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Abstract
The Linked Data paradigm builds upon the backbone of distributed knowledge bases connected by typed links. The mere 
volume of current knowledge bases as well as their sheer number pose two major challenges when aiming to support the 
computation of links across and within them. The first is that tools for link discovery have to be time-efficient when they 
compute links. Secondly, these tools have to produce links of high quality to serve the applications built upon Linked Data 
well. Solutions to the second problem build upon efficient computational approaches developed to solve the first and com-
bine these with dedicated machine learning techniques. The current version of the Limes framework is the product of seven 
years of research on these two challenges. A series of machine learning techniques and efficient computation approaches 
were developed and integrated into this framework to address the link discovery problem. The framework combines these 
diverse algorithms within a generic and extensible architecture. In this article, we give an overview of version 1.7.4 of the 
open-source release of the framework. In particular, we focus on an overview of the architecture of the framework, an intui-
tion of its inner workings and a brief overview of the approaches it contains. Some descriptions of the applications within 
which the framework was used complete the paper. Our framework is open-source and available under a GNU license at 
https://​github.​com/​dice-​group/​LIMES together with a user manual and a developer manual.

1  Introduction

Establishing links between knowledge bases is one of the 
key steps of the Linked Data publication process.1 A pleth-
ora of approaches has thus been devised to support this pro-
cess [12]. In this paper, we present the Limes framework, 
which was designed to accommodate a large number of link 
discovery approaches within a single extensible architec-
ture. Limes was designed as a declarative framework (i.e., a 
framework that processes link specifications, see Sect. 2) to 
address two main challenges: 

1.	 Time-efficiency The mere size of existing knowledge 
bases (e.g., 30+ billion triples in LinkedGeoData [39], 
20+ billion triples in LinkedTCGA​2 [28]) makes effi-
cient solutions indispensable to the use of link discov-
ery frameworks in real application scenarios. Limes 
addresses this challenge by providing time-efficient 
approaches based on the characteristics of metric spaces 
[15, 19], orthodromic spaces [17] and on filter-based 
paradigms [37].
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2.	 Accuracy Central to this paper are the solutions to accu-
racy provided in the framework. Efficient solutions are 
of little help if the results they generate are inaccurate. 
Hence, Limes also accommodates dedicated machine-
learning solutions that allow the generation of links 
between knowledge bases with a high accuracy. These 
solutions abide by paradigms such as batch and active 
learning [21–23], unsupervised learning [23] and even 
positive-only learning [29].

The main goal of this paper is to give an overview of the 
Limes framework and some of the applications within which 
it was used. We begin by presenting the link discovery prob-
lem and how we address this problem within a declarative 
setting (see Sect. 2). Then, we present our solution to the 
link discovery problem in the form of Limes and its archi-
tecture. The subsequent sections present the different fami-
lies of algorithms implemented within the framework. We 
begin by a short overview of the algorithms that ensure the 
efficiency of the framework (see Sect. 4). Thereafter, we 
give an overview of algorithms that address the accuracy 
problem (see Sect. 5). We round up the core of the paper 
with some of the applications within which Limes was used, 
including benchmarking and the publication of 5-star linked 
datasets (Sect. 6). An overview of the evaluation results of 
algorithms included in Limes (Sect. 7) and a conclusion 
(Sect. 8) complete the paper.

2 � The Link Discovery Problem

The formal specification of Link Discovery (LD) adopted 
herein is akin to that proposed in [16]. Given two (not neces-
sarily distinct) sets S resp. T of source resp. target resources 
as well as a relation R, the goal of LD is is to find the set 
M = {(s, t) ∈ S × T ∶ R(s, t)} of pairs (s, t) ∈ S × T such that 
R(s, t). In most cases, computing M is a non-trivial task. 
Hence, a large number of frameworks (e.g., Silk [7], Limes 
[16] and KnoFuss [26]) aim to approximate M by comput-
ing the mapping M� = {(s, t) ∈ S × T ∶ �(s, t) ≥ �} , where 
� is a similarity function and � is a similarity threshold. For 
example, one can configure these frameworks to compare 
the dates of birth, family names and given names of persons 
across census records to determine whether they are dupli-
cates. We call the equation that specifies M′ a link specifi-
cation (short LS; also called linkage rule in the literature, 
see e.g., [7]). Note that the LD problem can be expressed 
equivalently using distances instead of similarities in the fol-
lowing manner: Given two sets S and T of instances, a (com-
plex) distance measure � and a distance threshold � ∈ [0,∞[ , 

determine M� = {(s, t) ∈ S × T ∶ �(s, t) ≤ �}.3 Consequently, 
distance and similarities are used within link specifications 
in this paper.

Under this so-called declarative paradigm, two entities 
s and t are then considered to be linked via R if �(s, t) ≥ � . 
Naïve algorithms require O(|S||T|) ∈ O(n2) computations 
to output M′ . Given the large size of existing knowledge 
bases, time-efficient approaches able to reduce this runtime 
are hence a central component of Limes as they are neces-
sary for link specifications to be computed in acceptable 
times. This efficient computation is in turn the proxy neces-
sary for machine learning techniques to be used to optimize 
the choice of appropriate � and � and thus ensure that M′ 
approximates M well even when M is large [12]).

Several approaches can be chosen when aiming to define 
the syntax and semantics of LSs in detail [7, 22, 26]. In 
Limes, we chose a grammar with a syntax and semantics 
based on set semantics. This grammar assumes that LSs 
consist of two types of atomic components: (i) similarity 
measures m, which allow the comparison of property values 
or portions of the concise bound description of 2 resources 
and (ii) operators op, which can be used to combine these 
similarities into more complex specifications. We define an 
atomic similarity measure a as a function a ∶ S × T → [0, 1] . 
An example of an atomic similarity measure is the edit simi-
larity dubbed edit4. Every atomic measure is a measure. 
A complex measure m combines measures m1 and m2 using 
measure operators such as min and max . We use mappings 
M ⊆ S × T to store the results of the application of a similar-
ity measure to S × T  or subsets thereof. We denote the set of 
all mappings as M.

We define a filter as a function f (m, �) . We call a specifi-
cation atomic when it consists of exactly one filtering func-
tion. A complex specification can be obtained by combining 
two specifications L1 and L2 through an operator that allows 
the merging of the results of L1 and L2 . Here, we use the 
operators ⊓ , ⊔ and ∖ as they are complete w.r.t. the Boolean 
algebra and frequently used to define LS. An example of a 

Fig. 1   Example of a complex LS. The filter nodes are rectangles 
while the operator nodes are circles. :socID stands for social secu-
rity number

3  Note that a distance function � can always be transformed into 
a normed similarity function � by setting �(x, y) = (1 + �(x, y))−1 . 
Hence, the distance threshold � can be transformed into a similarity 
threshold � by means of the equation � = (1 + �)−1.
4  We define the edit similarity of two strings s and t as 
(1 + lev(s, t))−1 , where lev stands for the Levenshtein distance.
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complex LS is given in Fig. 1. We denote the set of all LS 
as L.

We define the semantics [[L]]M of a LS L w.r.t. a mapping 
M as given in Table 1. Those semantics are similar to those 
used in languages like SPARQL, i.e., they are defined exten-
sionally through the mappings they generate. The mapping 
[[L]] of a LS L with respect to S × T  contains the links that 
will be generated by L.

3 � Architecture of the Framework

As shown in Fig. 2, the Limes framework consists of 6 main 
layers, each of which can be extended to accommodate new 
or improved functionality. The input to the framework is a 
configuration file, which describes how the sets S and T are 
to be retrieved from two knowledge bases K1 and K2 (e.g., 
remote SPARQL endpoints). Moreover, the configuration 
file describes how links are to be computed. To this end, 
the user can chose to either provide a LS explicitly or a 
configuration for a particular machine learning algorithm. 
The result of the framework is a (set of) mapping(s). In the 
following, we give an overview of the inner workings of 
each of the layers.

Controller layer The processing of the configuration 
file by the different layers is orchestrated by the controller 
layer. The controller instantiates the different implementa-
tions of input modules (e.g., reading data from files or from 

SPARQL endpoints), the data modules (e.g., file cache, in-
memory), the execution modules (e.g., planners, number 
of processors for parallel processing) and the output mod-
ules (e.g., the serialization format and the output location) 
according to the configuration file or using default values. 
Once the layers have been instantiated, the configuration is 
forwarded to the input layer.

Input layer The input layer reads the configuration and 
extracts all the information necessary to execute the speci-
fication or the machine learning approach chosen by the 
user. This information includes (1) the location of the input 
knowledge bases K1 and K2 (e.g., SPARQL endpoints or 
files), (2) the specification of the sets S and T, (3) the meas-
ures and thresholds or the machine learning approach to use. 
The current version of Limes supports RDF configuration 
files based on the Limes Configuration Ontology (LCO)5 
(see Fig. 3) and XML configuration files based on the Limes 
Specification Language (LSL) [15]. If the configuration file 
is valid (w.r.t. the LCO or LSL), the input layer then calls 
its query module. This module uses the configuration for 
S and T to retrieve instances and properties from the input 
knowledge bases that adhere to the restrictions specified in 
the configuration file. All data retrieved is then forwarded to 
the data layer via the controller.

Data layer The data layer stores the input data gathered 
by the input layer using memory, file or hybrid storage tech-
niques. Currently, Limes relies on a hybrid cache as default 
storage implementation. This implementation generates a 
hash for any set of resources specified in a configuration 
file and serializes this set into a file. Whenever faced with 
a new specification, the cache first determines whether the 
data required for the computation is already available locally 
by using the hash aforementioned. If the data is available, 
it is retrieved from the file into memory. In other cases, the 
hybrid cache retrieves the data as specified, generates a hash 
and caches it on the hard drive. By these means, the data 
layer addresses the practical problem of data availability, 
especially from remote data sources. Once all data is avail-
able, the controller layer chooses (based on the configuration 
file) between execution of complex measures specified by 
the user or running a machine learning algorithm.

Execution layer If the user specifies the LS to execute 
manually, the Limes controller layer calls the execution layer. 
The execution layer then re-writes, plans and executes the 
LS specified by the user. The rewriter aims to simplify com-
plex LS by removing potential redundancy so as to eventu-
ally speed up the overall execution. To this end, it exploits 
the subset relations and the Boolean algebra which under-
pin the syntax and semantics of complex specifications. The 
planner module maps a LS to an equivalent execution plan, 
which is a sequence of atomic execution operations from 

Table 1   Link Specification Syntax and Semantics

LS [[LS]]
M

f (m, �) {(s, t)|(s, t) ∈ M ∧ m(s, t) ≥ �}

L1 ⊓ L2 {(s, t)|(s, t) ∈ [[L1]]M ∧ (s, t) ∈ [[L2]]M}

L1 ⊔ L2 {(s, t)|(s, t) ∈ [[L1]]M ∨ (s, t) ∈ [[L2]]M}

L1∖L2 {(s, t)|(s, t) ∈ [[L1]]M ∧ (s, t) ∉ [[L2]]M}
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Fig. 2   General architecture of Limes 

5  https://​w3id.​org/​dice-​resea​rch/​limes/​lco.​owl.

https://w3id.org/dice-research/limes/lco.owl
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which a mapping results. These operations include EXE-
CUTE (running a particular atomic similarity measure, e.g., 
the trigram similarity6) and operations on mappings such as 
UNION (union of two mappings) and DIFF (difference of 
two mappings). For an atomic LS, i.e., a LS such that � is an 
atomic similarity measure (e.g., trigram similarity, qgrams 
similarity, etc.), the planner module generates a simple plan 
with one EXECUTE instruction. For a complex LS, the plan-
ner module determines the order in which atomic LS should 
be executed as well as the sequence in which intermedi-
ary results should be processed. For example, the planner 
module may decide to first run some atomic LS L1 and then 
filter the results using another atomic LS L2 instead of run-
ning both L1 and L2 independently and merge the results. 
The execution engine is then responsible for executing the 
plan of an input LS and returns the set of potential links as 
a mapping.

Machine learning layer In case the user opts for using a 
machine learning approach, the Limes controller calls the 
machine learning layer. This layer instantiates the machine 
learning algorithm selected by the user and executes it in 
tandem with the execution layer. To this end, the machine 
learning approaches begin by retrieving the training data 
provided by the user if required. The approaches then gen-
erate LSs, which are run in the execution layer. The result-
ing mappings are evaluated using quality measures (e.g., 
F-measure, pseudo-F-measure [23]) and returned to the user 
once a termination condition has been fulfilled. Currently, 
Limes implements the Eagle [22], Coala [24], Euclid [23] 
and Wombat [29] algorithms. A brief overview of these 
approaches is given in Sect. 4.

Output layer The output layer serializes the output of 
Limes. Currently, it supports the serialization into files in 
any RDF serialization also chosen by the user. In addition, 
the framework support CSV and XML as output formats.

Web Graphical User Interface.
In addition to supporting configurations as input files, 

Limes provides a Web-based graphical user interface (GUI)7 
to assist the end user during the LD process [34]. The frame-
work supports the manual creation of LS as shown in Fig. 4 
for users who already know which LS they would like to 
execute to achieve a certain linking task. However, most 
users do not know which LS suits their linking task best 
and therefore need help throughout this process. Hence, the 
GUI provides wizards which ease the LS creation process 
and allow configuration of the machine learning algorithms. 
After the selection of an algorithm, the user can modify the 
default configurations if necessary and run it. If a batch or 

Fig. 3   Limes Configuration ontology (LCO) ontology

Fig. 4   Manually created LS via Limes web UI

7  https://limes.demos.dice-research.org.

6  We measure the similarity of two input strings by counting the 
number of trigrams (the group of three consecutive characters) they 
share. Formally, the trigram similarity is the normalized sum of abso-
lute differences between tri-gram vectors of both the input strings.
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unsupervised learning approach is selected, the execution 
is carried out once and the results are presented to the user. 
In the case of active learning, the Limes web GUI presents 
the most highly informative link candidates to the user, who 
label these candidates as either a match or non-match (see 
Fig. 5). This procedure is repeated until the user is satisfied 
with the result. In all cases, the GUI allows the exporta-
tion of the configurations generated by machine learning 
approaches for future use.

4 � Scalability Algorithms

As mentioned in the introduction, the scalability of Limes is 
based on a number of time-efficient approaches for atomic 
LS that the framework supports. In the following, we sum-
marize the approaches supported by Limes version 1.5.0. By 
no means do we aim to give all technical details necessary to 
understand how these approaches work in detail. Interested 
readers are referred to the publications mentioned in each 
subsection.

The Limes algorithm [19] is the first scalable approach 
developed explicitly for LD. The basic intuition behind 
the approach is based on regarding the LD problem as a 
bounded distance problem �(s, t) ≤ � . If � abides by the tri-
angle inequality, the �(s, t) ≥ �(s, e) − �(e, t) for any e. Based 
on this insight, Limes implements a space tiling approach 
that assigns each t to an exemplar e such that �(e, t) is known 
for many t. Hence, for all s, Limes can first compute a lower 
bound for the distance between s and t. If this lower bound 
is larger that � , then the exact computation of �(s, t) is not 
carried out, as (s, t) is guaranteed not to belong in the output 
of this atomic measure.

The HR
3 algorithm [15] builds upon some of the 

insights of the Limes algorithms within spaces with 
Minkowski distances. The basic insight behind the 
approach is that the equation �(s, t) ≤ � describes a hyper-
sphere of radius � around s. While computing spheres 
in multidimensional spaces can be time-consuming, 

hypercubes can be computed rapidly. Hence, the approach 
relies on the approximation hyperspheres with hyper-
cubes. In contrast to previous approaches such as Hyppo 
[14], the approach combines hypercubes with an indexing 
approach and can hence discard a larger number of com-
parisons. One of the most important theoretical insights 
behind this approach is that it is the first approach guar-
anteed to being able to achieve the smallest possible num-
ber of comparisons when given sufficient memory. It is 
hence the first reduction-ratio-optimal approach for link 
discovery.

Orchid [17] is a link discovery algorithm for geo-spa-
tial data, which belong to the largest sources of Linked 
Data. Like HR

3 , Orchid is reductio-ratio-optimal. In 
contrast to HR

3 , it operates in orthodromic spaces, in 
which Minkowski distances do not hold. To achieve the 
goal of reduction-ratio optimality, Orchid uses a space 
discretization approach which relies on tiling the surface 
of the planet based on latitude and longitude information. 
The approach then only compares polygons t ∈ T  which 
lie within a certain range of s ∈ S . Like in HR

3 , the 
range is described via a set of hypercubes (i.e, squares in 
2 dimensions). However, the shape that is to be approxi-
mated is a disk projected onto the surface of the sphere. 
The projection is accounted for by compensating for the 
curvature of the surface of the planet using an increased 
number of squares. See [31] for a survey of point-set 
distance measures implemented by Limes and optimized 
using Orchid.

Aegle [6] is a time-efficient approach for computing tem-
poral relations. Our approach supports all possible temporal 
relations between event data that can be modelled as inter-
vals according to Allen’s Interval Algebra [1]. The key idea 
behind the algorithm is to reduce the 13 Allen relations to 
8 simpler relations, which compare either the beginning or 
the end of an event with the beginning or the end of another 
event. Given that time is ordered, Aegle reduces the prob-
lem of computing these simple relations to the problem of 
matching entities across sorted lists, which can be carried 
out within a time complexity of O(n log n) . The approach 
is guaranteed to compute complete results for any temporal 
relation.

Radon [30] addresses the efficient computation of 
topological relations on geo-spatial datasets. The main 
innovation of the approach is a novel sparse index for 
geo-spatial resources based on minimum bounding 
boxes (MBB)8. Based on this index, it is able to discard 

Fig. 5   User feedback interface for active learning

8  The smallest area box, within which all the points of a geo-spatial 
representation of a resource lie.
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unnecessary computations for DE-9IM relations9. Radon 
applies a swapping strategy as its first step, where it 
swaps source and target datasets and computes the 
reverse10 relation r′ instead of r in case it finds that the 
estimated total hypervolume of the target is less that the 
one of the source dataset. Then in its second step, Radon 
utilizes a space tiling approach to insert all source and 
target geometries into an index I, which maps resources 
to sets of hypercubes. Finally, Radon implements the last 
speedup strategy using a MBB-based filtering technique, 
Like Aegle, Radon is guaranteed to achieve a result com-
pleteness of 100% as it able to compute all topological 
relations of the DE-9IM model.

Keys for graphs are the projection of the concept of pri-
mary keys from relational databases. A key is thus a set of 
properties such that all instances of a given class are distin-
guishable from each other by their property values. There-
fore, LD machine-learning-based algorithms optimize their 
performance using such keys. Limes features Rocker [35], a 
refinement operator-based approach for key discovery. The 
Rocker algorithm first streams the input RDF graph to build 
a hash index including instance URIs and a concatenation 
of object values for each property. The indexes are then 
stored in a local database to enable an efficient computa-
tion of the discriminability score. Starting from the empty 
set, a refinement graph is visited, adding a property to the 
set at each refinement step. As keys abide by several mono-
tonicities (e.g., every superset of a key is a key), additional 
optimizations allow scalability to large datasets. Rocker has 
shown state-of-the-art results in terms of discovered keys, 
efficiency, and memory consumption [35].

LD frameworks rely on similarity measures such as the 
Levenshtein (or edit) distance to discover similar instances. 
The edit distance calculates the number of operations (i.e., 
addition, deletion or replacement of a character) needed to 
transform a string to another. However, the assumption that 
all operations must have the same weight does not always 
apply. For instance, the replacement of a z with an s often 
leads to the same word written in American and British 
English, respectively. This operation should have a lower 
weight than, e.g., an addition of the character I to the end 
of King George I. While manifold algorithms have 
been developed for the efficient discovery of similar strings 
using edit distance [9, 40], Reeded was developed to support 
also the rapid execution of weighted edit distances. Like the 
approaches aforementioned, Reeded joins two sets of strings 
by applying three filters to avoid computing the similarity 

values for all the pairs of strings. The (1) length-aware filter 
discards the pairs of strings having a too different length, the 
(2) character-aware filter selects only the pairs which do not 
differ by more than a given number of characters and the (3) 
verification filter finally verifies the weighted edit distance 
among the pairs against a threshold [37].

The Jaro-Winkler string similarity measure, which was 
originally designed for the deduplication of person names, 
is a common choice to generate links between knowledge 
bases based on labels. We therefore developed a runtime-
optimized Jaro-Winkler algorithm for LD [3]. The approach 
consists of two steps: indexing and tree-pruning. The index-
ing step itself also consists of two phases: (1) strings of both 
source and target datasets get sorted into buckets based on 
upper and lower bounds pertaining to their lengths and (2) 
in each bucket, strings of the target dataset get indexed by 
adding them to a tree akin to a trie [4]. Tree pruning is then 
applied to cut off subtrees for which the similarity thresh-
old cannot be achieved due to character mismatches. This 
significantly reduces the number of necessary Jaro-Winkler 
similarity computations.

In contrast to the algorithms above, Helios [18] addresses 
the scalability of link discovery by improving the planning 
of LSs. To this end, Helios implements a rewriter and a 
planner. The rewriter consists of a set of algebraic rules, 
which can transform portions of LS into formally equivalent 
expressions, which can be potentially executed faster. For 
example, expressions such as AND(�(s, t) ≥ �1, �(s, t) ≥ �2) 
are transformed into �(s, t) ≥ max(�1, �2) . In this particular 
simple example, the number of EXECUTE calls can hence 
be reduced from 2 to 1. The planner transforms a rewritten 
LS into a plan by aiming to find a sequence of execution 
steps that minimizes the total runtime of the LS. To this 
end, the planner relies on runtime approximations derived 
from linear regressions on large static dictionaries. Condor 
[5] builds upon Helios by extending the static planner with 
dynamic planning to achieve even better runtime.

5 � Accuracy Algorithms

Pushing for efficiency of LD is a mere means to an end, 
which is the computation of accurate links between knowl-
edge bases. The Limes framework includes a family of 
machine learning approaches designed specifically for 
the purpose of link discovery. The core algorithms can 
be adapted for unsupervised, active and batch learning. 
In the following, we present the main ideas behind these 
approaches while refraining from providing complex techni-
cal details, which can be retrieved from the corresponding 
publications.

Raven [21] is the first approach designed to address 
the active learning of LS. The basic intuition behind the 

9  A standard used to describe the topological relations (e.g., covers 
and overlaps) between two geometries in two-dimensional space .
10  Formally, the reverse relation r′ of a relation r is defined as 
r�(y, x) ⇔ r(x, y).
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approach is that LS can be regarded as classifiers. Links that 
abide by the LS then belong to the class +1 while all other 
links belong to −1 . Based on this intuition, the approach 
tackles the problem of learning LSs by first using the solu-
tion of the hospital-resident problem to detect potentially 
matching classes and properties in K1 and K2 . The algo-
rithm then assumes that it knows the type of LS that is to 
be learned (e.g., conjunctive specifications, in which all 
specifications operators are conjunctions). Based on this 
assumption and the available property matching, it learns 
the thresholds associated with each property pair iteratively 
by using an extension of the perceptron learning paradigm. 
Raven first applies perceptron learning to all training data 
that is made available by the user. Then, most informative 
unlabeled pairs (by virtue of their proximity to the decision 
boundary of the perceptron classifier) are sent as queries to 
the user. The labeled answers are finally added to the train-
ing data, which closes the loop. The iteration is carried on 
until the user terminates the process or a termination condi-
tion such as a maximal number of questions is reached.

Eagle [22] implements a machine learning approach for 
LS of arbitrary complexity based on genetic programming. 
To this end, the approach models LS as trees, each of which 
stands for the genome of an individual in a population. 
Eagle begins by generating a population of random LS, i.e., 
of individuals with random genomes. Based on training data 
or on an objective function, the algorithm determines the 
fitness of the individuals in the population. Operators such 
as mutation and crossover are then used to generate new 
members of the population. The fittest individuals are finally 
selected as members of the next population. When used as 
an active learning approach, Eagle relies on a committee-
based algorithm to determine most informative positive and 
negative examples. In addition to the classical entropy-based 
selection, the Coala [24] extension of Eagle also allows 
the correlation between resources to be taken into consid-
eration during the selection process for most information 
examples. All active learning versions of Eagle ensure that 
each iteration of the approach only demands a small number 
of labels from the user. Eagle is also designed to support 
the unsupervised learning approach of LS. In this case, the 
approach aims to find individuals that maximize so-called 
pseudo F-Measures [23, 25].

The Acids approach [36] targets instance matching by 
joining active learning with classification using linear Sup-
port Vector Machines (SVM). Given two instances s and t, 
the similarities among their datatype values are collected 
in a feature vector of size N. A pair (s, t) is represented as a 
point in the similarity space [0, 1]N . At each iteration, pairs 
are (1) selected based on their proximity to the SVM classi-
fier, (2) labeled by the user, and (3) added to the SVM train-
ing set. Mini-batches of pairs are labeled as positive if the 
instances are to be linked with an R, or negative otherwise. 

The SVM model is then built after each step, where the clas-
sifier is a hyperplane dividing the similarity space into two 
subspaces. String similarities are computed using a weighted 
Levenshtein distance. Using an update rule inspired by per-
ceptron learning, edit operation weights are learned by maxi-
mizing the training F-score.

Euclid [23] is a deterministic learning algorithm loosely 
based on Raven. Euclid reuses the property matching tech-
niques implemented in Raven and the idea of having known 
classifier shapes. In contrast to previous algorithms, Euclid 
learns combinations of atomic LS by using a hierarchical 
search approach. While Euclid was designed for unsuper-
vised learning, it can also be used for supervised learning 
based on labeled training data [23].

One of the most crucial tasks when dealing with evolv-
ing datasets lies in updating the links from these data sets 
to other data sets. While supervised approaches have been 
devised to achieve this goal, they assume the provision of 
both positive and negative examples for links [20]. However, 
the links available on the Data Web only provide positive 
examples for relations and no negative ones, as the open-
world assumption underlying the Web of Data suggests that 
the non-existence of a link between two resources cannot 
be understood as stating that these two resources are not 
related. In Limes, we addressed this drawback by propos-
ing Wombat [29], the first approach for learning links based 
on positive examples only. Wombat is inspired by the con-
cept of generalisation in quasi-ordered spaces. Given a set 
of positive examples, it aims to find a classifier that covers 
a large number of positive examples (i.e., achieves a high 
recall on the positive examples) while still achieving a high 
precision. The simple version of Wombat relies on a two-
step approach, which learns atomic LS and subsequently 
finds ways to combine them to achieve high F-measures. The 
complete version of the algorithm relies on a full-fledged 
upward refinement operator, which is guaranteed to find the 
best specification possible but scales less well than the sim-
ple version.

6 � Limes Use Cases

Limes was already used in a large number of use cases. In the 
following, we present some of the datasets and other applica-
tions, in which techniques developed for Limes or the Limes 
framework itself, were used successfully.

Datasets Limes is actively used by the linked data com-
munity to link new generated datasets into the already 
existing datasets in the LOD. For example, The multiligual 
dataset of SemanticQuran [32] is linked using Limes into 
3 versions of the RDF representation of Wiktionary and to 
DBpedia. A second dataset also linked with Limes is the 
LinkedTCGA​ [28], an RDF representation of The Cancer 
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Genome Atlas. Limes was used to compute the more than 
16 million links which connect LinkedTCGA​ with chromo-
somes from OMIM and HGNC.

Knowledge base repair The Colibri [25] approach 
attempts to repair instance knowledge in n knowledge 
bases. Colibri discovers links for transitive relations 
(e.g.,owl:sameAs) between instances in knowledge bases 
while correcting errors in the same knowledge bases. In con-
trast to most of the existing approaches, Colibri takes an n-
set11 of resources K1,… ,Kn with n ≥ 2 as input. Thereafter, 
Colibri relies on the Limes ’s unsupervised deterministic 
approach Euclid to link each pair (Ki,Kj) of sets of resources 
(with i ≠ j ). The resource mappings resulting from the link 
discovery are then forwarded to a voting approach, which 
is able to detect poor mappings. This information is subse-
quently used to find sources of errors in the mappings, such 
as erroneous or missing information in the instances. The 
errors in the mappings are finally corrected and the approach 
starts the next linking iteration.

Question answeringLimes was also used in the creation of 
the knowledge base behind the question answering engine 
Deqa [8]. This engine was designed to be a comprehensive 
framework for deep web question answering. To this end, the 
engine provides functionality for the extraction of structured 
knowledge from (1) unstructured data sources (e.g., using 
FOX [38] and MAG [11]) and (2) the deep Web using the 
OXPath language.12 The results of the extraction are linked 
with other knowledge sources on the Web using Limes. In the 
example presented in [8], geo-spatial links such as nearBy 
were generated using Limes ’ approach HR

3 . The approach 
was deployed on a dataset combining data on flats in Oxford 
and geo-spatial information from LinkedGeoData and was 
able to support the answering of complex questions such as 
“Give me a flat with 2 bedrooms near to 
a school”.

Benchmarking While the creation of datasets for the 
Linked Data Web is an obvious use of the framework, Limes 
and its algorithms can be used for several other purposes. 
A non-obvious application is the generation of benchmarks 
based on query logs [10, 27]. The DBpedia SPARQL bench-
mark [10] relies on DBpedia query logs to detect clusters of 
similar queries, which are used as templates for generating 
queries during the execution of the benchmark. Computing 
the similarity between the millions of queries in the DBpe-
dia query log proved to be an impractical endeavor when 
implemented in a naïve fashion. The SPARQL queries were 
represented as binary features vectors. Using The HR

3 algo-
rithm [15]., the runtime of the similarity computations could 
be reduced drastically by expressing the problem of finding 

similar queries as a near-duplicate detection problem. The 
application of Limes in the automatic benchmarks genera-
tion approach Feasible [27] was also in the clustering of 
queries. The approach was designed to enable users to select 
the number of queries that their benchmark should gener-
ate. The examplar-based approach from Limes [19] was used 
as a foundation for detecting the exact number of clusters 
required by the user while optimizing the homogeneity of 
the said clusters. The resulting benchmark was shown to 
outperform the state of the art in how well it encompasses 
the idiosyncrasies of the input query log.

Dataset enrichment Over the recent years, a few frame-
works for RDF data enrichment such as LDIF13 and Deer14 
have been developed. The frameworks provide enrichment 
methods such as entity recognition [38], link discovery and 
schema enrichment [2]. However, devising appropriate con-
figurations for these tools can prove a difficult endeavour, as 
the tools require the right sequence of enrichment functions 
to be chosen and these functions to be configured adequately. 
In Deer [33], we address this problem by presenting a super-
vised machine learning approach for the automatic detection 
of enrichment pipelines based on a refinement operator and 
self-configuration algorithms for enrichment functions. The 
output of Deer is an enrichment pipeline that can be used on 
whole datasets to generate enriched versions.

Using link predicates such as owl:sameAs, the Deer 
’s linking enrichment operator is used to connect further 
datasets With the proper configurations, the linking enrich-
ment operator can be used to generate arbitrary predicate 
types. For instance, using the gn:nearby for linking 
geographical resources. The idea of the self configuration 
of linking enrichment function is to (1) first perform an 
automatic source-target pairwise predicates matching. e.g., 
matching the rdfs:label property from source dataset 
to the property skos:prefLabel from target dataset., 
then (2) perform link discovery based on Limes ’ Wombat 
algorithm [23]

7 � Evaluation

The approaches included in Limes are the result of more 
than ten years of research, during which the state of the art 
evolved significantly. In Table 2, we give an overview of the 
performance improvement (w.r.t. runtime and/or accuracy) 
of a selection of algorithms currently implemented in Limes. 
The improvements mentioned refer to improvements w.r.t. 
the state of art at the time at which the papers were written. 
We refer the readers to the corresponding research paper for 

13  http://​ldif.​wbsg.​de/.
14  https://​github.​com/​dice-​group/​deer/.

11  An n-set is a set of magnitude n.
12  http://​www.​oxpath.​org/.

http://ldif.wbsg.de/
https://github.com/dice-group/deer/
http://www.oxpath.org/
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the evaluation settings and the experimental results for each 
of the algorithms mentioned in the table.

8 � Conclusion and Future Work

With Limes, we offer an extensible framework for the discov-
ery of links between knowledge bases. The framework has 
already been used in several applications and shown to be a 
reliable, near industry-grade framework for link discovery. 
The graphical user interface15 and the manuals for users and 
developers16, which accompany the tool, make it a viable 
framework for novices and expert users. While a number 
of challenges have been addressed in the framework, the 
increasing amount of Linked Data available on the Web and 
the large number of applications that rely on it demand that 
we address ever more challenges over the years to come. 
In particular, the intelligent use of memory (disk, RAM, 

etc.) becomes a problem of central importance when faced 
with amounts of RAM that cannot fit the sets S and T [13] 
or when faced with streaming or complex data (e.g., 5D 
geospatial data). Big Data frameworks such as SPARK17 
and FLINK18 promise to alleviate this problem when used 
correctly. Also worth of investigation are approximative 
approaches able to cope with the noise in Linked Open Data 
sources as these data sources become increasingly important 
for real-life applications.
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