
Vol.:(0123456789)1 3

KI - Künstliche Intelligenz (2021) 35:201–205
https://doi.org/10.1007/s13218-021-00732-8

PROJECT REPORTS

Learning by Enhancing Half‑Baked AI Projects

Ken Kahn1 · Niall Winters1

Received: 27 July 2020 / Accepted: 14 June 2021 / Published online: 24 June 2021
© The Author(s) 2021

Abstract
We have developed thirty sample artificial intelligence (AI) programs in a form suitable for enhancement by non-expert
programmers. The projects are implemented in the Snap! blocks language and can be run in modern web browsers. These
projects have been designed to be modifiable by school students and have been iteratively developed with over 100 students.
The projects involve speech synthesis, speech and image recognition, natural language processing, and deep machine learning.
They illustrate a variety of AI capabilities, concepts, and techniques. The intent is to provide students with hands-on experi-
ence with AI programming so they come to understand the possibilities, problems, strengths, and weaknesses of AI today.

Keywords Project-based learning · Blocks programming · Snap! · Artificial intelligence · Machine learning

1 Introduction

One very effective way of acquiring a deep understanding
and appreciation of AI is by building AI programs. However,
building AI programs can be difficult and time-consuming.
These shortcomings can be significantly reduced, however,
by providing learners with high-level building blocks and
associated guides [6]. Here we present an additional way
to enable learners to experience the construction of AI pro-
grams despite a lack of experience and a limited amount of
time.

The idea is to provide a range of half-baked or minimal AI
programs designed to be enhanced by learners. This builds
upon the work of using half-baked projects as resources in
learning to program computers [7]. A related effort is the
Machine Learning for Kids website [8] where tutorials are
provided for constructing simple AI projects.

As part of the eCraft2Learn project [5] and subsequently,
we developed several small AI projects. All the projects were
built upon the Snap! [3] programming blocks designed to
support AI programming [6]. The programs illustrate several
different AI concepts, techniques, and capabilities. While

each one is able to perform a simple task or two, they can be
enhanced by non-expert programmers to be more capable.
In doing so, we expect that by engaging in how the pro-
grams work to improve them, the students will learn about
the abilities, strengths, and weaknesses of AI today. At least
one or two layers of technology underlying AI programs
will stop being magical black boxes to the students. We are
currently at an early stage of evaluating these expectations
with empirical studies.

Some of the projects illustrate ways of creatively using
speech synthesis, speech and image recognition, natural
language processing, and deep machine learning. Others
explore innovative ways of applying pre-trained deep learn-
ing models to tasks. The variety of projects maximises the
chance that a project will fit with a student’s interests and
goals.

2 Some Half‑Baked Projects

The complete list of thirty projects can be found at the
eCraft2Learn AI home page [4]. Descriptions of a sample
of these projects follows.

2.1 Speech Commands

We have developed a variety of projects that illustrate using
speech to control an application. Typically these commands
control the movement of graphical sprites. The simplest

 * Ken Kahn
 toontalk@gmail.com

 Niall Winters
 niall.winters@education.ox.ac.uk

1 Department of Education, University of Oxford, 15 Norham
Gardens, Oxford OX2 6PY, UK

http://orcid.org/0000-0002-8208-7423
http://crossmark.crossref.org/dialog/?doi=10.1007/s13218-021-00732-8&domain=pdf

202 KI - Künstliche Intelligenz (2021) 35:201–205

1 3

projects respond to single words or fixed phrases. One pro-
ject creates the illusion that one can give full sentence com-
mands. It works by searching for a keyword and a number
somewhere in the sentence. E.g. “Could you please go for-
ward 25 steps” is interpreted as the command “FORWARD
25”. Several of these projects complement speech recogni-
tion with speech synthesis to support a voice-only interface.

The mechanism of speech recognition varies between
projects. One project uses the Web Speech API [10] sup-
ported by several browsers. It is the most reliable and flex-
ible method for recognising speech. This reliance upon a
web service, however, prevents the recognition functional-
ity from being more than a black box to students. Further-
more, it requires a fast reliable Internet connection and raises
privacy issues. Another project instead relies upon Snap!
blocks that we provide for training the system to recognise
a handful of words. Yet another takes advantage of Google’s
Teachable Machine [2] where students can create and train
audio recognition models that are then imported into their
Snap! projects. Both of these approaches rely only upon the
student’s computer to train and run the model and hence
protects their privacy.

When students train their own speech recognition models
they are quickly exposed to the imperfections of recogni-
tion. If trained with samples only from one person it may
not be very reliable with other speakers. They can discover
that with more and varied samples the recogniser becomes
more robust. If they increase the number of words their
models can recognise they will discover the system’s accu-
racy drops. Working with their trained model they become
exposed to the notion of “confidence scores”that indicate
the relative certainty of correctly classifying audio input.
Finally, they need not limit their projects to speech but can
explore the recognition of different sounds.

2.2 Interactive Sentence and Story Generators

Two projects use speech input and output to interactively
fill-out a sentence or story template. Experience with older
textual versions of this is that students discover that with-
out careful attention to parts of speech and grammar rules
ungrammatical sentences result. These projects give students
first-hand experience with the construction of voice-only
interfaces.

2.3 Training a System to Distinguish Between
Different Categories of Images

Projects include a rock, paper, and scissors game and a draw-
ing program that is driven by gestures. As with the speech
recognition projects, the students encounter the need for a
sufficient number of varied inputs for trained models to be
accurate enough for their projects. They may acquire some

degree of understanding how popular apps that recognise
people, objects, and gestures work internally. And reasons
why these apps make mistakes or exhibit biases.

2.4 Using Body Pose and Segmentation to Provide
Augmented Reality Apps

This includes a project that detects if someone is touching
his or her face and another where virtual balloons are popped
with real video hands. These projects may contribute to an
understanding of how gesture-based games such as those
that use Microsoft’s Kinect [12] work and how filters are
added to images in apps such as Instagram and Snapchat.

2.5 An App that Generalises Mathematical
Relationships Based on Examples

This is the simplest of the projects that rely upon creat-
ing, training and evaluating deep neural networks. Unlike
projects that rely upon real-world data the goal here is to
build a trained model that can approximate a mathematical
relationship as simple as doubling or the more challenging
square root. While enhancing this project students may learn
the need for larger and deeper models for certain kinds of
relationships. And how the number of samples and training
cycles affects the quality of the predictions. Students may be
surprised to discover that neural networks can quickly learn
to approximate very well a relationship like doubling and yet
fail to produce exact outputs.

2.6 A Program that Learns to Play Better Tic Tac Toe

This app is an example of how a neural network can be cre-
ated, trained, and then used to guide game play. Learning
to play a game typically involves more advanced machine
learning methods such as deep reinforcement learning. As
a much simpler alternative we provide a framework where
logs of previous games are used to train a model to predict
the probabilities of winning given the state of a game. The
program makes a move based on the probabilities of win-
ning from the boards that result from each possible move
from the current state. One can engage with fundamental
concepts such as the trade-off between exploiting one’s cur-
rent knowledge and exploring new things to increase one’s
knowledge. This project also illustrates issues in how to
encode something like a game board into a list of numbers a
neural network can process. One can learn the strengths and
weaknesses of learning from self-play.

Note that by providing students with a functioning Tic
Tac Toe implementation students can focus their energies
and attention on getting the computer to play it well.

203KI - Künstliche Intelligenz (2021) 35:201–205

1 3

2.7 An App to Predict How One Rates Abstract Art

This app uses deep machine learning to predict how a user
will rate randomly generated images. Each image is gen-
erated from a dozen random numbers and the program
learns to associate lists of image generating numbers with
user provided ratings. The trained model can then be used
to “recommend” new images similar to how many popular
recommender systems work.

2.8 Three Very Different Ways to Create a Question
Answering App

One project fetches answers from web services, another
extracts answers from passages of text, and the third one is
trained to recognise paraphrases of questions with known
answers. Experience enhancing any of them should help
demystify conversational agents such as Alexa and Siri.
Exploring three approaches to question answering should
reveal their different strengths and weaknesses.

2.9 An App that Learns to Determine How Much
Confidence is Revealed in a Text Passage

This is an example of emotion detection that relies upon sen-
tence encoding. This simple example of sentiment analysis
can be revised by students to categorise other sentiments
such as worry, fear, optimism, etc..

2.10 An App that Learns to give Names to Random
Colours

This app provides a simple example of a categorical deep
learning classifier. Given three numbers corresponding to
red, green, and blue it tries to match it to one of the colour
names it was trained with. Students can learn how the num-
ber of colour names, number of samples, model architecture,
and training regime influence accuracy.

2.11 An App that Transfers the Styles of Famous
Artists to New Images

This app is a fun example of combining the learned style
of an artist with a new image. It provides an example of AI
generated art by mashing up two different kinds of inputs in
a high-level manner.

2.12 Word Guessing Games that Rely upon Word
Embeddings

Word embeddings map words into a high-dimensional space
(300 in our implementation). Words that are closely related
are close in this space and unrelated words are far apart.

Here a very simple game uses word embeddings to provide
clues to a player trying to guess a word. This and other uses
of word and sentence embeddings expose students to the
idea of distributed meanings. Other projects could be created
to illustrate very different uses of word embeddings such as
finding word analogies or doing translations.

3 Learning Resources

The eCraft2Learn website [4] includes programming guides,
tutorials, and other resources for learning to use the Snap!
AI blocks that underlie all the half-baked projects. There
are programming guides for blocks for speaking, listening,
seeing, natural language processing, neural networks, and
accessing a variety of pre-trained deep neural networks.
Each of these guides are interactive web pages contain-
ing several exercises implemented as embedded instances
of Snap!. Each instance is loaded with relevant blocks and
comments. There are also several interactive tutorials con-
sisting of sample uses of the AI blocks interleaved with
instructions for their use and exploration suggestions. Both
the guides and tutorials cover all of the AI Snap! blocks
used in the half-baked projects, as well as additional blocks
students may use to enhance their projects.

4 Preliminary Results from Trials

We have introduced our half-baked projects to over a hun-
dred students in several workshops. However, with only
three hours for introducing the tools, libraries, and sample
projects, little time is left for deep engagement or significant
enhancements.

Students were proud of what they created even though
they had made only a few enhancements to projects we pro-
vided them. In some cases, with young students (8–12 years
old) in a 3 hour workshop, it is hard to imagine how they
could complete a project in any other manner. A few of the
projects were multiple-day efforts by older students (14–16
years old) who became very engaged in changing the seed
project to make something that was authentically theirs.

Our half-baked projects have also been introduced to chil-
dren from 6 to 16 in India and the Middle East in one-month
long AI programming online “boot camps” offered by Clev-
ered, an Indian company that offers professional program-
ming and AI training. To date they have offered three boot
camps with six to eight students each time. For each boot
camp we provided feedback to the students when they pro-
posed their projects and when they made final presentations.

While most of our half-baked projects have yet to be
enhanced by students in our studies, a few that have include:

204 KI - Künstliche Intelligenz (2021) 35:201–205

1 3

1. Taking a spoken command app and a pose detection app
and creating a drawing program that responds to spoken
commands to change the pen colour and line thickness.
Drawing is controlled by moving one’s hand in the air.

2. Another student changed the spoken command app
into a spoken version of the classical textual adventure
games.

3. Starting with an app that controlled the movement of a
sprite to the left or right by pointing, a young student
added two more directions.

4. A student enhanced the “name a colour” app so that
when the app incorrectly names a colour it adds that
instance to its training data to reduce the chance of simi-
lar mistakes in the future.

5. A student created an app based on the project that judges
the level of confidence expressed in a sentence. Her app
determined how bad someone was feeling based on what
they wrote and then opened a meditation video depend-
ing upon the degree of unhappiness detected.

6. Several of the Clevered boot camp students created chat-
bots that enhanced projects that provided speech inter-
faces for Wikipedia or weather anywhere in the world.

7. Two groups of Clevered students used custom image
classification to create an app that categorises items as
recyclable or as trash.

8. Other Clevered students introduced simple gesture rec-
ognition into computer games that had developed build-
ing upon the Rock Paper Scissors sample project.

4.1 An Online Synchronous Course to Enhance
the Don’t Touch Your Face Project

We recently completed teaching a course consisting of 13
one-hour Skype sessions. The participating three young
women from non-traditional academic backgrounds are
being supported by the Go Girl Project [11]. They all had
some experience with Scratch [9].

Each session consisted of the girls presenting their home-
work followed by one of the authors (Kahn) introducing
them to some new technology and concepts followed by
the students doing an exercise. The first half of the course
involved a combination of a general introduction to AI and
an introduction to the new AI blocks we have added to
Snap!.

The Don’t Touch Your Face app was inspired by donot-
touchyourface.com which uses a webcam to determine if the
user is touching his or her face and if so issues a warning.
Our project relies upon Posenet [1] which quickly reports the
locations of up to 17 face and body parts. The half-baked
version issues a warning when either wrist (hands are not
tracked) comes close to either eye or the nose (the mouth
isn’t tracked).

All the students fine-tuned the threshold for deciding
what “close” means as well as the threshold for the mini-
mum confidence score that a body part’s location is known
by the model. They changed the artwork for the hands,
eyes, and nose. They changed the message when touching
to include how many seconds since the start of the touch.
They incorporated sounds that they recorded into the app.
One student added a mouth, ears, and the rest of the face
despite the fact that the system did not report their locations.
To do so she made the mouth’s location be an offset from
where the nose is.

The students discovered that the app had been tuned to
work well only when someone was the appropriate distance
from the camera. Because the threshold was defined in terms
of pixel distance it produced false positives when one is far
from the camera and false negatives when close. The stu-
dents followed a suggestion that they compute the threshold
as the distance between the images of the eyes times a tun-
able parameter.

A surprising outcome happened after they enhanced
the app to display the camera feed in the background. The
sprites for the nose and eyes were displayed on top of the
video. They drew funny eye glasses, earrings, and noses that
became “filters” (Fig. 1).

The students were regularly able to creatively enhance the
Don’t Touch your Face project but only after guidance that
usually consisted of demos of making a variety of enhance-
ments. Rarely did they invent a project enhancement, instead

Fig. 1 The Don’t Touch Your Face app turned into a “filters” app

205KI - Künstliche Intelligenz (2021) 35:201–205

1 3

they personalised example enhancements that we presented
to them. Typically, their presentations of their enhancements
indicated that they understood their programs beyond a
superficial level.

5 Conclusion

We have designed thirty half-baked AI projects in the Snap!
programming system. They were designed to be explored
and enhanced by students. We hope to learn more about the
pedagogical effectiveness of half-baked AI projects as we
continue our research. We encourage others to make use
of our AI learning resources in their teaching and research.
It is open source and Creative Commons license. Over the
coming years we hope to see many creative remixes of our
projects. And we expect that the students who created these
enhancements will, in the process, have acquired an appre-
ciation and understanding of AI.

Funding The eCraft2Learn project is funded by the European Union’s
Horizon 2020 Coordination and Research and Innovation Action under
Grant Agreement No 731345. The Go Girl project is funded by the Uni-
versity of Oxford IT Innovation Seed Fund and has received subsequent
funding from Goldman Sachs Gives.

Availability of data and material https://github.com/ecraft2learn/ai

Declarations

 Conflict of interest The authors declare that they have no confluct of
interest.

 Code availability https://github.com/ecraft2learn/ai

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Google: Posenet (2021) https:// github. com/ tenso rflow/ tfjs- models/
tree/ master/ posen et. Last accessed 5 March, 2021

 2. Google: Teachable Machine (2021) https:// teach ablem achine.
withg oogle. com/. Last accessed 5 March, 2021

 3. Harvey B, Garcia DD, Barnes T, Titterton N, Armendariz D,
Segars L, Lemon E, Morris S, Paley, J (2013) Snap! (build your
own blocks). In: Proceeding of the 44th ACM technical sympo-
sium on computer science education, pp. 759

 4. Kahn K (2021) eCraft2Learn AI home page (2021). https:// ecraf
t2lea rn. github. io/ ai/. Last accessed 5 March

 5. Kahn K, Montero CS, Voigt C (2018) Steam learning in formal
and informal settings via craft and maker projects. In: Proceedings
of the 17th ACM conference on interaction Design and Children,
pp. 728–733

 6. Kahn K, Winters N (2018) AI programming by children. In: Pro-
ceedings of constructionism 2018 conference. Constructionism
2018

 7. Kynigos C (2007) Half-baked logo microworlds as boundary
objects in integrated design. Inform Educ-An Int J 6(2):335–359

 8. Lane D (2021) Machine learning for Kids (2021). https:// machi
nelea rning forki ds. co. uk/. Last accessed 5 March

 9. Maloney J, Resnick M, Rusk N, Silverman B, Eastmond E (2010)
The Scratch programming language and environment. ACM
Transac Comput Educ (TOCE) 10(4):1–15

 10. Mozilla: Web Speech API (2021) https:// devel oper. mozil la. org/ en-
US/ docs/ Web/ API/ Web_ Speech_ API/ Using_ the_ Web_ Speech_
API. Last accessed 5 March, 2021

 11. University of Oxford: Go Girl (2021) https:// gogir loxfo rd. org/
about- the- proje ct/. Last accessed 5 March, 2021

 12. Wikipedia: Kinect (2021) https:// en. wikip edia. org/ wiki/ Kinect.
Last accessed 5 March, 2021

http://creativecommons.org/licenses/by/4.0/
https://github.com/tensorflow/tfjs-models/tree/master/posenet
https://github.com/tensorflow/tfjs-models/tree/master/posenet
https://teachablemachine.withgoogle.com/
https://teachablemachine.withgoogle.com/
https://ecraft2learn.github.io/ai/
https://ecraft2learn.github.io/ai/
https://machinelearningforkids.co.uk/
https://machinelearningforkids.co.uk/
https://developer.mozilla.org/en-US/docs/Web/API/Web_Speech_API/Using_the_Web_Speech_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Speech_API/Using_the_Web_Speech_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Speech_API/Using_the_Web_Speech_API
https://gogirloxford.org/about-the-project/
https://gogirloxford.org/about-the-project/
https://en.wikipedia.org/wiki/Kinect

	Learning by Enhancing Half-Baked AI Projects
	Abstract
	1 Introduction
	2 Some Half-Baked Projects
	2.1 Speech Commands
	2.2 Interactive Sentence and Story Generators
	2.3 Training a System to Distinguish Between Different Categories of Images
	2.4 Using Body Pose and Segmentation to Provide Augmented Reality Apps
	2.5 An App that Generalises Mathematical Relationships Based on Examples
	2.6 A Program that Learns to Play Better Tic Tac Toe
	2.7 An App to Predict How One Rates Abstract Art
	2.8 Three Very Different Ways to Create a Question Answering App
	2.9 An App that Learns to Determine How Much Confidence is Revealed in a Text Passage
	2.10 An App that Learns to give Names to Random Colours
	2.11 An App that Transfers the Styles of Famous Artists to New Images
	2.12 Word Guessing Games that Rely upon Word Embeddings

	3 Learning Resources
	4 Preliminary Results from Trials
	4.1 An Online Synchronous Course to Enhance the Don’t Touch Your Face Project

	5 Conclusion
	References

