
Vol.:(0123456789)1 3

KI - Künstliche Intelligenz (2021) 35:413–423
https://doi.org/10.1007/s13218-021-00713-x

SYSTEMS DESCRIPTION

LIMES: A Framework for Link Discovery on the Semantic Web

Axel‑Cyrille Ngonga Ngomo1 · Mohamed Ahmed Sherif1  · Kleanthi Georgala2 · Mofeed Mohamed Hassan2 ·
Kevin Dreßler2 · Klaus Lyko2 · Daniel Obraczka2 · Tommaso Soru2

Received: 16 April 2019 / Accepted: 11 February 2021 / Published online: 17 March 2021
© The Author(s) 2021

Abstract
The Linked Data paradigm builds upon the backbone of distributed knowledge bases connected by typed links. The mere
volume of current knowledge bases as well as their sheer number pose two major challenges when aiming to support the
computation of links across and within them. The first is that tools for link discovery have to be time-efficient when they
compute links. Secondly, these tools have to produce links of high quality to serve the applications built upon Linked Data
well. Solutions to the second problem build upon efficient computational approaches developed to solve the first and com-
bine these with dedicated machine learning techniques. The current version of the Limes framework is the product of seven
years of research on these two challenges. A series of machine learning techniques and efficient computation approaches
were developed and integrated into this framework to address the link discovery problem. The framework combines these
diverse algorithms within a generic and extensible architecture. In this article, we give an overview of version 1.7.4 of the
open-source release of the framework. In particular, we focus on an overview of the architecture of the framework, an intui-
tion of its inner workings and a brief overview of the approaches it contains. Some descriptions of the applications within
which the framework was used complete the paper. Our framework is open-source and available under a GNU license at
https://​github.​com/​dice-​group/​LIMES together with a user manual and a developer manual.

1  Introduction

Establishing links between knowledge bases is one of the
key steps of the Linked Data publication process.1 A pleth-
ora of approaches has thus been devised to support this pro-
cess [12]. In this paper, we present the Limes framework,
which was designed to accommodate a large number of link
discovery approaches within a single extensible architec-
ture. Limes was designed as a declarative framework (i.e., a
framework that processes link specifications, see Sect. 2) to
address two main challenges:

1.	 Time-efficiency The mere size of existing knowledge
bases (e.g., 30+ billion triples in LinkedGeoData [39],
20+ billion triples in LinkedTCGA​2 [28]) makes effi-
cient solutions indispensable to the use of link discov-
ery frameworks in real application scenarios. Limes
addresses this challenge by providing time-efficient
approaches based on the characteristics of metric spaces
[15, 19], orthodromic spaces [17] and on filter-based
paradigms [37].

 *	 Axel‑Cyrille Ngonga Ngomo
	 axel.ngomo@upb.de

	 Mohamed Ahmed Sherif
	 mohamed.sherif@upb.de

	 Kleanthi Georgala
	 georgala@informatik.uni-leipzig.de

	 Mofeed Mohamed Hassan
	 hassan@informatik.uni-leipzig.de

	 Kevin Dreßler
	 kevin.dressler@upb.de

	 Klaus Lyko
	 lyko@informatik.uni-leipzig.de

	 Daniel Obraczka
	 obraczka@informatik.uni-leipzig.de

	 Tommaso Soru
	 soru@informatik.uni-leipzig.de

1	 Paderborn University, Data Science Group, Technologiepark
6, 33100 Paderborn, Germany

2	 Institute of Computer Science, AKSW Group, University
of Leipzig, Augustusplatz 10, 04009 Leipzig, Germany

1  http://​www.​w3.​org/​Desig​nIssu​es/​Linke​dData.
2  An RDF representation of The Cancer Genome Atlas.

http://orcid.org/0000-0002-9927-2203
https://github.com/dice-group/LIMES
http://crossmark.crossref.org/dialog/?doi=10.1007/s13218-021-00713-x&domain=pdf
http://www.w3.org/DesignIssues/LinkedData

414	 KI - Künstliche Intelligenz (2021) 35:413–423

1 3

2.	 Accuracy Central to this paper are the solutions to accu-
racy provided in the framework. Efficient solutions are
of little help if the results they generate are inaccurate.
Hence, Limes also accommodates dedicated machine-
learning solutions that allow the generation of links
between knowledge bases with a high accuracy. These
solutions abide by paradigms such as batch and active
learning [21–23], unsupervised learning [23] and even
positive-only learning [29].

The main goal of this paper is to give an overview of the
Limes framework and some of the applications within which
it was used. We begin by presenting the link discovery prob-
lem and how we address this problem within a declarative
setting (see Sect. 2). Then, we present our solution to the
link discovery problem in the form of Limes and its archi-
tecture. The subsequent sections present the different fami-
lies of algorithms implemented within the framework. We
begin by a short overview of the algorithms that ensure the
efficiency of the framework (see Sect. 4). Thereafter, we
give an overview of algorithms that address the accuracy
problem (see Sect. 5). We round up the core of the paper
with some of the applications within which Limes was used,
including benchmarking and the publication of 5-star linked
datasets (Sect. 6). An overview of the evaluation results of
algorithms included in Limes (Sect. 7) and a conclusion
(Sect. 8) complete the paper.

2 � The Link Discovery Problem

The formal specification of Link Discovery (LD) adopted
herein is akin to that proposed in [16]. Given two (not neces-
sarily distinct) sets S resp. T of source resp. target resources
as well as a relation R, the goal of LD is is to find the set
M = {(s, t) ∈ S × T ∶ R(s, t)} of pairs (s, t) ∈ S × T such that
R(s, t). In most cases, computing M is a non-trivial task.
Hence, a large number of frameworks (e.g., Silk [7], Limes
[16] and KnoFuss [26]) aim to approximate M by comput-
ing the mapping M� = {(s, t) ∈ S × T ∶ �(s, t) ≥ �} , where
� is a similarity function and � is a similarity threshold. For
example, one can configure these frameworks to compare
the dates of birth, family names and given names of persons
across census records to determine whether they are dupli-
cates. We call the equation that specifies M′ a link specifi-
cation (short LS; also called linkage rule in the literature,
see e.g., [7]). Note that the LD problem can be expressed
equivalently using distances instead of similarities in the fol-
lowing manner: Given two sets S and T of instances, a (com-
plex) distance measure � and a distance threshold � ∈ [0,∞[ ,

determine M� = {(s, t) ∈ S × T ∶ �(s, t) ≤ �}.3 Consequently,
distance and similarities are used within link specifications
in this paper.

Under this so-called declarative paradigm, two entities
s and t are then considered to be linked via R if �(s, t) ≥ � .
Naïve algorithms require O(|S||T|) ∈ O(n2) computations
to output M′ . Given the large size of existing knowledge
bases, time-efficient approaches able to reduce this runtime
are hence a central component of Limes as they are neces-
sary for link specifications to be computed in acceptable
times. This efficient computation is in turn the proxy neces-
sary for machine learning techniques to be used to optimize
the choice of appropriate � and � and thus ensure that M′
approximates M well even when M is large [12]).

Several approaches can be chosen when aiming to define
the syntax and semantics of LSs in detail [7, 22, 26]. In
Limes, we chose a grammar with a syntax and semantics
based on set semantics. This grammar assumes that LSs
consist of two types of atomic components: (i) similarity
measures m, which allow the comparison of property values
or portions of the concise bound description of 2 resources
and (ii) operators op, which can be used to combine these
similarities into more complex specifications. We define an
atomic similarity measure a as a function a ∶ S × T → [0, 1] .
An example of an atomic similarity measure is the edit simi-
larity dubbed edit4. Every atomic measure is a measure.
A complex measure m combines measures m1 and m2 using
measure operators such as min and max . We use mappings
M ⊆ S × T to store the results of the application of a similar-
ity measure to S × T or subsets thereof. We denote the set of
all mappings as M.

We define a filter as a function f (m, �) . We call a specifi-
cation atomic when it consists of exactly one filtering func-
tion. A complex specification can be obtained by combining
two specifications L1 and L2 through an operator that allows
the merging of the results of L1 and L2 . Here, we use the
operators ⊓ , ⊔ and ∖ as they are complete w.r.t. the Boolean
algebra and frequently used to define LS. An example of a

Fig. 1   Example of a complex LS. The filter nodes are rectangles
while the operator nodes are circles. :socID stands for social secu-
rity number

3  Note that a distance function � can always be transformed into
a normed similarity function � by setting �(x, y) = (1 + �(x, y))−1 .
Hence, the distance threshold � can be transformed into a similarity
threshold � by means of the equation � = (1 + �)−1.
4  We define the edit similarity of two strings s and t as
(1 + lev(s, t))−1 , where lev stands for the Levenshtein distance.

415KI - Künstliche Intelligenz (2021) 35:413–423	

1 3

complex LS is given in Fig. 1. We denote the set of all LS
as L.

We define the semantics [[L]]M of a LS L w.r.t. a mapping
M as given in Table 1. Those semantics are similar to those
used in languages like SPARQL, i.e., they are defined exten-
sionally through the mappings they generate. The mapping
[[L]] of a LS L with respect to S × T contains the links that
will be generated by L.

3 � Architecture of the Framework

As shown in Fig. 2, the Limes framework consists of 6 main
layers, each of which can be extended to accommodate new
or improved functionality. The input to the framework is a
configuration file, which describes how the sets S and T are
to be retrieved from two knowledge bases K1 and K2 (e.g.,
remote SPARQL endpoints). Moreover, the configuration
file describes how links are to be computed. To this end,
the user can chose to either provide a LS explicitly or a
configuration for a particular machine learning algorithm.
The result of the framework is a (set of) mapping(s). In the
following, we give an overview of the inner workings of
each of the layers.

Controller layer The processing of the configuration
file by the different layers is orchestrated by the controller
layer. The controller instantiates the different implementa-
tions of input modules (e.g., reading data from files or from

SPARQL endpoints), the data modules (e.g., file cache, in-
memory), the execution modules (e.g., planners, number
of processors for parallel processing) and the output mod-
ules (e.g., the serialization format and the output location)
according to the configuration file or using default values.
Once the layers have been instantiated, the configuration is
forwarded to the input layer.

Input layer The input layer reads the configuration and
extracts all the information necessary to execute the speci-
fication or the machine learning approach chosen by the
user. This information includes (1) the location of the input
knowledge bases K1 and K2 (e.g., SPARQL endpoints or
files), (2) the specification of the sets S and T, (3) the meas-
ures and thresholds or the machine learning approach to use.
The current version of Limes supports RDF configuration
files based on the Limes Configuration Ontology (LCO)5
(see Fig. 3) and XML configuration files based on the Limes
Specification Language (LSL) [15]. If the configuration file
is valid (w.r.t. the LCO or LSL), the input layer then calls
its query module. This module uses the configuration for
S and T to retrieve instances and properties from the input
knowledge bases that adhere to the restrictions specified in
the configuration file. All data retrieved is then forwarded to
the data layer via the controller.

Data layer The data layer stores the input data gathered
by the input layer using memory, file or hybrid storage tech-
niques. Currently, Limes relies on a hybrid cache as default
storage implementation. This implementation generates a
hash for any set of resources specified in a configuration
file and serializes this set into a file. Whenever faced with
a new specification, the cache first determines whether the
data required for the computation is already available locally
by using the hash aforementioned. If the data is available,
it is retrieved from the file into memory. In other cases, the
hybrid cache retrieves the data as specified, generates a hash
and caches it on the hard drive. By these means, the data
layer addresses the practical problem of data availability,
especially from remote data sources. Once all data is avail-
able, the controller layer chooses (based on the configuration
file) between execution of complex measures specified by
the user or running a machine learning algorithm.

Execution layer If the user specifies the LS to execute
manually, the Limes controller layer calls the execution layer.
The execution layer then re-writes, plans and executes the
LS specified by the user. The rewriter aims to simplify com-
plex LS by removing potential redundancy so as to eventu-
ally speed up the overall execution. To this end, it exploits
the subset relations and the Boolean algebra which under-
pin the syntax and semantics of complex specifications. The
planner module maps a LS to an equivalent execution plan,
which is a sequence of atomic execution operations from

Table 1   Link Specification Syntax and Semantics

LS [[LS]]
M

f (m, �) {(s, t)|(s, t) ∈ M ∧ m(s, t) ≥ �}

L1 ⊓ L2 {(s, t)|(s, t) ∈ [[L1]]M ∧ (s, t) ∈ [[L2]]M}

L1 ⊔ L2 {(s, t)|(s, t) ∈ [[L1]]M ∨ (s, t) ∈ [[L2]]M}

L1∖L2 {(s, t)|(s, t) ∈ [[L1]]M ∧ (s, t) ∉ [[L2]]M}

Input

Data

Execution

Output

C
on

tro
lle
r

M
ac
hi
ne

Le
ar
ni
ng

K1

K2

Config.

Mapping

GUI

Fig. 2   General architecture of Limes 

5  https://​w3id.​org/​dice-​resea​rch/​limes/​lco.​owl.

https://w3id.org/dice-research/limes/lco.owl

416	 KI - Künstliche Intelligenz (2021) 35:413–423

1 3

which a mapping results. These operations include EXE-
CUTE (running a particular atomic similarity measure, e.g.,
the trigram similarity6) and operations on mappings such as
UNION (union of two mappings) and DIFF (difference of
two mappings). For an atomic LS, i.e., a LS such that � is an
atomic similarity measure (e.g., trigram similarity, qgrams
similarity, etc.), the planner module generates a simple plan
with one EXECUTE instruction. For a complex LS, the plan-
ner module determines the order in which atomic LS should
be executed as well as the sequence in which intermedi-
ary results should be processed. For example, the planner
module may decide to first run some atomic LS L1 and then
filter the results using another atomic LS L2 instead of run-
ning both L1 and L2 independently and merge the results.
The execution engine is then responsible for executing the
plan of an input LS and returns the set of potential links as
a mapping.

Machine learning layer In case the user opts for using a
machine learning approach, the Limes controller calls the
machine learning layer. This layer instantiates the machine
learning algorithm selected by the user and executes it in
tandem with the execution layer. To this end, the machine
learning approaches begin by retrieving the training data
provided by the user if required. The approaches then gen-
erate LSs, which are run in the execution layer. The result-
ing mappings are evaluated using quality measures (e.g.,
F-measure, pseudo-F-measure [23]) and returned to the user
once a termination condition has been fulfilled. Currently,
Limes implements the Eagle [22], Coala [24], Euclid [23]
and Wombat [29] algorithms. A brief overview of these
approaches is given in Sect. 4.

Output layer The output layer serializes the output of
Limes. Currently, it supports the serialization into files in
any RDF serialization also chosen by the user. In addition,
the framework support CSV and XML as output formats.

Web Graphical User Interface.
In addition to supporting configurations as input files,

Limes provides a Web-based graphical user interface (GUI)7
to assist the end user during the LD process [34]. The frame-
work supports the manual creation of LS as shown in Fig. 4
for users who already know which LS they would like to
execute to achieve a certain linking task. However, most
users do not know which LS suits their linking task best
and therefore need help throughout this process. Hence, the
GUI provides wizards which ease the LS creation process
and allow configuration of the machine learning algorithms.
After the selection of an algorithm, the user can modify the
default configurations if necessary and run it. If a batch or

Fig. 3   Limes Configuration ontology (LCO) ontology

Fig. 4   Manually created LS via Limes web UI

7  https://limes.demos.dice-research.org.

6  We measure the similarity of two input strings by counting the
number of trigrams (the group of three consecutive characters) they
share. Formally, the trigram similarity is the normalized sum of abso-
lute differences between tri-gram vectors of both the input strings.

417KI - Künstliche Intelligenz (2021) 35:413–423	

1 3

unsupervised learning approach is selected, the execution
is carried out once and the results are presented to the user.
In the case of active learning, the Limes web GUI presents
the most highly informative link candidates to the user, who
label these candidates as either a match or non-match (see
Fig. 5). This procedure is repeated until the user is satisfied
with the result. In all cases, the GUI allows the exporta-
tion of the configurations generated by machine learning
approaches for future use.

4 � Scalability Algorithms

As mentioned in the introduction, the scalability of Limes is
based on a number of time-efficient approaches for atomic
LS that the framework supports. In the following, we sum-
marize the approaches supported by Limes version 1.5.0. By
no means do we aim to give all technical details necessary to
understand how these approaches work in detail. Interested
readers are referred to the publications mentioned in each
subsection.

The Limes algorithm [19] is the first scalable approach
developed explicitly for LD. The basic intuition behind
the approach is based on regarding the LD problem as a
bounded distance problem �(s, t) ≤ � . If � abides by the tri-
angle inequality, the �(s, t) ≥ �(s, e) − �(e, t) for any e. Based
on this insight, Limes implements a space tiling approach
that assigns each t to an exemplar e such that �(e, t) is known
for many t. Hence, for all s, Limes can first compute a lower
bound for the distance between s and t. If this lower bound
is larger that � , then the exact computation of �(s, t) is not
carried out, as (s, t) is guaranteed not to belong in the output
of this atomic measure.

The HR
3 algorithm [15] builds upon some of the

insights of the Limes algorithms within spaces with
Minkowski distances. The basic insight behind the
approach is that the equation �(s, t) ≤ � describes a hyper-
sphere of radius � around s. While computing spheres
in multidimensional spaces can be time-consuming,

hypercubes can be computed rapidly. Hence, the approach
relies on the approximation hyperspheres with hyper-
cubes. In contrast to previous approaches such as Hyppo
[14], the approach combines hypercubes with an indexing
approach and can hence discard a larger number of com-
parisons. One of the most important theoretical insights
behind this approach is that it is the first approach guar-
anteed to being able to achieve the smallest possible num-
ber of comparisons when given sufficient memory. It is
hence the first reduction-ratio-optimal approach for link
discovery.

Orchid [17] is a link discovery algorithm for geo-spa-
tial data, which belong to the largest sources of Linked
Data. Like HR

3 , Orchid is reductio-ratio-optimal. In
contrast to HR

3 , it operates in orthodromic spaces, in
which Minkowski distances do not hold. To achieve the
goal of reduction-ratio optimality, Orchid uses a space
discretization approach which relies on tiling the surface
of the planet based on latitude and longitude information.
The approach then only compares polygons t ∈ T which
lie within a certain range of s ∈ S . Like in HR

3 , the
range is described via a set of hypercubes (i.e, squares in
2 dimensions). However, the shape that is to be approxi-
mated is a disk projected onto the surface of the sphere.
The projection is accounted for by compensating for the
curvature of the surface of the planet using an increased
number of squares. See [31] for a survey of point-set
distance measures implemented by Limes and optimized
using Orchid.

Aegle [6] is a time-efficient approach for computing tem-
poral relations. Our approach supports all possible temporal
relations between event data that can be modelled as inter-
vals according to Allen’s Interval Algebra [1]. The key idea
behind the algorithm is to reduce the 13 Allen relations to
8 simpler relations, which compare either the beginning or
the end of an event with the beginning or the end of another
event. Given that time is ordered, Aegle reduces the prob-
lem of computing these simple relations to the problem of
matching entities across sorted lists, which can be carried
out within a time complexity of O(n log n) . The approach
is guaranteed to compute complete results for any temporal
relation.

Radon [30] addresses the efficient computation of
topological relations on geo-spatial datasets. The main
innovation of the approach is a novel sparse index for
geo-spatial resources based on minimum bounding
boxes (MBB)8. Based on this index, it is able to discard

Fig. 5   User feedback interface for active learning

8  The smallest area box, within which all the points of a geo-spatial
representation of a resource lie.

418	 KI - Künstliche Intelligenz (2021) 35:413–423

1 3

unnecessary computations for DE-9IM relations9. Radon
applies a swapping strategy as its first step, where it
swaps source and target datasets and computes the
reverse10 relation r′ instead of r in case it finds that the
estimated total hypervolume of the target is less that the
one of the source dataset. Then in its second step, Radon
utilizes a space tiling approach to insert all source and
target geometries into an index I, which maps resources
to sets of hypercubes. Finally, Radon implements the last
speedup strategy using a MBB-based filtering technique,
Like Aegle, Radon is guaranteed to achieve a result com-
pleteness of 100% as it able to compute all topological
relations of the DE-9IM model.

Keys for graphs are the projection of the concept of pri-
mary keys from relational databases. A key is thus a set of
properties such that all instances of a given class are distin-
guishable from each other by their property values. There-
fore, LD machine-learning-based algorithms optimize their
performance using such keys. Limes features Rocker [35], a
refinement operator-based approach for key discovery. The
Rocker algorithm first streams the input RDF graph to build
a hash index including instance URIs and a concatenation
of object values for each property. The indexes are then
stored in a local database to enable an efficient computa-
tion of the discriminability score. Starting from the empty
set, a refinement graph is visited, adding a property to the
set at each refinement step. As keys abide by several mono-
tonicities (e.g., every superset of a key is a key), additional
optimizations allow scalability to large datasets. Rocker has
shown state-of-the-art results in terms of discovered keys,
efficiency, and memory consumption [35].

LD frameworks rely on similarity measures such as the
Levenshtein (or edit) distance to discover similar instances.
The edit distance calculates the number of operations (i.e.,
addition, deletion or replacement of a character) needed to
transform a string to another. However, the assumption that
all operations must have the same weight does not always
apply. For instance, the replacement of a z with an s often
leads to the same word written in American and British
English, respectively. This operation should have a lower
weight than, e.g., an addition of the character I to the end
of King George I. While manifold algorithms have
been developed for the efficient discovery of similar strings
using edit distance [9, 40], Reeded was developed to support
also the rapid execution of weighted edit distances. Like the
approaches aforementioned, Reeded joins two sets of strings
by applying three filters to avoid computing the similarity

values for all the pairs of strings. The (1) length-aware filter
discards the pairs of strings having a too different length, the
(2) character-aware filter selects only the pairs which do not
differ by more than a given number of characters and the (3)
verification filter finally verifies the weighted edit distance
among the pairs against a threshold [37].

The Jaro-Winkler string similarity measure, which was
originally designed for the deduplication of person names,
is a common choice to generate links between knowledge
bases based on labels. We therefore developed a runtime-
optimized Jaro-Winkler algorithm for LD [3]. The approach
consists of two steps: indexing and tree-pruning. The index-
ing step itself also consists of two phases: (1) strings of both
source and target datasets get sorted into buckets based on
upper and lower bounds pertaining to their lengths and (2)
in each bucket, strings of the target dataset get indexed by
adding them to a tree akin to a trie [4]. Tree pruning is then
applied to cut off subtrees for which the similarity thresh-
old cannot be achieved due to character mismatches. This
significantly reduces the number of necessary Jaro-Winkler
similarity computations.

In contrast to the algorithms above, Helios [18] addresses
the scalability of link discovery by improving the planning
of LSs. To this end, Helios implements a rewriter and a
planner. The rewriter consists of a set of algebraic rules,
which can transform portions of LS into formally equivalent
expressions, which can be potentially executed faster. For
example, expressions such as AND(�(s, t) ≥ �1, �(s, t) ≥ �2)
are transformed into �(s, t) ≥ max(�1, �2) . In this particular
simple example, the number of EXECUTE calls can hence
be reduced from 2 to 1. The planner transforms a rewritten
LS into a plan by aiming to find a sequence of execution
steps that minimizes the total runtime of the LS. To this
end, the planner relies on runtime approximations derived
from linear regressions on large static dictionaries. Condor
[5] builds upon Helios by extending the static planner with
dynamic planning to achieve even better runtime.

5 � Accuracy Algorithms

Pushing for efficiency of LD is a mere means to an end,
which is the computation of accurate links between knowl-
edge bases. The Limes framework includes a family of
machine learning approaches designed specifically for
the purpose of link discovery. The core algorithms can
be adapted for unsupervised, active and batch learning.
In the following, we present the main ideas behind these
approaches while refraining from providing complex techni-
cal details, which can be retrieved from the corresponding
publications.

Raven [21] is the first approach designed to address
the active learning of LS. The basic intuition behind the

9  A standard used to describe the topological relations (e.g., covers
and overlaps) between two geometries in two-dimensional space .
10  Formally, the reverse relation r′ of a relation r is defined as
r�(y, x) ⇔ r(x, y).

419KI - Künstliche Intelligenz (2021) 35:413–423	

1 3

approach is that LS can be regarded as classifiers. Links that
abide by the LS then belong to the class +1 while all other
links belong to −1 . Based on this intuition, the approach
tackles the problem of learning LSs by first using the solu-
tion of the hospital-resident problem to detect potentially
matching classes and properties in K1 and K2 . The algo-
rithm then assumes that it knows the type of LS that is to
be learned (e.g., conjunctive specifications, in which all
specifications operators are conjunctions). Based on this
assumption and the available property matching, it learns
the thresholds associated with each property pair iteratively
by using an extension of the perceptron learning paradigm.
Raven first applies perceptron learning to all training data
that is made available by the user. Then, most informative
unlabeled pairs (by virtue of their proximity to the decision
boundary of the perceptron classifier) are sent as queries to
the user. The labeled answers are finally added to the train-
ing data, which closes the loop. The iteration is carried on
until the user terminates the process or a termination condi-
tion such as a maximal number of questions is reached.

Eagle [22] implements a machine learning approach for
LS of arbitrary complexity based on genetic programming.
To this end, the approach models LS as trees, each of which
stands for the genome of an individual in a population.
Eagle begins by generating a population of random LS, i.e.,
of individuals with random genomes. Based on training data
or on an objective function, the algorithm determines the
fitness of the individuals in the population. Operators such
as mutation and crossover are then used to generate new
members of the population. The fittest individuals are finally
selected as members of the next population. When used as
an active learning approach, Eagle relies on a committee-
based algorithm to determine most informative positive and
negative examples. In addition to the classical entropy-based
selection, the Coala [24] extension of Eagle also allows
the correlation between resources to be taken into consid-
eration during the selection process for most information
examples. All active learning versions of Eagle ensure that
each iteration of the approach only demands a small number
of labels from the user. Eagle is also designed to support
the unsupervised learning approach of LS. In this case, the
approach aims to find individuals that maximize so-called
pseudo F-Measures [23, 25].

The Acids approach [36] targets instance matching by
joining active learning with classification using linear Sup-
port Vector Machines (SVM). Given two instances s and t,
the similarities among their datatype values are collected
in a feature vector of size N. A pair (s, t) is represented as a
point in the similarity space [0, 1]N . At each iteration, pairs
are (1) selected based on their proximity to the SVM classi-
fier, (2) labeled by the user, and (3) added to the SVM train-
ing set. Mini-batches of pairs are labeled as positive if the
instances are to be linked with an R, or negative otherwise.

The SVM model is then built after each step, where the clas-
sifier is a hyperplane dividing the similarity space into two
subspaces. String similarities are computed using a weighted
Levenshtein distance. Using an update rule inspired by per-
ceptron learning, edit operation weights are learned by maxi-
mizing the training F-score.

Euclid [23] is a deterministic learning algorithm loosely
based on Raven. Euclid reuses the property matching tech-
niques implemented in Raven and the idea of having known
classifier shapes. In contrast to previous algorithms, Euclid
learns combinations of atomic LS by using a hierarchical
search approach. While Euclid was designed for unsuper-
vised learning, it can also be used for supervised learning
based on labeled training data [23].

One of the most crucial tasks when dealing with evolv-
ing datasets lies in updating the links from these data sets
to other data sets. While supervised approaches have been
devised to achieve this goal, they assume the provision of
both positive and negative examples for links [20]. However,
the links available on the Data Web only provide positive
examples for relations and no negative ones, as the open-
world assumption underlying the Web of Data suggests that
the non-existence of a link between two resources cannot
be understood as stating that these two resources are not
related. In Limes, we addressed this drawback by propos-
ing Wombat [29], the first approach for learning links based
on positive examples only. Wombat is inspired by the con-
cept of generalisation in quasi-ordered spaces. Given a set
of positive examples, it aims to find a classifier that covers
a large number of positive examples (i.e., achieves a high
recall on the positive examples) while still achieving a high
precision. The simple version of Wombat relies on a two-
step approach, which learns atomic LS and subsequently
finds ways to combine them to achieve high F-measures. The
complete version of the algorithm relies on a full-fledged
upward refinement operator, which is guaranteed to find the
best specification possible but scales less well than the sim-
ple version.

6 � Limes Use Cases

Limes was already used in a large number of use cases. In the
following, we present some of the datasets and other applica-
tions, in which techniques developed for Limes or the Limes
framework itself, were used successfully.

Datasets Limes is actively used by the linked data com-
munity to link new generated datasets into the already
existing datasets in the LOD. For example, The multiligual
dataset of SemanticQuran [32] is linked using Limes into
3 versions of the RDF representation of Wiktionary and to
DBpedia. A second dataset also linked with Limes is the
LinkedTCGA​ [28], an RDF representation of The Cancer

420	 KI - Künstliche Intelligenz (2021) 35:413–423

1 3

Genome Atlas. Limes was used to compute the more than
16 million links which connect LinkedTCGA​ with chromo-
somes from OMIM and HGNC.

Knowledge base repair The Colibri [25] approach
attempts to repair instance knowledge in n knowledge
bases. Colibri discovers links for transitive relations
(e.g.,owl:sameAs) between instances in knowledge bases
while correcting errors in the same knowledge bases. In con-
trast to most of the existing approaches, Colibri takes an n-
set11 of resources K1,… ,Kn with n ≥ 2 as input. Thereafter,
Colibri relies on the Limes ’s unsupervised deterministic
approach Euclid to link each pair (Ki,Kj) of sets of resources
(with i ≠ j ). The resource mappings resulting from the link
discovery are then forwarded to a voting approach, which
is able to detect poor mappings. This information is subse-
quently used to find sources of errors in the mappings, such
as erroneous or missing information in the instances. The
errors in the mappings are finally corrected and the approach
starts the next linking iteration.

Question answeringLimes was also used in the creation of
the knowledge base behind the question answering engine
Deqa [8]. This engine was designed to be a comprehensive
framework for deep web question answering. To this end, the
engine provides functionality for the extraction of structured
knowledge from (1) unstructured data sources (e.g., using
FOX [38] and MAG [11]) and (2) the deep Web using the
OXPath language.12 The results of the extraction are linked
with other knowledge sources on the Web using Limes. In the
example presented in [8], geo-spatial links such as nearBy
were generated using Limes ’ approach HR

3 . The approach
was deployed on a dataset combining data on flats in Oxford
and geo-spatial information from LinkedGeoData and was
able to support the answering of complex questions such as
“Give me a flat with 2 bedrooms near to
a school”.

Benchmarking While the creation of datasets for the
Linked Data Web is an obvious use of the framework, Limes
and its algorithms can be used for several other purposes.
A non-obvious application is the generation of benchmarks
based on query logs [10, 27]. The DBpedia SPARQL bench-
mark [10] relies on DBpedia query logs to detect clusters of
similar queries, which are used as templates for generating
queries during the execution of the benchmark. Computing
the similarity between the millions of queries in the DBpe-
dia query log proved to be an impractical endeavor when
implemented in a naïve fashion. The SPARQL queries were
represented as binary features vectors. Using The HR

3 algo-
rithm [15]., the runtime of the similarity computations could
be reduced drastically by expressing the problem of finding

similar queries as a near-duplicate detection problem. The
application of Limes in the automatic benchmarks genera-
tion approach Feasible [27] was also in the clustering of
queries. The approach was designed to enable users to select
the number of queries that their benchmark should gener-
ate. The examplar-based approach from Limes [19] was used
as a foundation for detecting the exact number of clusters
required by the user while optimizing the homogeneity of
the said clusters. The resulting benchmark was shown to
outperform the state of the art in how well it encompasses
the idiosyncrasies of the input query log.

Dataset enrichment Over the recent years, a few frame-
works for RDF data enrichment such as LDIF13 and Deer14
have been developed. The frameworks provide enrichment
methods such as entity recognition [38], link discovery and
schema enrichment [2]. However, devising appropriate con-
figurations for these tools can prove a difficult endeavour, as
the tools require the right sequence of enrichment functions
to be chosen and these functions to be configured adequately.
In Deer [33], we address this problem by presenting a super-
vised machine learning approach for the automatic detection
of enrichment pipelines based on a refinement operator and
self-configuration algorithms for enrichment functions. The
output of Deer is an enrichment pipeline that can be used on
whole datasets to generate enriched versions.

Using link predicates such as owl:sameAs, the Deer
’s linking enrichment operator is used to connect further
datasets With the proper configurations, the linking enrich-
ment operator can be used to generate arbitrary predicate
types. For instance, using the gn:nearby for linking
geographical resources. The idea of the self configuration
of linking enrichment function is to (1) first perform an
automatic source-target pairwise predicates matching. e.g.,
matching the rdfs:label property from source dataset
to the property skos:prefLabel from target dataset.,
then (2) perform link discovery based on Limes ’ Wombat
algorithm [23]

7 � Evaluation

The approaches included in Limes are the result of more
than ten years of research, during which the state of the art
evolved significantly. In Table 2, we give an overview of the
performance improvement (w.r.t. runtime and/or accuracy)
of a selection of algorithms currently implemented in Limes.
The improvements mentioned refer to improvements w.r.t.
the state of art at the time at which the papers were written.
We refer the readers to the corresponding research paper for

13  http://​ldif.​wbsg.​de/.
14  https://​github.​com/​dice-​group/​deer/.

11  An n-set is a set of magnitude n.
12  http://​www.​oxpath.​org/.

http://ldif.wbsg.de/
https://github.com/dice-group/deer/
http://www.oxpath.org/

421KI - Künstliche Intelligenz (2021) 35:413–423	

1 3

the evaluation settings and the experimental results for each
of the algorithms mentioned in the table.

8 � Conclusion and Future Work

With Limes, we offer an extensible framework for the discov-
ery of links between knowledge bases. The framework has
already been used in several applications and shown to be a
reliable, near industry-grade framework for link discovery.
The graphical user interface15 and the manuals for users and
developers16, which accompany the tool, make it a viable
framework for novices and expert users. While a number
of challenges have been addressed in the framework, the
increasing amount of Linked Data available on the Web and
the large number of applications that rely on it demand that
we address ever more challenges over the years to come.
In particular, the intelligent use of memory (disk, RAM,

etc.) becomes a problem of central importance when faced
with amounts of RAM that cannot fit the sets S and T [13]
or when faced with streaming or complex data (e.g., 5D
geospatial data). Big Data frameworks such as SPARK17
and FLINK18 promise to alleviate this problem when used
correctly. Also worth of investigation are approximative
approaches able to cope with the noise in Linked Open Data
sources as these data sources become increasingly important
for real-life applications.

Acknowledgements  This work was supported by the H2020 projects
SLIPO (GA no. 731581) and HOBBIT (GA no. 688227), the Eurostars
Project SAGE (GA no. E!10882) as well as the DFG project Link-
ingLOD (project no. NG 105/3-2) and the BMVI projects LIMBO
(19F2029C) and OPAL (19F2028A).

Funding  Open Access funding enabled and organized by Projekt
DEAL.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Allen JF (1983) Maintaining knowledge about temporal inter-
vals. Commun ACM 26(11):832–843. https://​doi.​org/​10.​1145/​
182.​358434

	 2.	 Bühmann L, Lehmann J (2013) Pattern based knowledge base
enrichment. In: The semantic web—ISWC 2013—12th interna-
tional semantic web conference, Sydney, NSW, Australia, October
21–25, 2013, Proceedings, Part I, pp 33–48. https://​doi.​org/​10.​
1007/​978-3-​642-​41335-3_3

	 3.	 Dreßler K, Ngomo AN (2017) On the efficient execution of
bounded Jaro–Winkler distances. Semant Web 8(2):185–196.
https://​doi.​org/​10.​3233/​SW-​150209

	 4.	 Fredkin E (1960) Trie memory. Commun ACM 3(9):490–499.
https://​doi.​org/​10.​1145/​367390.​367400

	 5.	 Georgala K, Obraczka D, Ngomo ACN (2018) Dynamic plan-
ning for link discovery. In: European semantic web conference.
Springer, pp 240–255

	 6.	 Georgala K, Sherif MA, Ngomo AN (2016) An efficient approach
for the generation of Allen relations. In: ECAI 2016—22nd Euro-
pean conference on artificial intelligence, 29 August–2 September
2016, The Hague, The Netherlands—including prestigious appli-
cations of artificial intelligence (PAIS 2016), pp 948–956. https://​
doi.​org/​10.​3233/​978-1-​61499-​672-9-​948

Table 2   Evaluation of various algorithms used in Limes. The numbers
provided were retrieved from the corresponding papers. These num-
bers are not upper bounds but merely reflect improvements observed
empirically on particular datasets. O.o.m stands for orders of magni-
tude

Algorithm Improvement Ref.

Runtime F-Measure

Limes Up to 60-fold – [19]
HR

3 Up to 7% – [15]
Orchid Up to 2 o.o.m. – [17]
Aegle Up to 4 o.o.m. Correct ( 100%) [6]
Radon Up to 3 o.o.m. Correct ( 100%) [30]
Rocker Up to 1 o.o.m. Correct ( 100%) [35]
Reeded Up to 15-fold Correct ( 100%) [37]
Jaro-Winkler Up to 5.5-fold – [3]
Helios Up to 300% – [18]
Raven Up to 33% 90% − 100% [21]
Eagle Up to 14-fold > 90% [22]
Acids – + 7% [36]
Coala – + 25% [24]
Euclid Up to 33% + 11% [23]
Wombat – + 23% [29]
Raven Up to 33% 90% – 100% [21]
Eagle Up to 14-fold Superior to 90% [22]
Acids – Up to 7% [36]
Coala – Up to 25% [24]
Euclid Up to 33% Up to 11% [23]
Wombat – Up to 23% [29]

15  https://​limes.​demos.​dice-​resea​rch.​org/.
16  https://​dice-​group.​github.​io/​LIMES/#/​user_​manual/​index.

17  http://​spark.​apache.​org/.
18  https://​flink.​apache.​org/.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/182.358434
https://doi.org/10.1145/182.358434
https://doi.org/10.1007/978-3-642-41335-3_3
https://doi.org/10.1007/978-3-642-41335-3_3
https://doi.org/10.3233/SW-150209
https://doi.org/10.1145/367390.367400
https://doi.org/10.3233/978-1-61499-672-9-948
https://doi.org/10.3233/978-1-61499-672-9-948
https://limes.demos.dice-research.org/
https://dice-group.github.io/LIMES/#/user_manual/index
http://spark.apache.org/
https://flink.apache.org/

422	 KI - Künstliche Intelligenz (2021) 35:413–423

1 3

	 7.	 Isele R, Jentzsch A, Bizer C (2011) Efficient multidimensional
blocking for link discovery without losing recall. In: Proceed-
ings of the 14th international workshop on the web and databases
2011, WebDB 2011, Athens, Greece, June 12, 2011 . http://​webdb​
2011.​rutge​rs.​edu/​papers/​Paper%​2039/​silk.​pdf

	 8.	 Lehmann J, Furche T, Grasso G, Ngomo AN, Schallhart C,
Sellers AJ, Unger C, Bühmann L, Gerber D, Höffner K, Liu D,
Auer S (2012) DEQA: deep web extraction for question answer-
ing. In: The semantic web—ISWC 2012—11th international
semantic web conference, Boston, MA, USA, November 11–15,
2012, Proceedings, Part II, pp 131–147. https://​doi.​org/​10.​1007/​
978-3-​642-​35173-0_9

	 9.	 Li G, Deng D, Wang J, Feng J (2011) Pass-join: a partition-based
method for similarity joins. Proc VLDB Endow 5(3):253–264

	10.	 Morsey M, Lehmann J, Auer S, Ngonga Ngomo AC (2011) DBpe-
dia SPARQL benchmark—performance assessment with real que-
ries on real data. In: ISWC 2011. http://​jens-​lehma​nn.​org/​files/​
2011/​dbpsb.​pdf

	11.	 Moussallem D, Usbeck R, Röeder M, Ngomo ACN (2017) Mag:
a multilingual, knowledge-base agnostic and deterministic entity
linking approach. In: Proceedings of the knowledge capture con-
ference. ACM, p 9

	12.	 Nentwig M, Hartung M, Ngomo AN, Rahm E (2017) A survey
of current link discovery frameworks. Semant Web 8(3):419–436.
https://​doi.​org/​10.​3233/​SW-​150210

	13.	 Ngomo ACN, Hassan MM (2016) The lazy traveling salesman—
memory management for large-scale link discovery. In: Sack H,
Blomqvist E, d’Aquin M, Ghidini C, Ponzetto SP, Lange C (eds)
ESWC, lecture notes in computer science, vol 9678, pp 423–438.
Springer. http://​dblp.​uni-​trier.​de/​db/​conf/​esws/​eswc2​016.​html#​
Ngomo​H16

	14.	 Ngomo AN (2011) A time-efficient hybrid approach to link dis-
covery. In: Proceedings of the 6th international workshop on
ontology matching, Bonn, Germany, October 24, 2011. http://​
ceur-​ws.​org/​Vol-​814/​om2011_​Tpape​r1.​pdf

	15.	 Ngomo AN (2012) Link discovery with guaranteed reduction
ratio in affine spaces with Minkowski measures. In: The semantic
web—ISWC 2012—11th international semantic web conference,
Boston, MA, USA, November 11–15, 2012, Proceedings, Part I,
pp 378–393. https://​doi.​org/​10.​1007/​978-3-​642-​35176-1_​24

	16.	 Ngomo AN (2012) On link discovery using a hybrid approach.
J Data Semant 1(4):203–217. https://​doi.​org/​10.​1007/​
s13740-​012-​0012-y

	17.	 Ngomo AN (2013) ORCHID—reduction-ratio-optimal computa-
tion of geo-spatial distances for link discovery. In: The semantic
web—ISWC 2013—12th international semantic web conference,
Sydney, NSW, Australia, October 21–25, 2013, Proceedings, Part
I, pp 395–410 . https://​doi.​org/​10.​1007/​978-3-​642-​41335-3_​25

	18.	 Ngomo AN (2014) HELIOS—execution optimization for link dis-
covery. In: The semantic web—ISWC 2014—13th international
semantic web conference, Riva del Garda, Italy, October 19–23,
2014. Proceedings, Part I, pp 17–32 . https://​doi.​org/​10.​1007/​
978-3-​319-​11964-9_2

	19.	 Ngomo AN, Auer S (2011) LIMES—a time-efficient approach
for large-scale link discovery on the web of data. In: IJCAI 2011,
Proceedings of the 22nd international joint conference on artificial
intelligence, Barcelona, Catalonia, Spain, July 16–22, 2011, pp
2312–2317. https://​doi.​org/​10.​5591/​978-1-​57735-​516-8/​IJCAI​
11-​385

	20.	 Ngomo AN, Auer S, Lehmann J, Zaveri A (2014) Introduction to
linked data and its lifecycle on the web. In: Reasoning web. Rea-
soning on the web in the big data era—10th international summer
school 2014, Athens, Greece, September 8–13, 2014. Proceedings,
pp 1–99. https://​doi.​org/​10.​1007/​978-3-​319-​10587-1_1

	21.	 Ngomo AN, Lehmann J, Auer S, Höffner K (2011) RAVEN—
active learning of link specifications. In: Proceedings of the 6th

international workshop on ontology matching, Bonn, Germany,
October 24, 2011, pp 25–36. http://​ceur-​ws.​org/​Vol-​814/​om2011_​
Tpape​r3.​pdf

	22.	 Ngomo AN, Lyko K (2012) EAGLE: efficient active learning of
link specifications using genetic programming. In: The seman-
tic web: research and applications—9th extended semantic web
conference, ESWC 2012, Heraklion, Crete, Greece, May 27–31,
2012. Proceedings, pp 149–163. https://​doi.​org/​10.​1007/​978-3-​
642-​30284-8_​17

	23.	 Ngomo AN, Lyko K (2013) Unsupervised learning of link specifi-
cations: deterministic vs. non-deterministic. In: Proceedings of the
8th international workshop on ontology matching co-located with
the 12th international semantic web conference (ISWC 2013),
Sydney, Australia, October 21, 2013, pp 25–36

	24.	 Ngomo AN, Lyko K, Christen V (2013) COALA—correlation-
aware active learning of link specifications. In: The semantic
web: semantics and big data, 10th international conference,
ESWC 2013, Montpellier, France, May 26–30, 2013. Proceed-
ings, pp 442–456. https://​doi.​org/​10.​1007/​978-3-​642-​38288-8_​
30

	25.	 Ngomo AN, Sherif MA, Lyko K (2014) Unsupervised link dis-
covery through knowledge base repair. In: The semantic web:
trends and challenges—11th international conference, ESWC
2014, Anissaras, Crete, Greece, May 25–29, 2014. Proceedings,
pp 380–394. https://​doi.​org/​10.​1007/​978-3-​319-​07443-6_​26

	26.	 Nikolov A, Uren VS, Motta E (2007) Knofuss: a comprehensive
architecture for knowledge fusion. In: Proceedings of the 4th inter-
national conference on knowledge capture (K-CAP 2007), October
28–31, 2007, Whistler, BC, Canada, pp 185–186 . https://​doi.​org/​
10.​1145/​12984​06.​12984​46

	27.	 Saleem M, Mehmood Q, Ngonga Ngomo AC (2015) Feasible: A
feature-based sparql benchmark generation framework. In: Inter-
national semantic web conference (ISWC). http://​svn.​aksw.​org/​
papers/​2015/​ISWC_​FEASI​BLE/​public.​pdf

	28.	 Saleem M, Padmanabhuni SS, Ngomo AN, Almeida JS, Decker,
S, Deus HF (2013) Linked cancer genome atlas database. In:
I-SEMANTICS 2013—9th international conference on seman-
tic systems, ISEM ’13, Graz, Austria, September 4–6, 2013, pp
129–134. https://​doi.​org/​10.​1145/​25061​82.​25062​00

	29.	 Sherif M, Ngonga Ngomo AC, Lehmann J (2017) WOMBAT—
a generalization approach for automatic link discovery. In: 14th
extended semantic web conference, Portorož, Slovenia, 28th
May—1st June 2017. Springer. http://​svn.​aksw.​org/​papers/​2017/​
ESWC_​WOMBAT/​public.​pdf

	30.	 Sherif MA, Dreßler K, Smeros P, Ngonga Ngomo AC (2017)
Radon—rapid discovery of topological relations. In: Proceed-
ings of the thirty-first AAAI conference on artificial intelligence
(AAAI-17). https://​svn.​aksw.​org/​papers/​2017/​AAAI_​RADON/​
public.​pdf

	31.	 Sherif MA, Ngomo ACN (2017) A systematic survey of point set
distance measures for link discovery. Semant Web J. https://​conte​
nt.​iospr​ess.​com/​artic​les/​seman​tic-​web/​sw285

	32.	 Sherif MA, Ngomo AN (2015) Semantic quran. Semant Web
6(4):339–345. https://​doi.​org/​10.​3233/​SW-​140137

	33.	 Sherif MA, Ngomo AN, Lehmann J (2015) Automating RDF
dataset transformation and enrichment. In: The semantic web.
Latest advances and new domains—12th European semantic
web conference, ESWC 2015, Portoroz, Slovenia, May 31–June
4, 2015. Proceedings, pp 371–387. https://​doi.​org/​10.​1007/​978-
3-​319-​18818-8_​23

	34.	 Sherif MA, Pestryakova S, Dreßler K, Ngomo ACN (2019)
Limeswebui—link discovery made simple. In: 18th international
semantic web conference (ISWC 2019). CEUR-WS.org. http://​
svn.​aksw.​org/​papers/​2019/​ISWC_​limes​WebUI/​public.​pdf

	35.	 Soru T, Marx E, Ngomo AN (2015) ROCKER: a refinement oper-
ator for key discovery. In: Proceedings of the 24th international

http://webdb2011.rutgers.edu/papers/Paper%2039/silk.pdf
http://webdb2011.rutgers.edu/papers/Paper%2039/silk.pdf
https://doi.org/10.1007/978-3-642-35173-0_9
https://doi.org/10.1007/978-3-642-35173-0_9
http://jens-lehmann.org/files/2011/dbpsb.pdf
http://jens-lehmann.org/files/2011/dbpsb.pdf
https://doi.org/10.3233/SW-150210
http://dblp.uni-trier.de/db/conf/esws/eswc2016.html#NgomoH16
http://dblp.uni-trier.de/db/conf/esws/eswc2016.html#NgomoH16
http://ceur-ws.org/Vol-814/om2011_Tpaper1.pdf
http://ceur-ws.org/Vol-814/om2011_Tpaper1.pdf
https://doi.org/10.1007/978-3-642-35176-1_24
https://doi.org/10.1007/s13740-012-0012-y
https://doi.org/10.1007/s13740-012-0012-y
https://doi.org/10.1007/978-3-642-41335-3_25
https://doi.org/10.1007/978-3-319-11964-9_2
https://doi.org/10.1007/978-3-319-11964-9_2
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-385
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-385
https://doi.org/10.1007/978-3-319-10587-1_1
http://ceur-ws.org/Vol-814/om2011_Tpaper3.pdf
http://ceur-ws.org/Vol-814/om2011_Tpaper3.pdf
https://doi.org/10.1007/978-3-642-30284-8_17
https://doi.org/10.1007/978-3-642-30284-8_17
https://doi.org/10.1007/978-3-642-38288-8_30
https://doi.org/10.1007/978-3-642-38288-8_30
https://doi.org/10.1007/978-3-319-07443-6_26
https://doi.org/10.1145/1298406.1298446
https://doi.org/10.1145/1298406.1298446
http://svn.aksw.org/papers/2015/ISWC_FEASIBLE/public.pdf
http://svn.aksw.org/papers/2015/ISWC_FEASIBLE/public.pdf
https://doi.org/10.1145/2506182.2506200
http://svn.aksw.org/papers/2017/ESWC_WOMBAT/public.pdf
http://svn.aksw.org/papers/2017/ESWC_WOMBAT/public.pdf
https://svn.aksw.org/papers/2017/AAAI_RADON/public.pdf
https://svn.aksw.org/papers/2017/AAAI_RADON/public.pdf
https://content.iospress.com/articles/semantic-web/sw285
https://content.iospress.com/articles/semantic-web/sw285
https://doi.org/10.3233/SW-140137
https://doi.org/10.1007/978-3-319-18818-8_23
https://doi.org/10.1007/978-3-319-18818-8_23
http://svn.aksw.org/papers/2019/ISWC_limesWebUI/public.pdf
http://svn.aksw.org/papers/2019/ISWC_limesWebUI/public.pdf

423KI - Künstliche Intelligenz (2021) 35:413–423	

1 3

conference on world wide web, WWW 2015, Florence, Italy, May
18–22, 2015, pp 1025–1033. https://​doi.​org/​10.​1145/​27362​77.​
27416​42

	36.	 Soru T, Ngomo AN (2012) Active learning of domain-specific
distances for link discovery. In: Semantic technology, second
joint international conference, JIST 2012, Nara, Japan, Decem-
ber 2–4, 2012. Proceedings, pp 97–112. https://​doi.​org/​10.​1007/​
978-3-​642-​37996-3_7

	37.	 Soru T, Ngomo AN (2013) Rapid execution of weighted edit
distances. In: Proceedings of the 8th international workshop on
ontology matching co-located with the 12th international seman-
tic web conference (ISWC 2013), Sydney, Australia, October 21,
2013, pp 1–12. http://​ceur-​ws.​org/​Vol-​1111/​om2013_​Tpape​r1.​pdf

	38.	 Speck R, Ngomo AN (2014) Ensemble learning for named entity
recognition. In: The semantic web—ISWC 2014—13th interna-
tional semantic web conference, Riva del Garda, Italy, October
19–23, 2014. Proceedings, Part I, pp 519–534. https://​doi.​org/​10.​
1007/​978-3-​319-​11964-9_​33

	39.	 Stadler C, Lehmann J, Höffner K, Auer S (2012) Linkedgeodata:
a core for a web of spatial open data. Semant Web 3(4):333–354.
https://​doi.​org/​10.​3233/​SW-​2011-​0052

	40.	 Xiao C, Wang W, Lin X (2008) Ed-join: an efficient algorithm for
similarity joins with edit distance constraints. Proc VLDB Endow
1(1):933–944

https://doi.org/10.1145/2736277.2741642
https://doi.org/10.1145/2736277.2741642
https://doi.org/10.1007/978-3-642-37996-3_7
https://doi.org/10.1007/978-3-642-37996-3_7
http://ceur-ws.org/Vol-1111/om2013_Tpaper1.pdf
https://doi.org/10.1007/978-3-319-11964-9_33
https://doi.org/10.1007/978-3-319-11964-9_33
https://doi.org/10.3233/SW-2011-0052

	LIMES: A Framework for Link Discovery on the Semantic Web
	Abstract
	1 Introduction
	2 The Link Discovery Problem
	3 Architecture of the Framework
	4 Scalability Algorithms
	5 Accuracy Algorithms
	6 Limes Use Cases
	7 Evaluation
	8 Conclusion and Future Work
	Acknowledgements
	References

