negative cycles of the form

p ← ¬q ∧ ¬ab1. ab1 ← ⊥.
q ← ¬p ∧ ¬ab2. ab2 ← ⊥.

then the majority concluded that the given facts were unknown. This result corresponds
to both the Weak Completion and the Well-founded Semantics.

Summing up, it seems that when we consider the two representational forms for the
conditionals, the Weak Completion Semantics can better directly explain and predict
participants’ responses than the Well-founded Semantics. As discussed by Wernhard
[2012], it would be interesting to further examine whether there are real world situations

4Time after having read the conditionals.
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in which humans actually reason with cycles and how they extract knowledge based on
these seemingly meaningless data.5

3.5. Conclusion

In order to show the correspondence between the Weak Completion Semantics and the
Well-founded Semantics, we extended the two-valued characterization for supported and
well-supported models to three-valued logics and examined quite generally the properties
of the Weak Completion, the Completion and the Stable Model Semantics. When we
restrict ourselves to tight logic programs and apply some technical modifications on
the program, the Weak Completion Semantics and the Partial Stable Model Semantics,
which rests on the Well-founded Semantics, yield the same results.

This gives us insights into the behavior of the considered semantics. Undefined atoms,
i.e. there is no clause in which these atoms are the head of, are always false under the
(Partial) Stable Model Semantics. The same holds for atoms that can only be justified
through positive cycles. If the only possibility for justification available is through some
cycle that involves negation, atoms are unknown in the well-founded model.

In the context of aiming at adequately modeling human reasoning, it is natural to ask
if these technical properties are somehow reflected by human behavior. We give a first
attempt at an evaluation in Section 3.4. The empirical results obtained so far indicate
that, in the presence of positive circular dependencies, people tend to infer unknown
in contrast to false. This result is in the spirit of the Weak Completion Semantics in
contrast to what is suggested by the direct application of the Well-founded or the Stable
Model Semantics.

5According to Lúıs Moniz Pereira, this data is not so meaningless: The premise of a positive loop
may be seen as an abduction (viz ’if they open the window’), hence it allows itself as a conclusion.
As the length of the cycle increases that abduction is further away and not recalled as well. (personal
communication, February 11, 2016)
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One of the properties of the Weak Completion Semantics is the open world assump-
tion with respect to undefined atoms. This is a characteristic that is different to other
common Logic Programming semantics, a property that seems suitable when modeling
human reasoning. However, we have noticed that the famous Tweety default reasoning
example, originally introduced by Reiter, cannot be modeled directly under the Weak
Completion Semantics. To address the issue and taking Pereira and Pinto’s inspection
points as inspiration, we develop a notion of contextual reasoning for which we intro-
duce contextual logic programs. We then reconsider the formal properties of the Weak
Completion Semantics with respect to these and verify whether they still hold. Finally,
we present contextual abduction and show that not only the original Tweety example
can be nicely modeled within the new approach, but that we can specify the relations
between observations and their contextual explanations, such as contextual side-effects,
(strict) possible side-effects, contextual contestable side-effects, and (jointly supported)
contextual relevant consequences.1

4.1. Introduction

Consider the famous Tweety example from Reiter [1980]: Usually birds can fly. Tweety
and Jerry are birds. Adapted from Pfly of the introduction in Chapter 3, this example can
be encoded by the following (datalog) program, P1

fly, where ab stands for abnormal:

can fly(X) ← bird(X) ∧ ¬ab(X).
ab(X) ← ⊥.

bird(tweety) ← >.
bird(jerry) ← >.

We derive can fly(tweety) and can fly(jerry) as nothing is abnormal with respect to
Tweety and Jerry.

1The original idea for this chapter has been published in [Pereira, Dietz, and Hölldobler, 2014a].
The formalization within the Weak Completion Semantics presented in Section 4.2,4.3 and 4.4 has been
published in [Dietz Saldanha, Hölldobler, and Pereira, 2017]. The results of Section 4.5 have been
published in [Pereira, Dietz, and Hölldobler, 2014b].
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We modify the example by replacing the first statement with: Usually birds can fly, but
kiwis and penguins cannot. This is encoded by P2

fly:

can fly(X) ← bird(X) ∧ ¬ab(X).
ab(X) ← kiwi(X).
ab(X) ← penguin(X).

bird(tweety) ← >.
bird(jerry) ← >.

The ground instances of the weak completion of this program are as follows:

can fly(tweety) ↔ bird(tweety) ∧ ¬ab(tweety).
can fly(jerry) ↔ bird(jerry) ∧ ¬ab(jerry).

ab(tweety) ↔ kiwi(tweety) ∨ penguin(tweety).
ab(jerry) ↔ kiwi(jerry) ∨ penguin(jerry).

bird(tweety) ↔ >.
bird(jerry) ↔ >.

The least model of the weak completion of P2
fly is

〈{bird(tweety), bird(jerry)}, ∅〉.

Different than under Clark’s [1978] Completion Semantics, the Stable Model Semantics [Gelf-
ond and Lifschitz, 1988] and the Well-Founded Semantics [Van Gelder, Ross, and Schlipf,
1991], the closed-world assumption does not apply for undefined atoms, i.e. kiwi(tweety),
penguin(tweety), kiwi(jerry) and penguin(jerry) are not false, but stay unknown under
the Weak Completion Semantics. In other words, they are neither true nor false. This
leads to the following consequence under WCS: As we don’t know whether Tweety and
Jerry are penguins or kiwis, we cannot derive that they can fly. Even if we model this
case with the help of abduction, e.g. we observe that Jerry flies,

O = {can fly(jerry)},

The set of abducibles AP2
fly

consists of the following facts and assumptions:

kiwi(tweety) ← ⊥. penguin(tweety) ← ⊥.
kiwi(tweety) ← >. penguin(tweety) ← >.

kiwi(jerry) ← ⊥. penguin(jerry) ← ⊥.
kiwi(jerry) ← >. penguin(jerry) ← >.

Considering the abductive framework 〈P2
fly,AP2

fly
, ∅, |=wcs〉 and O = {can fly(jerry)}

we obtain the minimal explanation E = {kiwi(jerry) ← ⊥, penguin(jerry) ← ⊥}. In
other words, in order to explain the observation that Jerry can fly we have to assume
Jerry does not belong to any of the known exceptions. The question that arises already
in [Reiter, 1980] is whether and how we can avoid the explicit investigation into all
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L ctxt(L)

> >
⊥ ⊥
U ⊥

Table 4.1.: Truth table for ctxt(L) where L is a literal.

known exceptions and conclude instead that Jerry can fly by default? In other words,
do humans normally, knowing the statements mentioned above and observing that Jerry
can fly, accept this observation as default or do they accept this observation only after
explicitly reasoning just in case Jerry is not a kiwi and Jerry is not a penguin?

We want to avoid explicitly stating that all exception cases are false such as the Com-
pletion Semantics, the Stable Model Semantics or Well-Founded Semantics will do. We
don’t think that humans actively apply the closed world assumption in reality, i.e. that
they explicitly add negation to the cases they don’t know anything about. Instead, we
assume that humans, if they are not for some reason aware of exceptions, simply ignore
these cases. In other words, they do not consciously become aware of all exceptions
when they are reasoning.2 Accordingly, when modeling these cases with logic programs,
we should leave the truth values of these exception cases unknown and find a mechanism
that just ignores them. At the moment, we cannot express this syntactically in WCS
programs.

In the next section, we present contextual programs and verify whether the same prop-
erties of the ΦP operator hold for contextual programs, as for the programs we have
considered so far in our modeling of applications. Section 4.3 presents contextual ab-
ductive reasoning and specifies the notion of contextual side-effects. We finish with
conclusions, including open questions.

4.2. Contextual Programs

In [Pereira and Pinto, 2011], the authors introduced inspection points: inspect(L) can
only be abduced to explain some observation in case L has been abduced to explain
some other observation: A set of literals is only an explanation if for each inspect(L) we
find that L is in the explanation.3 Pereira and Pinto employ the concepts of a consumer,
represented by the inspection point inspect(L), which must have a matching producer
corresponding to the usual abducibles, thus L.

Inspired by the idea underlying inspection points, we introduce a new truth-functional
operator ctxt (called context), whose meaning is specified in Table 4.1. As we will see

2Currently, we know of at least 40 species of birds that can’t fly.
3Note that, different than in this thesis, Pereira and Pinto define the set of abducibles as a set of

literals.
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Example 4.1. Consider the program P consisting of the following two clauses:

p ← q.
p ← ⊥.

Consider the weak completion of P:

p ↔ q ∨ ⊥.

which is semantically equivalent to

p ↔ q.

The least model of the weak completion of P is

〈∅, ∅〉.

The assumption about p has been overridden by the first clause of P and does not
have any effect at all.

later, with the help of ctxt, preferences on explanations, among other things, can be
syntactically specified. These preferences are context-dependent.

The interpretation of ctxt is specified in Table 4.1 and can be understood as a mapping
from three-valuedness to two-valuedness. It is one possible way on how to understand
negation as failure under three-valued semantics. The idea of negation as failure is to
derive the negation of A in case we fail to derive A [Clark, 1978]. Negation as failure
does not exist under the Weak Completion Semantics, quite the contrary is the case:
Example 4.1 shows that undefined bodies are prioritized over assumptions. Under the
Weak Completion Semantics, unknown information is always prioritized over negative
information.

We extend the definition for logic programs from Chapter 2 by allowing expressions of
the form ctxt(L) in the body of the clauses. Formally, contextual clauses are expressions
of the form

A ← L1 ∧ . . . ∧ Lm ∧ ctxt(Lm+1) ∧ . . . ∧ ctxt(Lm+p),

where m, p ∈ N such that m + p ≥ 1. A contextual datalog program is a finite set of
contextual clauses, facts and assumptions. Example 4.2 shows a contextual program with
the ctxt operator and the corresponding truth tables which indicate the corresponding
models of P and the models of wcP. Example 4.3 shows a program and a contextual
program and their corresponding least fixed points.

By means of ctxt, the common syntactical form for integrity constraints can be re-
established: IC comprises clauses of the form ⊥ ← body , where body is a conjunction of
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Example 4.2. Consider the program P, consisting of exactly one clause:

p ← ctxt(q).

Model of wcP Model of P wcP P p q ctxt(q)

> > > > >
⊥ > > U ⊥
⊥ > > ⊥ ⊥

⊥ ⊥ U > >
U > U U ⊥
U > U ⊥ ⊥

⊥ ⊥ ⊥ > >
> > ⊥ U ⊥
> > ⊥ ⊥ ⊥

indicates whether the interpretation is a model of P or wcP, respectively.

Example 4.3. Consider the following two programs consisting each of one clause
where only P2 contains a ctxt operator in the body of the clause. Additionally,
consider their weak completion:

P1 = {p← ¬q}, P2 = {p← ctxt(¬q)},
wcP1 = {p↔ ¬q}, wcP2 = {p↔ ctxt(¬q)}.

Starting with I0 = 〈∅, ∅〉 we compute the corresponding least fixed points of ΦP :

ΦP1(I0) = 〈∅, ∅〉 = I0, ΦP2(I0) = 〈∅, {p}〉 = I1,
ΦP2(I1) = 〈∅, {p}〉 = I1.

Here, ctxt(¬q) in P2 behaves as negation as failure:
Nothing is known about q, therefore we derive that p is false in P2.
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L1∧ . . .∧Lm∧ ctxt(Lm+1)∧ . . .∧ ctxt(Lm+p), m, p ∈ N and m+p ≥ 1. Given P and IC,
P satisfies IC iff for all ⊥ ← body ∈ IC, we find that under the least  L-model of P,
MP , MP(body) = ⊥. Because ctxt is allowed in the body of these clauses, the same
understanding as we discussed in Chapter 2.4 can be maintained: If a literal L should
be either unknown or false, then we can simply write ⊥ ← ctxt(L). In the remainder
of this Chapter, we assume that the underlying semantics of these contextual programs
is  Lukasiewicz semantics as defined in Chapter 2 extended by the truth table for ctxt
defined in Table 4.1.

Although the ΦP operator admits a least fixed point for P2 in Example 4.3, we need to
check if this holds in general, i.e. whether there exists a least fixed point for all contextual
programs under the modified logic. The Knaster-Tarski theorem ensures that every
monotonic mapping on a complete partial order has a least fixed point [Tarski, 1955].

Theorem 4.1. Let C be a complete partial order and f be a monotonic mapping on C.
Then f has a least fixed point.

A proof can be found in [Davey and Priestley, 2002].

Kencana Ramli [2009] has shown that the space of interpretations I is a complete partial
order with respect to the set inclusion ⊆ and that ΦP is monotonic with respect to all
programs P, i.e. for all programs P and all interpretations I, J ∈ I

I ⊆ J implies ΦP(I) ⊆ ΦP(J).

According to the Knaster-Tarski Fixpoint Theorem, the ΦP operator has a least fixed
point for all programs P. Is ΦP monotonic for all contextual programs P? As Ex-
ample 4.4 shows, this is not the case. Furthermore, as Example 4.5 shows, ΦP does not
have a (least) fixed point for every program. Nevertheless, we can possibly guarantee
a least fixed point for a particular class of contextual programs. We will follow an idea
first developed by Fitting [1994] for programs under Kripke-Kleene logic. The idea was
adapted to programs under the Weak Completion Semantics in [Hölldobler and Kencana
Ramli, 2009c, Kencana Ramli, 2009].

The Banach Contraction Theorem states that every contraction mapping has a unique
fixed point. The idea is to show that ΦP is a contraction on an appropriately defined
metric space. Unfortunately, in general semantic operators are not contractions and as
Example 4.5 shows, the ΦP operator does not necessarily have a least fixed point for
contextual programs. The usual restriction to acceptable programs for the Fitting [1994]
operator can not be applied to the ΦP operator [Hölldobler and Kencana Ramli, 2009c,
Kencana Ramli, 2009]. However, as has been shown in [Hölldobler and Kencana Ramli,
2009c, Kencana Ramli, 2009], the ΦP operator is a contraction for all acyclic programs.
Analogously, we will show, that the ΦP operator is a contraction for all acyclic contextual
programs.

Before we can show that every acyclic contextual program is a contraction, we need to
introduce some definitions.
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Example 4.4. Consider the program P consisting of three clauses:

p ← q ∧ ctxt(r).
r ← ¬s.
s ← ctxt(t).

Iterating ΦP starting with the empty interpretation I0 = 〈∅, ∅〉 results in

ΦP(I0) = 〈∅, {p, s}〉 = I1,
ΦP(I1) = 〈{r}, {p, s}〉 = I2,
ΦP(I2) = 〈{r}, {s}〉 = I3,
ΦP(I3) = 〈{r}, {s}〉 = lfp (ΦP).

I1 ⊆ I2, but ΦP(I1) ⊆ ΦP(I2) does not hold. ΦP is not monotonic!

Example 4.5. Consider program P which consists of exactly one clause:

p← ctxt(¬p).

Let us try to compute the least fixed point of ΦP starting with I0 = 〈∅, ∅〉:

ΦP(I0) = 〈∅, {p}〉 = I1,

ΦP(I1) = 〈{p}, ∅〉 = I2,

ΦP(I2) = 〈{∅, {p}〉 = I3,

ΦP(I3) = 〈∅, {p}〉 = I1 . . .

For some contextual programs, ΦP does not have a (least) fixed point.
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A metric or a distance function on a space M is a mapping

d :M×M 7→ R

such that

d(x, y) = 0 if and only if x = y (m1)

d(x, y) = d(y, x) (m2)

d(x, y) ≤ d(x, z) + d(z, y) (m3)

A metric space M is complete if every Cauchy sequence converges.

A sequence s1, s2, s3, . . . is Cauchy if, for every ε > 0 there is an integer N such that
for all n,m ≥ N, d(sn, sm) ≤ ε. The sequence converges if there is an s such that, for
every ε > 0, there is an integer N such that for all n ≥ N, d(sn, s) ≤ ε.

Let M be a metric space: A mapping

f :M 7→M

is a contraction if for all x, y ∈M there exists a k ∈ R with 0 < k < 1 such that

d(f(x), f(y)) ≤ k · d(x, y).

The Banach Contraction Theorem ensures that every contraction has a unique fixed
point [Banach, 1922].

Theorem 4.2. A contraction mapping f on a complete metric space has a unique fixed
point. Further, the sequence x, f(x), f(f(x)), . . . converges to this fixed point for any x.

We specify acyclic contextual programs through a level mapping characterization, which
we have already done in Chapter 3 for programs. A level mapping for a contextual
program P is a function ` which assigns to each ground atom a natural number. It is
extended to ground literals and expressions of the form ctxt(L) as follows, where L is a
ground literal and A a ground atom: `(¬A) = `(A) and `(ctxt(L)) = `(L). Additionally,
` is extended to the truth-value constants > and ⊥, where `(>) = `(⊥) = 0. A
contextual program P is acyclic with respect to a level mapping ` iff for every A ←
L1 ∧ . . . ∧ Lm ∧ ctxt(Lm+1) ∧ . . . ∧ ctxt(Lm+p) ∈ P and for all i, 0 ≤ i ≤ m, we find
that `(A) > `(Li) and for all j, m+ 1 ≤ j ≤ m+ p, we find that `(A) > `(ctxt(Lj)). A
contextual program P is acyclic iff it is acyclic with respect to some level mapping `.

Consider again P in Example 4.4: With `(t) = 1, `(s) = 2, `(q) = `(r) = 3 and `(p) = 4,
we find that P1 is acyclic. On the other hand, P in Example 4.5 is not acyclic as we
find that `(p) = `(¬p) = `(ctxt(¬p)).

Kencana Ramli [2009] showed that the space of all three-valued interpretations I is a
metric by specifying such metrics based on level mappings. Let ` be a level mapping
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and I and J be interpretations. The function d` : I × I 7→ R is defined as

d`(I, J) =


(1

2)n I 6= J and I(A) = J(A) 6= U for all A with `(A) < n and,

for some A with `(A) = n, I(A) 6= J(A) or I(A) = J(A) = U,

0 otherwise.

Proposition 4.3 (Kencana Ramli [2009]). d` is a metric.

Proposition 4.4 (Kencana Ramli [2009]). The space of three-valued interpretations I
using the metric d` is a complete metric space.

Theorem 4.5. Let P be an acyclic contextual program with respect to the level map-
ping `. Then ΦP is a contraction on (I, d`).

Proof.
Given that P is a contextual program, we will show that

d`(ΦP(I),ΦP(J)) ≤ 1

2
· d`(I, J). (1)

If I = J , then ΦP(I) = ΦP(J), d`(ΦP(I),ΦP(J)) = d`(I, J) = 0, and (1) holds.
If I 6= J , then since ` is total, we obtain d`(I, J) = 1

2

n
for some n ∈ N. We will show

that d`(ΦP(I),ΦP(J)) ≤ (1
2)n+1, i.e. for all ground atoms A ∈ gP, with `(A) ≤ n we

have that ΦP(I)(A) = ΦP(J)(A).
Let us take some A with `(A) ≤ n and let def(A,P) be the set of all clauses in gP where
A is the head of. As P is acyclic, for any clause

A← L1 ∧ . . . ∧ Lm ∧ ctxt(Lm+1) ∧ . . . ∧ ctxt(Lm+p) ∈ def(A,P)

for all i, 1 ≤ i ≤ m we obtain
`(Li) < `(A) ≤ n,

and for all j, m+ 1 ≤ j ≤ m+ p, we obtain

`(Lj) < `(A) ≤ n.

We know that d`(I, J) ≤ (1
2)n, so for all i, 1 ≤ i ≤ m, I(Li) = J(Li), and for all j,m+1 ≤

j ≤ m+ p,
I(Lj) = J(Lj).

Therefore, I and J interpret identically all bodies of clauses with A in the head. Con-
sequently, ΦP(I)(A) = ΦP(J)(A).

Corollary 4.6. Let P be an acyclic contextual logic program. Then ΦP has a unique
fixed point. Further, this fixed point can be reached by iterating a finite number of times
starting from any interpretation.
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Proof.

1. By Proposition 4.4 the space of three-valued interpretations I using the
metric d` is a complete metric space.

2. By Theorem 4.5, ΦP is a contraction for acyclic contextual P on I using the metric
d`.

3. By 1., 2. and the Banach Contraction Theorem, Theorem 4.2, for any acyclic
contextual P, ΦP has a unique fixed point. Further, this fixed point that can be
reached by starting from any interpretation.

4. By 3. and because P is finite, ΦP can be reached in a finite number of times
starting from any interpretation.

The proof of the following result for contextual P is analogous to the proof for P in [Ken-
cana Ramli, 2009].

Proposition 4.7. Let P be an acyclic contextual program.
Then lfp (ΦP) is a model of wcP.

Proof.
Assume that lfp ΦP = 〈I>, I⊥〉 and A↔ F ∈ wcP. We distinguish between 3 cases:

1. If I(A) = >, then according to the definition of ΦP , there exists a clause A ←
L1 ∧ · · · ∧ Lm ∧ ctxt(Lm+1) ∧ · · · ∧ ctxt(Lm+p), such that for all i, 1 ≤ i ≤ m + p,
I(Li) = >. As L1 ∧ · · · ∧Lm ∧ ctxt(Lm+1)∧ · · · ∧ ctxt(Lm+p) is one of the disjuncts
in F , I(F ) = >, and thus I(A↔ F ) = >.

2. If I(A) = U, then according to the definition of ΦP , there is no clause A← L1∧· · ·∧
Lm∧ctxt(Lm+1)∧· · ·∧ctxt(Lm+p), such that for all i, 1 ≤ i ≤ m+p, I(Li) = > and
there exists at least one clause A← L1 ∧ · · · ∧Lm ∧ ctxt(Lm+1)∧ · · · ∧ ctxt(Lm+p),
such that for all i, 1 ≤ i ≤ m + p, I(Li) 6= ⊥ and there exists j, 1 ≤ j ≤ m,
I(Lj) = U. As none of the disjuncts in F is true, and at least one is unknown,
I(F ) = U and thus I(A↔ F ) = >.

3. If I(A) = ⊥, then according to the definition of ΦP , there exists a clause A ←
L1∧· · ·∧Lm∧ctxt(Lm+1)∧· · ·∧ctxt(Lm+p) and for all clauses A← L1∧· · ·∧Lm∧
ctxt(Lm+1) ∧ · · · ∧ ctxt(Lm+p), there exists i, 1 ≤ i ≤ m + p such that I(Li) = ⊥
or there exists j, m + 1 ≤ j ≤ m + p, such that I(Lj) 6= >. As all disjuncts in F
are false, I(F ) = ⊥ and thus I(A↔ F ) = >.

The least fixed point of ΦP is identical to the least model of the weak completion of
(non-contextual) P, which always exists [Hölldobler and Kencana Ramli, 2009a]. As
Example 4.6 shows, this property does not extend to contextual programs: The weak
completion of contextual programs can have more than one minimal model. In the sequel
of this chapter, |=wcs is defined as P |=wcs F iff P is acyclic and lfp ΦP |= F .
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Example 4.6. Consider P consisting of the following three clauses:

s ← ¬r.
r ← ¬p ∧ q.
q ← ctxt(¬p).

Its weak completion, wcP, consists of the following equivalences:

s ↔ ¬r.
r ↔ ¬p ∧ q.
q ↔ ctxt(¬p)

The least fixed point of ΦP is 〈{s}, {q, r}〉, which is a minimal model of wcP. However,
yet another minimal model of wcP is 〈{q, r}, {p, s}〉.

Example 4.7. The program P consists of the following two clauses:

p ← r.
p ← ctxt(q).

p depends on r, p depends on ¬r, ¬p depends on r and ¬p depends on ¬r.
However, p does not depend on q, neither on ctxt(q).

4.3. Contextual Abduction

How can we prefer explanations that explain the normal cases to explanations that
explain the exception cases? How can we express that some explanations have to be
considered only if there is some evidence for considering the exception cases? We want to
avoid having to consider all explanations if there is no evidence for considering exception
cases. On the other hand, as illustrated in the introduction, we don’t want to state that
all exception cases are false, as, given P1

fly, we must do for

O = {can fly(jerry)}.

Consider the following definition for restricted dependency in contextual programs:
Given a clause A← L1 ∧ . . .∧Lm ∧ ctxt(Lm+1)∧ . . .∧ ctxt(Lm+p) for all i, 1 ≤ i ≤ m, A
‘strongly depends on’ Li. The ‘strongly depends on’ relation is transitive. If A strongly
depends on Li, then ¬A strongly depends on Li. Furthermore, if Li = B, then A strongly
depends on ¬B and if Li = ¬B, then A strongly depends on B. Example 4.7 clarifies
this notion of dependency.

A contextual abductive framework is a quadruple 〈P,A, IC, |=wcs〉, consisting of an
acyclic contextual program P, a set of abducibles A, a set of integrity constraints IC,
and the entailment relation |=wcs , where P |=wcs F if and only if P is acyclic and

73
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lfp ΦP(F ) = >. The set of abducibles is defined as in Section 2.5:

AP = {A← > | A ∈ undef(P)} ∪ {A← ⊥ | A ∈ undef(P)}.

Let observation O be a non-empty set of ground literals. Note that O does not contain
formulas of the form ctxt(L).

Definition 4.1. Given the contextual abductive framework 〈P,A, IC, |=wcs〉, E is a con-
textual explanation of O given P and IC if and only if

1. O is explained by E given P and IC

2. for all A ← > ∈ E and for all A ← ⊥ ∈ E there exists an L ∈ O, such that L
strongly depends on A.

Note that, compared to explanations, contextual explanations have an additional re-
quirement: There has to be a literal in the observation, which depends on some atom
for which there exists a fact or assumption in E . We distinguish between skeptical and
credulous reasoning in the usual way:

F contextually follows skeptically from P, IC and Oiff O can be contextually explained
given P and IC, and for all E for O it holds that P ∪ E |=wcs F .

F contextually follows credulously from P, IC and O iff there exists an E that contex-
tually explains O and it holds that P ∪ E |=wcs F .

Whereas in [Pereira and Pinto, 2011], inspection points are meta-predicates for which a
meta-abduction procedure is required, here, ctxt is part of the logic, with which we can
naturally extend abduction. Pereira and Pinto’s intuition of the concepts of consumers
and producers is still assured as Example 4.8 shows: Given the first clause in P, q
cannot be produced, i.e. when (only) p is observed, then we cannot abduce {q ← >}
as a contextual explanation. On the other hand, given the third clause of P, q can
be produced, i.e. when t is observed, then we can abduce the contextual explanation
E = {q ← >}. This explanation in turn can be consumed by ctxt(q) in the first clause,
i.e. ctxt(q) is true given E , and thus p will be true as well.

4.4. Tweety and Jerry

Let us adapt P2
fly from the introduction such that all exceptions, viz. X being a penguin

or a kiwi, are evaluated with respect to their context, ctxt, instead. The new program
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Example 4.8. Consider the program P consisting of the following clauses:

p ← ctxt(q).
p ← r.
t ← q.

Consider the following two observations Op = {p} and Op,t = {p, t}.
AP consists of the following four clauses:

q ← >.
q ← ⊥.
r ← >.
r ← ⊥.

Op can only be contextually explained by E1 = {r ← >} but not by {ctxt(q) ← >}
because ctxt(q)← > is not in AP . Furthermore, Op cannot be contextually explained
by q ← > because p does not depend on q! On the other hand, Op,t has only the
following (minimal) explanation:

E2 = {q ← >}.

E2 is a valid contextual explanation for p ∈ Op,t, as ctxt(q) is true because of q ← >.
q ← > is allowed to be in E2 because t ∈ Op,t depends on q.
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P3
fly consists of the following clauses:

can fly(X) ← bird(X) ∧ ¬ab1(X).
ab1(X) ← ctxt(kiwi(X)).
ab1(X) ← ctxt(penguin(X)).

bird(tweety) ← >.
bird(jerry) ← >.

The least model of the weak completion of P3
fly = 〈I>, I⊥〉 is

I> = {bird(tweety), bird(jerry), can fly(tweety), can fly(jerry)},
I⊥ = {ab1(tweety), ab1(jerry)}.

This model already entails the observation O = {can fly(jerry)} and, thus, O does not
need any explanation beyond the minimal empty one.

4.4.1. More about Tweety

Consider the following additional (very simplified) information about birds: Usually
birds with feathers like hair are kiwis. Usually birds that are black and white are pen-
guins. Usually, kiwis and penguins don’t live in Europe. We encode this information by
extending P3

fly with the following clauses:

P4
fly = P3

fly ∪ { kiwi(X) ← bird(X) ∧ featherslikeHair(X) ∧ ¬ab2(X),

penguin(X) ← bird(X) ∧ blackAndWhite(X) ∧ ¬ab3(X),
ab2(X) ← ctxt(inEurope(X)) ∧ ab4(X),
ab3(X) ← ctxt(inEurope(X)) ∧ ab5(X),
ab4(X) ← ⊥,
ab5(X) ← ⊥ }.

The least model of the weak completion of P4
fly = 〈I>, I⊥〉 is

I> = {bird(tweety), bird(jerry), can fly(jerry), can fly(tweety) },
I⊥ = {abi(tweety) | 1 ≤ i ≤ 5} ∪ {abi(jerry) | 1 ≤ i ≤ 5 }.

We observe that Tweety cannot fly and that Tweety has feathers like hair:

Ot = {¬can fly(tweety), featherslikeHair(tweety)}.
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The set of abducibles, AP4
fly

, is:

AP2
fly
∪ { featherslikeHair(jerry) ← >, featherslikeHair(jerry) ← ⊥,

featherslikeHair(tweety) ← >, featherslikeHair(tweety) ← ⊥,
blackAndWhite(jerry) ← >, blackAndWhite(jerry) ← ⊥,

blackAndWhite(tweety) ← >, blackAndWhite(tweety) ← ⊥,
inEurope(jerry) ← >, inEurope(jerry) ← ⊥,

inEurope(tweety) ← >, inEurope(tweety) ← ⊥ }.

Et = {featherslikeHair(tweety) ← >} is the only (minimal) contextual explanation for
Ot . The least model of the weak completion of P4

fly∪Et , lm wc (P4
fly∪Et) = 〈I>, I⊥〉 is

I> = {bird(tweety), featherslikeHair(tweety), kiwi(tweety), ab1(tweety),
bird(jerry), can fly(jerry) },

I⊥ = {can fly(tweety)} ∪ {abi(tweety) | 2 ≤ i ≤ 5 } ∪ {abi(jerry) | 1 ≤ i ≤ 5 }.

From this model we derive that Tweety is a kiwi, even though inEurope(tweety) is un-
known. This is what we assume humans do while reasoning: They do not need to assume
anything about Tweety (not) living in Europe, as the information featherslikeHair(tweety)
is enough to conclude that Tweety is a kiwi.

Let us consider again the concepts of consumers and producers here: The observation
¬can fly(tweety) alone could not have been contextually explained by featherslikeHair(tweety)
because by the ctxt in the clause

ab1(tweety)← ctxt(kiwi(tweety)) ∈ gP4
fly,

kiwi(tweety) cannot be produced, but only consumed. We will consider this example
again in Section 4.5.1.

4.4.2. More about Jerry

Consider again P4
fly from the previous example together with the observation that Jerry

flies and Jerry lives in Europe: Oj = {can fly(jerry), inEurope(jerry)}.
AP4

fly
is defined in the previous example. The only contextual explanation for Oj is

Ej = {inEurope(jerry) ← >}. The least model of the weak completion of P4
fly ∪ Ej ,

lm wc (P4
fly ∪ Ej ) = 〈I>, I⊥〉 is

I> = { inEurope(jerry), bird(jerry), can fly(jerry), ab2(jerry), ab3(jerry),
bird(tweety), can fly(tweety) },

I⊥ = {kiwi(jerry), penguin(jerry), ab1(jerry), ab4(jerry), ab5(jerry)}
∪ {abi(tweety) | 1 ≤ i ≤ 5 }.

From this model, we can derive that Jerry is not a penguin and Jerry is not a kiwi!
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4.5. Contextual Side-effects and Consequences

In the following, we will formalize the notions of side-effects and consequences within
contextual abduction and provide definitions and examples to clarify how contextual
abduction enriches the expressiveness of abduction.

4.5.1. Contextual Side-effects

The following definition captures the idea of contextual side-effects:

Definition 4.2. Given a program P and a set of integrity constraints IC, let O1 and
O2 be two observations and E1 be a contextual explanation for O1.

O2 is a necessary contextual side-effect of O1 given P and IC iff O2 cannot be
contextually explained but O1 ∪ O2 is contextually explained by E1.

O2 is a possible contextual side-effect of O1 given P and IC iff O2 cannot be
contextually explained by E1 but O1 ∪ O2 is contextually explained by E1.

The notion behind contextual side-effects is that every explanation E1 for O1 gives us
an explanation for O2. Note that a necessary contextual side-effect is also a possible
contextual side-effect.

Consider again the Tweety example in Section 4.4.1, where, given the program P3
fly

and the observation Ot = {¬can fly(tweety), featherslikeHair(tweety)}, the only con-
textual explanation for Ot is Et = {featherslikeHair(tweety) ← >}. Consider now the
observation O′ = {¬can fly(tweety)} ⊂ Ot : O′ cannot be contextually explained by Et ,
as can fly(tweety) does not strongly depend on featherslikeHair(tweety). According to
Definition 4.2, O′ is a necessary contextual side-effect of

Ot \ O′ = {featherslikeHair(tweety)}.

On the other hand, consider again the Jerry example in Section 4.4.2, where, for the
observation Oj = {can fly(jerry), inEurope(jerry)}, the only contextual explanation
is Ej = {inEurope(jerry) ← >}. As O′ = {can fly(jerry)} already follows from the
empty explanation, E ′ = ∅, O′ cannot be considered a contextual side-effect of

Oj \ O′ = {inEurope(jerry)}.

O′′ = {¬penguin(jerry)} is a possible contextual side-effect of Oj , as O′′ cannot be
contextually explained by Ej . Note that O′′ can also be contextually explained by

E ′′ = {blackAndWhite(jerry)← ⊥}.
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4.5.2. Contestable Contextual Side-effects

Analogously to Definition 4.2, its counterpart, contestable contextual side-effects, is
defined as follows:

Definition 4.3. Given a contextual program P and a set of integrity constraints IC. Let
O1 and O2 be two observations and E1 be a contextual explanation for O1. The negation
of the observation O2 is ¬O2, where ¬O2 = {¬L | L ∈ O2}.

O2 is a necessarily contested contextual side-effect of O1 given P and IC iff
¬O2 cannot be contextually explained by E1 but O1 ∪ ¬O2 can be contextually ex-
plained by E1.

O2 is a possibly contested contextual side-effect of O1 given P and IC iff ¬O2

cannot be contextually explained by E1 but O1 ∪ ¬O2 can be contextually explained
by E1.

Reconsider the examples of the previous subsection: It is easy to see that given O′
¬ =

{can fly(tweety)}, O′
¬ is a necessary contested contextual side-effect of Ot . Analogously,

given that O′′
¬ = {penguin(jerry)}, O′′

¬ is a possible contested contextual side-effect
of Oj .

4.5.3. Contextual Relevant Consequences

We define two notions of contextual relevant consequences as follows:

Definition 4.4. Given a contextual program P and a set of integrity constraints IC.
Let O1 and O2 be two observations and E1 be a contextual explanation for O1.

O2 is a necessary contextual relevant consequence of O1 given P and IC iff O2

cannot be contextually explained by E1 but O1 ∪ O2 can be contextually explained
by E2, where E1 ⊂ E2.

O2 is a possible contextual relevant consequence of O1 given P and IC iff O2

cannot be contextually explained by E1 but O1 ∪ O2 can be contextually explained
by E2, where E1 ⊂ E2.

Furthermore, it might be the case that two observations contain contextual relevant
consequences of each other, simultaneously, i.e. they are mutually plausibly explainable
together, but not each by itself. This notion is stronger than Definition 4.4:
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Definition 4.5. Given a program P and a set of integrity constraints IC. Let O1, O2

be observations.

O1 and O2 are necessarily jointly supported contextual relevant consequences
given P and IC iff O1 is a necessary contextual relevant consequence of O2 and
O2 is a necessary contextual relevant consequence of O1.

O1 and O2 are possibly jointly supported contextual relevant consequences given
P and IC iff O1 is a possible contextual relevant consequence of O2 and O2 is a
possible contextual relevant consequence of O1.

Consider the contextual program Pfire consisting of the following two clauses:

smoke ← fire ∧ ctxt(firefighters).
sirens ← ctxt(fire) ∧ firefighters.

Let us observe
Osmoke = {smoke}.

We can abduce fire ← > but not firefighters ← >, because smoke does not depend on
firefighters. On the other hand, by observing

Osirens = {sirens},

we can abduce firefighters but not fire. However, if we observe both, smoke and sirens,
fire can be abduced by Osmoke because smoke depends on fire and firefighters can be
abduced by Osirens because sirens depends on firefighters. Accordingly, the explanation
for Osmoke ∪ Osirens is

E = {firefighters ← >,fire ← >}.

Osmoke and Osir are necessarily jointly supported contextual relevant consequences given
Pfire and ICfire .

4.6. Conclusion

Motivated by the famous Tweety example, we first show that the Weak Completion
Semantics does not yield the desired results. We would like to avoid having to abductively
consider all exception cases and to automatically prefer normal explanations to those
explanations specifying such exception cases. To do so, we set forth contextual programs,
for the purpose of which we introduce ctxt, a new truth-functional operator, which
turns out to fit quite well with the interpretation of negation as failure under three-
valued semantics. Unfortunately, the ΦP operator is not monotonic with respect to
these contextual programs anymore. Even worse, the ΦP operator might not even have
a least fixed point for some contextual programs. Nevertheless, we can show that the
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ΦP operator does always have a least fixed point if we restrict contextual programs
to the class of acyclic ones and introduce the concept of contextual abduction, and
model the Tweety example as desired. In the last part of this chapter, we specify the
relations between observations and explanations under contextual abduction, allowing
us to define notions with regard to contextual side-effects, contestable contextual side-
effects and contextual relevant consequences. The main advantage of the contextual
reasoning approach here over the approach presented in [Pereira and Pinto, 2011] is that
the ctxt operator is part of the logic, whereas in [Pereira and Pinto, 2011] in order to
evaluate the inspection points, a meta-abduction transformation procedure is required.

Some open questions are left to be investigated in the future. For instance, can the
requirements for the classes of acyclic contextual programs be relaxed to those that are
only acyclic with respect to the truth functional operator ctxt, so that the ΦP operator
is still guaranteed to yield a least fixed point? Furthermore, as the Weak Completion
Semantics seems to adequately model human reasoning, a natural question to ask is
whether the assumptions made for the development of contextual reasoning fit with the
findings from Cognitive Science? For this purpose, we are particularly interested in
psychological experiments that deal with context sensitive information.
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Part II.

Human Reasoning Tasks
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5. Byrne’s Suppression Task
and Wason’s Selection Task

In this chapter, we first discuss the formalization of Byrne’s [1989] suppression task,
which we have briefly explained in the introduction. The first part has originally been
presented in [Hölldobler and Kencana Ramli, 2009a,b] and the second part has origi-
nally been presented in [Hölldobler, Philipp, and Wernhard, 2011]. The second part,
Section 5.2, presents a formalization of Wason’s [1968] selection task and Griggs and
Cox [1982] isomorphic representation of this task in a social context.1

5.1. Byrne’s Suppression Task

We have briefly presented the layout of the task in the introduction, which will now be
discussed in detail. Byrne’s suppression task consists of two parts, where the results of
the first part are achieved by forward reasoning, whereas the results of the second part
are achieved by backward reasoning. Sections 5.1.1 and 5.1.2 explain Stenning and van
Lambalgen’s two step approach and their techniques by means of the first part of Byrne’s
suppression task. Furthermore, we show the cases, where their approach fails and why
it requires the Weak Completion Semantics. These techniques are analogously applied
to the second part of Byrne’s suppression task, which is presented in Section 5.1.3.

5.1.1. Representation as Logic Programs

Stenning and van Lambalgen’s first step of formalizing human reasoning, reasoning to-
wards an appropriate representation, deals with conceptual cognitive adequacy, already
discussed in the introduction. In particular, Stenning and van Lambalgen argue that
conditionals shall not be encoded by inferences straight away, but rather by licenses
for inference. Consider again the simple conditional from the introduction: ‘if she has
an essay to write (e), then she will study late in the library (l)’ should be encoded by
the clause l ← e ∧ ¬ab1, where ab1 is an abnormality predicate and true if something

1 Section 5.1.4 has been published in [Dietz, Hölldobler, and Wernhard, 2014]. Section 5.3 has
been published in [Dietz, Hölldobler, and Ragni, 2012a]. The original idea of Section 5.2 has first been
published in [Dietz, Hölldobler, and Ragni, 2012b] and an improved version has been published in [Dietz,
Hölldobler, and Ragni, 2013]
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Facts and
Conditionals Assumptions

Pe = {l← e ∧ ¬ab1, ab1 ← ⊥, e← >}
Pe+Alt = {l← e ∧ ¬ab1, l← t ∧ ¬ab2, ab1 ← ⊥, ab2 ← ⊥, e← >}
Pe+Add = {l← e ∧ ¬ab1, l← o ∧ ¬ab3, ab1 ← ¬o, ab3 ← ¬e, e← >}
P¬e = {l← e ∧ ¬ab1, ab1 ← ⊥, e← ⊥}
P¬e+Alt = {l← e ∧ ¬ab1, l← t ∧ ¬ab2, ab1 ← ⊥, ab2 ← ⊥, e← ⊥}
P¬e+Add = {l← e ∧ ¬ab1, l← o ∧ ¬ab3, ab1 ← ¬o, ab3 ← e, e← ⊥}

Table 5.1.: Representational form of the first part of the suppression task according to
Stenning and van Lambalgen [2008].

abnormal is known. In other words, l holds if e is true and nothing abnormal is known
(¬ab1), i.e. everything abnormal is false.

Table 5.1 shows the representational form of the first part of the suppression task as
modeled by Stenning and van Lambalgen. In the first three cases, in addition to the
conditionals, the participants had to draw conclusions based on the fact that ‘she has
an essay to write’ (e← >). In the last three cases, they had to draw conclusions based
on the assumption that ‘she does not have an essay to write’ (e ← ⊥). The predic-
ates ab1, ab2 and ab3 represent abnormalities with respect to the different conditionals,
respectively.

The programs Pe+Alt and Pe+Add contain two clauses with the conclusion l. They differ
in the way that the premise of the second clause in in Pe+Alt is an alternative to the
first clause, whereas in Pe+Add the premise of the second clause is an addition to the
first clause. The second clause in Pe+Add (l ← o ∧ ¬ab3) takes effect as an additional
precondition for l. This is represented by the clause stating that ab1 is true when ‘the
library does not stay open’ (ab1 ← ¬o) and the clause that states that ab3 is true when
‘she does not have an essay to write’ (ab3 ← ¬e).

5.1.2. Forward Reasoning

Adopting the programs obtained by Stenning and van Lambalgen as result of the first
step of reasoning towards an appropriate representation, we will now focus on the second
step, the inferential aspect, which corresponds to inferential cognitive adequacy.

The second column of Table 5.2 shows the weak completion of the programs encoding
the first six examples of the suppression task. As already discussed in Chapter 2.3, the
weak completion of all programs admits the model intersection property, therefore we

86



5.1. Byrne’s Suppression Task

The weak completion of P lm wcP Byrne

wcPe = {l↔ e ∧ ¬ab1, ab1 ↔ ⊥, e↔ >} 〈{e, l}, {ab1}〉 |=wcs l 96% L

wcPe+Alt = {l↔ (e ∧ ¬ab1) ∨ (t ∧ ¬ab2), 〈{e, l}, {ab1, ab2}〉 |=wcs l 96% L
ab1 ↔ ⊥, ab2 ↔ ⊥, e↔ >}

wcPe+Add = {l↔ (e ∧ ¬ab1) ∨ (o ∧ ¬ab3), 〈{e}, {ab3}〉 6|=wcs l ∨ ¬l 38% L
ab1 ↔ ¬o, ab3 ↔ ¬e, e↔ >}

wcP¬e = {l↔ e ∧ ¬ab1, ab1 ↔ ⊥, e↔ ⊥} 〈∅, {e, l, ab1}〉 |=wcs ¬l 46% L

wcP¬e+Alt = {l↔ (e ∧ ¬ab1) ∨ (t ∧ ¬ab2), 〈∅, {e, ab1, ab2}〉 |=wcs l ∨ ¬l 4% L
ab1 ↔ ⊥, ab2 ↔ ⊥, e↔ ⊥}

wcP¬e+Add = {l↔ (e ∧ ¬ab1) ∨ (o ∧ ¬ab3), 〈{ab3}, {e, l}〉 |=wcs ¬l 63% L

ab1 ↔ ¬o, ab3 ↔ ¬e, e↔ ⊥}

Table 5.2.: The weak completion and the least models of the corresponding programs
and the experimental results. The fourth column shows whether l or ¬l
follow from the least models. The information in the last column refers to
the experimental results of Byrne [1989].

can reason with respect to their least models. The third column in Table 5.2 depicts
the corresponding least models. As the last column of Table 5.2 shows, our approach
coincides with the seemingly favored results of the suppression task and thus appears
to be inferentially adequate. Consider in Table 5.2 for example Pe+Add and its weak
completion. The interpretations 〈{e, o}, {ab1, ab3, l}〉 and 〈{e}, {ab3}〉 are both models
of wcPe+Add. Given that I0 = 〈∅, ∅〉, ΦPe+Add

is computed as follows:

I1 = ΦPe+Add
(I0) = 〈{e}, ∅〉,

I2 = ΦPe+Add
(I1) = 〈{e}, {ab3}〉 = ΦPe+Add

(I2).

As shown by Hölldobler and Kencana Ramli [2009a,b], 〈{e}, {ab3}〉 is not a model of
Pe+Add under SvL-semantics because the clause l ← o ∧ ab3 ∈ Pe+Add is mapped to U
under SvL-semantics and not to > as under  Lukasiewicz semantics. This is a counter-
example to Lemma 4 (1.) in [Stenning and van Lambalgen, 2008, p. 194f], which states
that the least fixed point of the ΦP operator under SvL-semantics is the (knowledge-)
least model of P. Furthermore, Stenning and van Lambalgen [2008] claim in Lemma 4
(3.) that all models of the completion of P are fixed points of ΦP and every fixed point
is a model. The following example shows that both claims are not true. Consider the
completion of P¬e+Alt, i.e.

{l↔ (e ∧ ¬ab1) ∨ (t ∧ ¬ab2), ab1 ↔ ⊥, ab2 ↔ ⊥, e↔ ⊥, t↔ ⊥}.
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Conditionals O Explanations

P = {l← e ∧ ¬ab1, ab1 ← ⊥} {l} {e← >}
PAlt = {l← e ∧ ¬ab1, l← t ∧ ¬ab2, ab1 ← ⊥, ab2 ← ⊥} {l} {e← >}, {t← >}
PAdd = {l← e ∧ ¬ab1, l← o ∧ ¬ab3, ab1 ← ¬o, ab3 ← ¬e} {l} {e← >, o← >}
P = {l← e ∧ ¬ab1, ab1 ← ⊥} {¬l} {e← ⊥}
PAlt = {l← e ∧ ¬ab1, l← t ∧ ¬ab2, ab1 ← ⊥, ab2 ← ⊥} {¬l} {e← ⊥, t← ⊥}
PAdd = {l← e ∧ ¬ab1, l← o ∧ ¬ab3, ab1 ← ¬o ab3 ← e} {¬l} {e← ⊥}, {o← ⊥}

Table 5.3.: The Representational form of the second part of the suppres-
sion task according to Stenning and van Lambalgen [2008] and
Hölldobler, Philipp, and Wernhard [2011].

Both, t and e are mapped to ⊥ and, consequently, l is mapped to ⊥ as well. However, as
pointed out by Hölldobler and Kencana Ramli [2009a,b], the least fixed point of ΦP¬e+Alt

is 〈∅, {e, ab1, ab2}〉, where t and l are unknown, and is not a model of the completion of
P¬e+Alt. This example also shows that reasoning under SvL-semantics with respect to
the completion of a program is not adequate, as only 4% of the subjects conclude ¬l in
this case.

5.1.3. Backward Reasoning

The second part of the suppression task can best be described as abductive, that is,
a plausible explanation is computed given some observation. This notion of abductive
consequence with respect to least models of the weak completion has been elaborated by
Hölldobler, Philipp, and Wernhard [2011] to model the backward reasoning cases of the
suppression task. Table 5.3 shows the representational form of these instances, including
the observations and their respective explanations. In the first three cases, additionally
to the conditionals, the participants had to draw conclusions based on the fact that ‘she
goes to the library.’ In the last three cases, they had to draw conclusions based on the
assumption that ‘she does not go to the library.’ We consider an abductive framework
as introduced in Chapter 2.5, consisting of a program P as knowledge base, a set A of
abducibles consisting of the facts and assumptions for each undefined atom in P,2 and
the logical consequence relation |=wcs . As observations we consider a set of literals. For
instance, consider the following two programs under skeptical reasoning:

1. PAlt where O = {l}: A = {e ← >, e ← ⊥, t ← >, t ← ⊥} and lm wcPAlt =
〈∅, {ab1, ab2}〉. There are two explanations with either {e ← >} or {t ← >}.
Accordingly, we cannot conclude that ‘she has an essay to finish’.

2Recall that A is undefined in P iff P does not contain a clause of the form A← body .
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O The least model of the weak completion of P ∪ E Byrne

l lm wc (P ∪ {e← >}) = 〈{e, l}, {ab1}〉 |=s
wcs e 53% E

l lm wc (PAlt ∪ {e← >}) = 〈{e, l}, {ab1, ab2}〉 6|=s
wcs e ∨ ¬e 16% E

l lm wc (PAlt ∪ {t← >}) = 〈{l, t}, {ab1, ab2}〉

l lm wc (PAdd ∪ {e← >, t← >}) = 〈{e, l, o}, {ab1, ab3}〉 |=s
wcs e 55% E

¬l lm wc (P ∪ {e← ⊥}) = 〈∅, {e, l, ab1}〉 |=s
wcs ¬e 69% E

¬l lm wc (PAlt ∪ {e← ⊥, t← ⊥}) = 〈∅, {e, l, t, ab1, ab2}〉 |=s
wcs ¬e 69% E

¬l lm wc (PAdd ∪ {e← ⊥}) = 〈{ab3}, {e, l}〉 6|=s
wcs e ∨ ¬e 44% E

¬l lm wc (PAdd ∪ {o← ⊥}) = 〈{ab1}, {l, o}〉

Table 5.4.: The least models of the weak completion of the corresponding programs to-
gether with the explanations for O and the experimental results. The fourth
column shows whether e or ¬e follow from the least models. The cases
P = PAlt,O = {l} and P = PAdd,O = {¬l} have two explanations. The last
column shows the experimental results of Byrne [1989].

2. PAdd where O = {l}: A = {e← >, e← ⊥, o← >, o← ⊥} and lm wcPAdd = 〈∅, ∅〉.
There is only one explanation {e← >, o← >}. Accordingly, we can conclude that
‘she has an essay to finish.’

Table 5.4 depicts results of the second part of the suppression task, which are adequate
answers if compared to the seemingly favored results of the suppression task. One
should observe that credulously we would conclude e from P = PAlt and O = {l}, which
according to Byrne only 16% of the subjects did.

5.1.4. Well-founded Semantics Revisted

We show the results obtained with the Weak Completion Semantics and the Well-founded
Semantics for the program representations in Table 5.1 and Table 5.3. We define At′ =
{e, l, o, t, ab1, ab2, ab3} and for the well-founded models P+ we assume the models with
respect to At = At′. For the least models of the weak completion of P and the well-
founded models of Pmod we assume the models with respect to At = At′ ∪ {A′ | A ∈
undef(P)}. Table 5.5 shows the least models of the weak completion and the well-
founded models from the first part of the suppression task. Note that for the well-founded
model only normal logic programs (P+) are considered. Obviously there are differences
between both semantics with respect to the least models. For instance, for Pe+Add
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P lm wcP/wfm Pmod wfm P+ Byrne

Pe 〈{e, l}, {ab1}〉 〈{e, l}, { o, t, ab1, ab2, ab3 }〉 96% L

Pe+Alt 〈{e, l}, {ab1, ab2}〉 〈{e, l}, { o, t, ab1, ab2, ab3 }〉 96% L

Pe+Add 〈{e}, {ab3}〉 〈{e, ab1 }, { l, o, t, ab2, ab3}〉 38% L

P¬e 〈∅, {e, l, ab1}〉 〈∅, {e, l, o, t, ab1, ab2, ab3 }〉 46% ¬L
P¬e+Alt 〈∅, {e, ab1, ab2}〉 〈∅, {e, l, o, t, ab1, ab2, ab3 }〉 4% ¬L
P¬e+Add 〈{ab3}, {e, l}〉 〈{ab3 }, {e, l, o, t, ab1, ab2 }〉 63% ¬L

Table 5.5.: The results of the first part of the suppression task. The highlighted atoms
show the differences between the least models of the weak completion and
the well-founded models.

and P¬e+Alt, under the Weak Completion Semantics, l is neither in I> or in I⊥, whereas
in the well-founded model l ∈ I⊥ in both P+

e+Add and P+
¬e+Alt. This is due to the fact,

that undefined atoms such as o in P+
e+Add and t in P+

¬e+Alt are mapped to false in the
well-founded model. Considering Byrne’s results, the Well-founded Semantics does not
represent the participants’ conclusions of suppressing information, whereas the Weak
Completion Semantics does.

Table 5.6 shows the results from the second part of the suppression task where abduction
is required. In the first three cases, both semantics have the same conclusions about e.
In the case of Pl+Alt two explanations are possible, e← > or t← >, with two different
least models. With skeptical reasoning nothing can be concluded about e, which seems
to adequately represent Byrne’s findings. Similarly, for P¬l+Add with skeptical reasoning
nothing can be concluded about e under the Weak Completion, whereas e is true under
the Well-founded Semantics. Considering Byrne’s results, that 44% of the participants
concluded ¬e, it is arguable which model adequately represents these results.

5.2. Wason’s Selection Task

In Wason’s [1968] selection task participants had to check a given conditional statement
on some instances. The problem was presented as a rather abstract description and
almost all participants’ conclusions where invalid with respect to classical logic. Griggs
and Cox [1982] developed an isomorphic representation of the problem in a social context,
and surprisingly almost all of the participants solved this task classical logic correctly.
Kowalski [2011] gives an interesting interpretation of this difference, which we will use
as starting point for our formalization.

90



5.2. Wason’s Selection Task

lm wc (P ∪ E)/
P O E wfm ((P ∪ E)mod) wfm (P ∪ E)+ Byrne

Pl l e← > 〈{e, l}, {ab1}〉 〈{e, l}, { o, t, ab1, ab2, ab3 }〉 53% E

Pl+Alt l e← > 〈{e, l}, {ab1, ab2}〉 〈{e, l}, { o, t, ab1, ab2, ab3 }〉 16% E

t← > 〈{l, t}, {ab1, ab2}〉 〈{l, t}, { e, o, ab1, ab2, ab3 }〉
Pl+Add l e← >, o← > 〈{e, l, o}, {ab1, ab3}〉 〈{e, l, o}, { t, ab1, ab2, ab3}〉 55% E

P¬l ¬l e← ⊥ 〈∅, {e, l, ab1}〉 〈∅, {e, l, o, t, ab1, ab2, ab3 }〉 69% ¬E
P¬l+Alt ¬l e← ⊥, t← ⊥ 〈∅, {e, l, t, ab1, ab2}〉 〈∅, {e, l, o, t, ab1, ab2, ab3 }〉 69% ¬E
P¬l+Add ¬l e← ⊥ 〈{ab3}, {e, l}〉 〈{ ab1, ab3}, {e, l, o, t, ab2 }〉 44% ¬E

o← ⊥ 〈{ab1}, {l, o}〉 〈{ab1, ab3 }, { e, l, o, t, ab2 }〉

Table 5.6.: The results of the second part of the suppression task. The highlighted atoms
show the differences between the least models of the weak completion and
the well-founded models.

In the original selection task by Wason [1968], participants were presented the following
four cards on a table:

D F 3 7

They were told that each card had a letter on one side of the card and a number on
the other side of the card. Additionally, the participants had to evaluate the following
conditional with respect to each of the four cards:

If there is a D on one side of the card,
then there is 3 on the other side.

Which cards must be turned over in order to find out whether the conditional holds?

3← D (5.1)

The conditional is represented in classical propositional logic as the implication in (5.1),
where the propositional variable 3 represents the fact that the number 3 is shown and D
represents the fact that the letter D is shown. Then, in order to verify the implication one
must turn over the cards showing D and 7. However, the results on the left hand side in
Table 5.7, taken from Wason, show that participants believed differently. Whereas 89%
of the participants (classical logic) correctly conclude that the card showing D must be
turned (a number other than 3 on the other side would falsify the implication), 62%
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D F 3 7 beer coke 22 years old 16 years old

89% 16% 62% 25% 95% 0.025% 0.025% 80%

Table 5.7.: The results of the abstract case (left) and the social case (right) of the selec-
tion task. The second row refers to the percentage of participants who stated
that the corresponding card needs to be turned.

of the participants incorrectly suggest to turn over the card showing 3 (no relevant
information can be found which would falsify the implication). Likewise, whereas 25%
of the participants correctly believe that the card showing 7 needs to be turned over
(if the other side would show a D, then the implication is falsified), 16% incorrectly
believe that the card showing F needs to be turned over (no relevant information can
be found which would falsify the implication). In other words, the overall correctness of
the answers given for the abstract selection task if modeled by an implication in classical
two-valued logic is pretty bad.

Griggs and Cox [1982] adapted Wason’s selection task to a social case. Consider the
following four cards:

drinking
beer

drinking
coke

22 years
old

16 years
old

Each card has the person’s age on one side of the card and what the person is drinking
on the other side of the card. Consider the conditional

If a person is drinking beer,
then the person must be over 19 years of age.

and again the question: Which drinks and persons must be checked to find out whether
the conditional holds?

o← b (5.2)

The conditional is represented by the implication in (5.2), where o represents a person
being older than 19 years and b represents the person drinking beer. In order to verify
the implication one must turn over the cards drinking beer and 16 years old. Participants
usually solve the social case of the selection task classical logical correctly. The right
hand side of Table 5.7 shows the results presented by Griggs and Cox [1982] for the
social case.

Why are the results of these two experiments so different? Several attempts were made
to explain these differences. Wason [1968] proposed a defective truth table to explain
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how humans reason with conditionals. When the antecedent of a conditional is false,
then normally people consider the whole conditional as irrelevant and ignore it in further
reasoning. Evans [1972] described a phenomenon called the matching bias, where people
tend to consider only the present values in the conditional. For instance, in the abstract
case, card D is the easiest one to solve, because this rule is only true when both values
present in the rule are on the card. On the other hand, card 7 is the most difficult
one, because people have to make a double mismatch, that is, they have to consider the
situation where 3 is not on the card, and therefore, something different than D has to
be on the other side. Why do people not make these mistakes in the social case?

One explanation has been given by Kowalski [2011], which we will use to motivate our
formalization. He states that people view the conditional in the abstract case as a belief.
For instance, the participants perceive the task to examine whether the rule is either
true or false. On the other hand, in the social case, the participants perceive the rule as a
social constraint, a conditional that ought to be true. People intuitively aim at preventing
the violation of such a constraint, which is normally done by observing whether the
state of the world complies with the rule.3 The results presented by Beller and Bender
[2012] seem to support this view. They carried out psychological experiments with
several variations of the so called abstract deontic selection task. The authors show that
the performance of the abstract case can significantly be improved when introducing a
deontic notion, even by keeping the abstract formulation. Accordingly, the importance
of the context (abstract or social) seems not to be the essential one. Instead, their
emphasis is on the deontic value involved in the subjects’ interpretations.

As already mentioned in the introduction, Stenning and van Lambalgen distinguish
between two steps when modeling human reasoning. We will again implement the con-
ditionals as licenses for inferences. This can be achieved by adding an abnormality pre-
dicate to the antecedent of the implication. Applying this idea to the Wason selection
task we obtain

3← D ∧ ¬ab1 (5.3)

instead of (5.1) and
o← b ∧ ¬ab2 (5.4)

instead of (5.2), where ¬ab1 and ¬ab2 are used to express that the corresponding rules
hold unless there are some abnormalities.

5.2.1. Social Case

In this case most humans are quite familiar with the conditional as it is a standard in
law. They are also aware – it is common sense knowledge – that there are no exceptions

3Lúıs Moniz Pereira’s view, complementing Kowalski’s is that in the card setting rules are read as if
and only if because the experimenter have devised the test is supposed to know and tell you everything:
The Completion Semantics is applied. In the social setting the rules are envisaged as constraints, i.e.
ICs to be satisfied by the models but not generating the models. (personal communication, February
10, 2016)
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Card P lm wcP Griggs and Cox

beer {ab2 ← ⊥, b← >} 〈{b}, {ab2}〉 6|=wcs (5.4) 95%
coke {ab2 ← ⊥, b← ⊥} 〈∅, {b, ab2}〉 |=wcs (5.4) 0.025%
16 years {ab2 ← ⊥, o← ⊥} 〈∅, {o, ab2}〉 6|=wcs (5.4) 80%
22 years {ab2 ← ⊥, o← >} 〈{o}, {ab2}〉 |=wcs (5.4) 0.025%

Table 5.8.: The computational logic approach for the social case of the selection task.

or abnormalities and, hence, ab2 is set to ⊥.

Let us assume that conditional (5.4) is viewed as a social constraint which must follow
logically from the given facts. Now consider the four different cases: One should ob-
serve that for the card 16 years old the least model of the weak completion of P, i.e.
〈∅, {o, ab2}〉, assigns U to b and, consequently, to both, b∧¬ab2 and (5.4), as well. Over-
all, for the cards drinking beer and 16 years old the social constraint (5.4) is not entailed
by the least model of the weak completion of the program. Hence, we need to turn over
these cards and, hopefully, find that the beer drinker is older than 19 and that the 16
years old is not drinking beer. The results of the social case are shown in Table 5.8,
where the last column shows the experimental results of Griggs and Cox [1982]. The
results of our approach correspond to the majority’s responses and, therefore, appears
to be an adequate formalization.

5.2.2. Abstract Case

This case is artificial, and consequently, there is no common sense knowledge about the
conditional. Following the perspective proposed by Kowalski [2011], let us assume that
conditional (5.3) is viewed as a belief. As there are no known abnormalities, ab1 is set
to ⊥. Furthermore, let D, F , 3, and 7 be propositional variables denoting that the
corresponding symbol or number is on one side. Altogether, we obtain the program

P = {3← D ∧ ¬ab1, ab1 ← ⊥},

where its weak completion is

wcP = {3↔ D ∧ ¬ab1, ab1 ↔ ⊥}

and admits the least model
〈∅, {ab1}〉.

under the Weak Completion Semantics. Unfortunately, this model does not explain any
symbol on any card. We need to extend the program based on which card we observe.
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O E lm wc (P ∪ E) Wason

D {D ← >} 〈{D, 3}, {ab1}〉 ; turn over 89%
F {F ← >} 〈{F}, {ab1}〉 ; no turn over 16%
3 {D ← >} 〈{D, 3}, {ab1}〉 ; turn over 62%
7 { 7← >} 〈{ 7}, {ab1}〉 ; no turn over 25%

Table 5.9.: The computational logic approach for the abstract case of the selection task.

In order to explain an observed card, we apply abduction. In the case of the abstract
case, the set of abducibles is

{D ← >, D ← ⊥, F ← >, F ← ⊥, 7← >, 7← ⊥}.

Now consider the four different cases: In the cases where F or 7 are observed, the least
model of the weak completion of P∪E does not contain any information that needs to be
verified and simply confirms the observation; no further action is needed. In some sense,
the belief about the premises and conclusions of the conditional is irrelevant for these
two cases. The truth values of 3 and D are unknown and under  Lukasiewicz semantics
the conditional 3← D∧ ab1 is mapped to true. In these two cases as well, Stenning and
van Lambalgen’s suggestion to interpret conditionals under SvL-semantics, would lead to
different results: If premise and conclusion are unknown, the conditional, 3← D ∧ ab1,
is not true but unknown as well. Their suggested least model of the completion would
map 3 and D to false. This seems rather counterintuitive, as we do not know anything
about the value on the other side of the card. By applying their approach we would
have to conclude that both, 3 and D, are false.

In the case where D is observed, the least model maps also 3 to >. That means, in
order to be sure that this corresponds to the real situation, we need to check if 3 is
true. Therefore, the card showing D is turned over. Likewise, in the case where 3 is
observed, D is also mapped to > in the least model of the weak completion, which
can only be confirmed if the card is turned over. As in each case there is only one
explanation, there is no need to distinguish between skeptical and credulous reasoning.
The results of the abstract case are shown in Table 5.9, where the last column shows the
experimental results of Wason [1968]. The results of our approach corresponds to the
majority’s responses and, therefore, appears to be adequate.

5.3. Conclusion

Before we summarize this chapter, we would like to address a few open questions re-
garding the Weak Completion Semantics with respect to model human reasoning.
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5.3.1. Open Questions

While adequately solving Byrne’s suppression task and Wason’s selection task, the ap-
proach gives rise to a number of open questions concerning the use of  Lukasiewicz se-
mantics, unique fixed points, completion versus weak completion, explanations, negation,
and skeptical versus credulous approaches in human reasoning.

 Lukasiewicz Semantics

This logic was selected because the technical bugs in [Stenning and van Lambalgen,
2008] can be solved by switching from Fitting to  Lukasiewicz semantics. In particular,
the model intersection property holds under  Lukasiewicz semantics. Hence, for each
program P a least model exists which can be computed as least fixed point of the ΦP
operator. Moreover, as we have shown, the suppression task and the selection task can
be adequately modeled under Weak Completion Semantics, whereas this does not hold
for Fitting semantics. Nevertheless, the main question of whether the Weak Completion
Semantics is adequate for human reasoning is still open. For example, under  Lukasiewicz
semantics the Deduction Theorem does not hold, neither does it hold with respect to
logic programs in general. Hence, it would be interesting to see how humans deal with
the deduction theorem.

Unique Fixed Point

For each program P discussed here, the ΦP operator is a contraction. Thus, there is
a unique fixed point, which can be computed by iterating ΦP on some initial inter-
pretation. Consequently, if in these tasks subjects are influenced towards some initial
non-empty interpretation, their performance should not differ provided that they have
enough time to compute the least fixed point; it should differ, however, if they are in-
terrupted before the least fixed point is computed and asked to reason with respect to
the interpretation computed so far. Another aspect is about level mapping. It might
have the additional function to represent some ordering about the subject’s knowledge.
For instance, consider again the suppression task: It is easy to see that `(t), `(o), and
`(e) have to be smaller than `(ab1), `(ab2), and `(ab3) to show that the program to be
acyclic. As l does not occur in the body for any clause, `(l) is mapped to the highest
level. For human reasoning that means l does not imply any further knowledge.

Completion versus Weak Completion

The program P¬e+Alt served as an example to illustrate that completion is inadequate for
the suppression task whereas weak completion is adequate. Likewise, Hölldobler, Philipp,
and Wernhard [2011] have shown in a detailed study that the programs mentioned in
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Table 5.4 together with their minimal explanations must be weakly completed in order
to adequately model the suppression task, whereas when their completion is considered,
the result does not correspond to the results of the suppression task. Are there other
human reasoning episodes which support the claim that weak completion is adequate?

Skeptical versus Credulous Reasoning

The case of program P = PAlt and observation O = {l} in Table 5.4 shows that we must
reason skeptically in order to adequately model this case. Whereas this is a striking case
for skeptical reasoning, the case P = PAdd and O = ¬l is less convincing. Skeptically we
do not conclude ¬e, whereas credulously we conclude ¬e. Compared to the corresponding
case (P¬l+Add) shown in Table 5.4, 44% of the subjects conclude ¬E. Unfortunately,
Byrne [1989] (and related publications that we are aware of) gives no account of the
distribution of the answers given by those subjects who did not conclude E. Hence, at
the moment we can argue in favor of skeptical reasoning (the majority of the subjects did
not conclude E), but – given the complete distribution – it may be the case that one can
argue in favor of credulous reasoning (there are more subjects concluding E than subjects
concluding E and subjects answering “I don’t know”). In this context, it might be
useful to explicitly differentiate between inferential knowledge and facts. For credulous
reasoning the amount of inferential knowledge does not influence its conclusion. On the
other hand, for skeptical reasoning, as more inferential knowledge is given, the more
supporting facts are necessary to draw some conclusion.

Explanations

The approach presented in this paper is based on minimal explanations. Although,
there are findings corroborating the human preference for minimal explanations (over
non-minimal ones) [Ormerod, Manktelow, and Jones, 1993] – this holds only partially
[Johnson-Laird, Girotto, and Legrenzi, 2004]. Computational models of abduction typ-
ically generate explanations iteratively such that minimal explanations are generated
first. How are the minimal explanations computed by humans? What happens if there
are more than one minimal explanation? Does attention influence the selection of ex-
planations as we have suggested in Chapter 4?

Negation

As we have already discussed in the previous chapter, under the Weak Completion
Semantics, positive information is preferred over negative information. Consider, for
example, the program P = {q ← >, q ← ⊥}. The least model of wcP is 〈{q}, ∅〉
and, hence, an agent reasoning with respect to this model will conclude q. Is this
consistent with human reasoning? We can extend the notion of integrity constraints by
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allowing them of the form ⊥ ← q. Any model for a program containing such an integrity
constraint must map q to ⊥. Is this adequate for human reasoning? If so, under which
conditions shall such integrity constraints be added within the reasoning step towards
an appropriate logical form?

Connectionist Realization

As shown in [Hölldobler and Kencana Ramli, 2009a], the computation of the least fixed
point of the semantic operator ΦP associated with a program P can be realized within the
core-method [Bader, Hitzler, Hölldobler, and Witzel, 2007]. In this connectionist real-
ization, ΦP is computed by a feed-forward network, whose output units are recurrently
connected to the input units. Whereas this network is trainable by backpropagation
and, thus, ΦP can be learned by experience, there is no evidence whatsoever that back-
propagation is biological plausible. Dietz Saldanha, Hölldobler, Kencana Ramli, and
Palacios Medinacelli [2017a] present a connectionist realization of skeptical reasoning.
However, in both settings, explanations are generated in a fixed, hard-wired sequence,
which does not seem to be plausible either.

5.3.2. Summary

Originally Stenning and van Lambalgen suggested to model Byrne’s suppression task
under the Completion Semantics based on the three-valued logic used by Fitting [1985].
However, Hölldobler and Kencana Ramli [2009a,b] have shown that the three-valued
logic proposed by Stenning and van Lambalgen is inadequate for the suppression task,
and that the suppression task can be adequately modeled if the weak completion and the
three-valued logic by  Lukasiewicz [1920] is used instead. The first section of this chapter
presents the adequate formalization of Byrne’s suppression task based on Hölldobler’s
and Kencana Ramli’s approach. We show that other approaches, such as completed logic
programs, the Fitting Semantics, and credulous reasoning, and show that they do not
lead to adequate results. Accordingly, we show which of Stenning and van Lambalgen’s
technical claims are wrong. Furthermore, we have shown here how these programs can be
modified such that they achieve the same results under the Well-founded Semantics.

While Stenning and van Lambalgen proposed a formalization for Byrne’s suppression
task, they only analyzed Wason’s selection task but did not attempt to formalize this
task with their suggested approach. This is what we have done in the second part
of this Chapter. We model Wason’s selection task with the same approach we did
for Byrne’s suppression task, following Kowalski’s proposal to distinguish both cases
as follows: In order to solve the social case correctly, the conditional must be seen as a
social constraint, whereas the abstract case is correctly represented when the conditional
is seen as a belief. The second case can be modeled by extending the formalization to
reason (either credulously or skeptically) within an abductive framework. Even though
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Kowalski showed how to formalize the abstract and the social case of Wason’s selection
task, he did not propose a solution to Byrne’s suppression task. Unlike Kowalski and
Stenning and van Lambalgen who each proposed a formalization for only one task, we
show here that the Weak Completion Semantics seems to adequately model both tasks.

However, there are still aspects we did not consider yet and which need to be further
examined. Our approach does not deal with the so-called first step of modeling human
reasoning: reasoning with respect to an adequate representation. We just assume that
in the social case people take the conditional as a social constraint whereas they take
it as a belief in the abstract case. These differences are modeled outside of the formal
framework. Dawson and Regan [2002] show by some psychological experiments that the
so-called confirmation bias plays an important role in the Wason selection task: if people
disagree with the statement of the conditional, they are more likely to find the solution
because they are motivated to search for a counterexample which refutes the conditional.
On the other hand, people who agree with the statement of the conditional take it as
a confirmation of their believes and therefore will not extensively search to falsify the
conditional. An interesting observation discussed in [Stenning and van Lambalgen, 2008]
is that similar to the verification bias, people might transfer the truth of the card to the
truth of the rule. In the social case, this confusion cannot occur, because it is common-
sense that the rule is true, independently from whether people behave accordingly. This
leads to another phenomenon, namely that participants see a dependency between the
card choices and might prefer to solve the problem by reactive planning. They would
only like to decide what to do after they saw the outcome of the first card. For instance,
if one turns over card D first and there is no 3 on the other side, no further cards needs
to be examined, because the rule has been falsified. However, if there is a 3 on the other
side, the other options need to be considered again. This kind of behavior could be
described in a framework with belief change: Each card which is turned over is a piece
of new information which needs to be integrated into the current knowledge base and
updates new inferences accordingly.
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6. Spatial Relations

In this Chapter, we present a new approach with respect to spatial reasoning problems
using logic programs, where we formalize the Preferred Model Theory in a computational
logic setting based on the Weak Completion Semantics. In order to do so, we first
show a spatial relation task in human reasoning in Section 6.1. In Section 6.2, we
briefly go through some spatial reasoning approaches, in particular, we will discuss the
Preferred Model Theory. Thereafter, we show how the Preferred Model Theory can be
implemented under the Weak Completion Semantics.1

6.1. Introduction

Given the information, that a Ferrari is to the left of a Porsche and to the right of the
Porsche there is a Beetle, we can without difficulty conclude that the Ferrari is to the
left of the Beetle. But how exactly do we come to this conclusion? What happens if we
have a set of premises with which more than one arrangement is possible? Consider the
following example taken from Ragni and Knauff [2013], which consists of four premises
above the line and a conclusion below the line.

1. The Ferrari is left of the Porsche.
2. The Beetle is right of the Porsche.
3. The Porsche is left of the Hummer.
4. The Hummer is left of the dodge.

C. The Porsche is (necessarily)2 left of the dodge.

Would a human immediately notice that the first two premises are not relevant and that
the conclusion follows from the transitivity given the left relation of the third and the
fourth premise?

The question which we shall be discussing is how to automatically construct what humans
may have in mind while reading the premises. Accordingly, the conclusion should be
evaluated in a similar way as humans do. For instance, Mental Model Theory assumes
that humans construct one model, verify the conclusion and possibly construct the next

1The results of this chapter are originally based on the result by Raphael Höps, a student that we
supervised for his bachelor thesis project, written in German [Höps, 2014]. The bachelor thesis has been
heavily revised and published in English in [Dietz, Hölldobler, and Höps, 2015a].

2This means that the conclusion follows in all possible solutions.
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model [Johnson-Laird, 1983]. On the other hand, the Preferred Model Theory claims that
humans have exactly one so-called preferred model in mind [Ragni and Knauff, 2013].
This requires less effort than constructing all possible models and in most situations
of our everyday life this one model is enough to reason with. According to Ragni and
Knauff, people will only think of alternatives if they are asked to search for other models.
Nevertheless, even then, they do not randomly construct them from scratch. Instead
of that, they first start generating models which are most similar to the preferred one
by changing them as little as possible. This theory seems to be very promising and is
empirically supported. Furthermore, it can give us an explanation about how people deal
with ambiguity when modeling spatial reasoning problems and that, while evaluating
a conclusion, they might come to conclusions which are wrong according to classical
logic.

6.2. Theories about Spatial Relations

We will first address the spatial reasoning problem following the introduction in [Ragni
and Knauff, 2013]. We assume binary spatial relations between two objects and restrict
ourselves in this paper to the left and right relations. We use the notation left(X,Y )
and right(X,Y ) to express that X is left of Y and X is right of Y , respectively. Recon-
sidering the example from the introduction we obtain

Example 1. 1. left(ferrari , porsche)
2. right(beetle, porsche)
3. left(porsche, hummer)
4. left(hummer , dodge)

C. left(porsche, dodge)

Formally, a spatial reasoning problem consists of a finite list of premises, a conclusion,
and the question whether the premises entail the conclusion. We assume that each
premise is a ground atom of the form p(a, b) specifying some spatial relation p between
the objects a and b. The conclusion is also a ground atom of the form p(c, d), where the
objects c and d must occur in the premises.

6.2.1. Inference Rule Approach

The inference rule approach, as presented by Byrne and Johnson-Laird [1989], is based
on following assumptions:

1. Humans know a set of inference rules, which they can apply to the premises of the
spatial reasoning problem in order to derive new knowledge.
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2. In case they encounter the conclusion, it is proven. The conclusion is only re-
futed, when all possibilities of applying the rules are exploited without proving the
conclusion.

3. The order of the premises is not important.

A system with nine inference rules for spatial reasoning problems is specified, which does
not only consider the left and right relations, but also the front relation. As we will
restrict ourselves to the left and the right relation, we will only consider a simplified
version of the rule system.

∀X,Y, Z(left(X,Z) ← left(X,Y ) ∧ left(Y,Z)) (1)
∀X,Y (left(X,Y ) ↔ right(Y,X)) (2)

(1) represents the transitivity of the left relations and (2) the symmetry between the left
and right relation. In this system, Example 1 can be solved by considering premises 3
and 4 together with rule (1) specifying the transitivity of left , which allows one to infer
the conclusion. These rules seem appropriate and are necessary to identify the relations
between the objects. However, the major drawback of this approach is that it does not
consider the order in which premises are read.

6.2.2. Mental Model Theory

Mental Model Theory does not assume that humans apply inference rules but that they
construct so-called mental models [Johnson-Laird, 1983]. In spatial reasoning, a mental
model is understood as the representation of the spatial arrangements between objects
that correspond to the premises. Consider Example 2, again taken from [Ragni and
Knauff, 2013], which is similar to Example 1 except for the third premise.

Example 2. 1. left(ferrari , porsche)
2. right(beetle, porsche)
3. left(beetle, hummer)
4. left(hummer , dodge)

C. left(porsche, dodge)

A mental model corresponding to the premises is constructed by writing the objects next
to each other exactly how one would imagine the arrangement in one’s mind. In this
case, there exists only one possible mental model.

ferrari porsche beetle hummer dodge

A spatial reasoning problem which has exactly one mental model is called a deterministic
problem. On the other hand, Example 1 is a non-deterministic problem, for which we
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have three mental models.

ferrari porsche beetle hummer dodge
ferrari porsche hummer beetle dodge
ferrari porsche hummer dodge beetle

Mental Model Theory assumes that when solving a spatial reasoning problem, humans
behave as follows:

1. One of the mental models is constructed.

2. If the conclusion does not hold in this model, then it is refuted.

3. If the conclusion holds in this model then, one mental model after another is
constructed and verified. If the conclusion holds in all these models, then it is
proven.

In the original version of Mental Model Theory as well as in the inference rule approach,
it is assumed that the order of the premises is irrelevant. Yet, Ragni, Knauff, and Nebel
[2005] already refer to the studies made in [Manktelow, 2000], which show, that the order
actually influences the construction of mental models and, in particular, the construction
of the first mental model in Step 1.

6.2.3. Preferred Model Theory

In [Ragni and Knauff, 2013], the Preferred Model Theory is presented, which is based
on Mental Model Theory. The major difference is the assumption that humans do not
consider all but only certain mental models. These certain ones in turn depend on the
order in which the premises are presented. In this section we will discuss the Preferred
Model Theory together with the computational system PRISM, developed by Ragni and
Knauff [2013] as well.

One should note that left(a, b) or right(a, b) denote that object a is left or right of object
b, respectively, but this does not mean that a is a neighbor of b. There might be other
objects between a and b. In case a is a neighbor of b, i.e. there is no other object
between them, then we will refer to this relation as left neighbor of or right neighbor of
and denote this as ln(a, b) and ln(b, a), respectively.

The Preferred Model Theory assumes that the phases in which humans solve spatial
reasoning problems can be divided into a model construction, a model inspection and
a model variation phase. Ragni and Knauff also present PRISM, an implementation of
the Preferred Model Theory. It only allows the following four types of premises for a
spatial reasoning problem:

Type 1 Exactly the first premise.
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Type 2 Premises containing exactly one new object and one which occurs already in the
model so far.

Type 3 Premises which contain two new objects, but which are not from type 1.

Type 4 Premises which relate two objects to each other, occurring in two different sub-
models, where submodels are arrangements of objects which are already formed
but which are not yet in a relationship to each other.

Based on a list of premises, PRISM constructs the preferred mental model by stepwise
adding new objects to an initially empty arrangement. For this purpose, one premise
after another is read and, depending on its type, is processed as follows:

1. If the premise is of type 1, then the two objects will be placed directly next to each
other.

2. If the premise is of type 2, then the new object will be inserted directly next to the
already existing one, provided that the space next to the existing one is free. If this
space is already occupied, then the new object is placed in the next available space.
This is called first free fit or 3f-strategy .

3. If the premise is of type 3, then a new arrangement, that is a new submodel, is
constructed in which both objects are arranged directly next to each other.

4. If the premise is of type 4, the first arrangement will be placed directly next to
the second arrangement; the objects within these arrangements do not change their
places.

We illustrate PRISM by reconsidering Example 1. Reading the premises one by one,
the preferred mental model is constructed as follows: After reading the first premise,
left(ferrari , porsche), which is of type 1, the Ferrari and the Porsche are placed next to
each other.

ferrari porsche

After reading the second premise, right(beetle, porsche), which is of type 2, the Beetle is
added next to the Porsche as its right neighbor.

ferrari porsche beetle

After reading the third premise, left(porsche, hummer), which is again of type 2, we
notice that the Hummer cannot be placed directly right of the Porsche because this
space is already occupied. Therefore, the Hummer will be placed on the first free space
right of the Porsche.

ferrari porsche beetle hummer
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Finally, after reading the forth premise, left(hummer , dodge), the dodge is placed as
right neighbor of the Hummer and we obtain the following preferred mental model:

ferrari porsche beetle hummer dodge

and then, in the second phase, we check whether the conclusion holds. As porsche is left
of dodge in the above model, humans normally respond ‘yes’. Only if they are explicitly
pointed to consider other models, the third phase starts and they try to change the
model with the least possible number of operations. For Example 1, the models

ferrari porsche hummer beetle dodge
ferrari porsche hummer dodge beetle

are generated subsequently. The conclusion holds for all three models and indeed, the
classical logically correct answer is ‘yes’. Interestingly, most humans appear to infer
their answer immediately after generating the preferred mental model.

Let us consider yet another spatial reasoning problem, Example 3.

Example 3. 1. left(ferrari , porsche)
2. right(beetle, hummer)
3. left(ferrari , beetle)

C. left(porsche, beetle)

After reading the first premise, the Ferrari and the Porsche are placed next to each
other.

ferrari porsche

The second premise is of type 3, that means both objects are placed next to each other
in a new empty arrangement.

hummer beetle

Only after reading the third premise, which is of type 4, both submodels are put in
relation to each other and we obtain the following preferred mental model:

ferrari porsche hummer beetle

and accordingly, the conclusion is true in the preferred mental model. Only in exceptional
cases, humans try to do some model variation, and figure out that there is also another
model which agrees with the premises.

ferrari hummer beetle porsche

In this model, the conclusion does not hold anymore. Nevertheless, the Preferred Model
Theory assumes that the majority of the people believes that the conclusion holds. As
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we aim at modeling human reasoning, the first model corresponds to the conclusion,
which is what we intend to model.

6.3. Representation as Logic Programs

Let us recall the notation from Chapter 2 by applying them to Example 1. Consider
Pex, the preliminary program representing Example 1, which consists of the following
five clauses:

left(ferrari , porsche) ← >.
left(porsche, beetle) ← >.

left(porsche, hummer) ← >.
left(hummer , dodge) ← >.

right(X,Y ) ← left(Y,X).

The first four clauses represent the four premises denoted as a set of facts about the
left relation between objects. Note that instead of the second clause, we could have
written

right(beetle, porsche)← >.

instead. In order to simplify the representation of the programs in the following, we
will only allow left relations as facts or assumptions in the programs. Anyway, because
of the last clause, we can still conclude the corresponding right relation, where the last
clause is not a fact but simply a clause representing the symmetry between the left and
right relations. Imagine that the Ferrari would not actually be left of the Porsche. We
represent this as the assumption

left(ferrari , porsche)← ⊥.

The constants in Pex are

constants(Pex) = {ferrari , porsche, beetle, hummer , dodge}

and the weak completion of Pex is

wcPex = { left(ferrari , porsche) ↔ >,
left(porsche, beetle) ↔ >,

left(porsche, hummer) ↔ >,
left(hummer , dodge) ↔ > }

∪ {right(o1, o2)↔ left(o2, o1) | o1, o2 ∈ constants(Pex)}.
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The least model of the weak completion of Pex is 〈I>, ∅〉, where

I> = { left(ferrari , porsche), left(porsche, beetle),
left(porsche, hummer), left(hummer , dodge),
right(porsche, ferrari), right(beetle, porsche),
right(hummer , porsche), right(dodge, hummer)}.

6.4. Reasoning with Respect to Preferred Mental Models

Following the Preferred Model Theory, we show how the preferred mental model of a
spatial reasoning problem can be computed by logic programs under the Weak Comple-
tion Semantics. This approach covers the model construction and the model inspection
phase.

The running example in Section 6.3 shows us that relations between objects can be easily
represented in logic programs. However, there is no straightforward way in which we
can express the order in which the premises are read. But precisely this information is
crucial if we want to formalize the Preferred Model Theory. For this purpose, in the
approach we propose now, we explicitly express phases where each premise is read at one
particular phase. This allows us to define the order in which the premises are processed.
In contrast to PRISM, we do not distinguish between the model construction and model
inspection phase, but process them at the same time.

Let S be a spatial reasoning problem. The following program PS represents the premises
of S and the necessary background knowledge in order to construct the preferred mental
model. Within PS we will use the following notation with informal meaning as follows:

l(X,Y, i) in phase i, X is placed to the left of Y ,
ln(X,Y, i) in phase i, X is the left neighbor of Y ,
ol(X, i) in phase i, the space directly left of X is occupied,
or(X, i) in phase i, the space directly right of X is occupied,

where i starts with 1. In the following, n indicates the number of premises processed so
far. Given a spatial reasoning problem S, the corresponding program PS is constructed
as follows:

1. We start by reading the premises. For each premise do: If the ith premise is of the
form left(o1, o2) or right(o1, o2), then add

l(o1, o2, i)← >. or l(o2, o1, i)← >.

respectively, to the (initially empty) program PS , where o1 and o2 are assumed to be
different objects. After that, we also know constants(PS), the set of constants in PS .

108



6.4. Preferred Mental Models

2. We make a closed-world assumption for the l relation in phase 1 as initially nothing
is known about the spatial relation of objects:

{l(o1, o2, 1)← ⊥ | o1, o2 ∈ constants(PS) and o1 6= o2}.

One should observe that programs are weakly completed, e.g. if the first premise of a
spatial reasoning problem is of the form left(porsche, hummer) then the ground facts
and assumptions

l(porsche, hummer , 1) ← > and l(porsche, hummer , 1) ← ⊥

are generated in the first two steps, respectively. Their weak completion is

l(porsche, hummer , 1)↔ >∨⊥ ≡ l(porsche, hummer , 1)↔ >.

Recall that by ≡ we mean semantical equivalence. Under the Weak Completion
Semantics facts override assumptions. In other words, there is no obligation to place
o1 to the left of o2 in phase i unless explicitly stated in the ith premise.

3. As at the beginning no objects have been placed, the space to the left and to the
right of each object is initially empty:

{ol(o, 1)← ⊥ | o ∈ constants(PS)} ∪ {or(o, 1)← ⊥ | o ∈ constants(PS)}.

This corresponds to the closed-world assumption with respect to the ol relation, which
needs to be explicitly made under the Weak Completion Semantics. In the running
example, we find that the space to the left and to the right of both cars, the Porsche
and the Hummer, are empty in phase 1. Accordingly, PS additionally consists of the
following four clauses:

ol(porsche, 1) ← ⊥.
or(porsche, 1) ← ⊥.
ol(hummer , 1) ← ⊥.
or(hummer , 1) ← ⊥.

4. We start to place objects. If in phase i object o1 should be placed to the left of
object o2 and the space to the left of o1 as well as the space to the right of o1 are
empty, then o1 is placed as the left neighbor of o2:

{ln(o1, o2, i) ← l(o1, o2, i) ∧ ¬ol(o2, i) ∧ ¬or(o1, i) |
o1, o2 ∈ constants(PS),
o1 6= o2 and i ∈ {1, ..., n}}.

For the running example, we obtain, among others, in phase 1

ln(porsche, hummer , 1) ← l(porsche, hummer , 1) ∧
¬ol(hummer , 1) ∧ ¬or(porsche, 1).
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Given 1., 2. and 3., the body of this clause will be true and, consequently, the Porsche
will be placed as the left neighbor of the Hummer in phase 1.

5. Once an object o1 has become the left neighbor of another object o2 in phase i, this
relation holds until the preferred mental model is constructed:

{ln(o1, o2, i+ 1) ← ln(o1, o2, i) |
o1, o2 ∈ constants(PS),
o1 6= o2 and i ∈ {1, ..., n− 1}}.

6. If o1 has become the left neighbor of o2 in phase i, then the space to the left of o2 as
well as the space to the right of o1 are occupied in phase i+ 1:

{ol(o2, i+ 1) ← ln(o1, o2, i) |
o1, o2 ∈ constants(PS),
o1 6= o2 and i ∈ {1, ..., n− 1}} ∪

{or(o1, i+ 1) ← ln(o1, o2, i) |
o1, o2 ∈ constants(PS),
o1 6= o2 and i ∈ {1, ..., n− 1}}.

In combination with 5., the space to the left of o2 and the space to the right of o1 are
occupied in all future phases. For example, after the Porsche has been placed as left
neighbor of the Hummer in phase 1, the following two clauses determine that there
is no space anymore immediately to the left of the hummer and immediately to the
right of the Porsche at phase 2:

ol(hummer , 2) ← ln(porsche, hummer , 1).
or(porsche, 2) ← ln(porsche, hummer , 1).

7. If o1 should be placed to the left of o2, but there is already a left neighbor o3 of o2,
then o1 is placed to the left of o3:

{l(o1, o3, i+ 1) ← l(o1, o2, i+ 1) ∧ ln(o3, o2, i) |
o1, o2, o3 ∈ constants(PS),
diff (o1, o2, o3) and i ∈ {1, ..., n− 1}},

where diff (o1, o2, o3) means that o1, o2 and o3 are different objects. One should
observe that this can only happen from phase 2 onwards, as in the first phase none
of the objects has a left neighbor. This is the reason for writing i + 1 in the atom
l(o1, o2, i+ 1) occurring in the bodies of the clauses.

8. Likewise, if o1 should be placed to the left of o2, but o1 is already the left neighbor
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of some other object o3, then o3 should be placed to the left of o2:

{l(o3, o2, i+ 1) ← l(o1, o2, i+ 1) ∧ ln(o1, o3, i) |
o1, o2, o3 ∈ constants(PS),
diff (o1, o2, o3) and i ∈ {1, ..., n− 1}}.

9. Finally, in order to determine whether the conclusion is true, we add the following
clauses to PS . If o1 is the left neighbor of o2 after processing all premises, then o1 is
to the left of o2 in the preferred mental model:

{left(o1, o2) ← ln(o1, o2, n) | o1, o2 ∈ constants(PS) and o1 6= o2}.

10. The left relation is transitive:

{left(o1, o3) ← left(o1, o2) ∧ left(o2, o3) |
o1, o2, o3 ∈ constants(PS) and diff (o1, o2, o3)}.

11. The right relation is the inverse of the left relation:

{right(o1, o2) ← left(o2, o1) |
o1, o2 ∈ constants(PS) and diff (o1, o2)}.

In each phase, one premise is read and understood as a request to place the mentioned
objects in the required order. Objects are placed in the first available space like in the
PRISM approach, where again in each phase exactly one request to place objects is
processed and the objects in the request are placed. Once the least fixed point of ΦPS
has been reached, we can identify the preferred mental model: Given a problem S, o1

is left of o2 iff left(o1, o2) holds in the least fixed point. This will be illustrated by two
examples in the next subsection.

6.5. Examples

We consider the spatial reasoning problem, Example 4.

Example 4. 1. left(porsche, hummer)
2. left(dodge, hummer)

C. left(dodge, porsche)

Let P4 be the logic program corresponding to Example 4 and ΦP4 the corresponding se-
mantic operator.3 We abbreviate the constants representing cars by their first letter, i.e.

3gP4 can be found in Appendix C.
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Iteration I> I⊥ #

ΦP4↑0 ∅ ∅

ΦP4
↑1 l(p, h, 1) 1.

l(d, h, 2) 1.

l(d, h, 1), l(d, p, 1), l(h, d, 1), l(h, p, 1), l(p, d, 1) 2.
ol(d, 1), ol(h, 1), ol(p, 1), or(d, 1), or(h, 1), or(p, 1) 3.

ΦP4
↑2 ln(p, h, 1) ln(d, h, 1), ln(d, p, 1), ln(h, d, 1), ln(h, p, 1), ln(p, d, 1) 4.

ΦP4
↑3 ln(p, h, 2) 5.

ol(h, 2), or(p, 2) ol(d, 2), ol(p, 2), or(d, 2), or(h, 2) 6.
l(d, p, 2) l(h, p, 2), l(p, d, 2), l(p, h, 2) 7.,8.

ΦP4
↑4 ln(d, p, 2) ln(d, h, 2), ln(h, p, 2), ln(p, d, 2) 4.

l(h, d, 2) 7.,8.
left(p, h) 9.

ΦP4
↑5 ln(h, d, 2) 4.

left(d, p) 9.

right(h, p) 11.

ΦP4
↑6 left(d, h) 10.

right(p, d) 11.

ΦP4
↑7 right(h, d) 11.

Table 6.1.: The least model of the weak completion of P4 is computed by iterating ΦP4
until

the least fixed point is reached. In each iteration only atoms are listed which appear
in I> and I⊥ for the first time. # lists the clauses responsible for adding an atom
to I> or I⊥. The atom in bold confirms the conclusion: The dodge is to the left of
the Porsche.

d, h and p are abbreviations for dodge, hummer and porsche, respectively. In Table 6.1,
we illustrate the computation of the least fixed point of ΦP4 step by step, where ΦP4 ↑n
denotes I after the nth iteration of ΦP4 . Focusing on atoms which are mapped to true,
i.e. which are in I>, we find:

• In the first iteration of the ΦP4 operator (ΦP4↑1) the requests to place the Porsche to
the left of the Hummer in phase 1 and the dodge to the left of the Hummer in phase
2 are recorded.

• In ΦP4↑2, the Porsche becomes the left neighbor of the Hummer in phase 1.

• In ΦP4↑ 3, we learn that the space to the left of the Hummer as well as the space to
the right of the Porsche are occupied in phase 2. As the Porsche is the left neighbor of
the Hummer in phase 1, this relationship is preserved in phase 2 and the dodge must
be placed to the left of the Porsche in phase 2.

• In ΦP4↑4, the dodge becomes the left neighbor of the Porsche in phase 2 and we find
that the Porsche and the Hummer are in the left relation.
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• In ΦP4↑5, we find that the dodge and the Porsche are in the left relation, whereas the
Hummer and the Porsche are in the right relation.

• In ΦP4 ↑ 6, we find by transitivity that the dodge and the Hummer are in the left
relation, and the Porsche and the dodge are in the right relation.

• Finally, in ΦP4↑7, the Hummer and the dodge are in the right relation.

Indeed, as shown in bold in Table 6.1, the conclusion of Example 4 holds in the preferred
mental model: The dodge is to the left of the Porsche.

We return to Example 3 from Section 6.2.3, which contains premises of type 3 and 4,
i.e. premises that generate submodels. Let P3 be the logic program corresponding to
Example 3 and ΦP3 be the corresponding semantic operator. We again abbreviate the
constants representing beetle, hummer , ferrari and porsche by their first letter, i.e. b, h,
f and p, respectively. In Table 6.2, we depict the computation of the least fixed point
of ΦP3 . For I> we find:

• In the first iteration the three requests to place objects are recorded.

• In the second and the forth iteration, the Ferrari becomes the left neighbor of the
Porsche and the Hummer becomes the left neighbor of the Beetle, respectively, thus
generating two submodels which are not connected at this step.

• In the fifth and the sixth iteration, the request to place the Ferrari to the left of the
Beetle (l(f, b, 3)) is processed. This generates l(f, h, 3) and, thereafter l(p, h, 3).

• The Porsche becomes the left neighbor of the Hummer in the seventh iteration leading
to the preferred mental model.

Indeed, as shown in bold in Table 6.2, the conclusion of Example 3 holds in the preferred
mental model: The Porsche is to the left of the Beetle.

6.6. Conclusion

We have shown that our computational logic approach based on the Weak Completion
Semantics can compute preferred mental models for spatial reasoning problems. We
have restricted our presentation to the left and right relation, but the formalization can
be extended to include additional ones like the front or the back relations. Likewise, we
should be able to handle the four cardinal directions. Different than other approaches
such as described in [Goodwin and Johnson-Laird, 2005], the Preferred Model Theory
explains how a model is constructed and seems to be able to predict conclusions humans
make given a spatial reasoning problem. This allows us to understand how they influence
the model construction, as we have shown by Example 3 and 4.
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Iteration I> I⊥ #

ΦP3↑0 ∅ ∅

ΦP3↑1 l(f, p, 1), l(h, b, 2), l(f, b, 3) 1.
l(b, f, 1), l(b, h, 1), l(b, p, 1), l(f, b, 1), l(p, b, 1), 2.

l(f, h, 1), l(h, b, 1)l(h, f, 1), l(h, p, 1), l(p, f, 1), l(p, h, 1) 2.

ol(b, 1), ol(f, 1), ol(h, 1), ol(p, 1) 3.
or(b, 1), or(f, 1), or(h, 1), or(p, 1) 3.

ΦP3
↑2 ln(f, p, 1) ln(b, f, 1), ln(b, h, 1), ln(b, p, 1), ln(f, b, 1), 4.

ln(f, h, 1), ln(h, b, 1), ln(h, f, 1)ln(h, p, 1) 4.
ln(p, f, 1), ln(p, h, 1) 4.

ΦP3
↑3 ln(f, p, 2) 5.

ol(p, 2), or(f, 2) ol(b, 2), ol(f, 2), ol(h, 2), or(b, 2), or(h, 2), or(p, 2) 6.

l(b, h, 2), l(b, p, 2), l(f, b, 2), l(f, h, 2) 7.,8.
l(f, p, 2), l(h, p, 2), l(p, b, 2) 7.,8.

ΦP3
↑4 ln(b, h, 2), ln(b, p, 2), ln(f, b, 2), ln(f, h, 2) 4.

ln(h, b, 2) ln(h, p, 2), ln(p, b, 2), ln(p, f, 2) 4.
ln(f, p, 3) 5.

ol(p, 3), or(f, 3) 6.

l(b, f, 2), l(h, f, 2), l(p, h, 2) 7.,8.

ΦP3
↑5 ln(h, b, 3) ln(b, p, 3), ln(f, b, 3), ln(f, h, 3), ln(h, p, 3) 5.

ln(h, d, 2), ln(b, f, 2), ln(h, f, 2), ln(p, h, 2) 5.

ol(b, 3), or(h, 3) 6.
l(f, h, 3) l(h, p, 3), l(p, f, 3) 7.,8.

left(f, p) 9.

ΦP3
↑6 ln(p, b, 3), ln(p, f, 3) 5.

ol(f, 3), ol(h, 3), or(b, 3), or(p, 3) 6.

l(p, h, 3) l(b, h, 3), l(b, p, 3), l(f, p, 3), 7,8.

l(h, b, 3), l(h, f, 3), l(p, b, 3), ln(h, f, 3) 7.,8.
left(h, b) 9.

right(p, f) 11.

ΦP3
↑7 ln(p, h, 3) ln(b, h, 3) 4.

l(b, f, 3) 7.,8.
right(b, h) 11.

ΦP3
↑8 ln(b, f, 3) 5.

left(p, h) 9.

ΦP3↑9 left(f, h), left(p, b) 10.
right(h, p) 11.

ΦP3
↑10 left(f, b) 10.

right(b, p), right(h, f) 11.

ΦP3↑11 right(b, f) 11.

Table 6.2.: The least model of the weak completion of P3 is computed by iterating ΦP3 until
the least fixed point is reached. In each iteration only atoms are listed which appear
in I> and I⊥ for the first time. # lists the clauses responsible for adding an atom
to I> or I⊥. The atom in bold confirms the conclusion: The Porsche is to the left
of the Beetle.
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6.6. Conclusion

Höps [2014] has shown that although the logic programs here contain positive cycles,
the correspondence between the Weak Completion Semantics and the Well-founded Se-
mantics, which we discussed in Chapter 3, can be preserved and, hence, preferred mental
models can also be computed within state-of-the-art reasoning systems based on answer
set programming like clingo [Gebser, Kaminski, Kaufmann, and Schaub, 2014]. Thus,
large scale applications seem to be feasible.
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7. Quantified Statements

In a recent meta-analysis, Khemlani and Johnson-Laird [2012] showed that the con-
clusions drawn by humans in psychological experiments about syllogistic reasoning are
not the conclusions predicted by classical first-order logic. We propose an alternative
approach on modeling syllogisms. The chapter is structured as follows: After an intro-
duction on syllogistic reasoning in the next section, we apply four principles in developing
a logical form for the representation of syllogisms in Section 7.2. Section 7.3 shows how
the four syllogistic moods can be represented in logic programs and how entailments can
be understood under the Weak Completion Semantics. By means of three examples,
we present in Section 7.4 the predictions under the Weak Completion Semantics. Fi-
nally, the last section compares these results with the results of FOL and three cognitive
theories.1

7.1. Introduction

The way of how humans ought to reason correctly about syllogisms has already been
investigated by Aristotle. A syllogism consists of two quantified statements using some
of the four quantifiers all (A), no (E), some (I), and some are not (O) about sets of
entities which we denote in the following by the predicate symbols a, b and c. The
letters in brackets, A, E, I and O are the classical abbreviations derived from the first
two vowels of the Latin words affirmo and nego meaning affirm and deny, respectively.
Consider the following two premises:

First Premise ‘some a are b’ (IE1)
Second Premise ‘no b are c’

What can we conclude about the relation between a and c? The classical first-order
logical consequence from these so-called premises is ‘some a are not c’. The first two
premises together with a consequence that follows classical logically is called a valid
syllogism. Otherwise it is called an invalid syllogism. The four quantifiers and their
formalization in FOL are given in Table 7.1. The entities can appear in four different
orders called figures as shown in Table 7.2. Hence, a problem consisting of two premises

1The original idea of this chapter has been published in [Dietz, Hölldobler, and Ragni, 2015d, Costa,
Dietz, Hölldobler, and Ragni, 2016]. An extended version thereof is under review [Costa, Dietz, Hölldo-
bler, and Ragni, 2017a].
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Mood Natural Language FOL Short

affirmative universal (A) all a are b ∀X(a(X)→ b(X)) Aab
affirmative existential (I) some a are b ∃X(a(X) ∧ b(X)) Iab
negative universal (E) no a are b ∀X(a(X)→ ¬b(X)) Eab
negative existential (O) some a are not b ∃X(a(X) ∧ ¬b(X)) Oab

Table 7.1.: The four syllogistic moods together with their logical formalization.

Figure 1 Figure 2 Figure 3 Figure 4

First Premise a-b b-a a-b b-a
Second Premise b-c c-b c-b b-c

Table 7.2.: The four figures used in syllogistic reasoning.

can be completely specified by the quantifiers of the first and second premise and the
figure. The example discussed above is denoted by IE1, where I stands for the mood of
the first premise (some), E stands for the mood of the second premise (no) and 1 for its
figure (a-b, b-c).

Altogether, there are 64 syllogisms and, if formalized in FOL, we can compute their
classical logical consequence. Nevertheless, Khemlani and Johnson-Laird’s [2012] meta-
analysis based on six experiments has shown that humans do not only systematically
deviate from the predictions of FOL, but from any other of at least 12 cognitive theories.
In the case of IE1, besides the above mentioned logical consequence, a significant number
of humans answered ‘no a are c’, which does not follow from IE1 in FOL.

The predictions of the theories FOL, PSYCOP, Verbal, and Mental Models for the syl-
logisms OA4, EA2, and AA4 and those of the participants, taken from Khemlani and
Johnson-Laird, are depicted in Table 7.3, where the participants were 156 high school
to university students. FOL and the other three cognitive theories make different pre-
dictions. In particular, each theory provides at least one prediction which is correct
with respect to classical FOL and provides an additional prediction, which is false with
respect to classical FOL. Currently, the best overall results are achieved by the Verbal
Models Theory [Polk and Newell, 1995], which predicts 84% of the participants responses,
closely followed by the Mental Model Theory [Johnson-Laird, 1983] with 83%, whereas
PSYCOP [Rips, 1994] only predicts 77% of the participants’ responses. The conclusions
depicted in the second column of Table 7.3 refer to the significant percentage of parti-
cipants, which is the number of participants who chose the particular conclusion, which
was too high for the conclusion to be chosen randomly. The threshold for the percentage
to be significant is determined as follows: Given that there are nine different possible
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7.2. Five Principles

Participants FOL PSYCOP Verbal Models Mental Models

OA4 Oca Oca Oca, Ica, Iac Ocs, NVC Oca, Oac, NVC

EA2 Eac, Eca Eac, Eca Eac, Eca Eca Eac, Eca

Oac, Oca Oac, Oca

AA4 Aac, NVC Iac, Ica Iac, Ica NVC, Aca Aca, Aac,

Iac, Ica

Table 7.3.: The conclusions drawn by a significant percentage of participants are high-
lighted in gray and compared to the predictions of the theories FOL, PSY-
COP, Verbal, and Mental Models for the syllogisms OA4, EA2, and AA4.
NVC stands for no valid conclusion.

conclusions, the chance that a conclusion has been chosen randomly is 1/9 = 11.1%. A
binomial test shows that if a conclusion is drawn in more than 16% of the cases by the
participants it is unlikely that is has been chosen by just random guesses. The statistical
analysis is elaborately explained in [Khemlani and Johnson-Laird, 2012].

In the sequel, we investigate whether the Weak Completion Semantics is competitive in
syllogistic reasoning and how it performs with respect to the cognitive theories considered
by Khemlani and Johnson-Laird. First, we develop four principles for the representation
of syllogisms and show how to model them under the Weak Completion Semantics.
Afterwards we compare our results with the results of FOL, the syntactic rule based
theory PSYCOP [Rips, 1994], the Verbal Model Theory [Polk and Newell, 1995] and the
Mental Model Theory [Johnson-Laird, 1983].2 The last two theories are model-based
and performed the best in Khemlani and Johnson-Laird’s meta-analysis.

7.2. Five Principles

We will now introduce five principles, which we apply for developing a logical form for
the representation of syllogisms. The first principle, licenses for inferences, has already
been applied in the previously presented human reasoning tasks in Chapter 5. The
second principle, negation by transformation, is an idea used in the area of Logic Pro-
gramming as a mechanism to represent negative consequences. The last three principles,
existential import and Gricean implicature, unknown generalization and blocking con-
clusions through double negation, are assumptions motivated from findings in Cognitive
Science.

2http://mentalmodels.princeton.edu/models/mreasoner/
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7. Quantified Statements

7.2.1. Licenses for Inferences (licenses)

As already discussed in Section 5.1.1, Stenning and van Lambalgen [2008] proposed to
formalize conditionals in human reasoning not by inferences straight away, but rather by
licenses for inferences. For instance, the conditional ‘if p(X) then q(X)’ is represented
by the program, which consists of the following clauses:

q(X) ← p(X) ∧ ¬abpq(X).
abpq(X) ← ⊥.

where the first clause states that ‘q(X) if p(X) and ¬abpq(X)’. The closed-world as-
sumption with respect to the abnormality predicate, abpq(X), is represented by the
second clause. The assumption abpq(X)← ⊥ can be understood as ‘nothing is abnormal
for X with respect to the first clause’ (if nothing else is known).

We call this principle licenses for inferences and will refer to it by the following abbre-
viation in brackets: (licenses).

7.2.2. Negation by Transformation (transformation)

The logic programs we consider under the Weak Completion Semantics do not allow
heads of clauses to be negative literals. In order to represent a negative conclusion ¬p(X),
we introduce an auxiliary formula p′(X) together with the clause

p(X) ← ¬p′(X)

and the integrity constraint U← p(X)∧ p′(X). This is a widely used technique in logic
programming. Together with the principle (licenses) introduced in Section 7.2.1, this
additional clause is extended by the following two clauses:

p(X) ← ¬p′(X) ∧ ¬abnpp(X).
abnpp(X) ← ⊥.

Note that the second clause represents the closed world assumption with respect to
abnpp(X). The weak completion of both clauses is then

p(X) ↔ ¬p′(X) ∧ ¬abnpp(X).
abnpp(X) ↔ ⊥.

Additionally, the integrity constraint

U← p(X) ∧ p′(X).

states that an object cannot belong to both, p and p′.
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We call this principle negation by transformation and will refer to it by the following
abbreviation in brackets: (transformation).

7.2.3. Existential Import and Gricean Implicature (import)

Humans understand quantifiers differently due to a pragmatic understanding of language.
For instance, in natural language, we normally do not quantify over things that do not
exist. Consequently, ‘for all ’ implies ‘there exists’. This appears to be in line with human
reasoning and has been called the Gricean implicature [Grice, 1975]. This corresponds
to what sometimes in literature is also called existential import and assumed by several
theories like the theory of mental models [Johnson-Laird, 1983] or mental logic [Rips,
1994]. Likewise, Stenning and van Lambalgen [2008] have shown that humans require
existential import for a conditional to be true.

Furthermore, as mentioned by Khemlani and Johnson-Laird [2012], the quantifier ‘some
a are b’ often implies that ‘some a are not b’, which again is implied by the Gricean
implicature: Someone would not state ‘some a are b’ if that person knew that ‘all a are
b’. As the person does not say ‘all a are b’, but ‘some a are b’ instead, we assume that
‘not all a are b’, which in turn implies ‘some a are not b’.

We call this principle existential import and Gricean implicature and will refer to it by
the following abbreviation in brackets: (import).

7.2.4. Unknown Generalization (unknownGen)

Humans seem to distinguish between ‘some y are z ’ and ‘some z are y ’, as the res-
ults reported by Khemlani and Johnson-Laird [2012] show. Nevertheless, if we would
represent ‘some y are z ’ by ∃X(y(X) ∧ z(X)) then this is semantically equivalent to
∃X(z(X) ∧ y(X)) because conjunction is commutative in FOL. Likewise, humans seem
to distinguish between ‘some y are z ’ and ‘all y are z ’, as we have already discussed in
Section 7.2.3. Accordingly, if we only observe that an object o belongs to y and z then
we do not want to conclude both, ‘some y are z ’ and ‘all y are z ’.

In order to distinguish between ‘some y are z ’ and ‘all y are z ’, we introduce the following
principle: If we know that ‘some y are z ’, then there must not only be an object o1,
which belongs to y and z (by Gricean implicature), but there must be another object
o2, which belongs to y and for which it is unknown whether it belongs to z .

We call this principle unknown generalization and will refer to it by the following abbre-
viation in brackets: (unknownGen).
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7.2.5. No Derivation through Double Negation (doubleNeg)

Under Weak Completion Semantics, a positive conclusion can be derived from double
negation within two conditionals. Consider the following two conditionals with each one
having a negative premise:

If not a, then b.
If not b then c.

Additionally, assume that a is true. Let us encode the two conditionals and the fact that
a is true as a program consisting of the following three clauses:

b ← ¬a.
c ← ¬b.
a ← >.

Its weak completion is
b ↔ ¬a.
c ↔ ¬b.
a ↔ >.

Its least model is
〈{a, c}, {b}〉,

where a and c are true: a is true because it is a fact and c is true by the negation
of b. b is derived false because the negation of a is false. This example shows that under
the Weak Completion Semantics, a positive conclusion (c being true) can be derived from
two clauses, through double negation. Yet, it appears to be the case that humans do not
reason in such a way: Considering the results of the participants’ responses in [Khemlani
and Johnson-Laird, 2012],3 they seem not to draw conclusions through double negatives.
Accordingly, we block them through abnormalities, which we explain in more detail by
an example in Section 7.3.2.

We call this principle no derivation through double negation and will refer to it by the
following abbreviation in brackets: (doubleNeg).

7.3. Representation as Logic Programs

Based on the first five principles of the previous section, we encode the quantified state-
ments in logic programs. The programs will be specified using the predicates y and z
and depending on the figures shown in Table 7.2, where yz can be replaced by ab, ba, cb
or bc.

3For instance, consider their results for the cases EE1, EE2, EE3 and EE4 in Appendix D.
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7.3.1. All y are z (Ayz)

‘All y are z ’ is represented by the program PAyz, which consists of the following clauses:

z(X) ← y(X) ∧ ¬abyz(X). (licenses)
abyz(X) ← ⊥. (licenses)

y(o) ← >. (import)

The first two clauses are obtained by applying the principle of using licenses for in-
ferences. The last clause follows by the principle of existential import and Gricean
implicature, where o is the object which we assume to exist for y. The least model of
the weak completion of PAyz is

〈{y(o), z(o)}, {abyz(o)}〉.

7.3.2. No y is z (Eyz)

According to Table 7.1, under FOL mood is represented as follows:

∀X (y(X) → ¬z(X)).

As contraposition holds under the Weak Completion Semantics [Kencana Ramli, 2009],
this formula is equivalent to

∀X (z(X) → ¬y(X)).

Given this formula4 and the three principles, licenses for inferences, existential import
and Gricean implicature and negation by transformation, introduced in Section 7.2.1, 7.2.3
and 7.2.2, the logic program PEyz consists of the following clauses:

y′(X) ← z(X) ∧ ¬abzny(X). (transformation & licenses)
abzny(X) ← ⊥. (licenses)

y(X) ← ¬y′(X) ∧ ¬abnyy(X). (transformation & licenses)
z(o) ← >. (import)

abnyy(o) ← ⊥. (licenses & doubleNeg)

In addition, we have the following integrity constraint:

U← y(X) ∧ y′(X). (transformation)

The first two clauses in PEyz are obtained by applying the principle of using licenses
for inferences, where y′ is an auxiliary predicate symbol used to denote the negation

4We decided to model the logic program according to the representation of ∀X(z(X) → ¬y(X)),
because we can use this same representation in the following Chapter, when abduction is required.
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of y. This auxiliary predicate symbol is related to y by the third clause applying the
principle of negation by transformation. In addition, this principle enforces the integrity
constraint. The fourth clause of PEyz follows by the principle of Gricean implicature.
The least model of the weak completion of PEyz is

〈{z(o), y′(o)}, {abzny(o), abnyy(o), y(o)}〉.

Note that the last clause in PEyz cannot be generalized to all X, because otherwise
we allow conclusions by double negatives. The fifth principle discussed in Section 7.2.5
states that we should block conclusions through double negatives.

The following example shows what exactly that means and why this is undesirable: Con-
sider the case where additionally to the clauses in PEyz, there is some o′ for which z(o′)
is false due to some clause being part of another premise. In this case, the first clause in
PEyz will enforce the falsehood of y′(o′). Now, if abnyy(X) ← ⊥ would be in PEyz (in-
stead of abnyy(o)← ⊥), then also abnyy(o

′) would be false and, consequently, by the third
clause in PEyz, y(o′) would be true. In other words, y(o′) would follow by the negation
of z(o′), which in turn would be responsible for the negation of y′(o′). Even though this
might be logically reasonable, the empirical results indicate that participants do not infer
conclusions based on double negation. Therefore, we decide to restrict abnyy(o)← ⊥ to
the objects occurring in PEyz.

7.3.3. Some y are z (Iyz)

‘Some y are z ’ is represented by the program PIyz, which consists of the following
clauses:

z(X) ← y(X) ∧ ¬abyz(X). (licenses)
abyz(o1) ← ⊥. (unknownGen & licenses)

y(o1) ← >. (import)
y(o2) ← >. (unknownGen)

The first two clauses are again obtained by the principle of using licenses for inferences.
The abnormality predicate is restricted to the object o1, which is assumed to exist by
the principle of Gricean implicature, represented by the third clause. The fourth clause
is obtained by the principle of unknown generalization. The least model of wcPIyz is

〈{y(o1), y(o2), z(o1)}, {abyz(o1)}〉.

Note that nothing about abyz(o2) is stated in PIyz. Accordingly, z(o2) stays unknown
in the least model.
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7.3.4. Some y are not z (Oyz)

‘Some y are not z ’ is represented by the program POyz which consists of the following
clauses:

z′(X) ← y(X) ∧ ¬abynz(X). (transformation & licenses)
abynz(o1) ← ⊥. (unknownGen & licenses)

z(X) ← ¬z′(X) ∧ ¬abnzz(X). (transformation & licenses)
y(o1) ← >. (import)
y(o2) ← >. (unknownGen)

abnzz(o1) ← ⊥. (doubleNeg & licenses)
abnzz(o2) ← ⊥. (doubleNeg & licenses)

In addition, we have the following integrity constraint:

U ← z(X) ∧ z′(X). (transformation)

The first four clauses as well as the integrity constraint are derived as in the program PEyz
except that object o1 is used instead of o and abynz is restricted to o1 like in PIyz. The
fifth clause of POyz is obtained by the principle of unknown generalization. The last
two clauses are again not generalized to all objects for the same reason as previously
discussed in Section 7.3.2 for the representation of E: The generalization of abnzz to
all objects can lead to conclusions through double negation, in case there is a second
premise. The least model of wcPOyz is

〈{y(o1), y(o2), z′(o1)}, {abynz(o1), abnzz(o1), abnzz(o2), z(o1)}〉.

7.3.5. Entailment of Quantified Statements

We have not yet defined when a syllogism holds given a program P. These definitions
will be developed in this section.

One should observe that Khemlani and Johnson-Laird [2012] do not propose a formal
definition for the entailment of the moods. They use first-order theory as a normative
theory, i.e. they test if the conclusions drawn by the participants are correct with respect
to a first-order representation of a mood. In the following, we define the entailment of
the moods under the Weak Completion Semantics, where yz will later be replaced by ac
or ca.5

A straightforward definition of whenever ‘All y are z ’ holds given a program P, is,
whenever exactly the things, which have been stated in PAyz, are true in its least model:
P |=′ Ayz iff there exists an object o such that P |=wcs y(o) and for all objects o we find
that if P |=wcs y(o) then P |=wcs z(o)∧¬abyz(o). The existence of an object o belonging

5Participants were only asked to draw conclusions about the relation between a and c.
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to y is due to the principle of Gricean implicature. Moreover, all objects belonging
to y must belong to z. The requirement that ¬abyz(o) is also entailed is a technical
one which is based on the principle of licenses for inferences. Similarly, according to
the specifications in Section 7.3, the other entailments for P |=′ Eyz, P |=′ Iyz and
P |=′ Oyz could be defined as follows:

• P |=′ Eyz iff there exists an object o such that P |=wcs z(o) and for all objects o
we find that if P |=wcs z(o) then P |=wcs y

′(o) ∧ ¬y(o) ∧ ¬abznu(o) ∧ ¬abnyy(o).

• P |=′ Iyz iff there exists an object o1 such that P |=wcs y(o1) ∧ z(o1) ∧ ¬abyz(o1)
and there exists an object o2 such that P |=wcs y(o2) and P 6|=wcs z(o2)∧¬abyz(o2).

• P |=′ Oyz iff there exists an object o1 such that P |=wcs y(o1) ∧ z′(o1) ∧ ¬z(o1) ∧
¬abynz(o1)∧¬abnzz(o1) and there exists an object o2 such that P |=wcs y(o2) and
P 6|=wcs z

′(o2) ∧ ¬z(o2) ∧ ¬abynz(o2) ∧ ¬abnzz(o2).

These definitions are too strict as soon as we want to infer conclusions about relations,
which are not explicitly stated. For instance, consider again Table 7.2, where the four
possible figures are given. The first premise states a direct relation between a and b and
the second premise states a direct relation between b and c. Yet, in the meta-analysis,
participants were asked to draw conclusions about the relation between a and c.6

We obtain the following alternative definition when P entails a certain conclusion:

• P |= Ayz iff there exists an object o such that P |=wcs y(o) and for all objects o
we find that if P |=wcs y(o) then P |=wcs z(o).

• P |= Eyz iff there exists an object o such that P |=wcs z(o) and for all objects o
we find that if P |=wcs z(o) then P |=wcs ¬y(o).

• P |= Iyz iff there exists an object o1 such that P |=wcs y(o1) ∧ z(o1) and there
exists an object o2 such that P |=wcs y(o2) and P 6|=wcs z(o2).

• P |= Oyz iff there exists an object o1 such that P |=wcs y(o1) ∧ ¬z(o1) and there
exists an object o2 such that P |=wcs y(o2) and P 6|=wcs ¬z(o2).

In case we can not conclude any of these moods, then no valid conclusion is entailed,
denoted as P |= NVC. Note that, by this last definition, we cannot entail NVC together
with some other conclusion, i.e. NVC is disjoint with any other conclusion. In Section 7.5,
where we present our results, we will discuss this aspect in more detail.

Note that yet an alternative definition could simply be the entailment under FOL:

• P |=FOL Ayz iff for all objects o we find that if P |=wcs y(o) then P |=wcs z(o).

• P |=FOL Eyz iff for all objects o we find that if P |=wcs z(o) then P |=wcs ¬y(o).

• P |=FOL Iyz iff there exists an object o such that P |=wcs y(o) ∧ z(o).

6When we will discuss syllogism OA4 in Section 7.4.2, it will become clear why the |=′ entailment is
not appropriate for the conclusions with respect to the relation between a and c.
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• P |=FOL Oyz iff there exists an object o such that P |=wcs y(o) ∧ ¬z(o)

Similarly to the previous case, if we can not conclude any of these moods, then no valid
conclusion is entailed, denoted as P |=FOL NVC. In Section 7.5, we will discuss whether
the results of both entailments differ.

7.4. Predictions under the Weak Completion Semantics

We accomplished an average of 85% accuracy in our predictions, when we apply the
representation for the quantified statements of Section 7.3 and the just introduced en-
tailment rules. In nine cases we had a perfect match with the answers given by the
participants. In 30 cases the match was 89% and in 20 cases the match was 78%. The
five cases left had a match of 67%.

We explain now how the accuracy of the predictions is computed in general. After
that, we will show the logic program representation of three syllogisms by combining
the proposed representations with respect to the figures in Table 7.2. In doing so, we
replace yz by ab, ba, cb or bc. In addition, we may need to rename objects such that
different objects are referred to in the representations of different syllogisms. Thereafter,
we compute the least model of the weak completion of the obtained programs and check
which conclusions hold in this model. We compare our results with the data from the
psychological experiments in [Khemlani and Johnson-Laird, 2012].

7.4.1. Accuracy of Predictions

Note that in Khemlani and Johnson-Laird’s experiments, people were asked to infer con-
clusions about a and c from a syllogism built according to the figures in Table 7.2. There-
fore, in our predictions we only consider entailment of syllogisms between a and c.

We have nine different answer possibilities for each of the 64 syllogisms:

Aac, Eac, Iac, Oac, Aca, Eca, Ica, Oca and NVC.

For every syllogism, we define a list of length 9 for the predictions of the Weak Com-
pletion Semantics, where the first element represents Aac, the second element represents
Eac, and so forth. When Aac is predicted under the Weak Completion Semantics for
a given syllogism, then the value of the first element of this list is a 1, otherwise it is
a 0, and the same holds for the other eight elements in the list (representing the other
eight answer possibilities). Analogously, for every syllogism we define a list of the parti-
cipants’ conclusions of length 9 containing either 1 or 0 for all nine answer possibilities,
depending on whether the majority of the participants concluded Aac, Eac, and so forth.
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For each syllogism we then simply compare each element of both lists as follows, where
i is the ith element of both lists:

comp(i) =

{
1 if both lists have the same value for the ith element

0 otherwise

The matching percentage of this syllogism is then computed by
∑9

i=1 comp(i)/9. Note
that the percentage of the match does not only take into account when the weak com-
pletion semantics correctly predicts a conclusion, but also whenever it correctly rejects
a conclusion, i.e. when the Weak Completion Semantics does not predict a conclusion.
The average percentage of accuracy in general is then simply the average of the matching
percentage of all 64 syllogisms.

7.4.2. OA4 - Perfect Match (100%)

The syllogism OA4 is obtained by combining the last and the first mood in Table 7.1
according to figure 4 in Table 7.2. It can be read as:

First Premise Oba ‘some b are not a’
Second Premise Abc ‘all b are c’

The program POA4 representing the two premises is obtained as the union of the programs
POba (obtained from POyz by replacing y and z by b and a, respectively) and PAbc
(obtained from PAyz by replacing y and z by b and c, respectively). In addition, the
constant o occurring in PAbc has been replaced by o3. POA4 consists of the following
clauses:7

a′(X) ← b(X) ∧ ¬abbna(X). (transformation &licenses)
abbna(o1) ← ⊥. (unknownGen & licenses)

a(X) ← ¬a′(X) ∧ ¬abnaa(X). (transformation & licenses)
b(o1) ← >. (import)
b(o2) ← >. (unknownGen)

abnaa(o1) ← ⊥. (doubleNeg & licenses)
abnaa(o2) ← ⊥. (doubleNeg & licenses)

c(X) ← b(X) ∧ ¬abbc(X). (licenses)
abbc(X) ← ⊥. (licenses)

b(o3) ← >. (import)

In addition, we have the following integrity constraint:

U ← a(X) ∧ a′(X) (transformation)

7We omit a, b and c in the index of POA4, as they are determined by the number of the figure.
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The least model of the weak completion of POA4 is

〈{b(o1), b(o2), b(o3), abca(o1), a′(o1), c(o1), c(o2), c(o3)},
{abbna(o1), abnaa(o1), abbc(o1), abbc(o2), abbc(o3), a(o1)}〉.

This model entails only the conclusion ‘some c are not a’ (Oca): There exists an ob-
ject, o1, such that POA4 |=wcs c(o1) ∧ ¬a(o1) and there exists an object, o2, such that
POA4 |=wcs c(o2) and POA4 6|=wcs ¬a(o2).

Consider again the initial definition for the entailment of syllogisms as discussed in
Section 7.3.5. Accordingly, P |=′ Oca iff there exists an object o1 such that P |=wcs

c(o1)∧ a′(o1)∧¬a(o1)∧¬abcna(o1)∧¬abnaa(o1) and there exists an object o2 such that
P |=wcs c(o2) and P 6|=wcs a′(o2) ∧ ¬a(o2) ∧ ¬abcna(o2) ∧ ¬abnaa(o2). This example
shows that the entailment |=′ is not appropriate to derive some relation between a and
c: POA4 6|=′ Oac because POA4 6|=wcs ¬abcna(o1).

7.4.3. EA2 - Worst Match (67%)

EA2 is one of the syllogisms with the lowest match (67%):

First Premise Eab ‘No b are a’
Second Premise Acb ‘All c are b’

The program PEA2 representing the two premises is obtained as the union of the programs
PEba (obtained from PEyz by replacing y and z by b and a, respectively) and PAcb
(obtained from PEyz by replacing y and z by c and b, respectively). In addition, the
constant o occurring in PEba and PAcb has been replaced by o1 and o2, respectively. PEA2

consists of the following clauses:

b′(X) ← a(X) ∧ ¬abanb(X). (transformation & licenses)
abanb(X) ← ⊥. (licenses)

b(X) ← ¬b′(X) ∧ ¬abnbb(X). (transformation & licenses)
a(o1) ← >. (import)

abnbb(o1) ← ⊥. (licenses &doubleNeg)
b(X) ← c(X) ∧ ¬abcb(X). (licenses)

abcb(X) ← ⊥. (licenses)
c(o2) ← >. (import)

Furthermore, we have the following integrity constraint:

U← b(X) ∧ b′(X). (transformation)
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The least model of the weak completion of PEA2 is

〈{a(o1), c(o2), b′(o1), b(o2)},
{abanb(o1), abnbb(o1), abanb(o2), abnbb(o2), abcb(o1), abcb(o2)}〉.

This model does not entail any conclusion between a and c, therefore our prediction is
NVC. Participants concluded both Eac and Eca.

Even though none of the entailed conclusions predicted by the weak completion semantics
matches the participants’ answers, how could we possibly reach a match of 67%? The
reason is that we also take into account the correct rejections, i.e. the conclusions that
are not entailed by the model, as has been explained in Section 7.4.1

7.4.4. AA4 - Partial Match (78%)

For AA4 we got an accuracy of 78% in our prediction. This syllogism combines two
premises in the first mood according to figure 4. It can be read as:

First Premise Aba ‘All b are a’
Second Premise Abc ‘All b are c’

The program PAA4 representing the two premises is obtained as the union of programs
PAba (obtained from PAyz by replacing y and z by b and a, respectively) and PAbc
(obtained from PAyz by replacing y and z by b and c, respectively). In addition, the
constant o occurring in PAba and PAbc have been replaced by o1 and o2, respectively.
PAA4 consists of the following clauses:

a(X) ← b(X) ∧ ¬abba(X). (licenses)
abba(X) ← ⊥. (licenses)

b(o1) ← >. (import)
c(X) ← b(X) ∧ ¬abbc(X). (licenses)

abbc(X) ← ⊥. (licenses)
b(o2) ← >. (import)

The least model of the weak completion of PAA4 is

〈{b(o1), b(o2), a(o1), a(o2), c(o1), c(o2)},
{abba(o1), abba(o2), abbc(o1), abbc(o2)}〉.

This model entails both ‘all a are c’ (Aac) and ‘all c are a’ (Aca): There exists an
object, o1, such that PAA4 |=wcs a(o1) and for all objects, o1 and o2, we find that
if PAA4 |=wcs a(o1) then P |=wcs c(o1) and if PAA4 |=wcs a(o2) then P |=wcs c(o2).
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Participants FOL PSYCOP Verbal Models Mental Models WCS

OA4 Oca Oca Oca, Ica, Oca, NVC Oca, Oac, Oca

Iac NVC

EA2 Eac, Eac, Eca Eac, Eca Eca Eac, Eca NVC

Eca Oac, Oca Oac, Oca

AA4 Aac, Iac, Ica Iac, Ica NVC, Aca Aca, Aac, Aac,

NVC Iac, Ica Aca

Overall
results 100% 77% 84% 83% 85%

Table 7.4.: The conclusions drawn by a significant percentage of participants are high-
lighted in gray and compared to the predictions of the theories FOL, PSY-
COP, Verbal, and Mental Models as well as WCS for the syllogisms OA4,
EA2, and AA4.

Similarly, PAA4 |= Aca holds: There exists an object, o1, such that PAA4 |=wcs c(o1)
and for all objects, o1 and o2, we find that if PAA4 |=wcs c(o1) then P |=wcs a(o1)
and if PAA4 |=wcs c(o2) then P |=wcs a(o2). This prediction matches partially with the
participants’ answers who concluded Aac and NVC.

7.5. Conclusions

We discussed and formalized three examples under the Weak Completion Semantics. The
results are summarized and compared to FOL, PSYCOP, the Verbal, and the Mental
Model Theory in Table 7.4. The selected examples are typical in the sense that for OA4,
the conclusions drawn by the participants and the Weak Completion Semantics are
identical, for AA4, the conclusions drawn by the participants and the Weak Completion
Semantics overlap, and for EA2, the conclusions drawn by the participants and the
Weak Completion Semantics are disjoint. Overall, the Weak Completion Semantics
differs from the other cognitive theories. The result with respect to the 64 syllogisms
under the Weak Completion Semantics shows that we achieve the best results with a
prediction of 85%. An overview can be found in Appendix D on page 205. In case, we
evaluate the results with respect to the |=FOL entailment, we can only predict 72% of the
participants’ responses. Compared to the other cognitive theories, we achieve together
with the Verbal Models Theory (84%) the best performance, closely followed by the
Mental Model Theory (83%). It seems natural to compare these theories in more detail
and see where their similarities are and where they differ.
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It might be interesting to investigate whether the combinations of the moods influence
how the participants perceive the syllogisms. For instance, it seems that participants give
different answers when they consider syllogistic premises of the same mood, especially
in the cases for AA and EE. Yet, this is only an assumption and needs to be further
investigated. The approach we propose in this chapter has one major drawback: We
can never predict more than 89% of the participants responses in case participants
have answered NVC together with some other conclusion. This is the case in 37 of in
total 64 syllogism. For each of the 37 syllogisms, the Weak Completion Semantics can
maximally predict 89% of the participants’ responses, as NVC only follows in case no
other conclusion follows, i.e. NVC is disjoint with any other conclusion. The current
predictions under the Weak Completion Semantics with 85% are quite high compared
to the maximal of 93.6%8 we can reach in total, and it seems quite difficult to get better
results within the current approach. Possibly, with help of abductive reasoning we could
improve the results: Whenever the Weak Completion Semantics concludes NVC, we
might find some explanations for the premises, which might yield some new relation
with respect to a and c. How is it possible that PSYCOP, Mental Model Theory and
Verbal Model theory derive NVC together with other conclusions? According to the
results reported by Khemlani and Johnson-Laird in PSYCOP, the conclusion NVC is
also disjoint with any other conclusions. Only the Mental Model Theory and the Verbal
Model Theory can conclude NVC with some other conclusion: In the case of the Mental
Model Theory, premises can have more than one mental model. Therefore, one model of
some premises possibly confirms NVC whether some other model of the same premises
yields some conclusion about the relation of a and c. Yet, in the case of the Verbal
Model Theory, a program is implemented with three different versions which, given the
premises, differ in the construction of the corresponding mental model. The predictions
under the Verbal Model Theory are then the union of these three versions.

Summing up, what in this chapter is standing out: For the first time we are actually
able to evaluate the performance of the Weak Completion Semantics and compare our
predictions to other approaches. We predicted 64 syllogisms with only one logic pro-
gramming representation for each of the four moods and show that the Weak Completion
Semantics is indeed competitive compared to the other cognitive theories.

8 (89%×37)+(100%×(64−37))
64

= 93.6%
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As we have discussed in the previous chapter, psychological experiments on syllogistic
reasoning have shown that participants did not always deduce the classical logically valid
conclusions. We have developed five principles for the representation of syllogisms and
showed that according to their encoding in logic programs, we can predict 85% of the
participants’ responses under the Weak Completion Semantics, which is, compared to
other cognitive theories, quite competitive.

So far we haven’t given any attention to the contextual setting of a syllogism and have
only considered the 64 syllogisms in an abstract context. When we discussed the Wason
Selection Task in in Chapter 5.2, we have seen that humans conclusions are different
when a task is carried out in an abstract context or in a social context. Here, we are
interested on whether a syllogistic reasoning task in a social context influences human
reasoning. For this purpose, we will consider a syllogistic reasoning task in a social con-
text, which has been proposed by Evans, Barston, and Pollard [1983]. They carried out
a psychological experiment to investigate the belief-bias effect with respect to syllogisms.
This task differs from the syllogisms in the previous chapter in the sense that now belief
(or background knowledge) plays and important role.1

8.1. Introduction

Evans, Barston, and Pollard [1983] carried out a psychological study about deductive
reasoning, which demonstrated possibly conflicting processes in human reasoning. Par-
ticipants were presented different syllogisms for which they had to decide whether they
accepted these syllogisms as valid. For instance, consider Svit :

Premise 1 No nutritional things are inexpensive.
Premise 2 Some vitamin tablets are inexpensive.
Conclusion Therefore, some vitamin tablets are not nutritional.

The Conclusion necessarily follows from the premises under classical logic. However,
about half of the participants said that the syllogism was not valid. They were explicitly
asked to logically validate or invalidate various syllogisms, but didn’t seem to have the

1The original idea of the chapter has been published in [Dietz, 2015] and an improved version has
been published in [Dietz, 2017].
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Type Example %

Sdog
valid and
believable

No police dogs are vicious.
Some highly trained dogs are vicious.
Therefore, some highly trained dogs are not police dogs.

92

Svit
valid and
unbelievable

No nutritional things are inexpensive.
Some vitamin tablets are inexpensive.
Therefore, some vitamin tablets are not nutritional.

46

Srich
invalid and
unbelievable

No millionaires are hard workers.
Some rich people are hard workers.
Therefore, some millionaires are not rich people.

8

Scig
invalid and
believable

No addictive things are inexpensive.
Some cigarettes are inexpensive.
Therefore, some addictive things are not cigarettes.

92

Table 8.1.: Four examples of four types of syllogisms. The percentages of the participants
that accepted the type of the syllogism as being valid are shown in the last
column.

intellectual capability to do so. Even worse, they were not even aware about their
inabilities. Participants reflectively read the instructions and understood well that they
were required to reason logically from the premises to the conclusion. Nevertheless, the
results show that their intuitions were stronger and delivered a tendency to say ‘yes’ or
‘no’ depending on whether the syllogism was believable [Evans, 2012].

Table 8.1 shows four examples of syllogisms, each one being of a different type, that have
been evaluated by Evans, Barston, and Pollard [1983]. Note that the two premises of all
four types are of the same form, namely No A are B. Some C are B, which corresponds
to EI2. The first two types differ from the last two types with respect to the conclusions:
In the first two types the conclusion of the examples, Some highly trained dogs are not
police dogs and Some vitamin tablets are not nutritional correspond to the quantified
statement Some C are not A (Oca), whereas in the last two types the conclusion of
the examples, Some millionaires are not rich people and Some addictive things are not
cigarettes, correspond to the quantified statement Some A are not C (Oac).2

If participants judged that ‘the conclusion necessarily follows from the statements in the
passage, [you]’ they ‘should answer yes, otherwise no.’ The column on the right side
shows the percentage of the participants that validated the syllogism. Note that the
participants could only answer ‘yes’ or ‘no’, and did not have the chance to answer ‘I
don’t know ’ or similar. A detailed description of the experimental method of a sample
experiment on the belief bias can be found in [Evans, 2012].

2See Chapter 7 for the meaning of EI2 and Oac. Under FOL and the Weak Completion Semantics,
EI2 entails Oca. The majority of participants in [Khemlani and Johnson-Laird, 2012], concluded Oca
and NVC.
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Let us show that the first two syllogisms are indeed valid under classical logic and that
the last two are not. Consider Sdog and Svit , both of which have the same form, and
assume that the first two premises hold. The formulas p(X), v(X) and h(X) can either
mean that X is a police dog, vicious and highly trained or that X is a nutritional thing,
inexpensive and a vitamin tablet, respectively. The first two premises of Sdog and Svit

can be formulated as the following logical formula:

((∀X)(p(X)→ ¬v(X)) ∧ (∃Y )(h(Y ) ∧ v(Y ))),

where the formula on the left hand side of the outer conjunction represents the first
premise, in the example of Sdog : No police dogs are vicious. The right hand side of the
outer conjunction represents the second premise, in the example of Sdog : Some highly
trained dogs are vicious. The Conclusion, in the example of Sdog : Some highly trained
dogs are not police dogs. can be formulated as follows:

(∃Z)(h(Z) ∧ ¬p(Z)).

We prove that the Conclusion follows from the premises, by showing that

(((∀X)(p(X)→ ¬v(X)) ∧ (∃Y )(h(Y ) ∧ v(Y )))→ ((∃Z)(h(Z) ∧ ¬p(Z))))

is valid. Figure E.1 in Appendix E shows the proof within the calculus of natural
deduction by following the notation and the definitions in [Hölldobler, 2009].

On the other hand, Srich and Scig are not valid, which can best be shown by the Venn
diagram in Figure 8.1. The first premise No addictive things are inexpensive leads us
to conclude that the intersection between addictive things and inexpensive is empty, i.e.
there is nothing which is both addictive and inexpensive (denoted by the hatched lines).
From the second premise we know that there exists something, which is inexpensive
and a cigarette, for instance some constant o. This is represented by the o drawn in
the intersection of inexpensive and cigarettes. We try to verify the Conclusion, Some
addictive things are not cigarettes, by examining whether there is at least one o in the
part of the addictive things that is not in the part of the cigarettes. This is actually not
the case, as all addictive things could simply be cigarettes, denoted by the dots in the
intersecting area of addictive things and cigarettes. Consequently, the syllogism is not
valid. Analogously, we try to verify Srich .

8.2. Theories about the Belief-Bias Effect

Evans, Barston and Pollard asserted that the participants were influenced by their own
beliefs, their so-called belief bias. We can distinguish between the negative and the
positive belief bias [Evans, Handley, and Harper, 2001]. The negative belief bias, i.e.
when a support for the unbelievable conclusion is suppressed, happens for about half
of the participants such as for the example of Svit . A positive belief bias, i.e. when
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addictive things

inexpensive cigarettes

o

Figure 8.1.: Venn diagram showing that syllogism Scig and Srich are invalid.

the acceptance for the believable conclusion is raised, happens for the majority of the
participants such as for the example of Scig . As pointed out in [Garnham and Oakhill,
1994], Wilkins [1928] already observed that syllogisms which conflict with our beliefs are
more difficult to solve.

Various theories have tried to explain why humans deviate from the classical logically
valid answers. Some conclusions can be explained by converting the premises [Chapman
and Chapman, 1959] or by assuming that the type of the premises create an atmosphere
which influences the acceptance for the conclusion [Woodworth and Sells, 1935, Garnham
and Oakhill, 1994]. The atmosphere hypothesis states the following:

1. Any negative premise (e.g. no a are b or some a are not b) creates a negative
atmosphere, in which negative conclusions tend to be more easily accepted than
other ones.

2. Any particular premise (e.g. some a are not b or some a are not b) creates a
particular atmosphere, in which conclusions of the particular form tend to be
more easily accepted than other ones.

The syllogisms in Figure 8.1 contain premises imposing a negative and particular atmo-
sphere. This has been done on purpose in order to avoid any possible bias based on the
atmosphere.

Johnson-Laird and Byrne [1991] proposed the mental model theory [Johnson-Laird,
1983], which additionally supposes the search for counterexamples when validating the
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conclusion. Later, Stenning and van Lambalgen [2008] explain why certain aspects influ-
ence the interpretations made by humans when evaluating syllogisms and discuss this in
the context of mental models. Evans, Barston, and Pollard [1983] and Evans [1989] pro-
posed a theory, which in the literature is sometimes referred to as the selective scrutiny
model [Garnham and Oakhill, 1994, Adler and Rips, 2008]. First, humans heuristically
accept any syllogism having a believable conclusion, and only proceed with a logical
evaluation if the conclusion contradicts their belief.

Adler and Rips [2008] claim that this behavior is rational in the sense of efficient belief
maintenance. It results in a normal adaptive process for which we only make an effort
towards a logical evaluation when the conclusion is unbelievable. It would take a lot
of effort if we would constantly verify conclusions even though there is no reason to
question them. As people generally intend to keep their beliefs as consistent as possible,
they invest more effort in examining statements that contradict their beliefs, than the
ones that comply with them. Yet, this theory cannot fully explain all classical logical
errors in the reasoning process. Yet another approach, the selective processing model,
accounts only for a single preferred model [Evans, 2000]. If the conclusion is neutral or
believable, humans try to construct a model that supports it. Otherwise, they attempt
to construct a model that rejects it.

According to Garnham and Oakhill [1994] the belief-bias effect can take place at several
stages: First, beliefs can influence our understanding of the premises. Second, in case
a statement contradicts our belief, we might search for alternative models and check
whether the conclusion is plausible. This seems to comply with Stenning and van Lam-
balgen’s proposal to model human reasoning by a two step procedure, which we have
discussed in the introduction of this thesis and again in Chapter 5: The first step, the
representational part, determines how our beliefs influence the understanding of the
premises. The second step, the procedural part, determines whether we search for al-
ternative models based on the plausibility of the conclusion. Here, we will follow up on
this distinction when modeling the belief-bias effect and show how we can model this
syllogistic task under the Weak Completion Semantics together with the non-classical
logical conclusions made by the participants.

In the following section, we model all four syllogisms of Table 8.1. They are typical in
the sense that, in Sdog there is no belief bias, in Svit we identify a belief bias in the
representational part, in Scig we identify is a belief bias in the procedural part and in
Srich we identify a belief bias in the representational and in the reasoning part.

8.3. Two Additional Principles

If the belief bias occurs in the representational part, we can model it with help of
the principle licenses, i.e. with help of abnormalities. For the belief bias that occurs
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during the reasoning process, we introduce a new principle, Search for Alternative Models
(searchAlt), which we model with help of skeptical abduction.

8.3.1. Background Knowledge

Recall principle (licenses) from Section 7.2.1: The way of representing quantified state-
ments as ‘q(X) if p(X) and ¬abpq(X)’, where abpq(X) is an abnormality predicate,
allows us to express additional background knowledge, which possibly influences our
beliefs about this statement. For instance, this can be done by extending the program
with the additional statement abpq(X) ← r(X), where r(X) stands for the additional
belief. If the belief-bias effect occurs on the representational part, we will encode the
belief bias with help of abnormality predicates.

8.3.2. Search for Alternative Models

Consider again Srich and Sadd : The premises are about things which contradict the con-
clusion. We assume that in case there seems no conclusion possible, humans might try to
search for alternative models by perceiving the first part of the conclusion as an observa-
tion, that needs to be explained. We assume that the belief-bias effect occurs during the
reasoning process. We call this principle Search for Alternative Models (searchAlt). We
will model this principle with the help of abduction, formally introduced in Chapter 2.5.
Recall, that given a knowledge base and an observation, the goal of abduction is to
compute a minimal explanation that entails the observation.

8.4. Representation as Logic Programs

According to the observations made in Section 8.2, we model the belief-bias effect when
(1) the belief can influence the representation, i.e. how the given information is under-
stood, and when (2) the belief can influence the reasoning, i.e. how new information
is gained, if nothing can be derived. In the following, we model (1) with the help of
abnormalities, motivated by principle (licenses). (2) is modeled by means of skeptical
abduction, motivated by the principle (searchAlt).

8.4.1. No Belief-Bias Effect

According to Section 7.3.2 of the previous chapter, Premise 1 in Sdog , No police dogs
are vicious, is encoded by the following five clauses, where the terms in brackets refer to
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the respective principles introduced in Section 7.2:3

police dog ′(X) ← vicious(X) ∧ ¬abpolice dog ′(X). (transformation & licenses)
abpolice dog ′(X) ← ⊥. (licenses)
police dog(X) ← ¬police dog ′(X) ∧ ¬abpolice dog(X). (transformation & licenses)

vicious(o1) ← >. (import)
abpolice dog(o1) ← ⊥. (licenses & doubleNeg)

In addition, we have the following integrity constraint:

U← police dog(X) ∧ police dog ′(X). (transformation)

police dog(X) and police dog ′(X) denote that X is a police dog and not a police dog,
respectively. According to Section 7.3.3, Premise 2 in Sdog , Some highly trained dogs
are vicious, is represented by the following four clauses:4

vicious(X) ← highly trained(X) ∧ ¬abvicious(X). (licenses)
abvicious(o2) ← ⊥. (unknownGen & licenses)

highly trained(o2) ← >. (import)
highly trained(o3) ← >. (unknownGen)

Pdog represents the first two premises of Sdog and consists of

police dog ′(X) ← vicious(X) ∧ ¬abpolice dog ′(X).

abpolice dog ′(X) ← ⊥.
police dog(X) ← ¬police dog ′(X) ∧ ¬abpolice dog(X).

vicious(o1) ← >.
abpolice dog(o1) ← ⊥.

vicious(X) ← highly trained(X) ∧ ¬abvicious(X).
abvicious(o2) ← ⊥.

highly trained(o2) ← >.
highly trained(o3) ← >.

The weak completion of Pdog is shown in Box 1. Its least model, 〈I>, I⊥〉, is as follows:

I> = {highly trained(o2), highly trained(o3), police dog ′(o1),
police dog ′(o2), vicious(o1), vicious(o2)},

I⊥ = {police dog(o2), police dog(o1),
abpolice dog ′(o1), abpolice dog ′(o2), abpolice dog ′(o3), abpolice dog(o1), abvicious(o2)},

3Note that o, y, y′, z, abzny and abnyy in PEyz in Section 7.3.2 are replaced here by o1,
police dog , police dog ′, vicious, abpolice dog′ and abpolice dog , respectively.

4Note that o1, o2, y, z and abyz in PIyz in Section 7.3.3 are replaced here by
o2, o3, highly trained , vicious and abvicious , respectively.
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Box 1. wcPdog consists of the following clausesa:

police dog ′(o1) ↔ vicious(o1) ∧ ¬abpolice dog ′(o1).

police dog ′(o2) ↔ vicious(o2) ∧ ¬abpolice dog ′(o2).

police dog ′(o3) ↔ vicious(o3) ∧ ¬abpolice dog ′(o3).

police dog(o1) ↔ ¬police dog ′(o1) ∧ ¬abpolice dog(o1).
police dog(o2) ↔ ¬police dog ′(o2) ∧ ¬abpolice dog(o2).
police dog(o3) ↔ ¬police dog ′(o3) ∧ ¬abpolice dog(o3).

vicious(o1) ↔ highly trained(o1) ∧ ¬abvicious(o1).
vicious(o2) ↔ highly trained(o2) ∧ ¬abvicious(o2).
vicious(o3) ↔ highly trained(o3) ∧ ¬abvicious(o3).

vicious(o1) ↔ >.
abpolice dog(o1) ↔ ⊥.

highly trained(o2) ↔ >.
highly trained(o3) ↔ >.

abvicious(o2) ↔ ⊥.
abpolice dog ′(o1) ↔ ⊥.
abpolice dog ′(o2) ↔ ⊥.
abpolice dog ′(o3) ↔ ⊥.

aNote that here and in the following, the only purpose for the clauses highlighted in white is a
better readability.

Indeed, this model entails the Conclusion of Sdog that Some highly trained dogs are
not police dogs: There exists an object, namely o2, such that

Pdog |=wcs highly trained(o2) ∧ ¬police dog(o2)

and there exists another object, namely o3, such that

Pdog |=wcs highly trained(o3) and Pdog 6|=wcs ¬police dog(o3).

According to Evans, Barston, and Pollard [1983], this type of syllogism is logically valid
and psychologically believable. No conflict arises either at the psychological or at the
logical level. The majority validated the syllogism, which complies with what is entailed
by lm wcPdog .

8.4.2. Belief-Bias Effect in Representation

Premise 1 and Premise 2 in Svit , Some vitamin tablets are inexpensive, can be modeled
analogously to Premise 1 and Premise 2 in Sdog . Pvit represents the two premises
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of Svit and consists of5

nutritional ′(X) ← inex (X) ∧ ¬abnutritional ′(X). (transformation & licenses)
abnutritional ′(X) ← ⊥. (licenses)
nutritional(X) ← ¬nutritional ′(X) ∧ ¬abnutritional (X). (transformation & licenses)

inex (o1) ← >. (import)
abnutritional (o1) ← ⊥. (licenses & doubleNeg)

inex (X) ← vitamin(X),¬abinex (X). (licenses)
abinex (o2) ← ⊥. (unknownGen & licenses)

vitamin(o2) ← >. (import)
vitamin(o3) ← >. (unknownGen)

In addition, we have the following integrity constraint:

U← nutritional ′(X) ∧ nutritional(X). (transformation)

The weak completion of Pvit is shown in Box 2. The corresponding least model, 〈I>, I⊥〉,
is as follows:

I> = {vitamin(o2), vitamin(o3), inex (o1), inex (o2),
nutritional ′(o1),nutritional ′(o2)}

I⊥ = {nutritional(o1),nutritional(o2), abinex (o2), abnutritional (o1),
abnutritional ′(o1), abnutritional ′(o2), abnutritional ′(o3)},

Indeed, this model entails the Conclusion of Svit that Some vitamin tablets are not
nutritional : There exists an object, namely o2, such that

Pvit |=wcs vitamin(o2) ∧ ¬nutritional(o2)

and there exists another object, namely o3, such that

Pvit |=wcs vitamin(o3) and Pvit 6|=wcs ¬nutritional(o3).

46% of the participants validated the syllogism, which complies with what is entailed
by lm wc Pvit . As Table 8.1 shows, the psychological results of the second syllogism,
Svit , indicate that there seemed to be two groups of participants where each group had
a different understanding of the premises. The group that validated the syllogism was
not influenced by some bias with respect to vitamin tablets. Their understanding of
the syllogism is reflected by Pvit and their conclusion complies with what is entailed by
lm wcPvit . The participants who chose to invalidate the syllogism belong to the other
group that has apparently been influenced by the belief. The belief bias occurred in the
the representational part of the syllogism. This aspect will be modeled as discussed in
Section 8.3.1 with help of abnormality predicates.

5nutritional(X), nutritional ′(X) denote that X is nutritional, not nutritional, respectively.
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Box 2. wcPvit consists of the following clauses:

nutritional ′(o1) ↔ inex (o1) ∧ ¬abnutritional ′(o1).
nutritional ′(o2) ↔ inex (o2) ∧ ¬abnutritional ′(o2).
nutritional ′(o3) ↔ inex (o3) ∧ ¬abnutritional ′(o3).

nutritional(o1) ↔ ¬nutritional ′(o1) ∧ ¬abnutritional (o1).
nutritional(o2) ↔ ¬nutritional ′(o2) ∧ ¬abnutritional (o2).
nutritional(o3) ↔ ¬nutritional ′(o3) ∧ ¬abnutritional (o3).

inex (o1) ↔ vitamin(o1) ∧ ¬abinex (o1).
inex (o2) ↔ vitamin(o2) ∧ ¬abinex (o2).
inex (o3) ↔ vitamin(o3) ∧ ¬abinex (o3).

inex (o1) ↔ >.
abnutritional (o1) ↔ ⊥.

vitamin(o2) ↔ >.
vitamin(o3) ↔ >.

abinex (o2) ↔ ⊥.
abnutritional ′(o1) ↔ ⊥.
abnutritional ′(o2) ↔ ⊥.
abnutritional ′(o3) ↔ ⊥.

Regarding both premises, someone might observe that it is commonly known that

The purpose of vitamin tablets is to aid nutrition.

This belief in the context of Premise 1 leads to

If something is a vitamin tablet, then it is abnormal.
(regarding Premise 1 of Svit )

We extend Pvit according to this new information, resulting in

Pbias
vit = Pvit ∪ {abnutritional ′(X)← vitamin(X)},

The interpretation of Svit together with the belief-bias effect is represented by Pbias
vit .

Observe that abnutritional ′(X) ← vitamin(X) overrides abnutritional ′(X) ← ⊥(X) under
the weak completion of Pbias

vit . The weak completion of Pbias
vit differs with respect to the

last three clauses in wcPvit . The last three clauses in wcPbias
vit are as follows:

abnutritional ′(o1) ↔ ⊥∨ vitamin(o1).
abnutritional ′(o2) ↔ ⊥∨ vitamin(o2).
abnutritional ′(o3) ↔ ⊥∨ vitamin(o3).
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Its least model, 〈I>, I⊥〉 is

I> = {inex (o1), inex (o2), vitamin(o2), vitamin(o3), abnutritional ′(o2), abnutritional ′(o3)},

I⊥ = {nutritional ′(o2),nutritional ′(o3), abnutritional (o1), abinex (o2)}.

In this case, the Conclusion of Svit , that Some vitamin tablets are not nutritional,
is not entailed. Actually, nothing is stated about the relation between vitamin tablets
and them (not) being nutritional. Yet, we can derive from the model that some vitamin
tablets exist, which are inexpensive, therefore principle (searchAlt) does not apply and we
are done. According to Evans, Barston, and Pollard [1983], type of syllogism is logically
valid but psychologically unbelievable. There arises a conflict at the psychological level,
because we generally assume that the purpose of vitamin tablets is to aid nutrition. The
participants who have been influenced by this belief did not validate the syllogism, which
complies to the result above, as the Conclusion is not entailed by lm wcPbias

vit either.

8.4.3. Belief-Bias Effect in Reasoning

Prich represents Premise 1 and Premise 2 of Srich and consists of6

mil ′(X) ← hard worker(X) ∧ ¬abmil ′(X). (transformation & licenses)
abmil ′(X) ← ⊥. (licenses)

mil(X) ← ¬mil ′(X) ∧ abmil (X). (transformation & licenses)
hard worker(o1) ← >. (import)

abmil (o1) ← ⊥. (licenses & doubleNeg)
hard worker(X) ← rich(X) ∧ ¬abhard worker (X). (licenses)
abhard worker (o2) ← ⊥. (unknownGen & licenses)

rich(o2) ← >. (import)
rich(o3) ← >. (unknownGen)

In addition, we have the following integrity constraint:

U← mil(X) ∧mil ′(X). (transformation)

The weak completion of Pmil is shown in Box 3. Its least model, 〈I>, I⊥〉, is as follows:

I> = {hard worker(o1), hard worker(o2),mil ′(o1),mil ′(o2), rich(o2), rich(o3)},

I⊥ = {mil(o1),mil(o2), abhard worker (o2), abmil (o1), abmil ′(o1), abmil ′(o2), abmil ′(o3)}

This model does not confirm the Conclusion of Srich that some millionaires are not
rich people. The Conclusion in Srich states something which contradicts Premise 2
and cannot be about any of the previously introduced constant o1, o2 or o3. As nothing
can be derived about the relation between mil and hard worker nor between mil and

6 mil(X) and mil ′(X) denote that X is a millionaire and not a millionaire, respectively.
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Box 3. wcPmil consists of the following clauses:

mil ′(o1) ↔ hard worker(o1) ∧ ¬abmil ′(o1).
mil ′(o2) ↔ hard worker(o2) ∧ ¬abmil ′(o2).
mil ′(o3) ↔ hard worker(o3) ∧ ¬abmil ′(o3).

mil(o1) ↔ ¬mil ′(o1) ∧ ¬abmil (o1).
mil(o2) ↔ ¬mil ′(o2) ∧ ¬abmil (o2).
mil(o3) ↔ ¬mil ′(o3) ∧ ¬abmil (o3).

hard worker(o1) ↔ rich(o1) ∧ ¬abhard worker (o1).
hard worker(o2) ↔ rich(o2) ∧ ¬abhard worker (o2).
hard worker(o3) ↔ rich(o3) ∧ ¬abhard worker (o3).

hard worker(o1) ↔ >.
abmil (o1) ↔ ⊥.
rich(o2) ↔ >.
rich(o3) ↔ >.

abhard worker (o2) ↔ ⊥.
abmil ′(o1) ↔ ⊥.
abmil ′(o2) ↔ ⊥.
abmil ′(o3) ↔ ⊥.

rich, principle (searchAlt) of Section 8.3.2 applies: According to our background know-
ledge, we know that ‘normal’ millionaires exist, i.e. millionaires for whom we do not
assume anything abnormal with respect to them being millionaires. Further, we cannot
be sure that all millionaires are normal, i.e. we know that millionaires exist for whom
we don’t know whether they are normal. This is as an observation about two newly in-
troduced constants, let’s say o4, representing a normal millionaire,7 and o5, representing
a millionaire for whom it is unknown whether he or she is normal:

O = {mil(o4),¬abmil ′(o4),¬abmil (o4),mil(o5)}.

If we want to find an explanation for O with respect to Pmil , we can no longer assume
that C = constants(Pmil ), as APmil

does not contain any facts or assumptions about o4

and o5. We specify C = {o1, o2, o3, o4, o5}. Additionally to the previously listed clauses

7This implies that all abnormalities about mil or mil ′ are false with respect to o4.
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in gPmil , Pmil ground with respect to C, gPC
mil , consists of the following eight clauses:

mil ′(o4) ← hard worker(o4) ∧ ¬abmil ′(o4).
abmil ′(o4) ← ⊥.

mil(o4) ← ¬mil ′(o4) ∧ ¬abmil (o4).
hard worker(o4) ← rich(o4) ∧ ¬abhard worker (o4).

mil ′(o5) ← hard worker(o5) ∧ ¬abmil ′(o5).
abmil ′(o5) ← ⊥.

mil(o5) ← ¬mil ′(o5) ∧ ¬abmil (o5).
hard worker(o5) ← rich(o5) ∧ ¬abhard worker (o5).

Given that lm wc (Pmil ) = 〈I>, I⊥〉 as defined above, lm wc (PC
mil ) is as follows:

〈I>, I⊥ ∪ {abmil ′(o4), abmil ′(o5)}〉.

The set of abducibles, APCmil
, has now six facts and assumptions about o4 and o5:

rich(o4) ← >. abmil (o4) ← >. abhard worker (o4) ← >.
rich(o4) ← ⊥. abmil (o4) ← ⊥. abhard worker (o4) ← ⊥.
rich(o5) ← >. abmil (o5) ← >. abhard worker (o5) ← >.
rich(o5) ← ⊥. abmil (o5) ← ⊥. abhard worker (o5) ← ⊥.

We find six explanations for O = {mil(o4),¬abmil ′(o4),¬abmil (o4),mil(o5)}:

E1 = {rich(o4)← ⊥, abmil (o4)← ⊥, abmil (o5)← >},
E2 = {rich(o4)← ⊥, abmil (o4)← ⊥, rich(o5)← ⊥},
E3 = {rich(o4)← ⊥, abmil (o4)← ⊥, abhard worker (o5)← >},
E4 = {abhard worker (o4)← >, abmil (o4)← ⊥, abmil (o5)← >},
E5 = {abhard worker (o4)← >, abmil (o4)← ⊥, rich(o5)← ⊥},
E6 = {abhard worker (o4)← >, abmil (o4)← ⊥, abhard worker (o5)← >}.

The least models of the weak completion of PC
mil together with the six corresponding

explanations, are shown in Box 4. The atoms highlighted in white in Box 4 are the
ones which follow from all explanations, that means, these are the skeptically entailed
atoms. The Conclusion of Srich , Some millionaires are not rich people, does not follow
skeptically from PC

mil and the observation O. According to the definition for skeptical
abduction in Section 2.5, one explanation for which the Conclusion of Srich , Some
millionaires are not rich people, does not follow is enough to show that the Conclusion
does not follow skeptically from PC

mil , IC and O: Consider E4, where we cannot derive
that Some millionaires are not rich people in order to conclude that the Conclusion
does not follow skeptically from PC

mil and the observation O. According to Evans, Bar-
ston, and Pollard [1983], this type of syllogism is neither logically valid nor believable.
Almost no one validated Srich , which complies to the result above, as the Conclusion
is not skeptically entailed by PC

mil , IC and O.
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Box 4. Given that lm wc (Pmil ) = 〈I>, I⊥〉, the least models of the weak completion
of PC

mil together with the six corresponding explanations, are as follows:

lm wc (PC
mil ∪ E1)

= 〈I> ∪ { mil(o4) , mil(o5) , abmil (o5)},

I⊥ ∪ { abmil (o4) , abmil ′(o4) , hard worker(o4) , mil ′(o4) , rich(o4), abmil ′(o5) }〉,

lm wc (PC
mil ∪ E2)

= 〈I> ∪ mil(o4) , mil(o5) },

I> ∪ { abmil (o4) , abmil ′(o4) , hard worker(o4) , mil ′(o4) , rich(o4), abmil ′(o5) ,

hard worker(o5),mil ′(o5), rich(o5)}〉,

lm wc (PC
mil ∪ E3)

= 〈I> ∪ { mil(o4) , mil(o5) , abhard worker (o5)},

I⊥ ∪ { abmil (o4) , abmil ′(o4) , hard worker(o4) , mil ′(o4) , rich(o4), abmil ′(o5) ,

hard worker(o5),mil ′(o5)}〉,

lm wc (PC
mil ∪ E4)

= 〈I> ∪ {abhard worker (o4), mil(o4) , mil(o5) , abmil (o5)},

I⊥ ∪ { abmil (o4) , abmil ′(o4) , hard worker(o4) , mil ′(o4) , abmil ′(o5) }〉,
lm wc (PC

mil ∪ E5)

= 〈I> ∪ {abhard worker (o4), mil(o4) , mil(o5) },

I⊥ ∪ { abmil (o4) , abmil ′(o4) , hard worker(o4) , mil ′(o4) , abmil ′(o5) ,

hard worker(o5),mil ′(o5), rich(o5)}〉,

lm wc (PC
mil ∪ E6)

= 〈I> ∪ {abhard worker (o4), mil(o4) , mil(o5) , abhard worker (o5)},

I⊥ ∪ { abmil (o4) , abmil ′(o4) , hard worker(o4) , mil ′(o4) , abmil ′(o5) ,

hard worker(o5),mil ′(o5)}〉.
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8.4.4. Belief-Bias Effect in Representation and Reasoning

Pcig represents Premise 1 and Premise 2 of Scig and consists of

addictive ′(X) ← inex (X) ∧ ¬abaddictive′(X). (transformation & licenses)
abaddictive′(X) ← ⊥. (licenses)
addictive(X) ← ¬addictive ′(X) ∧ ¬abaddictive(X). (transformation & licenses)

inex (o1) ← >. (import)
abaddictive(o1) ← ⊥. (licenses & doubleNeg)

inex (X) ← cig(X) ∧ ¬abinex (X). (licenses)
abinex (o2) ← ⊥. (unknownGen & licenses)

cig(o2) ← >. (import)
cig(o3) ← >. (unknownGen)

In addition, we have the following integrity constraint:

U← addictive(X) ∧ addictive ′(X). (transformation)

addictive(X) and addictive ′(X) denote that X is addictive and not addictive, respec-
tively. Regarding the first and the second premise, it is commonly known that

Cigarettes are addictive.

This belief in the context of Premise 1 leads to

If something is a cigarette, then it is abnormal. (regarding Premise 1 of Scig)

Pcig is extended accordingly. The new program is

Pcig,bias = Pcig ∪ {abaddictive′(X)← cig(X)}.

The interpretation of Scig together with the belief-bias effect is represented by Pbias
cig .

Observe that abaddictive′(X)← cig(X) overrides abaddictive′(X)← ⊥(X) under the weak
completion of Pbias

cig . The weak completion of Pbias
cig is shown in Box 5. Its least model is

〈{cig(o2), cig(o3), inex (o1), inex (o2)}, {abaddictive(o1), abinex (o2)}〉.

This model does not state anything about the Conclusion, that some addictive things
are not cigarettes. Again, the Conclusion of Scig is about something, which cannot
be o1, o2 or o3. As nothing can be derived about the relation between addictive and inex
nor between addictive and cig , principle (searchAlt) of Section 8.3.2 applies: According
to our background knowledge, we know that ‘normal’ addictive things exist, i.e. addict-
ive things for which we do not assume anything abnormal with respect to them being
addictive things. Additionally, we cannot be sure that all addictive things are normal,
i.e. we know that addictive things exist for which we simply don’t know whether they
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Box 5. Pbias
cig consists of the following clauses:

addictive ′(o1) ↔ inex (o1) ∧ ¬abaddictive′(o1).
addictive ′(o2) ↔ inex (o2) ∧ ¬abaddictive′(o2).
addictive ′(o3) ↔ inex (o3) ∧ ¬abaddictive′(o3).

addictive(o1) ↔ ¬addictive ′(o1) ∧ ¬abaddictive(o1).
addictive(o2) ↔ ¬addictive ′(o2) ∧ ¬abaddictive(o2).
addictive(o3) ↔ ¬addictive ′(o3) ∧ ¬abaddictive(o3).

inex (o1) ↔ cig(o1) ∧ ¬abinex (o1).
inex (o2) ↔ cig(o2) ∧ ¬abinex (o2).
inex (o3) ↔ cig(o3) ∧ ¬abinex (o3).

inex (o1) ↔ >.
abaddictive(o1) ↔ ⊥.

cig(o2) ↔ >.
cig(o3) ↔ >.

abinex (o2) ↔ ⊥.
abaddictive′(o1) ↔ ⊥∨ cig(o1).
abaddictive′(o2) ↔ ⊥∨ cig(o2).
abaddictive′(o3) ↔ ⊥∨ cig(o3).

are normal. We formulate this as an observation about two newly introduced constants,
let’s say o4, representing normal addictive things8 and o5 representing addictive things
for which it is unknown whether they are normal:

O = {addictive(o4),¬abaddictive′(o4),¬abaddictive(o4), addictive(o5)},

In order to generate an explanation forO, let us define C = {o1, o2, o3, o4, o5}. In addition
to the previously listed clauses in gPbias

cig , Pcig,bias ground with respect to C, denoted as

gPC
cig,bias, consists now of the following ten clauses:

addictive ′(o4) ← inex (o4) ∧ ¬abaddictive′(o4).
abaddictive′(o4) ← ⊥.
abaddictive′(o4) ← cig(o4).
addictive(o4) ← ¬addictive ′(o4) ∧ ¬abaddictive(o4).

inex (o4) ← cig(o4) ∧ ¬abinex (o4).
addictive ′(o5) ← inex (o5) ∧ ¬abaddictive′(o5).
abaddictive′(o5) ← ⊥.
abaddictive′(o5) ← cig(o5).
addictive(o5) ← ¬addictive ′(o5) ∧ ¬abaddictive(o5).

inex (o5) ← cig(o5) ∧ ¬abinex (o5).

8This implies that all abnormalities about addictive or addictive ′ are false with respect to o4.

148



8.4. Representation as Logic Programs

Box 6. Given that lm wcPcig,bias = 〈I>, I⊥〉, the least models of the weak completion
of PC

cig,bias together with the corresponding explanations are as follows:

lm wc (PC
cig,bias ∪ E1)

= 〈I> ∪ { addictive(o4) , addictive(o5) },

I⊥ ∪ { cig(o4) , inex (o4) , abaddictive(o4) , abaddictive′(o4) , addictive ′(o4) ,

abaddictive(o5) , cig(o5), abaddictive′(o5), inex (o5), addictive ′(o5)}〉,

lm wc (PC
cig,bias ∪ E2)

= 〈I> ∪ { addictive(o4) , addictive(o5) , abinex (o5)},

I⊥ ∪ { cig(o4) , inex (o4) , abaddictive(o4) , abaddictive′(o4) , addictive ′(o4) ,

abaddictive(o5) , inex (o5), addictive ′(o5)}〉,

lm wc (PC
cig,bias ∪ E3)

= 〈I> ∪ { addictive(o4) , addictive(o5) , cig(o5), abaddictive′(o5)},

I⊥ ∪ { cig(o4) , inex (o4) , abaddictive(o4) , abaddictive′(o4) , addictive ′(o4) ,

abaddictive(o5) , addictive ′(o5)}〉.

lm wcPC
cig,bias does not state anything about o4 nor o5: All atoms about o4 and o5 are

unknown in this least model. Given gPC
cig,bias, the set of abducibles, APCcig,bias

contains

six clauses about o4 and six clauses about o5:

cig(o4) ← >. abaddictive(o4) ← >. abinex (o4) ← >.
cig(o4) ← ⊥. abaddictive(o4) ← ⊥. abinex (o4) ← ⊥.
cig(o5) ← >. abaddictive(o5) ← >. abinex (o5) ← >.
cig(o5) ← ⊥. abaddictive(o5) ← ⊥. abinex (o5) ← ⊥.

The only three (minimal) explanations for O are

E1 = {cig(o4)← ⊥, abaddictive(o4)← ⊥, abaddictive(o5)← ⊥, cig(o5)← ⊥},
E2 = {cig(o4)← ⊥, abaddictive(o4)← ⊥, abaddictive(o5)← ⊥, abinex (o5)← ⊥},
E3 = {cig(o4)← ⊥, abaddictive(o4)← ⊥, abaddictive(o5)← ⊥, cig(o5)← >}.

The least models of the weak completion of PC
cig,bias together with the corresponding

explanations are shown in Box 6. The atoms highlighted in white in Box 6 are the ones
which follow from all explanations, that means, these are the skeptically entailed atoms.
The Conclusion of Sadd , Some addictive things are not cigarettes, follows skeptically
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8. Belief-Bias Effect

from PC
cig,bias and the observation O: There exists an object, namely o4, such that

PC
cig,bias,O |=s

wcs addictive(o4) ∧ ¬cig(o4)

and there exists another object, namely o5, such that

PC
cig,bias,O |=s

wcs addictive(o5) and PC
cig,bias,O 6|=s

wcs cig(o5).

According to Evans, Barston, and Pollard [1983], this type of syllogism is classical lo-
gically invalid, but psychologically believable and therefore causes a conflict: Scig does
not follow logically from the premises. Nevertheless, people are biased and search for
a model that confirms their beliefs. This complies with what is entailed skeptically by
Pbias,C

cig , IC and O. Note that in the formalization of this example, the original restriction
that explanations have to minimal is necessary. Consider for instance

{cig(o4)← ⊥, abaddictive(o4)← ⊥, abaddictive(o5)← ⊥, abinex (o4)← >, cig(o5)← ⊥},

where, if it would be an explanation for O, the Conclusion would not follow skeptically.
However, it cannot be an explanation for O because it is not minimal, i.e. it is a superset
of E1.

8.5. Conclusion

By taking the principles presented in the previous Chapter as starting point and extend-
ing them with two additional principles background knowledge and search for alternative
models, we show that they can be applied to model the belief-bias effect in syllogistic
human reasoning. For this purpose, we model the four examples of Evans, Barston and
Pollard’s [1983] syllogistic reasoning task. The belief-bias effect can be modeled in two
stages: The first stage is where the belief bias seems to occur in the representational
part of the syllogism, for instance in Svit . In this case, the belief bias can be modeled by
means of abnormality predicates. The belief bias in Scig seems to occur in the represent-
ational and the reasoning part of the syllogism. The reasoning part can be modeled with
skeptical abduction. Additionally, as the last example shows, explanations are required
to be minimal.

One of the properties of the Weak Completion Semantics, which is different than other
logic programming semantics, is that undefined atoms stay unknown instead of being
false. To the best of our knowledge, the syllogistic reasoning tasks discussed so far
in the literature have never accounted for providing the option ‘I don’t know’ to the
participants. As has been discussed in [Newstead, Handley, and Buck, 1999], participants
who say that no valid conclusion follows might have problems to find a conclusion easily,
possibly meaning that they do not know the answer. The authors also point to [Polk and
Newell, 1995], who suggested that if a conclusion is stated as being not valid this could
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8.5. Conclusion

mean that the reasoning process is exhausted. An experimental study which allows the
participants to distinguish between ‘I don’t know’ and ‘not valid’ might give us more
insights about their reasoning processes and identify where exactly the belief bias takes
effect.
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Part III.

On Conditionals
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9. Conditionals Evaluation System

In this chapter we present an approach, formalized in terms of an abstract reduction
system, which allows us to evaluate conditionals by various procedural steps, including
revision and abduction. Our focus is on conditionals in human reasoning, i.e. we want
to predict the conclusions drawn by humans. We assume that in certain cases humans
apply abduction and only apply revision if contradictory information is given. However,
we are not aware of any approach which explicitly considers the case of a condition being
unknown.1

9.1. Introduction

Consider the following scenario [Adams, 1970]: President Kennedy was killed. There
was a lengthy investigation about the question whether Oswald or somebody else shot
the president. In the end, it was determined that Oswald did it. Which of the following
two conditionals do we easily accept?

If Kennedy is dead and Oswald did not shoot Kennedy,
then someone else did.2

and

If Oswald had not shot Kennedy, then someone else would have.

According to Adams [1970] people easily accept the first conditional, whereas they re-
ject the second conditional. Conditionals are statements of the form if condition then
consequence. Indicative conditionals are conditionals whose condition may or may not
be known to be true, in the sense that the condition is true or else unknown, and
consequently, whose consequence also may or may not be true. Yet, the consequence
is asserted to be true if the condition is true. On the other hand, the condition of a
subjunctive or counterfactual conditional needs to be false [Lewis, 1973]. Only in the
counterfactual circumstance of the condition being true, the consequence is asserted to
be true. In the sequel, we distinguish subjunctive from indicative conditionals only by

1The original idea of this chapter has been published in [Dietz, Hölldobler, and Pereira, 2015c,b].
Some results in Section 9.3 have not been published and are contributions of this thesis.

2In the original version, the conditional does not contain the part ‘If Kennedy is dead and’. Instead,
it is additionally assumed that everyone knows that Kennedy was killed. For clarity about what is
assumed to be known, we included this knowledge in the premise of the conditional.
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9. Conditionals Evaluation System

the truth of their condition. If the condition of a conditional is false, then it is a sub-
junctive conditional, but not an indicative one. Otherwise, it is an indicative conditional.
We distinguish between both types by grammatically expressing them in their indicative
or subjunctive mood, respectively. Other than that, we do not distinguish between a
subjunctive and counterfactual conditional.3

Note that our view is a very simplified understanding of conditionals. There are con-
troversial discussions within the fields of philosophy and psychology where conditionals
might be understood with either a narrow or a broad notion [Hoerl, McCormack, and
Beck, 2011]. The narrow notion of conditionals imposes a strict distinction between coun-
terfactual and indicative conditionals, whereas the broad notion doesn’t: An indicative
conditional can turn into a counterfactual conditional, depending on the context [Edging-
ton, 2011]. Some require that counterfactuals must be in the subjunctive mood or can
only be evaluated in a state that is different with respect to the current one [Woodward,
2011].

It is generally accepted that conditionals in natural language do not have the same
interpretation as material or truth functional conditionals [Edgington, 1995]. Some
theories have been proposed, but there is no agreement on a general one [Evans and
Over, 2004]. We briefly discuss some of them. For a recent survey see [Byrne, 2016].

Ramsey [1931] proposed to test conditionals by assuming the condition hypothetically
and verify whether the consequence follows. This approach is problematic in case that
the current state is inconsistent with the condition. Stalnaker [1968] extended Ramsey’s
approach and suggested minimal revision, which can be applied for both, indicative and
counterfactual conditionals. Lewis [1976] showed that Stalknaker and Thomason’s [1970]
counterfactual theory of possible worlds had some technical problems and developed an
approach of maximal world-similarity [Lewis, 1973, 1986]. Ginsberg’s [1986] possible
worlds approach towards counterfactuals might be one of the first in the field of Arti-
ficial Intelligence. It has been improved by requiring relevancy [Pereira and Apaŕıcio,
1989]. The notion of relevancy will be discussed in more detail in Section 9.6. Other
early approaches have been proposed in [Bench-Capon, 1989, Routen and Bench-Capon,
1991]. The logic programming approaches presented in [Baral and Hunsaker, 2007,
Baral, Gelfond, and Rushton, 2009, Vennekens, Denecker, and Bruynooghe, 2009, Ven-
nekens, Bruynooghe, and Denecker, 2010, Pereira and Saptawijaya, 2016a] are inspired
by Pearl’s [2000, 2011] structural theory of counterfactuals in Bayesian networks. The
distinction between causal and counterfactual reasoning, based on Pearl’s theory, has
been extensively discussed by Sloman [2005]. Rescher [2005, 2007] presented a system-
atic reconstruction of the belief system, which only requires to consider immediately
relevant beliefs.

3In English, grammatical moods can be expressed by the form of the verb in the sentence. The first
conditional above (on page 155) is expressed in the indicative mood, whereas the second conditional (on
page 155) is expressed in the subjunctive mood.
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Yet, in the area of Cognitive Science, quite different theories of reasoning with condi-
tionals have been presented. Oberauer [2006] compares the four most dominant ones:
The Mental Model Theory [Johnson-Laird and Byrne, 2002], a dual-process variant
thereof [Verschueren, Schaeken, and d’Ydewalle, 2005], the Suppositional Theory [Evans
and Over, 2004] and the Probabilistic Theory presented by Oaksford, Chater, and Larkin
[2000]. Oberauer observes that none of these theories seems to be more favorable than
the others. Nevertheless, he claims that the following two components are essential for
a model for reasoning with conditionals: The reasoning should be based on models and
forward reasoning should be preferred over backward reasoning.

In the following, the methodology of our approach applied to reasoning is inspired
by Pearl [2011], but does not involve probabilities, and we agree with Rescher’s [2005,
2007] view to concentrate on relevant knowledge and minimally revising the current
state. Before we present the central achievement of this Chapter in Section 9.3 and
Section 9.5, we will first introduce a revision operator. In Section 9.4, we state several
questions, which we think should be answered by psychological experiments in order to
understand better how humans reason. Our hypothesis is that humans prefer a certain
evaluation strategy, which we present in Section 9.5. Section 9.6 focuses on the concept
of relevance in the context of conditionals.

9.2. Revision Operator

The revision operator is a concept by which we modify a given program with respect to
a set of literals. We use it during the evaluation of subjunctive conditionals to revise
background knowledge such that previously false conditions are mapped to true under
the revised program. Somehow surprisingly, it will turn out that revision is also needed
in the evaluation of indicative conditionals.

Let L be a finite and consistent set of ground literals. Recall that L is consistent iff it
does not contain a pair of complementary literals. Then, given that P is a program, the
revision of P with respect to L is formally defined as:

rev(P,L) = (P \ def(L,P)) ∪ {A← > | A ∈ L} ∪ {A← ⊥ | ¬A ∈ L}.

When writing sets of literals, we will omit curly brackets if the set has only one element.
Example 9.1 demonstrates how the revision operator works and Example 9.2 shows how
it is related to Pearl’s intervention in the Do-Calculus [Pearl, 2000].
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Example 9.1. Consider the program P consisting of the following clauses:

p ← q. q ← >.

The least model of the weak completion of P, lm wcP, is 〈{q, p}, ∅〉. Note that
def(q,P) = {q ← >}. The revision of P with respect to ¬q is

rev(P,¬q) = ({p← q, q ← >} \ {q ← >}) ∪ {q ← ⊥} = {p← q, q ← ⊥}.

Accordingly, lm wc rev(P, q) is 〈∅, {p, q}〉.

Example 9.2. A counterfactual requires a hypothetical modification of the current
situation according to Pearl [2000]. It is accepted if “the consequent follows after
adding the antecedent hypothetically to the beliefs and the minimal required adjust-
ments to maintain consistency of the model are made”. Pearl’s interventions, where
the antecedent node is isolated from its parent nodes in the network and imposed to be
true or false, can be understood analogously to the revision operator. Consider again:
If Oswald had not shot Kennedy, then someone else would have. A representation of a
causal relations between Kennedy was killed, Oswald shot Kennedy and someone else
shot Kennedy in a bayesian network before intervention is shown on the left side, and
after the intervention is shown on the right side: Here, the parent leaves are cut from
the premise, the premises’ truth value is imposed and the network is computed again.

Kennedy
was killed

Oswald shot
Kennedy

Someone
else shot
Kennedy

credible
motive

Oswald killed Kennedy
Credible motive T F

F 0.25 0.75
T 0.99 0.01

Kennedy
was killed

Oswald shot
Kennedy

Someone
else shot
Kennedy

credible
motive

Oswald shot Kennedy
Credible motive T F

F 0 1
T 0 1
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9.2. Revision Operator

Proposition 9.1. Given a program P, a finite and consistent set of ground literals L
and a formula F , the following holds:

1. rev is non-monotonic: There are P, L, F s.t. P |=wcs F and rev(P,L) 6|=wcs F .

2. If for all L ∈ L, lm wcP(L) = U,
then rev is monotonic: lm wcP ⊆ lm wc rev(P,L).4

3. For all L ∈ L, lm wc rev(P,L)(L) = >.

Proof.

1. Consider Example 9.1: P |=wcs p, but rev(P, q) 6|=wcs p.

2. lm wcP and lm wc rev(P,L) can be computed by iterating ΦP and Φrev(P,L), re-
spectively.
We show that for all n ∈ N the relationship ΦP ↑ n ⊆ Φrev(P,L) ↑ n holds by
induction on n. If n = 0 we find ΦP ↑0 = 〈∅, ∅〉 = Φrev(P,L) ↑0. We assume that
the result holds for n and turn to the induction step:

ΦP ↑(n+ 1) = ΦP(ΦP ↑n) = 〈I>, I⊥〉, (9.1)

where

I> = {A | A← body ∈ def(A,P) and ΦP ↑n(body) = >},
I⊥ = {A | def(A,P) 6= ∅ and

for all A← body ∈ def(A,P) we find that ΦP ↑n(body) = ⊥}.

If lm wcP(L) = U for all L ∈ L, then, given that either L = A or L = ¬A, A is
neither in I> nor in I⊥. By the definition of the revision operator, however, A is
either in J> or in J⊥, where

J> = {A | A← body ∈ def(A, rev(P,L)) and Φrev(P,L) ↑n(body) = >},
J⊥ = {A | def(A, rev(P,L)) 6= ∅ and

for all A← body ∈ def(A, rev(P,L))
we find that Φrev(P,L) ↑n(body) = ⊥}.

Additionally, because P and rev(P,L) contain identical definitions for atoms not
occurring in L, we conclude by the induction hypothesis that I> ⊆ J>, I⊥ ⊆ J⊥

and

〈I>, I⊥〉 ⊆ 〈J>, J⊥〉 = Φrev(P,L)(Φrev(P,L) ↑n)

= Φrev(P,L) ↑(n+ 1)
(9.2)

The result follows by combining (9.1) and (9.2).

4Proposition 5.1.9. in [Philipp, 2010] shows a related result with respect to facts and assumptions
that are not in P.
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3. By the definition of the ΦP and the rev operator, after the first iteration on
Φrev(P,L) for interpretation I1 = 〈I>1 , I⊥1 〉 it holds that

I>1 ⊇ {A | A ∈ L} and I⊥1 ⊇ {A | ¬A ∈ L}.

As shown by Hölldobler and Kencana Ramli [2009b], there exists a least fixed
point of Φrev(P,L) such that Φrev(P,L)(In) = In, where n ∈ N. As the ΦP operator

is monotonic, for In = 〈I>n , I⊥n 〉 it holds that

I>n ⊇ I>1 and I⊥n ⊇ I⊥1 .

This implies that for every A ∈ L, lm wc rev(P,L)(A) = > and, likewise, for every
¬A ∈ L, lm wc rev(P,L)(¬A) = >.

9.3. ARSC – Abstract Reduction System

The abstract reduction system for conditionals, ARSC, is a general characterization for
deriving the truth value of a certain conditional, possibly by means of transforming the
program with respect to the condition of this conditional. We consider conditionals of
the form if C then D, denoted as cond(C,D), where the condition C and the consequence
D are finite and consistent sets of literals. Recall that a set of literals is consistent, when
it does not contain a pair of complementary literals. Conditionals are evaluated with
respect to some background information specified as a program and a set of integrity
constraints. In the sequel, let P be a program, IC be a finite set of integrity constraints,
and lm wcP be the least model of the weak completion of P. For simplicity, if not stated
otherwise, we will assume that IC = ∅. In the following, lm wcP always satisfies IC.

An abstract reduction system is defined as a pair (A, {−→α| α ∈ I}), where the reduction
(or relation) −→α is a binary relation over the set A, i.e. −→α ⊆ A × A, indexed by a
set I [Baader and Nipkow, 1998, Klop, Bezem, and Vrijer, 2001]. We write a −→α a

′

instead of (a, a′) ∈ −→α. The union
⋃
{−→α| α ∈ I} is written as −→I . If there is

just one reduction, we simply write (A,−→). The composition of two reductions −→α

and −→β, is denoted by −→α · −→β. a −→α · −→β a
′′ iff there is some a′ ∈ A, such

that a −→α a′ −→β a′′. We express the i-fold composition of some reduction −→α

by
i−−→α, where i ≥ 0. a

0−−→α a
′ iff a = a′. If we want to specify that the composition

of −→α can be either i-fold or j-fold, we write
i/j−−→α, where i, j ≥ 0.

The initial and intermediate states in ARSC are tuples of the form S = 〈P, IC, C,D〉,
where P is a program, IC a set of integrity constraints and cond(C,D) the conditional
under consideration. The final states are of the form >, ⊥ and U, corresponding to true,
false and unknown, respectively.
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The reductions in ARSC are indexed by the set R = {a, r, s, c}, where a stands for
abduction, r for revision, s for the final state and c for counterfactual. When the
condition can be explained, then abduction, −→a, is applied. The reduction −→r leads
to revision with respect to unknown literals. When the condition is true, then −→s

is applied and leads to one of the final states. We can handle counterfactuals by the
reduction −→c: More precisely, in case the condition of the conditional is false, we revise
the program in order to satisfy the condition of the conditional:

• 〈P, IC, C,D〉 −→a 〈P ∪ E , IC, C,D〉
iff lm wcP(C) = U and there exists O ⊆ C where O 6= ∅,
such that for each L ∈ O we find lm wcP(L) = U
and E explains O in the abductive framework 〈P,AP , IC, |=wcs〉.

• 〈P, IC, C,D〉 −→r 〈rev(P,L), IC, C \ L,D〉
iff lm wcP(C) = U and there exists L ⊆ C, where L 6= ∅,
such that for each L ∈ L we find lm wcP(L) = U.

• 〈P, IC, C,D〉 −→s lm wcP(D) iff lm wcP(C) = >.

• 〈P, IC, C,D〉 −→c 〈rev(P,L), IC, C \ L,D〉
iff lm wcP(C) = ⊥, where L = {L ∈ C | lm wcP(L) = ⊥}.

Finally ARSC is defined as (S,−→R) where the set of states S is {>,⊥,U}∪{〈P, IC, C,D〉 |
P, IC, C and D as defined above.} and the set of reductions −→R is

⋃
{−→α| α ∈ R}.

Recall that R = {a, r, s, c}. Note that the reduction −→c revises the program non-
monotonically (see Proposition 9.1), therefore explanations generated by the reduction
−→a may not persist and, hence, observations cannot be deleted from C even if they are
explained. Example 9.3 discusses such a case.

9.3.1. Properties

Abstract reduction systems can have various properties, among others, confluence and
termination. An abstract reduction system is said to be confluent if all its state can be
reduced to the same (successor) state. Termination means that we can not apply the
reductions infinitely many times. We will show whether these properties hold in ARSC.

Theorem 9.2. Let 〈P, IC, C,D〉 be a state in (S,−→R) and 〈rev(P,L), IC, C \ L,D〉
its successor state by applying −→c or −→r. If 〈P ′, IC′, C′,D′〉 is a successor state of
〈rev(P,L), IC, C \ L,D〉, then for all L ∈ L, L 6∈ C′.
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Proof.
We need to distinguish between the following two cases:

1. If lm wcP(C) = ⊥, then −→c is applied and the definitions for L = {L ∈ C |
lm wcP(L) = ⊥} have been replaced by facts or assumptions such that the least
model of the weak completion of the revised program maps each literal occurring
in L to >. As C is consistent, these new facts or assumptions will never be revised
again.

2. If lm wcP(C) = U and −→r was applied, then the definitions for L ⊆ C have been
replaced by facts or assumptions such that the least model of the weak completion
of the revised program maps each literal occurring in L to >, where for each L ∈ L
we find lm wcP(L) = U. As C is consistent, the new facts or assumptions will
never be revised again.

As Example 9.3 shows, Theorem 9.2 does not extend to −→a. Let us recall again the
property of monotonicity with respect to the reductions in ARSC. As shown in Pro-
position 9.1, we can easily see that applications of −→c are non-monotonic, i. e., after
applying −→c to a state, a previously entailed formula, is possibly not entailed anymore.
On the other hand, applications of −→a are monotonic:

Proposition 9.3. Let 〈P,AP , IC, |=wcs〉 be an abductive framework and let E ⊆ AP ,
then

lm wcP ⊆ lm wc (P ∪ E).5

Proof.
As E ⊆ AP , E is unknown in lm wcP. By induction on n ∈ N one can show that
ΦP ↑ n ⊆ ΦP∪E ↑ n, where ΦP ↑ 0 = 〈∅, ∅〉 and ΦP ↑ (n+ 1) = ΦP(ΦP ↑ n). The result
follows immediately.

Lemma 9.4. Let 〈P, IC, C,D〉 be a state in (S,−→R) and 〈P ∪E , IC, C,D〉 its successor
state by applying −→a. The set of abducibles decreases after the application of −→a, i.e.
AP∪E ⊂ AP .

Proof.
According to Proposition 9.3, lm wcP ⊆ lm wc (P ∪ E), thus the number of atoms which
are unknown in the least model of the weak completion of P are reduced in each applic-
ation of −→a. Because E 6= ∅ and by the definition of the set of abducibles, we find that
AP∪E ⊂ AP .

Similarly, as only unknown literals are revised when applying −→r, applications on −→r

are monotonic as well.

Lemma 9.5. Let 〈P, IC, C,D〉 be a state in (S,−→R). C decreases after each application
of −→r or −→c.

5This corresponds to Proposition 5.1.9 in [Philipp, 2010].
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Example 9.3. Let P1 consist of the following two clauses:

a ← b.
b ← c.

Let us assume that IC = ∅, C = {a,¬b} and D = c. As

lm wcP1 = 〈∅, ∅〉,

lm wcP1(C) = U and thus we may apply −→a with O = a.
AP1 consists of the following two clauses:

c ← >.
c ← ⊥.

Accordingly, O can be explained by E = {c← >}:

〈P1, ∅, {a,¬b}, c〉 −→a 〈P2, ∅, {a,¬b}, c〉,

where P2 = P1 ∪ E . We find

lm wcP2 = 〈{a, b, c}, ∅〉

and thus lm wcP2({a,¬b}) = ⊥. Now we can only apply −→c with C = {¬b}, which
is mapped to false under lm wcP2:

〈P2, ∅, {a,¬b}, c〉 −→c 〈P3, ∅, a, c〉,

where P3 = rev(P2,¬b) = {a← b, b← ⊥, c← >}. We find

lm wcP3 = 〈c, {b, a}〉

and, hence, a ∈ C is no longer assigned to > and must be re-considered:

〈P3, ∅, a, c〉 −→c 〈{a← >, b← ⊥, c← >}, ∅, ∅, c〉 −→s >,

where the corresponding least model of the weak completion is

〈{a, c}, {b}〉.
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Proof.
Recall that C is finite and no reduction increases C. Accordingly, there cannot be an
infinite chain of applications on −→r or −→c. The resulting state after applying −→r,
is 〈rev(P,L), IC, C \ L,D〉. As L is never empty and by Theorem 9.2, each L ∈ C only
occurs once in L, applications of −→r or −→c, reduce the number of literals occurring
in C.

ARSC terminates if the set of reductions −→R, is not applicable infinitely many times.
In order to show this, we rely on a result shown in [Baader and Nipkow, 1998]. Ac-
cordingly, it is sufficient to show that there is a monotone embedding of (S,−→R) into
(N, >). Given the two sets S and N, a monotone embedding of (S,−→R) into (N, >) is
a mapping ϕ : S −→ N such that s −→R s′ implies that ϕ(s) > ϕ(s′), where s, s′ ∈ S
(in [Baader and Nipkow, 1998], ϕ is also called measure function). If there exists such a
mapping ϕ from (S,−→R) into (N, >), then −→R terminates.

Lemma 9.6 (Lemma 2.3.3 in [Baader and Nipkow, 1998]). A finitely branching reduction
terminates iff there is a monotone embedding into (N, >).

A reduction is finitely branching if each state has only finitely many immediate successor
states [Baader and Nipkow, 1998]. For ARSC, (S,−→R), that means the following: For
each reductions −→α, α ∈ R, for each state s ∈ S, the set {s′ ∈ S | s −→α s

′} of imme-
diate successor states of s (or one-step reducts of s [Klop, Bezem, and Vrijer, 2001]) is
finite. It is easy to see that the set of reductions −→R is finitely branching.

Lemma 9.7. There is a monotone embedding from (S,−→R) into (N, >).

Proof.
We define the following mapping ϕ : S → N:

ϕ(S) =

{
0 if S ∈ {>,⊥,U},
1 + |AP |+ |C| otherwise.

Applications of the reduction −→s yield a final state. By Lemma 9.4, AP decreases
after each application of −→a and by Lemma 9.5, C decreases after each application
of −→r or −→c and the set of abducibles does not increase. As there is no reduction
which either increases AP or C, ϕ is a monotone mapping into N, i.e. S −→R S′ implies
ϕ(S) > ϕ(S′).

Corollary 9.8. ARSC is a finitely branching reduction and terminates.

Proof.
Follows immediately from Lemma 9.6 and Lemma 9.7.

Corollary 9.9. Derivations in ARSC are of the form

{−→a,−→r,−→c}n· −→s
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Example 9.4. Reconsider Example 9.3, but select O = {¬b} in the first step. O can
be explained by E2 = {c← ⊥} and we obtain

〈P1, ∅, {a,¬b}, c〉 −→a 〈P4, ∅, {a,¬b}, c〉,

where P4 = P1 ∪ E2 = {a← b, b← c, c← ⊥}. We find

lm wcP4 = 〈∅, {a, b, c}〉

and apply −→c by revising the definition of a:

〈P4, ∅, {a,¬b}, c〉 −→c 〈{a← >, b← c, c← ⊥}, ∅,¬b, c〉 −→s ⊥.

Nevertheless, it is also possible to reduce the initial state to unknown:

〈P1, ∅, {a,¬b}, c〉 −→r 〈{a← >, b← ⊥}, ∅, ∅, c〉 −→s U.

Theorem 9.10. ARSC is not confluent.

Proof.
Consider Example 9.4: As ⊥ and U are not further reducible, it follows that ARSC is
not confluent.

The Firing Squad example in the following section shows that the same conditional can
be evaluated to true, false or unknown, even if the program stays the same and only the
order in which the reductions are applied changes.

9.3.2. Modeling Well-known Examples

We will now discuss two examples which have been extensively discussed in the literature
and show how we can evaluate them with ARSC.

Shooting of Kennedy Let us reconsider the example from the introduction of this
Chapter. The scenario is represented by program P5, which consists of the following five
clauses:

k ← os ∧ ¬ab1.
ab1 ← ⊥.

k ← ses ∧ ¬ab2.
ab2 ← ⊥.
os ← >.

The abbreviations k , os and ses mean Kennedy was killed, Oswald shot Kennedy and
Someone else shot Kennedy, respectively. ab1 and ab2 are the abnormality predicates.
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The least model of the weak completion of P, lm wcP5 is

〈{os, k}, {ab1, ab2}〉.

Consider again the second counterfactual conditional from the introduction:

If Oswald had not shot Kennedy, then someone else would have.

Its condition ¬os is false under lm wcP5 and, hence, we view it as a counterfactual:

〈P5, ∅,¬os, ses〉 −→c 〈P6, ∅, ∅, ses〉 −→s unknown,

where P6 is
rev(P5,¬os) = (P5 \ {os ← >}) ∪ {os ← ⊥}.

As ses is mapped to unknown under lm wcP6 = 〈∅, {os, ab1, ab2}〉. The conditional is
unknown as well, which in this case, is the only possible reduction. Now consider the
conditional

If Kennedy is dead and Oswald did not shot Kennedy,
then someone else did.

Its condition {k ,¬os} is still false under lm wcP5 and we obtain

〈P5, ∅, {k ,¬os}, ses〉 −→c 〈P6, ∅, k , ses〉.

Because lm wcP6(k) = U we may try to explain k in the abductive framework 〈P6, {ses ←
>, ses ← ⊥}, ∅, |=wcs〉 and find that

E3 = {ses ← >}

is the only minimal explanation for k :

〈P6, ∅, k , ses〉 −→a 〈P6 ∪ E3, ∅, k , ses〉 −→s >,

where ses is mapped to true under lm wcP6 ∪ E3 = 〈{ses, k}, {os, ab1, ab2}〉. Instead of
abduction we could have applied revision:

〈P6, ∅, k , ses〉 −→r 〈P7, ∅, ∅, ses〉 −→s unknown,

where P7 is
rev(P6, k) = {k ← >, os ← ⊥, ab1 ← ⊥, ab2 ← ⊥}

and ses is mapped to unknown under lm wcP7 = 〈k , {os, ab1, ab2}〉.

Firing Squad The following example shows that in ARSC it is possible to evaluate
exactly the same conditional to unknown, true or false, even though the program stays
the same, and only the order in which the reductions are applied changes. We assume
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that humans prefer a certain evaluation strategy with respect to conditionals, which
we will then propose in the next section. Pearl [2000] presents the so-called Firing
Squad example: If the court orders an execution (e), then the captain will give the signal
(s) upon which rifleman A will shoot the prisoner (ra) and rifleman B will shoot the
prisoner (rb). Consequently, the prisoner will be dead (d). We assume that the court’s
decision is unknown, that the captain is law-abiding, that both riflemen are accurate,
alert and law-abiding, and that the prisoner is unlikely to die from any other causes.
Altogether, we obtain the program P8:

s ← e ∧ ¬ab1.
ra ← s ∧ ¬ab2.
rb ← s ∧ ¬ab3.
d ← ra ∧ ¬ab4.
d ← rb ∧ ¬ab5.

ab1 ← ⊥.
ab2 ← ⊥.
ab3 ← ⊥.
ab4 ← ⊥.
ab5 ← ⊥.

lm wcP8 is
〈∅, {ab1, ab2, ab3, ab4, ab5}〉.

Consider the conditional

If the captain gave no signal and rifleman A decides to shoot,
then the court did not order an execution.

Its condition {¬s, ra} is unknown under lm wcP8 and, hence, we view it as an indicative
conditional. We can revise P8 with respect to {¬s, ra} to obtain

〈P8, ∅, {¬s, ra},¬e〉 −→r 〈rev(P8, {¬s, ra}), ∅, ∅,¬e〉 −→s unknown, (9.3)

where lm wc rev(P8, {¬s, ra}) is

〈{ra, d}, {s, ab1, ab2, ab3, ab4, ab5}〉

and, hence, ¬e is unknown. Alternatively, we can revise P8 with respect to ¬s first to
obtain

〈P8, ∅, {¬s, ra},¬e〉 −→r 〈rev(P8,¬s), ∅, ra,¬e〉
−→c 〈rev(rev(P8,¬s), ra), ∅, ∅,¬e〉
−→s unknown,

(9.4)

where lm wc rev(P8,¬s) is

〈∅, {s, ra, rb, d , ab1, ab2, ab3, ab4, ab5}〉
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and, hence, ra is false. The remaining conditional cond(ra,¬e) has become a counter-
factual with respect to the program rev(P8,¬s) and, consequently, the definition for ra
is revised. As another alternative, we can revise P8 with respect to ra first to obtain

〈P8, ∅, {¬s, ra},¬e〉 −→r 〈rev(P8, ra), ∅,¬s,¬e〉
−→a 〈rev(P8, ra) ∪ {e ← ⊥}, ∅,¬s,¬e〉
−→s >,

(9.5)

where lm wc rev(P8, ra) is

〈{ra, d}, {ab1, ab2, ab3, ab4, ab5}〉

and, hence, ¬s remains unknown. We could apply again revision leading to the same
result as in the previous cases, but we apply abduction to explain ¬s by {e ← ⊥}, which
yields a true conditional. The condition {¬s, ra} cannot be explained in the abductive
framework 〈P8, {e ← >, e ← ⊥}, ∅, |=wcs〉. But {e ← ⊥} explains ¬s and we obtain

〈P8, ∅, {¬s, ra},¬e〉 −→a 〈P8 ∪ {e ← ⊥}, ∅, {¬s, ra},¬e〉
−→c 〈rev(P8 ∪ {e ← ⊥}, ra), ∅,¬s,¬e〉
−→s >,

(9.6)

where lm wcP8 ∪ {e ← ⊥} is

〈∅, {e, s, ra, rb, d , ab1, ab2, ab3, ab4, ab5}〉

and, hence, ra is false. As final alternative, we observe that {e ← >} explains ra and
we obtain

〈P8, ∅, {¬s, ra},¬e〉 −→a 〈P8 ∪ {e ← >}, ∅, {¬s, ra},¬e〉 (9.7)

−→c 〈rev(P8 ∪ {e ← >},¬s), ∅, ra,¬e〉
−→c 〈rev(rev(P8 ∪ {e ← >},¬s), ra}, ∅, ∅,¬e〉
−→s ⊥,

where lm wcP8 ∪ {e ← >} is

〈{e, s, ra, rb, d}, {ab1, ab2, ab3, ab4, ab5}〉

and, hence, ¬s is false. After revising the program with respect to ¬s, ra is false and
we need to revise the program once more.

The least models of the weak completion of the last programs in the various reduction
sequences are shown in Table 9.1. The first row of Table 9.1 indicates which reduction has
been applied with respect to which set of literals. Consider the first reduction, →r{s,ra}:
P8 is revised with respect to {s, ra}. We have omitted the final application of −→s and
have indexed the remaining reductions by the conditions that were revised or explained.

168



9.4. Need for Experimental Data

→r{s,ra} →r{s}→c{ra} →r{ra}→a{s} →a{s}→c{ra} →a{ra}→c{s}→c{ra}
s ⊥ ⊥ ⊥ ⊥ ⊥

ra > > > > >
d > > > > >

rb ⊥ ⊥ ⊥ ⊥ ⊥
e U U ⊥ ⊥ >

Table 9.1.: The least models of the weak completion in the last non-final states in the
Firing Squad example. The derivation shown in the grey box is our preferred
one; it is computed by MRFA which will be discussed in Section 9.5.

The atoms s and ra are always false and true, respectively. d is always true as it depends
on ra (and rb). rb is always false as it depends on s. Yet, e may take any truth value
depending on the sequence in which the conditions are considered and on the reductions
that are applied.

The conditional

if the captain gave no signal and rifleman A decides to shoot,
then rifleman B will not shoot and the prisoner will be dead.

will always be evaluated as true. The situation will change if it becomes known that a
broken firing pin leads to a malfunctioning rifle. In this case, P8 is updated by replacing
the definition of ab4 with ab4 ← b.6 If rifleman A decides to shoot now, then it is
unknown whether the prisoner will die as b is unknown. If b ← > is added to the
program, then the prisoner will not die. Section 9.6 discusses an extension, which allows
to abduce unknown consequences.

Table 9.2 shows the dependency graph of the program P8. Revision cuts the dependencies
from a particular node and assigns true or false to the node. Abduction assigns true or
false to the node marked e.

9.4. Need for Experimental Data

Although many papers and books have been written about conditionals, we are unaware
of psychological experiments that help us to identify adequate strategies for the appli-
cation of reductions in ARSC and to determine how humans evaluate conditionals in
examples like the Shooting of Kennedy or the Firing Squad. As we have discussed in
Chapter 5, experimental data are available for examples for psychological tasks such as
the Suppression Task or the Selection Task, but these tasks are considerably simpler

6We could update the definition of ab5 as well, but we should then identify the firing pins of the
different rifles.
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· d

•
ab4

•
ab5

·
ra

·
rb

· s

•
ab2

•
ab3

•
ab1

·
e

◦ d

•
ab4

•
ab5

◦
ra

·
rb

· s

•
ab2

•
ab3

•
ab1

·
e

◦ d

•
ab4

•
ab5

◦
ra

•
rb

• s

•
ab2

•
ab3

•
ab1

•
e

Table 9.2.: Positive dependencies are depicted by solid arrows, negative dependencies
by dotted arrows. •, ·, and ◦ denote nodes, which are mapped to ⊥, U and
>, respectively.
(Left) The dependency graph of P8. The leaf node marked e is undefined,
whereas all other nodes are defined. (Middle) The dependency graph of
rev(P8, ra): ra does not depend on s and ab2 anymore and is mapped to >.
(Right) The dependency graph of rev(P8, ra) ∪ {e ← ⊥}.

than the conditionals discussed in the Firing Squad example. From our perspective, the
following questions should be evaluated:

• Do humans reason with multi-valued logics and, if they do, which multi-valued
logic are they using? Can an answer ’I don’t know’ be qualified as a truth value
assignment or is it a meta-remark?

• What do we have to tell humans such that they fully understand the background
information including, e.g., the dependency graph in the Firing Squad example?

• Do humans apply abduction and/or revision if the condition of a conditional is
unknown and, if they apply both, do they prefer one over the other? Do they prefer
skeptical over credulous abduction? Do they prefer minimal revision?

• How important is the order in which multiple conditions of a conditional are con-
sidered?

• Do humans consider abduction and/or revision steps, which turn an indicative
conditional into a subjunctive one like in the second, fourth and fifth reduction
sequence of the Firing Squad example?

In order to explore these questions, it is unavoidable to actually carry out reasoning
experiments with humans. Unfortunately this task is beyond the scope of this thesis.
Usually the composition of such an experiment requires a prior hypothesis, which there-
after should to be tested. In the following, we will develop such a hypothesis.

We believe that humans do reason with a third truth value. As we have shown in
Chapter 5, 6 and 8, various episodes from human reasoning can be adequately modeled
under the Weak Completion Semantics and, moreover, in some of these tasks, skeptical
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abduction had to be applied. We believe that minimal revision followed by abduction is
applied if the conditions of a conditional are unknown. Finally, we believe that humans
do not consider abduction and/or revision steps that turn an indicative conditional into
a subjunctive one. Altogether, we believe that humans prefer a particular strategy in
evaluating conditionals: They do not consider derivations as stated in Corollary 9.9, but

rather search for derivations of the form
n−→c ·

0/1−→r ·
0/1−→a ·

0/1−→s, where n ∈ N0 and
−→c is only applied if needed. In other words, the reduction −→c is only applied if the
given conditional is a counterfactual, in which case the reduction may be applied several
times because unknown conditions may be turned into false ones by applications of −→c.
However, as soon as the condition of a conditional is mapped to true or unknown, −→c

will not be applied anymore. Additionally, because rev(rev(P,L),L′) = rev(P,L ∪ L′)
and (P ∪ E) ∪ E ′ = P ∪ (E ∪ E ′), −→r and −→a need to be applied at most once. If
the condition of a conditional is unknown, then a final state can always be reached by
applying the revision reduction to all unknown conditions (Equation (9.3) on page 167 in
the Firing Squad example), but this is usually not a derivation where minimal revision
is applied (Equation (9.4) on page 167 , where only ¬s is revised and Equation (9.5) on
page 168, where only ra is revised).

In the context of the Mental Model Theory, our assumption of minimal revision followed
by abduction seems to go along with the idea in [Johnson-Laird, Khemlani, and Goodwin,
2015]: The authors state that when humans generate a mental model and need to explain
some inconsistencies, they rate explanations as more probable than minimal changes.

9.5. Minimal Revision followed by Abduction

Our belief expressed in the last section, namely that humans search for derivations of the

form
n−→c ·

0/1−→r ·
0/1−→a ·

0/1−→s, allows us to redefine the evaluation of a conditional:

1. If lm wcP(C) = > then evaluate cond(C,D) with respect to lm wcP(D).

2. If lm wcP(C) = ⊥ then evaluate cond(C,D) with respect to lm wc rev(P,L)
where L = {L ∈ C | lm wcP(L) = ⊥}.

3. If lm wcP(C) = U then evaluate cond(C,D) with respect to lm wcP ′ where

• P ′ = rev(P,L) ∪ E ,

• L is the smallest (possibly empty) subset of C and E ⊆ Arev(P,L) is a minimal
explanation for C \ L such that lm wcP ′(C) = >.

If the condition C of a conditional is true, then the conditional is an indicative one and is
evaluated as implication under  Lukasiewicz semantics. If C is false, then the conditional
is a counterfactual one and revision is applied in order to reverse the truth value of those
literals, which are mapped to false. By Proposition 9.1.1, this case is non-monotonic. If
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C is unknown, then we propose to split C into two disjoint subsets L and C \ L, where
the former is treated by revision and the latter by abduction. In case C contains some
literals, which are true and some, which are unknown under lm wcP, then the former
will be part of C \ L because the empty explanation explains them. Furthermore, as all
revised or explained literals were assigned to unknown, by Proposition 9.1.2 this case
is monotonic. As we assume L to be minimal, this approach is called minimal revision
followed by abduction (MRFA).

Firing Squad Reconsidering the Firing Squad example we find that Equation (9.6),
which corresponds to the derivation shown in gray in Table 9.1 is the only evaluation
with respect to MRFA.

Forest Fire As another example, consider the Forest Fire example taken from Byrne
[2007]: Lightning (l) causes a forest fire (f ) if nothing abnormal is taking place (ab1),
lightning happened, the absence of dry leaves (d) is an abnormality, and dry leaves are
present. We obtain P9:

f ← l ∧ ¬ab1.
l ← >.

ab1 ← ¬d .
d ← >.

and lm wcP9 is
〈{d , l, f }, {ab1}〉.

Now consider the conditional

If there had not been so many dry leaves on the forest floor (¬d),
then the forest fire would not have occurred (¬f ).

As lm wcP9(¬d) = ⊥, the conditional is a counterfactual and we consider rev(P9,¬d). As
lm wc rev(P9,¬d) = 〈{l, ab1}, {d , f }〉 maps ¬f to true, the conditional is true. Suppose
we additionally learn that arson may cause a forest fire. The corresponding program,
P10 is defined as follows:

P9 ∪ {f ← a ∧ ¬ab2, ab2 ← ⊥}.

We find that lm wcP10 is
〈{d , l, f }, {ab1, ab2}〉

and lm wc rev(P10,¬d) is
〈{l, ab1}, {d , ab2}〉,
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where rev(P10,¬d) consists of the following clauses:

f ← l ∧ ¬ab1.
l ← >.

ab1 ← ¬d .
f ← a ∧ ¬ab2.

ab2 ← ⊥.
d ← ⊥.

Under lm wc rev(P10,¬d), f is unknown and, consequently, the conditional is unknown.

9.6. Relevance

We will discuss relevance in the context of the evaluation of conditionals and present two
notions of relevance, both indirectly inspired by Anderson and Belnap [1975], Anderson,
Belnap, and Dunn [1992] applied to our framework.7 It seems to be natural and is widely
assumed in the literature, that humans evaluate the truth of the consequence based on
whether it is supported on something in common with the support of the condition,
i.e. their supports must not be completely disjoint or irrelevant to one another [Mares,
2004].

So far, a conditional cond(C,D) is mapped to unknown if lm wcP(C) = > and lm wcP(D) =
U. We have seen several examples like the first derivation in the Shooting of Kennedy
example or the last derivation discussed in the Forest Fire example. These conclusions
are due to the fact that we are using the Weak Completion Semantics, which adopts
an open-world assumption and assigns unknown to undefined atoms. If we reason with
respect to the well-founded model or the stable model instead, false would have been
assigned to all undefined atoms, because a closed-world assumption has been adopted.
This would have led to a positive evaluation in the last derivation of the Forest Fire ex-
ample: Because of the absence of dry leaves, lightning could not have caused the forest
fire and, since arson being assigned to false by default, arson could not have caused
the forest fire either. Also in the Shooting of Kennedy example, by assigning false to
ses by default, the conditional would be false, which is a rather unexpected result. It
seems that by the closed-world assumption, the particular reason why the conditional
is evaluated true, is lost. Under the Weak Completion Semantics, it seems natural to
explicitly state the context in which the conditional is true:

‘If there had not been so many dry leaves on the forest floor,
then the forest fire would not have occurred’ is true
in the context of arson being false.

7For yet another approach, which also considers unknown values and does not use probabilities,
consider [Pereira and Saptawijaya, 2016b,a], who apply their system to human moral reasoning.
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We can construct the context under which the conditional might be true by allowing
abduction with respect to consequences if the condition of a conditional is mapped to
true. Consider again rev(P10,¬d) (page 173): If we allow to abduce an explanation
for ¬f , then {a ← ⊥} is its only minimal explanation in the abductive framework
〈rev(P10,¬d), {a ← >, a ← ⊥}, ∅, |=wcs〉. Hence, the conditional cond(¬d ,¬f ) is true
in the context of a being false.8

In the case of P6 (page 166) we find that {ses ← >} is a minimal explanation for ses
in the abductive framework 〈P6, {ses ← >, ses ← ⊥}, ∅, |=wcs〉. Hence, the conditional
cond(¬os, ses) is true in the context of ses being true.

In fact, any conditional whose conditions are true and whose consequences are unknown
can be mapped to true in the context of its consequences being true. As an example
consider the conditional

If Oswald had not shot Kennedy,
then lightning would have occurred.

and suppose that this conditional, cond(¬os, l), is evaluated with respect to P5 (page 165).
We have to revise P5 with respect to ¬os and obtain P6. After that we can explain l
by {l← >}. For the evaluation of conditionals this does not seem to be very helpful as it
does not include any relevant information provided by the conditional itself. This brings
us to two new aspects that need to be taken into account: Firstly, we need to restrict the
set of abducibles such that the consequence cannot abduce itself and, secondly, we need
to check whether the condition of a true conditional is relevant to its consequence.

9.6.1. Weak Relevance

One way to define relevance is exclusively through dependencies as follows: atom B
is relevant to atom A iff A depends on B. Recall that the depends on relation is the
transitive closure of the following relation: Atom A depends on atom B if P contains a
clause of the form A ← body and B occurs (positively or negatively) in body . Let P11

consist of the following two clauses:

a ← b.
c ← b.

Is c relevant to a? As a does not depend on c, the answer is no. Assume that we
would like to evaluate cond(c, a) with respect to P11 using MRFA: c will be true by
abducing the explanation E4 = {b← >} and, consequently, a will be true as well. Thus,
c indirectly determines the truth value of a with respect to P11 ∪ E4. Yet, a still does
not depend on c in P11 ∪ E4. Therefore, this notion of relevance does not seem to be
adequate.

8Recall that d , f and a stand for dry leaves, forest fire and arson, respectively.
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Example 9.5. Applied to the program P11 ∪ E4 and the conditional cond(a, c), we
find that

({a← >} ∪ {b← >}) ∩ ({c← >} ∪ {b← >}) = {b← >} 6= ∅

and therefore, c and a are weakly relevant to one another. Consider yet another
example with cond(b, a) where P12 consists of the following clauses:

a ← b.
b ← >.
a ← >.

Even though a depends on b, the truth of b has no influence on a: a is even true in
lm wc rev(P12,¬b).
Our notion of weak relevance does not help here: a and b are weakly relevant to one
another, because

({a← >} ∪ dep(a,P12)) ∩ ({b← >} ∪ dep(b,P12)) = {b← > } 6= ∅.

Let L be a set of literals: dep(L,P) is the set of facts and assumptions in P, on which
L depends on:

dep(L,P) = {A′ ← body ∈ P | body ∈ {>,⊥} and
there exists A ∈ L or ¬A ∈ L such that A depends on A′}.

Consider the following weak notion of relevance:
C and D are weakly relevant to one another with respect to P iff

({A← > | A ∈ C} ∪ {A← ⊥ | ¬A ∈ C} ∪ dep(C,P))
∩ ({A← > | A ∈ D} ∪ {A← ⊥ | ¬A ∈ D} ∪ dep(D,P)) 6= ∅.

The notion of weak relevance is clarified by Example 9.5.

9.6.2. Strong Relevance

The idea behind strong relevance is to check whether the truth value of D changes if D
does not depend on C anymore. Consider yet another definition of relevance:

C is strongly relevant to D with respect to P iff

lm wcP(C) = lm wcP(D) = > and lm wcP ′(D) 6= >
where P ′ = P \ (def(C,P) ∪ dep(C,P)).

Different than the defition for weak relevance, the definition for strong relevance is not
symmetrical. Example 9.6 clarifies this notion of relevance. The notion of strong relev-
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Example 9.6. Consider again P12 (page 175): In order to verify whether b is strongly
relevant to a with respect to P12, we first need to check that both are true in lm wcP,
which is indeed the case. After that, note that P13 is

P12 \ {b← >} = {a← b, a← >}

where
lm wcP13(a) = >.

Accordingly, b is not strongly relevant to a with respect to P12. Consider P11

(page 174) again together with cond(c, a) and

E4 = {b← >}.

As a and b are true in lm wc (P11 ∪ E4) and, additionally, a is not true under lm wcP14,
where P14 is

(P11 ∪ E4) \ {def(c,P) ∪ dep(c,P)} = {a← c}.

c is strongly relevant to a.

ance captures best our intention, and therefore we will assume it in the following. Step 1
in MRFA is modified in two ways: First, by checking whether for the true conditionals,
the condition is relevant to the consequence; and second by allowing abduction, in case
the consequence is unknown:

1. a) If lm wcP(C) = lm wcP(D) = > and C is strongly relevant to D
then cond(C,D) is true.

b) If lm wcP(C) = > and lm wcP(D) = ⊥ then cond(C,D) is false.

c) If lm wcP(C) = > and lm wcP(D) = U then

i. if E ⊂ (AP \ ({A ← > | A ∈ D} ∪ {A ← ⊥ | ¬A ∈ D})) is a minimal
explanation for O ⊆ D, lm wc (P ∪ E)(D) = > and C is strongly relevant
to D with respect to P ∪ E then cond(C,D) is true in the context of E .

ii. else cond(C,D) is unknown.

If none of the cases applies, because C fails to be relevant to D, the condition of the condi-
tional is not relevant to the consequence, i.e. the conditional is meaningless. Example 9.7
discusses an extension of the Kennedy example from Section 9.3.2
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Example 9.7. P15 consists of the following clauses:

k ← os ∧ ¬ab1.
k ← ses ∧ ¬ab2.

os ← >.
ab1 ← ⊥.
ab2 ← ⊥.

k ← >.

Almost all clauses are the same as in P5 (page 165), except of the last one which
additionally states that, independently of whether Oswald shot Kennedy, Kennedy is
dead. Consider the conditional

If Oswald shot, then Kennedy is dead.

represented as cond(os, k). lm wcP15 = 〈{k , os}, {ab1, ab2}〉, where k and os are both
true. os is not strongly relevant to k because both are true in lm wcP15 and k is still
true in lm wcP16:

〈{k}, {ab1, ab2}〉

where P16 is

P15 \ (def(os,P15) ∪ dep(os,P15)) = P15 \ {os ← >}.

Nevertheless, os and k are weakly relevant to one another, because

({os ← >} ∪ dep(os,P)) ∩ ({k ← >} ∪ dep(k ,P))
= ({os ← >}) ∩ ({k ← >} ∪ {os ← >})
= {os ← >}.

In this example, os is not essential for k , and not strongly relevant to it; but it is
conceivable that os influences (the truth value of) k by revision or abduction, and so
both are weakly relevant to one another.
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9.6.3. Relevance Property in Logic Programming

Relevance is defined for the general case by Pinto and Pereira [2011] and adopted
from Dix [1995]. The relevant part of a program P for an atom A, is defined as fol-
lows:

rel(A,P) = def(A,P) ∪ {A′ ← body ∈ P | A depends on A′}.

A semantics is said to be relevant or to enjoy the relevance property iff for every program
P and for all A ∈ atoms(P) the following holds:

P |= A iff rel(A,P) |= A and
P |= ¬A iff rel(A,P) |= ¬A.

To clarify this notion consider program P17 consisting of the following clauses:

a ← ¬b.
b ← ¬a.

Under the Weak Completion Semantics and the Well-founded Semantics, the least model
of the weak completion of P17 is 〈∅, ∅〉 and under the Stable Model Semantics, we have
two partial stable models, namely 〈{a}, {b}〉 and 〈{b}, {a}〉.

Assume that P18 is a program that consists only of clauses which are not relevant to a
and b. Can we guarantee that in P17 ∪ P18, a and b will stay unknown under the Weak
Completion Semantics and the Well-founded Semantics and the stable models will stay
the same? If this is the case, then, these semantics enjoy the relevance property [Pinto
and Pereira, 2011]. Assume that P18 consists of exactly one clause:

a ← c.
c ← ¬c.

As now a is involved in an odd negative cycle, a stays unknown under the Partial Stable
Model Semantics, and therefore, the only (partial) stable model of P17 ∪ P18 is 〈∅, {b}〉.
This is a counterexample, which shows that the Stable Model Semantics does not enjoy
the relevance property. On the other hand, the truth values of a and b stay the same
under the Well-founded Semantics and the Weak Completion Semantics: In both cases,
the model P17 ∪ P18 is 〈∅, ∅〉. It is straightforward to see from the definition of the ΦP
operator that the Weak Completion Semantics enjoys the relevance property. In [Dix,
1995], it has been shown that the Well-founded Semantics enjoys the relevance property
as well.
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9.7. Conclusion

This chapter presents a novel approach to conditional evaluation: ARSC is an ab-
stract reduction system that is flexible enough to model various evaluation steps for
conditionals, possibly leading to different outcomes. We conjecture that humans reason
with a third truth value and prefer abduction to revision, and formalize this hypothesis
in MRFA.

We additionally assume that humans take relevance into account where we discuss several
concepts of relevance and show why strong relevance fits best in our system. As discussed
in [Skovgaard-Olsen, Singmann, and Klauer, 2016], it seems that usually psychological
studies don’t give a lot of attention to the concept of relevance, even though their
own experimental results show that relevance affects the participants’ results. On the
contrary, as stated in [Skovgaard-Olsen, Singmann, and Klauer, 2016], the Mental Model
Theory and probabilistic theories deny that relevance plays a role when humans reason
with (indicative) conditionals. As mentioned by Skovgaard-Olsen, Singmann, and Klauer
[2016], Spohn [2013] proposes to distinguish between positive relevance, irrelevance and
negative relevance, in order to get a better picture of whether relevance plays a role
in human reasoning. Here, we have not paid attention to this distinction, but these
psychological observations should be taken into account for future investigations.

Finally, as there is not enough experimental data in the literature, in Section 9.4, we
summarize central questions that need to be investigated through psychological experi-
ments. The results will give us insights on whether our approach or a variation thereof
can adequately model human reasoning.

179
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In this chapter, we show that MRFA, an evaluation system for conditionals presented
in Chapter 9 is more general then another logic programming approach for evaluating
conditionals that has been proposed by Schulz [2014]. We first reconsider the ΦP operator
and establish some of its properties in Section 10.1. After that, in Section 10.2 we present
Schulz’ Approach. Finally, the main result of this Chapter, the formal correspondence
of MRFA to Schulz’s Approach, is presented in Section 10.3.1

10.1. Semantic Operator Revisited

Before looking into conditionals, we need to reconsider the ΦP operator of Section 2.3
and establish some of its properties. Given a program P, the least fixed point of ΦP can
be computed by iterating the operator starting with the empty interpretation: ΦP ↑0 =
〈∅, ∅〉, ΦP ↑(n+ 1) = ΦP(ΦP ↑n) for all n ∈ N.

Proposition 10.1. The following holds:

1. ΦP is monotonic, i.e. I ⊆ J implies ΦP(I) ⊆ ΦP(J).

2. For all n ≥ 0 we find ΦP(ΦP ↑n) ⊇ ΦP ↑n.

3. For all n ≥ 0 we find ΦP ↑(n+ 1) = ΦP ↑n ∪ 〈J>, J⊥〉, where

J> ={A |ΦP ↑n(A) = U, A← body ∈ def(A,P) and ΦP ↑n(body) = >},
J⊥ ={A |ΦP ↑n(A) = U, def(A,P) 6= ∅ and

for all A← body ∈ def(A,P) we find that ΦP ↑n(body) = ⊥}.

Proof.

1. See Proposition 3.21 in [Kencana Ramli, 2009].

2. The proof is by induction on n: The case n = 0 holds because

ΦP(ΦP ↑0) = ΦP(〈∅, ∅〉) ⊇ 〈∅, ∅〉.

1The results of this chapter are published in [Dietz and Hölldobler, 2015].
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From the induction hypothesis ΦP(ΦP ↑ n) ⊇ ΦP ↑ n we conclude by the mono-
tonicity of ΦP that ΦP(ΦP(ΦP ↑n)) ⊇ ΦP(ΦP ↑n). Then, we know that ΦP(ΦP ↑
(n+ 1)) ⊇ ΦP ↑(n+ 1).

3.

ΦP ↑(n+ 1) = ΦP ↑n ∪ ΦP ↑(n+ 1) By 2.
= ΦP ↑n ∪ (ΦP ↑(n+ 1) \ ΦP ↑n)
= ΦP ↑n ∪ 〈J>, J⊥〉 By ΦP ↑n(A) = U

in J> and J⊥.

10.2. Schulz’s Approach

Schulz [2014] presents another computational logic approach, where the ΦP operator is
modified such that it allows to evaluate conditionals. In this section, let L be a finite and
consistent set of ground literals. Given a set L, the interpretation 〈L>, L⊥〉 is defined as
L> = {A | A ∈ L} and L⊥ = {A | ¬A ∈ L}, where A denotes a ground atom.

Let I = 〈I>, I⊥〉 be an interpretation. Schulz defines

τP,L(〈I>, I⊥〉) = 〈I>, I⊥〉 ∪ 〈J>, J⊥〉,

where

J> = {A | I(A) = U, A← body ∈ def(A,P) and I(body) = >},
J⊥ = {A | I(A) = U, def(A,P) 6= ∅ and

for all A← body ∈ def(A,P) we find that I(body) = ⊥}.

In contrast to the ΦP operator, which is iterated starting with the empty interpretation,
the τP operator is iterated as follows:

τP ↑0 = 〈L>, L⊥〉 and τP ↑(n+ 1) = τP(τP ↑ n).

As shown by Schulz, the τP operator admits a least fixed point which shall be denoted
by lfp τP,L. lfp τP,L can be computed by iterating the operator starting with the in-
terpretation: τP ↑ 0 = 〈L>, L⊥〉, τP ↑ (n + 1) = τP(τP ↑ n) for all n ∈ N Moreover,
in [Schulz, 2014] reasoning is performed with respect to this fixed point, i.e. P,L |=s F
iff lfp τP,L(F ) = >. Note that by the first condition, I(A) = U , in both J> and J⊥,
monotonicity is guaranteed for τP,L.

10.3. Correspondence

Before we show the correspondence between the approach by Schulz and our approach,
let us first identify some general properties of the operators ΦP and τP .
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Proposition 10.2. lfp ΦP and lfp τP,L exist.

The existence of lfp ΦP and lfp τP,L was established in [Hölldobler and Kencana Ramli,
2009b] and in [Schulz, 2014], respectively. Given that τP,L is monotonic and τP,L ↑ 0
starts with 〈L>, L⊥〉, the following proposition follows immediately.

Proposition 10.3. For all L ∈ L we find P,L |=s L.

Proposition 10.3 for τP,L corresponds to Proposition 9.1(3) for Φrev(P,L).

Theorem 10.4. lfp Φrev(P,L) = lfp τP,L.

We show Theorem 10.4 by showing intermediate steps first.

Lemma 10.5. For all n ∈ N, we find

Φrev(P,L) ↑n ⊆ τP,L ↑n ⊆ Φrev(P,L) ↑(n+ 1).

Proof.
To simplify the presentation, we will omit the indices of the operators τP and Φrev(P,L)

in this proof. The proof is by induction on n. In case n = 0 we find

Φ↑0 = 〈∅, ∅〉 ⊆ 〈L>, L⊥〉 = τ ↑0 ⊆ 〈I>, I⊥〉 = Φ↑1,

where
I> = {A | A← > ∈ rev(P,L)} ⊇ L>,
I⊥ = {A | def(A, rev(P,L)) = {A← ⊥}} ⊇ L⊥.

As induction hypothesis, we assume that the result holds for n, i.e.

Φ↑n ⊆ τ ↑n ⊆ Φ↑(n+ 1). (10.1)

In the induction step, we need to show that the result holds for n + 1. We start by
showing that

Φ↑(n+ 1) ⊆ τ ↑(n+ 1). (10.2)

By Proposition 10.1(3.) and the definition of τP , (10.2) is equivalent to

Φ↑n ∪ 〈I>, I⊥〉 ⊆ τ ↑n ∪ 〈J>, J⊥〉,

where

I> = {A | Φ↑n(A) = U and A← body ∈ def(A,P) and Φ↑n(body) = >},
I⊥ = {A | Φ↑n(A) = U and def(A,P) 6= ∅ and

for all A← body ∈ def(A,P) we find that Φ↑n(body) = ⊥},
J> = {A | τ ↑n(A) = U and A← body ∈ def(A,P) and τ ↑n(body) = >},
J⊥ = {A | τ ↑n(A) = U and def(A,P) 6= ∅ and

for all A← body ∈ def(A,P) we find that τ ↑n(body) = ⊥}.
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From the induction hypothesis (10.1), we conclude that

Φ↑n ⊆ τ ↑n ∪ 〈J>, J⊥〉. (10.3)

Now suppose that A ∈ I>. Then, Φ↑n(A) = U and we distinguish between two cases:

1. If τ ↑ n(A) = U, then because A ∈ I> and by the induction hypothesis (10.1),
Φ↑n ⊆ τ ↑n, and, hence, A ∈ J>.

2. If τ ↑n(A) 6= U, then A must already been assigned to either true or false under
τ ↑n. As A ∈ I> and by (10.1), τ ↑n ⊆ Φ↑(n+ 1), and, hence, τ ↑n(A) = >.

Likewise, we find for A ∈ I⊥ that either A ∈ J⊥ or τ ↑n(A) = ⊥. Therefore,

〈I>, I⊥〉 ⊆ τ ↑n ∪ 〈J>, J⊥〉 (10.4)

and (10.2) follows immediately from (10.3) and (10.4).

We turn to the proof of
τ ↑(n+ 1) ⊆ Φ↑(n+ 2). (10.5)

By the definition for τP and Proposition 10.1(3.), this corresponds to

τ ↑n ∪ 〈J>, J⊥〉 ⊆ Φ↑(n+ 1) ∪ 〈I>, I⊥〉,

where

J> = {A | τ ↑n(A) = U and A← body ∈ def(A,P) and τ ↑n(body) = >},
J⊥ = {A | τ ↑n(A) = U and def(A,P) 6= ∅ and

for all A← body ∈ def(A,P) we find that τ ↑n(body) = ⊥},
I> = {A | Φ↑(n+ 1)(A) = U and

A← body ∈ def(A,P) and Φ↑(n+ 1)(body) = >},
I⊥ = {A | Φ↑(n+ 1)(A) = U and def(A,P) 6= ∅ and

for all A← body ∈ def(A,P) we find that Φ↑(n+ 1)(body) = ⊥}.

By the induction hypothesis (10.1), we find

τ ↑n ⊆ Φ↑(n+ 1) ∪ 〈I>, I⊥〉. (10.6)

Now suppose that A ∈ J>. Then, τ ↑n(A) = U and we distinguish between two cases:

1. If Φ↑(n+ 1)(A) = U, then A ∈ I>, because of the induction hypothesis (10.1).

2. If Φ↑ (n+ 1)(A) 6= U, then A is assigned to either true or false under Φ↑ (n+ 1).
By (10.2), Φ↑(n+ 1)(A) = >.

Likewise, we find for A ∈ J⊥ that either A ∈ I⊥ or Φ↑(n+ 1)(A) = ⊥. Therefore,

〈J>, J⊥〉 ⊆ Φ↑(n+ 1) ∪ 〈I>, I⊥〉 (10.7)
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and (10.5) follows immediately from (10.6) and (10.7).

We can now show the correspondence of the two operators.

Theorem 10.4. lfp Φrev(P,L) = lfp τP,L.

Proof.
lfp Φrev(P,L) is computed by iterating Φrev(P,L) starting with the empty interpretation,
ΦP ↑0 = 〈∅, ∅〉. According to Proposition 10.2, Φrev(P,L) has a fixed point, i.e. Φrev(P,L) ↑
n = Φrev(P,L) ↑ (n+ 1) for some n ∈ N. According to Lemma 10.5, Φrev(P,L) ↑n = τP,L ↑
n = Φrev(P,L) ↑ (n + 1). But then, as Φrev(P,L) ↑ n is the least fixed point of Φrev(P,L),
it also holds that Φrev(P,L) ↑ (n + 1) = τP,L ↑ (n + 1) = Φrev(P,L) ↑ (n + 2). Accordingly,
τP,L ↑n = τP,L ↑(n+ 1), thus τP,L ↑n is the least fixed point of τP,L.

Glass of Wine Let us consider an example discussed by Schulz [2014]:2

If she drops the glass of wine (drop), then the glass of wine breaks (broken).
She drops the glass of wine.

This scenario can be represented by the following three clauses in program P3:

broken ← drop ∧ ¬ab.
ab ← ⊥.

drop ← >.

Now, consider L = {¬broken}. Then, rev(P3,L) consists of

ab ← ⊥.
drop ← >.

broken ← ⊥.

L> = ∅, L⊥ = {broken}, and the two fixed points are computed as follows:

τP3,L Φrev(P3,L),

↑0 〈∅, {broken}〉 〈∅, ∅〉
↑1 〈{drop}, {ab, broken}〉 〈{drop}, {ab, broken}〉

As expected, the least fixed points of τP3,L and Φrev(P3,L) are identical.

2The following two sentences are adapted versions of the sentences in [Schulz, 2014], which originally
were follows: If you drop glass, it breaks. She dropped that wine glass.
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10.4. Conclusion

In this chapter, we formally show the correspondence to Schulz’ approach and observe
that we can handle more human reasoning tasks. Coming back to the examples discussed
in Section 9.3.2 we observe that they can be modeled by Schulz’ approach only if the
appropriate initial set L is given. Schulz does not provide any means to obtain these
sets. One should note that these sets are not simply the unknown conditions of the
given conditionals. We compute the additional assignments by MRFA as explained
in Section 9.5. In fact, we are unaware of any computational logic approach which
can handle as many human reasoning episodes as our approach based on the Weak
Completion Semantics. Yet, there are still many open and interesting questions, some
of which will be mentioned in the sequel.
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11. Open Questions and Outlook

Overall, the goal of developing a methodology that allows us to formalize episodes of
human reasoning is far from being exhaustively explored. In this chapter we will discuss
a few open questions.

11.1. Weak Completion Semantics Revisted

As discussed in Section 5.3, there are still open questions about the Weak Completion
Semantics. First of all,  Lukasiewicz semantics was chosen because it solved a technical
bug in [Stenning and van Lambalgen, 2008] and nice properties such as the model inter-
section property. However, the same results would be yielded with the S-semantics. Is
there any reason to prefer one three-valued semantics over the other? Why should we
restrict ourselves to three-valued semantics? Might other more-than-three-valued logics
not be suitable as well?

Further, can we really assume that people compute their models according to the ΦP
operator? How does their reasoning differ in case they start with some background
information? Can we simulate this aspect by starting the iteration of the ΦP operator
with a non-empty interpretation?

We have introduced integrity constraints, however, we have not yet investigated them in
the context of human reasoning. Lúıs Moniz Pereira1 remarked that we might also think
of testing the IC at each step of iteration. As the ΦP operator is monotonic, as soon as
the body of the IC is true, there is no least model of the program that satisfies IC.

Under the Weak Completion Semantics, positive information is preferred over unknown
information and unknown information is preferred over negative information. This pref-
erence might not always be consistent with human reasoning. We could allow the ex-
pression of integrity constraints to ⊥ ← q. Any model of a program containing such an
integrity constraint must map q to ⊥. However, how can we search for a model that
satisfies this integrity constraint? Will we have to define a new semantic operator or is
there a way of testing the integrity constraint at each step of the iteration as discussed
above?

1personal communication, February 10, 2016

189



11. Open Questions and Outlook

11.2. Abduction

Abduction seems to be a powerful tool when modeling human reasoning. During formal-
ization of all tasks, we assumed that explanations should be minimal and consequences
should follow skeptically. Almost all tasks required skeptical abduction and the task
formalized in Chapter 8 additionally requires explanations to be minimal. However, how
likely is it that humans compute all minimal explanations first and then consider only the
consequences that follow skeptically? It seems more convenient that some explanations
are more likely to be considered than others, not depending on their minimality but
depending on some other parameter, such as the context or the background information.
Similarly, humans might apply skeptical abduction but instead reason based on whether
a consequence is likely to follow from all possible explanations.

Contextual Reasoning

Chapter 4 takes the assumption that context plays a role while searching for explanations
as starting point and shows that the Weak Completion Semantics cannot model the
famous Tweety example adequately. As has already been observed by Reiter [1980],
exception cases should be treated differently than usual cases: In case there is no reason
to assume exception cases to be true, they should be false. We partially agree with this
view, and further think that exception cases are actually ignored if there is no evidence for
them to be true. We overcome these limitations by first introducing contextual programs,
which allow us to syntactically specify contextual knowledge in the logic programs.
Second, we formalize our intention within a contextual abductive reasoning approach
and show how the previous limitations can be solved. It seems that there is a link to
Reiter’s [1980] default logic, however we have not shown a formal correspondence.

An open question, which we need to address to the cognitive scientists, is, whether the
above assumptions, the way that humans are influenced by their background knowledge
and whether they deal differently with usual cases than with exception cases, can be
tested psychologically, and if so, whether the results of the experiments support these
assumptions.

Complexity of Human Reasoning Tasks

The least model of the weak completion can be computed by the ΦP operator in poly-
nomial time as has been shown in [Hölldobler, Philipp, and Wernhard, 2011], which
is an advantageous property compared to other logic programming approaches, such
as the Stable Model Semantics. Skeptical abduction on the other hand, has less de-
sirable properties: Deciding whether a formula follows skeptically from an abductive
framework is DP-complete, a complexity that is outside of NP [Hölldobler, Philipp, and
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Wernhard, 2011]. Furthermore, deciding whether a contextual explanation is minimal
lies in PSPACE [Dietz Saldanha, Hölldobler, and Philipp, 2017].

These results are good indications to believe that humans are unlikely to reason in the
same way as we apply skeptical abduction, in particular, they might not filter out all non-
minimal explanations. Possibly, they generate only a few explanations and only consider
them and their consequences partially. How they generate these few explanations might
depend on their relevance in the context. Whether and how this mechanism can work
out in detail, still needs to be investigated.

Neural Network Realization

As already mentioned in Section 5.3, Hölldobler and Kencana Ramli [2009a], showed
that the computation of the least fixed point of the ΦP operator can be realized within
a connectionist network, with the core-method [Bader, Hitzler, Hölldobler, and Witzel,
2007]. Furthermore, Dietz Saldanha, Hölldobler, Kencana Ramli, and Palacios Medin-
acelli [2017a] have shown a connectionist realization of skeptical abduction under the
Weak Completion Semantics within the core-method. However, this approach is not
restricted to minimal explanations. In [Palacios Medinacelli, 2016], a formal specific-
ation is provided that produces all possible explanations in a specific order such that
minimal explanations can be detected and all non-minimal possible explanations can be
discarded.

Summing up the above discussion, this specification does not seem to be the way hu-
mans search for explanations. As we already stated, humans might consider explanations
which are more likely based on other parameters than the minimality characterization.
One such other parameter is identified and proposed in [Dietz Saldanha, Hölldobler, and
Lourêdo Rocha, 2017b], where conditionals are either obligations or factual condition-
als and the condition can be either necessary or sufficient for the consequence to be
true. Depending on the characterization of the conditional and its condition, the set of
abducibles differs and accordingly, different explanations are generated.

Quantified Statements and the Search for Alternative Models

The approach in [Costa, Dietz Saldanha, and Hölldobler, 2017b] extends the approach
presented in Chapter 7, and shows that, by taking two additional principles in account
for the representation of quantified statements, the results improve by an overall match
of 89%. One of the principles assumes that participants search for alternative models
when no valid conclusion can be derived. This is modeled with the help of skeptical
abduction. Taking this approach as starting point, we can now reach more than the
initially limited maximum of 93.6%. How much more can we improve the results now?
A possible way to approach this question is to study the individual syllogistic premises.
Why do some syllogistic premises predict the answers of the participants so badly? Are
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there other assumptions humans do when reasoning with quantified statements, that we
have not found out yet?

Integrating Probabilties

Yet, approaches exclusively based on logic might not be sufficient, but instead, an integ-
ration together with probability could be helpful for modeling human reasoning, as has
been proposed by Johnson-Laird, Khemlani, and Goodwin [2015]. Reconsidering the
evaluation system for conditionals in Chapter 9, instead of assuming MRFA, one could
think about a possible integration with probabilities, where a probability is attached to
each reduction.

Evaluation Benchmark

Commonsense reasoning, a branch of Artificial Intelligence, is concerned with, among
others, the representation and the reasoning about so-called commonsense knowledge, i.e.
knowledge that everyone is expected to know about. Evaluation systems are necessary
to determine the performance of proposed commonsense reasoning approaches. Some
evaluation systems have been presented in [Roemmele, Bejan, and Gordon, 2011, Maslan,
Roemmele, and Gordon, 2015, Levesque, Davis, and Morgenstern, 2012]. This ties in
with McCarthy’s [1959, 1998] idea, to have a set of challenge problems, which an adequate
commonsense reasoning system should be able to solve. In order to measure the adequacy
of this system we need to be able to evaluate how this system performs on a whole
benchmark of problems. Finally, this would allow us to compare this systems’ results
with other ones. Observing the emerging attention for these approaches shows us that a
new awareness is currently being established about what computational systems should
be capable of doing, if we intend to make them cognitively adequate.

11.3. Psychological Experiments

As we stated in the introduction, a system that aims at being cognitively adequate,
has to be evaluated with respect to the way humans reason. In turn, when we want to
evaluate our approach, we depend on the data cognitive scientists provide us with.

Need for Experimental Data

A question immediately arising from the third part of the thesis is to verify whether
humans reason according to MRFA, i.e. do they prefer abduction to revision? Or do they
prefer some other derivation, not identified yet? Do they possibly reason differently with
different types of conditionals as has been investigated in [Dietz Saldanha, Hölldobler,
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and Lourêdo Rocha, 2017b]? Does the context or the person’s background knowledge
influence the evaluation of the conditional as we claim in Chapter 4? Yet another aspect
to consider, is that in our system, the outcome of how the conditional is evaluated,
depends mainly on the order in which the conditions of the conditional are considered.
A possible psychological experiment could investigate whether the order of the conditions
in a conditional also matters for human reasoners. An indication for this assumption is
the spatial reasoning approach that we presented in Chapter 6, where the investigated
spatial reasoning task delivers evidence that the order of the premises influences the
model construction. These questions and the ones presented in Section 9.4 have to be
answered if we want to learn more about how humans reason with conditionals. The
necessary psychological experiments can only be implemented together with experts from
the area of Cognitive Science.

Problem with Aggregated Data

By only considering aggregated values of the psychological experiments, we might not see
important information about the reasoning process of the participants. Ragni, Dietz,
Kola, and Hölldobler [2016] reconsider a wide amount of psychological results of the
Wason selection task and show that some assumptions originally made based on the
aggregated data can be refuted when looking at the individual participants patterns:
(1) only very few participants chose the biconditional pattern turn all cards, (2) not
even half of the participants in the social task chose the classical logical patterns modus
ponens and modus tollens, (3) the three most favored patterns in both tasks are the
same and (4) the matching pattern modus ponens and modus tollens, which was always
assumed to be the most favored pattern in the abstract case, appears only to be chosen
by 23% of the participants. These results emphasize that we should not only look at
aggregated data of psychological results, but consider the individual patterns of the
participants. Further, this serves as indication that the human reasoner does not exist,
but instead we might better search for groups of human reasoners.

These findings show how much we depend on the psychologists, who can decide on the
amount of information they want to provide us with. Most of the reported results don’t
give us insight about the patterns the participants opted for, but instead only about the
aggregated data.
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12. Summary

During the last decades many psychologists and cognitive scientists have shown that
humans systematically deviate from classical logical answers. Some of these psycholo-
gical experiments such as Wason’s selection task, Byrne’s suppression task and Evans,
Barston, and Pollard’s syllogistic reasoning, have been discussed in this thesis. Instead
of simply arguing that human reasoning cannot be adequately modeled by any logic in
general, we just put into question classical logic. We argued that even though classical
logic is not adequate to model episodes of human reasoning, there might be other non-
classical logic approaches that could be appropriate. Our goal was to formalize episodes
of human reasoning with respect to conditionals within a non-monotonic approach. Yet,
the findings of this thesis should not be reduced to just a formalization of these reasoning
tasks.

The goal of the first part of this thesis was to allow an easy access to the Weak Com-
pletion Semantics and to clarify where to categorize this semantics in relation to other
already existing approaches. In particular we showed the formal correspondence of the
Weak Completion Semantics and the Well-founded Semantics. Additionally, we pro-
posed an extension, contextual reasoning, which allows us to syntactically determine,
which explanations should be preferred over others, depending on the context.

The second part of the thesis was about modeling well-known human reasoning tasks
within the Weak Completion Semantics. One aspect was to investigate whether the
Weak Completion Semantics is adequate for modeling human reasoning tasks. Another
aspect was to explore how we could apply Logic Programming techniques, such as abduc-
tion and integrity constraints in the modeling process. We presented the formalizations
of Byrne’s suppression task, Wason’s selection task, a spatial reasoning task and a syl-
logistic reasoning task and the belief-bias effect. The results of Chapter 7, which is
about modeling quantified statements and predicting participants’ conclusions, stand
out here, because for the first time we were actually able to evaluate the performance
of the Weak Completion Semantics by comparing the obtained results to the results of
other approaches. We predicted 64 syllogisms with only one logic programming repres-
entation for each of the four possible quantified statements and showed that the Weak
Completion Semantics performs better than any of the other twelve cognitive theories.

The goal of the third part emerged from the results of the second part: After having
shown that the Weak Completion Semantics seems to be adequate for modeling a broad
range of human reasoning tasks, it was just natural to construct a general system for the
evaluation of conditionals. We proposed an abstract reduction system and formulated
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12. Summary

a hypothesis: We assume that humans have a preferred derivation when reasoning with
conditionals, namely MRFA, i.e. they prefer abduction over revision. We illustrated
this derivation with the help of examples in the literature. Finally, we investigated the
formal correspondence of MRFA with another conditional evaluation approach proposed
by Schulz, and showed that MRFA is more general.

Summing up, we presented a possible path to bridging the gap between Cognitive Science
and Computational Logic. The results of this thesis cannot be taken as the ultimate
solution. On the contrary, the findings of this thesis deliver a starting point and guideline
for many new open questions within both areas, Cognitive Science and Computational
Logic.
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B. Level Mapping Characterization for
the Weak Completion Semantics and
the Well-Founded Semantics

We compare weak completion and well-founded semantics by their level mapping char-
acterizations. For this purpose we need to define a three-valued level mapping for P
which is a level mapping that may be undefined for some atoms. An I-three-valued level
mapping `I for P is a three-valued level mapping for an interpretation where the domain
of `I is dom(`I) = I> ∪ I⊥ and `I is a function `I : I> ∪ I⊥ → N. All atoms which are
unknown under I are not mapped to a number by `I .

Hitzler and Wendt [2005] characterize well-founded semantics for normal logic programs
as follows: Let P be a normal program, I = 〈I>, I⊥〉 be a model of P and `I be an
I-three-valued level mapping of P. P is said to satisfy (WF) w.r.t. I and `I if for every
A ∈ dom(`I) one of the following conditions is satisfied:

(WFi) A ∈ I> and there exists a clause A← body in P such that it holds for all literals L
in body : L ∈ I> and `I(A) > `I(L).

(WFii) A ∈ I⊥ and for all clauses A← body in P, one of the following conditions holds:

(WFiia) there exists a literal L in pos(body) such that L ∈ I⊥ and `I(A) ≥ `I(L),

(WFiib) there exists a literal L in neg(body) such that L ∈ I> and `I(A) > `I(L).

If A ∈ dom(`I) satisfies (WFi), then we say that A satisfies (WFi) with respect to I and
`I , and similarly if A ∈ dom(`I) satisfies (WFii).

Theorem B.1. Let P be a normal program with the well-founded model M . Then M
is the greatest model among all models I for which there exists an I-three-valued level
mapping `I for P such that P satisfies (WF) w.r.t. I and `I .

Intuitively, a level mapping that satisfies (WF) w.r.t. to all A ∈ dom(`I) is acyclic w.r.t.
〈I>, ∅〉 and stratified w.r.t. 〈∅, I⊥〉.

Kencana Ramli [2009] gives the following level mapping characterization for the least
model of the weak completion semantics:

Let P be a logic program, I = 〈I>, I⊥〉 be a model of P and `I be an I-three-valued
level mapping for P. P is said to satisfy ( L) w.r.t. I and `I if for every A ∈ dom(`I)
one of the following conditions is satisfied:
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(WCi) A ∈ I> and there exists a clause A← body in P such that it holds for all literals L
in body : L ∈ I> and `I(A) > `I(L).

(WCii) A ∈ I⊥ and there exists a clause A← body in P and for all such clauses, one of
the following conditions holds:

(WCiia) there exists a literal L in pos(body) such that L ∈ I⊥ and `I(A) > `I(L),

(WCiib) there exists a literal L in neg(body) such that L ∈ I> and `I(A) > `I(L).

If A ∈ dom(`I) satisfies (WCi), then we say that A satisfies (WCi) w.r.t. I and `I , and
similarly if A ∈ dom(`I) satisfies (WCii).

Theorem B.2. Let P be a logic program with M , the least model of the weak completion.
Then M is the greatest model among all models I for which there exists an I-three-valued
level mapping `I of P such that P satisfies (WC) w.r.t. I and `I .

Intuitively, the level mapping that satisfies (WC) w.r.t. to all A ∈ dom(`I) is acyclic
w.r.t. 〈I>, ∅〉 and w.r.t. 〈∅, I⊥〉.

Both characterizations differ on two conditions: First, consider the conditions (WFii)
and (WCii):

(WFii) A ∈ I⊥ and for all clauses A← body in P, one of the following conditions holds:
[...]

(WCii) A ∈ I⊥ and there exists a clause A← body in P and for all such clauses, one of
the following conditions holds: [...]

By condition (WFii) all undefined atoms are in I⊥ in the well-founded model whereas
under weak completion semantics, they stay unknown. Furthermore, they differ in con-
ditions (WFiia) and (WCiia):

(WFiia) there exists a literal L in pos(body) such that L ∈ I⊥ and `(A) ≥ `(L),

(WCiia) there exists a literal L in pos(body) such that L ∈ I⊥ and `(A) > `(L),

In a well-founded model, all atoms which are part of a positive cycle are in I⊥, whereas
under weak completion these atoms stay unknown. Considering Theorem 3.9 again, we
made one restriction and two adaptations:

1. We restrict the correspondence to tight logic programs because of the difference
between condition (WFiia) and condition (WCiia).

2. Under well-founded semantics we consider P+ instead of P because well-founded
semantics is not defined for programs with negative facts.

3. For all atoms A ∈ undef(P) we introduce an auxiliary atom A′ and add the fol-
lowing two clauses A← ¬A′ and A′ ← ¬A, so condition (WFii) does not apply for
undefined atoms anymore and A stays unknown.
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C. Ground Program of Example 4

The ground program for Example 4, gP4, consists of the following clauses:

l(p, h, 1) ← >. 1. Add premises
l(d, h, 2) ← >.

l(p, h, 1) ← ⊥. 2. Closed-world assumption left relation
l(p, d, 1) ← ⊥.
l(h, p, 1) ← ⊥.
l(h, d, 1) ← ⊥.
l(d, p, 1) ← ⊥.
l(d, h, 1) ← ⊥.

ol(p, 1) ← ⊥. 3. Closed-world assumption occupied phase 1
ol(d, 1) ← ⊥.
ol(h, 1) ← ⊥.
or(p, 1) ← ⊥.
or(d, 1) ← ⊥.
or(h, 1) ← ⊥.

ln(p, h, 1) ← l(p, h, 1) ∧ ¬ol(h, 1) ∧ ¬or(p, 1). 4. Neighbor left relation
ln(p, h, 2) ← l(p, h, 2) ∧ ¬ol(h, 2) ∧ ¬or(p, 2).
ln(p, d, 1) ← l(p, d, 1) ∧ ¬ol(d, 1) ∧ ¬or(p, 1).
ln(p, d, 2) ← l(p, d, 2) ∧ ¬ol(d, 2) ∧ ¬or(p, 2).
ln(h, p, 1) ← l(h, p, 1) ∧ ¬ol(p, 1) ∧ ¬or(h, 1).
ln(h, p, 2) ← l(h, p, 2) ∧ ¬ol(p, 2) ∧ ¬or(h, 2).
ln(h, d, 1) ← l(h, d, 1) ∧ ¬ol(d, 1) ∧ ¬or(h, 1).
ln(h, d, 2) ← l(h, d, 2) ∧ ¬ol(d, 2) ∧ ¬or(h, 2).
ln(d, p, 1) ← l(d, p, 1) ∧ ¬ol(p, 1) ∧ ¬or(d, 1).
ln(d, p, 2) ← l(d, p, 2) ∧ ¬ol(p, 2) ∧ ¬or(d, 2).
ln(d, h, 1) ← l(d, h, 1) ∧ ¬ol(h, 1) ∧ ¬or(d, 1).
ln(d, h, 2) ← l(d, h, 2) ∧ ¬ol(h, 2) ∧ ¬or(d, 2).

ln(p, h, 2) ← ln(p, h, 1). 5. Neighbor left relation stays always
ln(p, d, 2) ← ln(p, d, 1).
ln(h, p, 2) ← ln(h, p, 1).
ln(h, d, 2) ← ln(h, d, 1).
ln(d, h, 2) ← ln(d, h, 1).
ln(d, p, 2) ← ln(d, p, 1).
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ol(p, 2) ← ln(h, p, 1). 6. Occupied left/ occupied right relation
ol(p, 2) ← ln(d, p, 1).
ol(h, 2) ← ln(p, h, 1).
ol(h, 2) ← ln(d, h, 1).
ol(d, 2) ← ln(p, d, 1).
ol(d, 2) ← ln(h, d, 1).
or(p, 2) ← ln(p, h, 1).
or(p, 2) ← ln(p, d, 1).
or(h, 2) ← ln(h, p, 1).
or(h, 2) ← ln(h, d, 1).
or(d, 2) ← ln(d, p, 1).
or(d, 2) ← ln(d, h, 1).

l(p, h, 2) ← l(p, d, 2) ∧ ln(h, d, 1). 7. Left relation and neighbor
l(p, d, 2) ← l(p, h, 2) ∧ ln(d, h, 1).
l(d, h, 2) ← l(d, p, 2) ∧ ln(h, p, 1).
l(d, p, 2) ← l(d, h, 2) ∧ ln(p, h, 1).
l(h, d, 2) ← l(h, p, 2) ∧ ln(d, p, 1).
l(h, p, 2) ← l(h, d, 2) ∧ ln(p, d, 1).

l(p, h, 2) ← l(d, h, 2) ∧ ln(d, p, 1). 8. Left relation and neighbor
l(p, d, 2) ← l(d, d, 2) ∧ ln(h, p, 1).
l(d, h, 2) ← l(p, h, 2) ∧ ln(p, d, 1).
l(d, p, 2) ← l(h, p, 2) ∧ ln(h, d, 1).
l(h, p, 2) ← l(d, p, 2) ∧ ln(d, h, 1).
l(h, d, 2) ← l(p, d, 2) ∧ ln(p, h, 1).

left(X,Y ) ← ln(X,Y, 2). 9. Conclusions about left relations

left(X,Z) ← left(X,Y ) ∧ leftOf(Y,Z). 10. Left relation is transitive

right(X,Y ) ← left(Y ∧X). 11. Right relation
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D. Predictions of 64 Syllogistic Premises
under the Weak Completion Semantics
compared to Participants’ Responses
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D. Participants’ Responses for
Syllogistic Premises and Predictions of WCS

Weak Completion Semantics Participants Match
Syllogism Premises Aac Eac Iac Oac Aca Eca Ica Oca NVC Aac Eac Iac Oac Aca Eca Ica Oca NVC in %

AA1 Aab, Abc 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 89
AA2 Aba, Acb 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 78
AA3 Aab, Acb 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 89
AA4 Aba, Abc 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 78

AI1 Aab, Ibc 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 78
AI2 Aba, Icb 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 100
AI3 Aab, Icb 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 89
AI4 Aba, Ibc 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 78

AE1 Aab, Ebc 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 78
AE2 Aba, Ecb 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 89
AE3 Aab, Ecb 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 89
AE4 Aba, Ebc 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 89

AO1 Aab, Obc 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 78
AO2 Aba, Ocb 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 78
AO3 Aab, Ocb 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 89
AO4 Aba, Obc 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 78

IA1 Iab, Abc 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 89
IA2 Iba, Acb 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 67
IA3 Iab, Acb 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 89
IA4 Iba, Abc 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 78

II1 Iab, Ibc 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 89
II2 Iba, Icb 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 78
II3 Iab, Icb 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 89
II4 Iba, Ibc 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 89

IE1 Iab, Ebc 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 67
IE2 Iba, Ecb 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 89
IE3 Iab, Ecb 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 78
IE4 Iba, Ebc 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 67

IO1 Iab, Obc 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 89
IO2 Iba, Ocb 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 100
IO3 Iab, Ocb 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 100
IO4 Iba, Obc 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 89

EA1 Eab, Abc 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 100
EA2 Eba, Acb 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 67
EA3 Eab, Acb 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 89
EA4 Eba, Abc 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 89

EI1 Eab, Ibc 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 89
EI2 Eba, Icb 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 89
EI3 Eab, Icb 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1 78
EI4 Eba, Ibc 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 67

EE1 Eab, Ebc 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 89
EE2 Eba, Ecb 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1 78
EE3 Eab, Ecb 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 89
EE4 Eba, Ebc 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 89

EO1 Eab, Obc 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1 78
EO2 Eba, Ocb 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 100
EO3 Eab, Ocb 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 89
EO4 Eba, Obc 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 100

OA1 Oab, Abc 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 78
OA2 Oba, Acb 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 78
OA3 Oab, Acb 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 78
OA4 Oba, Abc 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 78

OI1 Oab, Ibc 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 78
OI2 Oba, Icb 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 89
OI3 Oab, Icb 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 89
OI4 Oba, Ibc 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 100

OE1 Oab, Ebc 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 78
OE2 Oba, Ecb 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 89
OE3 Oab, Ecb 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 100
OE4 Oba, Ebc 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 100

OO1 Oab, Obc 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 89
OO2 Oba, Ocb 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 89
OO3 Oab, Ocb 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 89
OO4 Oba, Obc 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 89

Overall 85

Table D.1.: Predictions under the Weak Completion Semantics (columns 3 to 11) and the participants’ responses
(columns 12 to 20). The matching percentage is in the last column.
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At non-empty finite set of atoms
atoms(P) set of all atoms occurring in gP
defined(P) set of all atoms defined in gP
undef(P) set of all atoms undefined in gP
def(L,P) definition of the set of literals L in gP
C fixed set of constants
constants(P) set of all constants occurring in P
cP completion of gP
wcP weak completion of gP
> truth value true
⊥ truth value false
U truth value unknown
I = 〈I>, I⊥〉 three-valued interpretation
I> interpretation consisting of the atoms that are mapped to >
I⊥ interpretation consisting of the atoms that are mapped to ⊥
�t truth-ordering
�k knowledge-ordering
M model
←K implication under SvL-semantics
← L implication under  Lukasiewicz Semantics
←S implication under S-semantics
lm2P least two-valued model of P
lm wcP least model of the weak completion of P
lfp least fixed point
|=s

wcs skeptical consequence relation under weak completion semantics
|=c

wcs credulous consequence relation under weak completion semantics
|=wcs consequence relation under weak completion semantics
TP two-valued semantic operator
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ΦF,P semantic operator introduced by Fitting
U← body integrity constraint
IC set of integrity constraints
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