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Abstract
My thesis describes how methods from Formal Concept Analysis can be used for constructing and extending description 
logic ontologies. In particular, it is shown how concept inclusions can be axiomatized from data in the description logics EL , 
M , ����-M , and ����-EL . All proposed methods are not only sound but also complete, i.e., the result not only consists of 
valid concept inclusions but also entails each valid concept inclusion. Moreover, a lattice-theoretic view on the description 
logic EL is provided. For instance, it is shown how upper and lower neighbors of EL concept descriptions can be computed 
and further it is proven that the set of EL concept descriptions forms a graded lattice with a non-elementary rank function.
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1  Introduction

Description Logic (abbrv. DL) [1] belongs to the field of 
knowledge representation and reasoning. DL researchers 
have developed a large family of logic-based languages, so-
called description logics (abbrv. DLs). These logics allow 
their users to explicitly represent knowledge as ontologies, 
which are finite sets of (human- and machine-readable) axi-
oms, and provide them with automated inference services to 
derive implicit knowledge. The landscape of decidability and 
computational complexity of common reasoning tasks for 
various description logics has been explored in large parts: 
there is always a trade-off between expressibility and reason-
ing costs. It is therefore not surprising that DLs are nowa-
days applied in a large variety of domains [1]: agriculture, 
astronomy, biology, defense, education, energy management, 
geography, geoscience, medicine, oceanography, and oil and 
gas. Furthermore, the most notable success of DLs is that 
these constitute the logical underpinning of the Web Ontol-
ogy Language (abbrv. OWL) [5] in the Semantic Web.

Formal Concept Analysis (abbrv. FCA) [3] is subfield 
of lattice theory that allows to analyze data-sets that can 
be represented as formal contexts. Put simply, such a for-
mal context binds a set of objects to a set of attributes by 
specifying which objects have which attributes. There are 
two major techniques that can be applied in various ways 
for purposes of conceptual clustering, data mining, machine 
learning, knowledge management, knowledge visualization, 
etc. On the one hand, it is possible to describe the hierarchi-
cal structure of such a data-set in form of a formal concept 
lattice [3]. On the other hand, the theory of implications 
(dependencies between attributes) valid in a given formal 
context can be axiomatized in a sound and complete manner 
by the so-called canonical base [4], which furthermore con-
tains a minimal number of implications w.r.t. the properties 
of soundness and completeness.

In spite of the different notions used in FCA and in DL, 
there has been a very fruitful interaction between these two 
research areas. My thesis [6] continues this line of research 
and, more specifically, it describes how methods from FCA 
can be used to support the automatic construction and exten-
sion of DL ontologies from data.
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2 � Axiomatization of EL Concept Inclusions

The description logic EL allows for tractable reasoning in 
polynomial time and features concept descriptions for inten-
sionally describing collections of objects. A concept inclu-
sion is an implication between two concept descriptions 
and such terminological axioms are used for describing the 
schema of the domain of interest. However, it might be a 
tedious task to formulate such axioms by hand. My thesis is 
concerned with the (unsupervised) axiomatization of con-
cept inclusions under different assumptions on the input. In 
the following, according use cases are described.

Completions. The first use case is concerned with situa-
tions where there already exist concept inclusions describ-
ing the domain of interest and where data on the domain of 
interest is available. The existing concept inclusions might 
either have been manually formulated by a knowledge engi-
neer or have been generated using other axiomatization tech-
niques. Furthermore, it is required that these concept inclu-
sions are retained, i.e., we construct a completion of these 
with respect to the data. More specifically, given a TBox T  
and an interpretation I  that is a model of T  , a completion 
of T  w.r.t. I  (or, a concept inclusion base of I  relative to 
T  ) is a TBox S such that its union with T  is both sound and 
complete for I  , i.e., I  is a model of S and S ∪ T  entails each 
concept inclusion that is valid in I .

The problem of computing such completions can be 
reduced to a corresponding problem in Formal Concept 
Analysis, namely computing an implication base relative to 
an existing implication set. Algorithmic solutions for the 
latter exist, and my thesis describes a procedure that can 
compute such implication bases in a highly parallel man-
ner where the necessary computation time is almost inverse 
linear proportional to the number of available CPU cores. 
Moreover, such completions can always be computed in 
exponential time and there exist interpretations for which 
no completion can be encoded in polynomial space.

Logical Intersections. Assume again a situation where we 
have an interpretation I  and some TBox T  , but this time I  
is not a model of T  and we do not have a preference between 
both. For suitably axiomatizing concept inclusions, a solu-
tion is to characterize the logical intersection, i.e., to find 
a base for the concept inclusions that are both valid in the 
interpretation and are entailed by the TBox.

In order to do so, we generalize the notions of interpreta-
tions and TBoxes to a common representation: we show that 
both induce a so-called closure operator, which is a mono-
tone, extensive, idempotent mapping on concept descrip-
tions. The benefit is that the set of closure operators forms a 
lattice, i.e., it is an ordered set and for two closure operators 
there always exists a supremum and an infimum. These two 
operations on closure operators correspond to operations 
on the underlying data inducing the closure operator. Fur-
thermore, we can define the notion of validity of a concept 
inclusion for a closure operator such that it coincides with 
the usual notion of validity in an interpretation and of entail-
ment by a TBox, respectively.

Distel [2] showed that the mapping from subsets of the 
interpretation domain to their model-based most specific 
concept descriptions is the adjoint of the interpretation 
function, i.e., these form a Galois connection. It is then an 
immediate consequence that each interpretation I  induces a 
closure operator �I , namely the composition of the interpre-
tation function and the model-based most specific concept 
description mapping.

My thesis shows that each TBox T  induces a closure 
operator �T  as well. It is obtained as the function that maps 
a concept description to its most specific consequence with 
respect to T  . Put simply, such most specific consequences 
can be computed by saturating a concept description with 
the concept inclusions in T .

Now the concept inclusions valid for the infimum �IΔ�T  
are exactly the concept inclusions that are both valid in I  
and entailed by T  . It follows that we can characterize the 
logical intersection by a concept inclusion base for the clo-
sure operator �IΔ�T  . For computing such bases, my thesis 
demonstrates how the above completions can be constructed 
for the more general case where the data is not just an inter-
pretation but can be described by a closure operator instead. 
More specifically, a so-called canonical base ���(�, T) can 
be computed, which is a completion of some TBox T  w.r.t. 
a closure operator � and has minimal cardinality among all 
completions of T  w.r.t. �.

However, it might sometimes be necessary to restrict 
the role depth of the concept inclusions to be axioma-
tized. This due to the fact that logical intersections need 
not be finitely representable. For instance, consider the 
TBoxes T ∶= {A ⊑ B

1

} and U ∶= {A ⊑ B
2

} ; then for 
each number n ∈ ℕ , both entail the concept inclusion 
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∃ rn.(A ⊓ B
1

) ⊓ ∃ rn.(A ⊓ B
2

) ⊑ ∃ rn.(A ⊓ B
1

⊓ B
2

) .  Obvi-
ously, there cannot exist a TBox that entails all above con-
cept inclusions, since TBoxes must be finite.

Filtering then Completing. When assuming that the TBox 
is more trustworthy than the interpretation, it is necessary to 
filter out incompatible parts of the interpretation. We utilize 
the supremum operation for this purpose. In particular, the 
supremum of �I  and �T  describes a filtering of the inter-
pretation I  with respect to T  , i.e., it only consists of the 
part of I  that is a model of T  . Note that the filtering is 
not defined on the object level but on the extensional level 
instead, which means that it does not consist of objects of I  
but of sets of objects. Finally, the axiomatization of the input 
I  and T  is then obtained as the union of T  and the comple-
tion of T  with respect to the supremum �I∇�T .

Adjusting then Completing. We are now concerned with 
the last situation where the interpretation is preferred over 
the TBox. The easiest solution is, of course, to simply com-
pute a concept inclusion base for the interpretation—how-
ever, it is then not clear how to track differences between the 
existing concept inclusions and the new ones in the base. 
Alternatively, conclusions in the existing concept inclusions 
can be adjusted: for each existing concept inclusion C ⊑ D , 
replace D with the most specific concept description E such 
that C ⊑ E is both valid in I  and entailed by T  , i.e., E is 
obtained from C by applying the infimum �IΔ�T  . That way, 
we first adjust the existing concept inclusions to the new 
interpretation, and afterwards we compute the completion 
of this adjustment w.r.t. the new interpretation.

Incremental Axiomatization from Streams of Data. Even-
tually, we want to put emphasis on the fact that all of the 
above techniques can be stacked and iterated. For instance, 
we might have a situation where new observations are avail-
able on a regular basis, i.e., a stream ( I

n
∣ n ∈ ℕ ) of inter-

pretations is available. We further have a hand-crafted TBox 
F  for filtering each of the interpretations: on the one hand, 
this TBox might describe a filter on interesting data and, on 
the other hand, this TBox might describe a filter on valid 
data; the concrete role of it does not matter for our purposes.

Our goal is now as follows. For each time point n, a TBox 
T
n
 is to be constructed that is sound and complete for the 

concept inclusions that are valid in the filterings of I
0

,… , I
n
 

w.r.t. F  . Of course, we can initially construct the concept 
inclusion base for the filtering of the first interpretation I

0

 
w.r.t. F  , yielding a TBox T

0

 . For each later time point n > 0 , 
the TBox T

n
 is obtained as the logical intersection of T

n−1 
and the filtering of I

n
 w.r.t. F .

3 � More Expressive Description Logics

The task of axiomatizing concept inclusions is also investi-
gated for more expressive description logics. As a first target 
language the description logic M is considered. It is not 
a Boolean-complete logic, since it does not allow disjunc-
tions and negations—this avoids overfitting of the resulting 
concept inclusions. However, reasoning complexity for M is 
much higher than for EL : it jumps from P-completeness 
to EXP-completeness.1 For this reason, the Horn fragment 
of M , denoted as ����-M , is considered as a target lan-
guage as well. Put simply, the Horn fragment is the largest 
fragment that can be translated into function-free logic pro-
grams (Datalog). The restriction to the Horn fragment lowers 

1  Note that this is a conjecture. In fact, it is proven only for the sub-
logic M− without existential self-restrictions ∃ r.����.



402	 KI - Künstliche Intelligenz (2020) 34:399–403

1 3

expressivity, but with the advantage that reasoning complex-
ity decreases. In particular, the instance problem is coNP-
complete for M and P-complete for ����-M (both w.r.t. data 
complexity).1 It hence makes sense to use ����-M TBoxes in 
ontology-based data access applications.

As a further, more expressive description logic a proba-
bilistic extension ����-EL of EL is considered. It extends 
EL by the possibility to probabilistically quantify a concept 
description. Again, reasoning is more expensive than in EL : 
the subsumption relation is EXP-complete. As it turns out, 
concept inclusion bases for probabilistic interpretations can 
be computed in exponential time as well, i.e., the increase 
in expressive power does not result in higher computational 
complexity of the axiomatization task.

For all above mentioned description logics that are more 
expressive than EL , it is currently unclear whether most spe-
cific consequences w.r.t. a TBox exist and, if so, how these 
can be computed. As soon as these questions are solved with 
an affirmative answer, similar approaches as for EL can be 
utilized for combining knowledge from TBoxes and inter-
pretations in a learning setting. For now, it is only possi-
ble to axiomatize the concept inclusions valid in a given 
interpretation.

4 � A Lattice‑Theoretic View on EL 

The set of EL concept descriptions ordered by subsumption 
forms a lattice in which conjunction is the infimum operation 
and the least common subsumer mapping is the supremum 
operation. In my thesis, I have investigated this lattice in 
more detail. It was shown that the lattice is distributive. Fur-
thermore, relative pseudo-complements always exist and can 
be computed in polynomial time, which makes the lattice a 
residuated one.

The neighborhood relation induced by the subsumption 
relation contains pairs of concept descriptions where the 
first is strictly subsumed by the second and such that there 
does not exist any concept description strictly between both. 
A natural question is whether the transitive closure of that 
neighborhood relation equals the strict part of the subsump-
tion relation, i.e., whether the subsumption relation is neigh-
borhood generated. If it is, then we might walk along the 
neighborhood relation when searching for a concept descrip-
tion with specific properties without the chance to miss any 
interesting candidate. For empty or cycle-restricted TBoxes, 
the subsumption relation is indeed neighborhood generated 
and my thesis describes how all upper and all lower neigh-
bors of a given concept description can be enumerated. For 
general TBoxes or extensions of EL with greatest fixed-point 
semantics, the subsumption relation is not neighborhood 
generated and suitable counterexamples are provided.

Eventually, the neighborhood relation can be utilized to 
define a metric (a distance function) on the set of EL concept 
descriptions. The reason is that EL is of locally finite length, 
i.e., all chains between two comparable concept descriptions 
are finite, and further that EL satisfies the Jordan-Dedekind 
chain condition, i.e., all maximal chains between two com-
parable concept descriptions have the same length. We can 
then simply define the distance between two comparable 
concept descriptions as the length of some maximal chain 
between them—clearly, such a maximal chain must be a 
chain of neighbors. For measuring distances between arbi-
trary concept descriptions, we choose the distance between 
the corresponding infimum and supremum. In the undirected 
graph where EL concept descriptions are the nodes and two 
nodes are connected if they are neighbors, that distance 
between two concept descriptions is the length of a shortest 
path between both. As it turns out, the above distance func-
tion is not an elementary function. The distance between ⊤ 
and ∃ rn.(A ⊓ B ⊓ C) is asymptotically bounded above and 
below by

5 � Conclusion

My thesis describes how methods from Formal Concept 
Analysis can be utilized for the task of constructing and 
extending description logic ontologies. In particular, for the 
tractable description logic EL existing knowledge can be 
reused when axiomatizing concept inclusions from newly 
observed data. For the more expressive description logics 
M  , ����-M  , and ����-EL methods for mining concept 
inclusions from observed data are developed. Currently, 
existing knowledge cannot be incorporated for these log-
ics, since it remains an open question whether most specific 
consequences always exist and, if so, how to compute these. 
All proposed methods are not only sound, but also complete.
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