Skip to main content

Advertisement

Log in

Cognitive Reasoning: A Personal View

  • Survey
  • Published:
KI - Künstliche Intelligenz Aims and scope Submit manuscript

Abstract

The adjective cognitive especially in conjunction with the word computing seems to be a trendy buzzword in the artificial intelligence community and beyond nowadays. However, the term is often used without explicit definition. Therefore we start with a brief review of the notion and define what we mean by cognitive reasoning. It shall refer to modeling the human ability to draw meaningful conclusions despite incomplete and inconsistent knowledge involving among others the representation of knowledge where all processes from the acquisition and update of knowledge to the derivation of conclusions must be implementable and executable on appropriate hardware. We briefly introduce relevant approaches and methods from cognitive modeling, commonsense reasoning, and subsymbolic approaches. Furthermore, challenges and important research questions are stated, e.g., developing a computational model that can compete with a (human) reasoner on problems that require common sense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. http://ics.ie.tum.de, accessed: 13-May-2019.

  2. http://www.fernuni-hagen.de/wbs/dkbkik2019.html, accessed: 13-May-2019.

  3. http://gepris.dfg.de, accessed: 13-May-2019.

  4. http://www.ibm.com/blogs/nordic-msp/artificial-intelligence-machine-learning-cognitive-computing/, accessed: 13-May-2019.

  5. http://en.wikipedia.org/wiki/Cognitive_computing, accessed: 13-May-2019.

  6. http://www.cognitive-comp.org/, accessed: 13-May-2019.

  7. http://en.wikipedia.org/wiki/Reason, accessed: 13-May-2019.

  8. http://www.icaps-conference.org/index.php/Main/Competitions, accessed: 13-May-2019.

  9. http://orca.informatik.uni-freiburg.de/orca_sylwebsite/orca/, accessed: 13-May-2019.

References

  1. Álvez J, Lucio P, Rigau G (2012) Adimen-SUMO: reengineering an ontology for first-order reasoning. Int J Semant Web Inform Syst (IJSWIS) 8(4):80–116

    Article  Google Scholar 

  2. Anderson JR (2007) How can the human mind occur in the physical universe?. Oxford University Press, New York

    Book  Google Scholar 

  3. Anderson JR, Bothell D, Byrne MD, Douglass S, Lebiere C, Qin Y (2004) An integrated theory of the mind. Psychol Rev 111(4):1036–1060. https://doi.org/10.1037/033-295X.111.4.1036

    Article  Google Scholar 

  4. Anshakov OM, Gergely T (2010) Cognitive reasoning—a formal approach. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68875-4

    MATH  Google Scholar 

  5. Apt K, van Emden M (1982) Contributions to the theory of logic programming. J ACM 29:841–862

    Article  MathSciNet  MATH  Google Scholar 

  6. Baars BJ (1997) In the theatre of consciousness. global workspace theory, a rigorous scientific theory of consciousness. J Conscious Stud 4(4):292–309

    Google Scholar 

  7. Bader S (2009) Neural-symbolic integration. Ph.D. thesis, Technische Universität Dresden, Faculty of Computer Science

  8. Baker CF, Fillmore CJ, Lowe JB (1998) The berkeley framenet project. In: C. Boitet, P. Whitelock (eds) 36th annual meeting of the association for computational linguistics and 17th international conference on computational linguistics, COLING-ACL ’98, August 10-14, 1998, Université de Montréal, Montréal, Quebec, Canada. Proceedings of the Conference., pp. 86–90. Morgan Kaufmann Publishers / ACL. http://aclweb.org/anthology/P/P98/P98-1013.pdf

  9. Baumgartner P, Furbach U, Niemelä I (1996) Hyper tableaux. In: European workshop on logics in artificial intelligence, Springer, pp 1–17

  10. Bender M, Pelzer B, Schon C (2013) System description: E-KRHyper 1.4. In: International conference on automated deduction, Springer Nature Switzerland AG, pp 126–134

  11. Bentivogli L, Dagan I, Magnini B (2017) The recognizing textual entailment challenges: datasets and methodologies. In: Ide N, Pustejovsky J (eds) Handbook of linguistic annotation. Springer, Berlin

    Google Scholar 

  12. Bergk T, Furbach U, Schon C (2019) Names are not just sound and smoke: word embeddings for axiom selection. In: Conference on automated deduction, CADE 27. Springer Nature Switzerland AG

  13. Besold TR, d’Avila Garcez AS, Bader S, Bowman H, Domingos PM, Hitzler P, Kühnberger KU, Lamb LC, Lowd D, Lima PMV, de Penning L, Pinkas G, Poon H, Zaverucha G (2017) Neural-symbolic learning and reasoning: a survey and interpretation. CoRR. arXiv:abs/1711.03902

  14. Braine MDS, O’Brien DP (1998) Mental logic. Erlbaum, Mahwah

    Book  Google Scholar 

  15. Byrne RM, Tasso A (1999) Deductive reasoning with factual, possible, and counterfactual conditionals. Mem Cognit 27(4):726–740

    Article  Google Scholar 

  16. Curran JR, Clark S, Bos J (2007) Linguistically motivated large-scale NLP with C&C and Boxer. In: Proceedings of the ACL 2007 demo and poster sessions, Prague, Czech Republic. Association for Computational Linguistics, Stroudsburg PA, USA, pp. 33–36

  17. Dennett D (1993) Consciousness explained. Penguin books. Penguin Adult. https://books.google.de/books?id=d2P_QS6AwgoC. Accessed 27 June 2019

  18. Devlin J, Chang M, Lee K, Toutanova K (2018) BERT: pre-training of deep bidirectional transformers for language understanding. CoRR. arXiv:1810.04805

  19. Diederich J, Tickle AB, Geva S (2010) Quo vadis? Reliable and practical rule extraction from neural networks. In: Koronacki J, Ras ZW, Wierzchon ST, Kacprzyk J (eds) Advances in machine learning I: dedicated to the memory of professor Ryszard S. Michalski, studies in computational intelligence, vol 262. Springer, Berlin, pp 479–490. https://doi.org/10.1007/978-3-642-05177-7_24

    Chapter  Google Scholar 

  20. Dietz EA, Hölldobler S, Ragni M (2012) A computational logic approach to the suppression task. In: N Miyake, D Peebles, RP Cooper (eds) Proceedings of the 34th annual conference of the cognitive science society, Cognitive Science Society. Curran Associates Inc. proceedings.com, pp 1500–1505

  21. Dietz EA, Hölldobler S, Ragni M (2013) A computational logic approach to the abstract and the social case of the selection task. In: Proceedings eleventh international symposium on logical formalizations of commonsense reasoning. http://commonsensereasoning.org/2013/proceedings.html

  22. Dietz Saldanha EA, Hölldobler S, Kencana Ramli CDP, Palacios Medinacelli L (2018) A core method for the weak completion semantics with skeptical abduction. J Artif Intell Res 63:51–86

    Article  MathSciNet  MATH  Google Scholar 

  23. Dietz Saldanha EA, Hölldobler S, Lourêdo Rocha I (1994) The weak completion semantics. In: C Schon, U Furbach (eds) Proceedings of the workshop on bridging the gap between human and automated reasoning—is logic and automated reasoning a foundation for human reasoning?, vol 1994, pp 18–30. CEUR-WS.org (2017). http://ceur-ws.org/Vol-1994/

  24. Dietz Saldanha EA, Hölldobler S, Mörbitz R (2018) The syllogistic reasoning task: reasoning principles and heuristic strategies in modeling human clusters. In: Seipel D, Hanus M, Abreu S (eds) Declarative programming and knowledge management, vol 10997. Lecture notes in artificial intelligence. Springer, Berlin, Heidelberg, pp 149–165

    Chapter  Google Scholar 

  25. Eliasmith C (2013) How to build a brain: a neural architecture for biological cognition. Oxford University Press, Oxford

    Book  Google Scholar 

  26. Evans JSB (2003) In two minds: dual-process accounts of reasoning. TRENDS Cogn Sci 7(10):459–459

    Article  Google Scholar 

  27. Evans JSBT (2008) Dual-processing accounts of reasoning, judgment, and social cognition. Ann Rev Psychol 59:255–278

    Article  Google Scholar 

  28. Ferrucci DA, Brown EW, Chu-Carroll J, Fan J, Gondek D, Kalyanpur A, Lally A, Murdock JW, Nyberg E, Prager JM, Schlaefer N, Welty CA (2010) Building watson: an overview of the DeepQA project. AI Mag 31(3):59–79

    Article  Google Scholar 

  29. Furbach U, Schon C (2018) Reasoning and Consciousness. Teaching a Theorem Prover to let its Mind Wander. In: The third conference on artificial intelligence and theorem proving, AITP2018. http://aitp-conference.org/2018/aitp18-proceedings.pdf

  30. d’Avila Garcez A, Lamb L, Gabbay D (2009) Neural-symbolic cognitive reasoning. Springer, Berlin, Heidelberg

    MATH  Google Scholar 

  31. d’Avila Garcez A, Zaverucha G, de Carvalho L (1997) Logic programming and inductive learning in artificial neural networks. In: Herrmann C, Reine F, Strohmaier A (eds) Knowledge representation in neural networks. Logos Verlag, Berlin, pp 33–46

    Google Scholar 

  32. d’Avila Garcez AS, Broda K, Gabbay DM (2001) Symbolic knowledge extraction from trained neural networks: a sound approach. Artif Intell 125(1–2):155–207. https://doi.org/10.1016/S0004-3702(00)00077-1

    Article  MathSciNet  MATH  Google Scholar 

  33. d’Avila Garcez AS, Zaverucha G (1999) The connectionist inductive learning and logic programming system. Appl Intell 11(1):59–77. https://doi.org/10.1023/A:1008328630915

    Article  Google Scholar 

  34. Gigerenzer G, Selten R (2002) Bounded rationality: the adaptive toolbox. MIT Press, Cambridge, MA, USA

    Google Scholar 

  35. Gigerenzer G, Todd P (1999) Simple heuristics that make us smart. Oxford University Press, New York

    Google Scholar 

  36. Goodfellow I, Bengio Y, Courville A (2016) Deep Learning. Adaptive Computation and Machine Learning. MIT Press, Cambridge, London. http://www.deeplearningbook.org

  37. Gordon AS (2016) Commonsense interpretation of triangle behavior. In: D Schuurmans, MP Wellman (eds) Proceedings of the thirtieth AAAI conference on artificial intelligence, February 12–17, 2016, Phoenix, Arizona, USA., pp 3719–3725. AAAI Press http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11790

  38. Hammer B, Hitzler P (eds) (2007) Perspectives of neural-symbolic integration. Springer, Berlin, Heidelberg

    MATH  Google Scholar 

  39. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  40. Hölldobler S (2018) Ethical decision making under the weak completion semantics. In: C Schon (ed) Proceedings of the workshop on bridging the gap between human and automated reasoning, vol 2261, pp 1–5. CEUR-WS.org. http://ceur-ws.org/Vol-2261/

  41. Hölldobler S, Kalinke Y (1994) Towards a new massively parallel computational model for logic programming. In: Proceedings of the ECAI94 workshop on combining symbolic and connectionist processing, ECCAI - European Association for Artificial Intelligence, pp. 68–77

  42. Hölldobler S, Kalinke Y, Störr H (1999) Approximating the semantics of logic programs by recurrent neural networks. Appl Intell 11(1):45–58. https://doi.org/10.1023/A:1008376514077

    Article  Google Scholar 

  43. Hölldobler S, Kencana Ramli CDP (2009) Logic programs under three-valued Łukasiewicz’s semantics. In: Hill PM, Warren DS (eds) LNCS, vol 5649. Springer-Verlag, Berlin Heidelberg, pp 464–478

    Google Scholar 

  44. Holzinger A (2018) Explainable AI (ex-AI). Informatik Spektrum 41(2):138–143. https://doi.org/10.1007/s00287-018-1102-5 (Aktuelles Schlagwort, in German)

    Article  Google Scholar 

  45. Indiveri G, Linares-Barranco B, Hamilton T, van Schaik A, Etienne-Cummings R, Delbruck T, Liu SC, Dudek P, Häfliger P, Renaud S, Schemmel J, Cauwenberghs G, Arthur J, Hynna K, Folowosele F, Saïghi S, Serrano-Gotarredona T, Wijekoon J, Wang Y, Boahen K (2011) Neuromorphic silicon neuron circuits. Front Neurosci 5:73. https://www.frontiersin.org/article/10.3389/fnins.2011.00073

  46. Johnson-Laird PN (2006) How we reason. Oxford University Press, New York

    Google Scholar 

  47. Kahneman D (2011) Thinking, fast and slow. Macmillan Publishers, London

    Google Scholar 

  48. Khemlani S, Johnson-Laird PN (2012) Theories of the syllogism: a meta-analysis. Psychol Bull 138(3):427–457

    Article  Google Scholar 

  49. Kompridis N (2000) So we need something else for reason to mean. Int J Philos Stud 8:271–295

    Article  Google Scholar 

  50. Lenat DB (1995) CYC: a large-scale investment in knowledge infrastructure. Commun ACM 38(11):33–38

    Article  Google Scholar 

  51. Levesque HJ (2011) The winograd schema challenge. In: Logical formalizations of commonsense reasoning, papers from the 2011 AAAI Spring Symposium, Technical Report SS-11-06, Stanford, California, USA, March 21-23, 2011. AAAI. http://www.aaai.org/ocs/index.php/SSS/SSS11/paper/view/2502

  52. Liao Y, Li H (2017) Reservoir computing trend on software and hardware implementation. Global J Res Eng (F) 17(5). https://engineeringresearch.org/index.php/GJRE/article/download/1654/1585

  53. Łukasiewicz J (1920) O logice trójwartościowej. Ruch Filozoficzny 5:169–171. English translation: On Three-Valued Logic. In: Jan Łukasiewicz Selected Works. (L. Borkowski, ed.), North Holland, 87-88, 1990

  54. Marr D (1982) Vision: a computational investigation into the human representation and processing of visual information. W. H. Freeman and Company, New York

    Google Scholar 

  55. McClelland J (2009) The place of modeling in cognitive science. Topics in cognitive science. Wiley Online Library, Hoboken

    Google Scholar 

  56. Mead C (1990) Neuromorphic electronic systems. Proceedings of the IEEE 78(10):1629–1636. https://ieeexplore.ieee.org/document/58356

  57. Michael L (2019) Cognitive reasoning and learning mechanisms. In: Proceedings of the 2019 towards concious AI system symposium, vol. 2287. CEUR Workshop Proceedings

  58. Miller GA (1995) WordNet: a lexical database for english. Commun ACM 38(11):39–41

    Article  Google Scholar 

  59. Mostafazadeh N, Roth M, Louis A, Chambers N, Allen J (2017) LSDSem 2017 shared task: The story cloze test. In: Proceedings of the 2nd workshop on linking models of lexical, sentential and discourse-level semantics. Association for Computational Linguistics, pp 46–51

  60. Mueller ET (2014) Commonsense reasoning, 2nd edn. Morgan Kaufmann, San Francisco

    Google Scholar 

  61. Muggleton SH, Schmid U, Zeller C, Tamaddoni-Nezhad A, Besold T (2018) Ultra-strong machine learning: comprehensibility of programs learned with ilp. Mach Learn 107:1119–1140. https://doi.org/10.1007/s10994-018-5707-3

    Article  MathSciNet  MATH  Google Scholar 

  62. Nagel T (1974) What is it like to be a bat? Philos Rev 83(4):435–450. http://www.jstor.org/stable/2183914

  63. Newell A (1990) Unified theories of cognition. Harvard University Press, Cambridge

    Google Scholar 

  64. Newell A, Simon HA (1972) Human problem solving. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  65. Oaksford M, Chater N (2007) Bayesian rationality: the probabilistic approach to human reasoning. Oxford University Press, Oxford Cognitive Science Series

    Book  Google Scholar 

  66. Oliviera da Costa A, Dietz Saldanha EA, Hölldobler S, Ragni M (2017) A computational logic approach to human syllogistic reasoning. In: Gunzelmann G, Howes A, Tenbrink T, Davelaar EJ (eds) Proceedings of the 39th annual conference of the cognitive science society. Cognitive Science Society, Austin, pp 883–888888

    Google Scholar 

  67. Ostermann S, Roth M, Modi A, Thater S, Pinkal M (2018) SemEval-2018 task 11: Machine comprehension using commonsense knowledge. In: Proceedings of the 12th international workshop on semantic evaluation. Association for Computational Linguistics, pp 747–757

  68. Ovchinnikova E (2012) Integration of world knowledge for natural language understanding, Atlantis thinking machines, vol 3. Atlantis Press, New York. https://doi.org/10.2991/978-94-91216-53-4

    Book  MATH  Google Scholar 

  69. Pagel P, Portmann E, Vey K (2018) Cognitive computing. Informatik Spektrum 41(1–2) (Edited special issues)

  70. Pereira LM, Dietz EA, Hölldobler S (2014) An abductive reasoning approach to the belief-bias effect. In: Baral C, Giacomo GD, Eiter T (eds) Principles of knowledge representation and reasoning: proceedings of the 14th international conference. AAAI Press, Cambridge, pp 653–656656

    Google Scholar 

  71. Perlis D, Brody J (2019) Operationalizing consciousness. In: Proceedings of the 2019 towards conscious AI system symposium, vol 2287

  72. Radford A, Narasimhan K, Salimans T, Sutskever I (2018) Improving language understanding by generative pre-training. https://openai.com/blog/language-unsupervised/. Accessed: 13 May 2019

  73. Ragni M, Dietz EA, Kola I, Hölldobler S (2016) Two-valued logic is not sufficient to model human reasoning, but three-valued logic is: a formal analysis. In: U Furbach, C Schon (eds) Bridging 2016—bridging the gap between human and automated reasoning, CEUR Workshop Proceedings, vol 1651, pp 61–73. CEUR-WS.org. http://ceur-ws.org/Vol-1651/

  74. Ragni M, Khemlani S, Johnson-Laird PN (2013) The evaluation of the consistency of quantified assertions. Mem Cognit 42(1):53–66

    Article  Google Scholar 

  75. Ragni M, Knauff M (2013) A theory and a computational model of spatial reasoning with preferred mental models. Psychol Rev 120(3):561–588

    Article  Google Scholar 

  76. Rips LJ (1994) The psychology of proof: deductive reasoning in human thinking. The MIT Press, Cambridge

    MATH  Google Scholar 

  77. Roemmele M, Bejan CA, Gordon AS (2011) Choice of plausible alternatives: an evaluation of commonsense causal reasoning. In: Logical formalizations of commonsense reasoning, Papers from the 2011 AAAI Spring Symposium, Technical Report SS-11-06, Stanford, California, USA, March 21-23, 2011. AAAI. http://www.aaai.org/ocs/index.php/SSS/SSS11/paper/view/2418

  78. Roemmele M, Bejan CA, Gordon AS (2011) Choice of plausible alternatives: an evaluation of commonsense causal reasoning. In: AAAI spring symposium: logical formalizations of commonsense reasoning, pp 90–95

  79. Rouse M, Wigmore I (2019) Definition explainable AI (XAI) (2018). https://whatis.techtarget.com/definition/explainable-AI-XAI. Accessed: 13 May 2019

  80. Simon H, Wallach D (1999) Cognitive modeling in perspective. Kognitionswissenschaft 8:1–4

    Article  Google Scholar 

  81. Speer R, Chin J, Havasi C (2017) ConceptNet 5.5: an open multilingual graph of general knowledge. In: AAAI conference on artificial intelligence, pp 4444–4451 http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14972

  82. Stenning K, van Lambalgen M (2005) Semantic interpretation as computation in nonmonotonic logic: the real meaning of the suppression task. Cogn Sci 29:919–960

    Article  Google Scholar 

  83. Stenning K, van Lambalgen M (2008) Human reasoning and cognitive science. MIT Press, Cambridge

    Book  Google Scholar 

  84. Sutcliffe G (2017) The TPTP problem library and associated infrastructure. From CNF to TH0, TPTP v6.4.0. J Autom Reason 59(4):483–502

    Article  MathSciNet  MATH  Google Scholar 

  85. Sutcliffe G (2018) The 9th IJCAR automated theorem proving system competition—CASC-J9. AI Commun 31(6):495–507. https://doi.org/10.3233/AIC-180773

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frieder Stolzenburg.

Additional information

The authors are mentioned in alphabetical order.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furbach, U., Hölldobler, S., Ragni, M. et al. Cognitive Reasoning: A Personal View. Künstl Intell 33, 209–217 (2019). https://doi.org/10.1007/s13218-019-00603-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13218-019-00603-3

Keywords

Navigation