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Abstract
In this paper, we propose multi-phase fine-tuning for tuning deep networks from typical object recognition to sign language 
recognition (SLR). It extends the successful idea of transfer learning by fine-tuning the network’s weights over several 
phases. Starting from the top of the network, layers are trained in phases by successively unfreezing layers for training. We 
apply this novel training approach to SLR, since in this application, training data is scarce and differs considerably from the 
datasets which are usually used for pre-training. Our experiments show that multi-phase fine-tuning can reach significantly 
better accuracy in fewer training epochs compared to previous fine-tuning techniques

Keywords Sign language recognition · Transfer learning

1 Introduction

Different hand gestures, facial expressions and body pos-
tures form grammatically-complete, highly-structured sign 
languages. Sign language recognition (SLR) can be catego-
rized into three groups: recognition of alphabets [7, 24, 25], 
isolated words [13], or continuous sentences. In continuous 
SLR the input comprises a video containing a sequence of 
gestures and the desired output is a sequence of words com-
plying to the grammar of that sign language [6, 11, 12].

Research on SLR has shifted to using deep learning meth-
ods, rather than hand-crafted features, the most prominent 
work includes [5, 6, 11, 12]. Recent methods even involve 
domain adaption [19] and sign language transformers [3]. 
The majority of the aforementioned approaches rely on 
transfer learning by including some pre-trained convolu-
tional neural network (CNN), either for classifying individ-
ual frames or as a feature extractor. Transfer learning uses 
the weights learned while solving a different, yet related, 

task to initialize the weights of the network solving a new 
task. We refer to the former network as the source network, 
and to the latter as the target network.

Transfer learning involves making two important deci-
sions: First, how many layers to transfer? Second, whether 
to freeze the transferred layers or to fine-tune them? [4, 5, 
23, 26]. While no clear theory exists on how to make these 
choices, they depend on both the size of the target dataset 
and its similarity to the source data [26]. Answering these 
questions becomes even more complicated when the source 
and target tasks differ strongly.

Existing work on transfer learning for CNNs can be 
divided into two groups: (a) using a pre-trained source CNN 
just as a feature extractor [16, 20]; (b) transferring some lay-
ers’ weights to a target network, randomly initializing the 
weights of the non-transferred layers, and fine-tuning the 
target network on the target domain [23, 26]. Fine-tuning 
can be done by learning either (1) the weights in the non-
transferred layers only [14], or (2) also the weights in some 
transferred layers, where usually the top-k layers are trained 
at once. We refer to the second fine-tuning method as sin-
gle-phase fine-tuning. Research shows a clear advantage for 
fine-tuning weights in transferred layers in contrast to freez-
ing them [15, 26]. However, if the target data is inherently 
different from the source data, these fine-tuning methods do 
not always works [1, 2, 20, 26].

In this paper, we propose multi-phase fine-tuning for tun-
ing deep networks from everyday object recognition to SLR. 
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The concept is depicted in Fig. 1. It extends the successful 
idea of transfer learning by fine-tuning the network’s weights 
in several phases. In the first phase, only a few topmost lay-
ers are fine-tuned. In successive phases, more layers are 
added and jointly fine-tuned with the layers from previous 
phases. We evaluate our proposed approach using Goog-
LeNet [21] on frame-level classification in continuous sign 
language videos, a considerably different domain from Ima-
geNet [18] (see Fig. 1). CNNs applied to individual frames 
are a key step in several SLR systems [5, 6, 11, 12, 17]. 
Our results show that multi-phase fine-tuning considerably 
improves task performance and that it converges faster with 
fewer learning epochs compared to the earlier single-phase 
fine-tuning.

Recent SLR methods rely on deep learning methods. 
Most methods employ some pre-trained network, however 
little research has been done in investigating what is the 
best approach to fine-tune these pre-trained networks to the 
new task, especially since it is usually quite different than 
the source task (e.g. object recognition when pre-trained on 
ImageNet). In this work, we focus on investigating how to 
fine-tune the network from the task of object recognition 
to sign language recognition. We believe that fine-tuning a 
pre-trained network phase-wise would allow the top layers 
to adapt to the new tasks, while keeping the shallower layers 
unchanged, thereby improving the generalization capabilities 
of the network.

Our contribution is threefold. (1) We introduce a multi-
phase fine-tuning strategy that improves accuracy and addi-
tionally allows faster training. We extend [26] by training 

the unfrozen layers step-wise as opposed to fine-tuning them 
all at once. (2) We demonstrate the success of multi-phase 
fine-tuning for transfer learning between two very different 
domains: from everyday object recognition to SLR. (3) We 
present a CNN-based approach for frame-based SLR which 
can be valuable for the sign language community.

The remainder of the paper is structured as follows: in 
Sect. 2, we thoroughly explain our proposed fine-tuning 
approach. In Sects. 3 and 4 we demonstrate our experimental 
setup and results. Section 5 concludes the paper.

2  Methods

In this section, we give an overview of our CNN training, 
standard fine-tuning methods, and illustrate our proposed 
multi-phase fine-tuning approach.

2.1  CNN Training

A CNN function maps the input x to a predicted label 
ŷ = f (x;w) , given trainable weights w. In supervised learn-
ing, CNNs are trained using stochastic gradient descent 
(SGD), given a training data set D = {(xi, yi)}N

i=1
 with N 

inputs xi and labels yi . SGD alternates between feedfor-
ward and backpropagation steps using mini-batches of m 
examples from the training set. A minibatch is a subset 
{(xi, yi)}i∈I ⊂ D , where I ⊂ {1,… ,N} such that |I| = m.

In the feedforward step, a prediction ŷi is computed for 
each sample xi in the mini-batch given the current weights 
w. A scalar loss between the true labels and predictions is 
calculated by

where Li is the per-sample loss function, e.g., cross entropy 
for classification.

For backpropagation the gradient of L with respect to the 
weights w is first evaluated. We apply SGD with momentum, 
the initial weights w0 are drawn randomly. The velocity �0 
representing the past gradients is initialized to zero. At train-
ing iteration t ≥ 1,

where gt is the current gradient estimate, �t is the step 
for modifying the weights, dependent on the former 

(1)L(w) =
1

m

∑

i∈I

Li(ŷ
i
, yi) =

1

m

∑

i∈I

Li(f (x
i
;w), yi),

(2)

gt =
1

m
∇w

∑

i∈I

Li(f (x
i
;wt−1), y

i)

�t = (1 − �)�t−1

�t = ��t−1 − �tgt

wt = wt−1 + �t,

Fig. 1  Top: source network pre-trained on ImageNet. Bottom: pro-
posed multi-phase fine-tuning approach. The layers to be fine-tuned 
in the target network are adapted over several phases starting from the 
top layer.
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gradients weighted by momentum � , and the current gra-
dients weighted by the learning rate � that decays at a rate 
of �.

2.2  Single‑Phase Fine‑Tuning

The initial weights w0 for a target network, apart from the 
last classifying layer, are initialized to pre-trained values 
from a source network. The classifying layer is modified to 
have as many neurons as the number of classes in the target 
task and is initialized with random weights. Weights of the 
target network are then fine-tuned, via Eq. (2), using a train-
ing dataset from the target domain.

A key question is whether to freeze transferred weights 
or fine-tune them to the new task. Freezing weights is often 
referred to as “off-the-shelf” transfer learning [20]; only the 
weights in the last classifier layer are updated.

If fine-tuning is applied to other layers as well, typically 
the k topmost layers are fine-tuned while keeping the other 
layers’ weights at their source network values [23, 26]. We 
refer to this approach as single-phase fine-tuning. For a net-
work with a total of L layers, we use the notation top-k lay-
ers to refer to updated weights in layers (L − k + 1,… , L) . 
Weights in layers (1,… , L − k) remain frozen. Single-phase 
fine-tuning of the top-3 layers is illustrated in Fig. 2 (top).

2.3  Multi‑phase Fine‑Tuning

We propose a multi-phase fine-tuning approach where the 
top-k layers are trained sequentially with a step-size s in (k/s) 

phases1 until all of the k layers have been fine-tuned. In the 
first phase we fine-tune only the top-s layers. In each of the 
following phases, we add s more layers to be fine-tuned. At 
each phase, training continues until a pre-specified termi-
nation criterion is reached, e.g., the maximum number of 
training epochs or saturation of the validation loss.

For example, fine-tuning top-k layers with a step-size 
s = 1 for k = 3 has three phases; P1, P2, and P3 (see Fig. 2): 

P1 Start by fine-tuning one layer, e.g., only the topmost 
layer of the network.

P2 Include one more layers for a total of 2 and fine-tune the 
top-2 layers.

P3 Add again one layer for a total of 3 and fine-tune the 
top-3 layers.

We remark that if s = k , multi-phase fine-tuning is equiva-
lent to single-phase fine-tuning of top-k layers.

3  Experimental Setup

In Sect. 3.1 we describe the dataset and the evaluation met-
rics applied in this work. Section 3.2 covers the implementa-
tion details.

3.1  Dataset and Metrics

We use RWTH-PHOENIX-Weather Multisigner 2014 [8, 
10], one of the largest, publicly available, annotated data-
sets in the sign language domain. It has of 6841 videos of 
continuous signing in German sign language, each video 
labelled with an output sentence as a sequence of words 
(Fig. 3). Note that the resulting sequence of words is not a 
translation to spoken language, rather a literal translation 
of the signs.

We solve a classification problem where the input is a 
single frame and as output label we use the frame-to-label 
alignments provided by [12]. Each word is split into three 
parts each making up one label as depicted in Fig. 3, result-
ing in 3693 classes for 500,000 frames. We reserve 10% of 
the images for validation. Throughout our experiments, we 
record the top-1 and top-5 classification accuracies.

3.2  Implementation Details

CNN Architecture: We opt for GoogLeNet [21] with incep-
tion V3 [22] pretrained on ImageNet as the source network. 
It is the most commonly used network in recent SLR [6, 11, 
12]. GoogLeNet consists of several (precisely 8) inception 

Fig. 2  Top: single-phase fine-tuning unlocks and trains weights in all 
of the top-k (here k = 3 ) layers of a CNN simultaneously. Our multi-
phase fine-tuning (bottom) trains the weights in the top-k layers in 
several phases, successively adding more layers

1 We require that k is an integer multiple of s.
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modules, so we investigate the effect of fine-tuning a varying 
number of such modules instead of layers. Thus, we will be 
referring to layers as modules in our notation (top-k modules 
instead of top-k layers).

Fine-Tuning Setup: We fine-tune the top-k modules of the 
network, for k = 1, 2, 3,… , 8 . We compare the accuracy of 
our proposed multi-phase fine-tuning to traditional single-
phase fine-tuning. For multi-phase fine-tuning, we report 
results for step size s = 1, 2, 3 for all values of k. In all cases, 
the fully-connected layers are always trained from scratch. 
We note that fine-tuning the top-8 inception modules is 
equivalent to fine-tuning the entire network.

Training Hyperparameters: We apply SGD with Nes-
terov momentum � = 0.9 , and learning rate � = 0.01 that 
decays with rate � = e−6 , and batch size m = 32 . We apply 
a categorical cross-entropy loss. We adopt an early-stopping 
approach, where training is terminated if the validation loss 
does not improve for 3 consecutive epochs. Random weights 
are initialized using Xavier normal initializer [9].

4  Results and Analysis

In this section we report results of our baseline, single- and 
multi-phase fine-tuning experiments, in addition to hyperpa-
rameter exploration for mulit-phase fine-tuning.

4.1  Baseline Experiments

Frame-based recognition is a submodule in currently exist-
ing SLR systems [5, 6, 11, 12], however, it is not addressed 
separately. Therefore, we assess the base difficulty of the 
task with three baseline methods and report top-1 and top-5 
accuracies in Table 1.

To see how ImageNet features perform on the new task, 
we apply GoogleNet pre-trained on ImageNet as a feature 
extractor and train a fully-connected classifying layer on top. 

We also try two non-deep-learning methods to assess the 
difficulty of the problem. (1) Using SIFT features we extract 
the image descriptors, normalize and vector-quantize them 
using k-means to an 800-dimensional feature vector. A ran-
dom forest classifier with eight trees and a maximum depth 
of 30 is trained for classification. (2) Using HOG features, 
we extract a feature vector for each image, and train a logis-
tic regression classifier via SGD.

HOG with logistic regression performs best reaching a 
top-1 accuracy of 16.9%. The way it outperforms Goog-
LeNet as a feature extractor suggests that the learned fea-
tures do not transfer very well to the new target domain.

4.2  Single‑Phase vs. Multi‑phase Fine‑Tuning

We compare the proposed multi-phase fine-tuning with the 
standard single-phase fine-tuning. Table 2 shows the clas-
sification accuracies for both methods with step size s = 1 . 
We note that fine-tuning only the topmost module ( k = 1 ) 
already outperforms our baseline results from Table 1. For 
all values of k modules that are fine-tuned, we observe that 
multi-phase fine-tuning consistently reaches a higher accu-
racy than fine-tuning the same modules in a single phase.

Figure 4 (left) visualizes the top-1 accuracy as function of 
the number of modules fine-tuned. We note that with multi-
phase fine-tuning the accuracy constantly improves as more 

Fig. 3  Sample image sequence from RWTH-PHOENIX-Weather 
dataset [8]. It contains video sequences from German broadcast 
news along with their sentence annotations (in German). Authors 

of [12] have automatically aligned labels to each frame in the video 
sequence. Each word is further split into three word-part labels; an 
example is shown for the word “Temperatur” (English: temperature)

Table 1  Top-1 and top-5 classification accuracies of baseline meth-
ods.

 The values in bold highlight the best-performing method

Method Top-1 accuracy 
(%)

Top-5 
accuracy 
(%)

GoogLeNet feature extractor 14.7 30.8
SIFT with random forest 4.6 13.5
HOG with logistic regression 16.9 35.9
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modules are included. For single-phase fine-tuning, accuracy 
starts to degrade for k > 4.

Moreover, multi-phase fine-tuning requires less training 
epochs, see Fig. 4 (right). Training the network in multiple 
phases gives top layers the chance to adapt to the new task 
while lower layers remain unchanged. Our results show that 
this property of multi-phase fine-tuning improves the gener-
alization capability of the network. Fine-tuning pre-trained 
layers’ weights should not be done while random weights of 
newly added fully-connected layers are yet to be trained. We 
hypothesize that the pre-trained layers’ weights may prema-
turely start to adapt to the random weights.

4.3  Different Step‑Sizes

The step size s controls how many new modules are added 
for fine-tuning in each phase. We varied the step size to 
observe how it affects fine-tuning performance. Top-1 accu-
racies for k = 1,… , 8 modules fine-tuned with step-sizes 
s = 2 and s = 3 are presented in Fig. 5 (left). We note that 

multi-phase fine-tuning (with s = 2 and s = 3 ) still outper-
forms single-phase fine-tuning. The number of required 
training epochs shown in Fig. 5 (right), shows that multi-
phase fine-tuning converges faster also in this case, although 
the difference is not as significant as when comparing sin-
gle-phase fine-tuning to using step-size s = 1 . Applying a 
larger step-size s = 2 or s = 3 does not improve overall per-
formance compared to s = 1 . Since k = 6 is the only value 
that is comparable for step-sizes s = 1, 2 and 3, we compare 
the top-1 accuracy achieved by fine-tuning top-6 modules 
using the aforementioned step-sizes in Table 3. The small-
est step-size achieves the best performance with the least 
training epochs.

4.4  Comparison of Training Progress

We examined the training progress by recording the valida-
tion loss as a function of the number of training epochs for 
the best-performing multi-phase fine-tuning with step-size 
s = 1 and single-phase fine-tuning. The results are shown in 
Fig. 6 for training k = 3, 4,… , 8 of the topmost modules2

Table 2  Top-1 and top-5 accuracies when fine-tuning the top-k modules of GoogLeNet either in a single-phase or multiple phases with a step 
size s = 1

Note that for k = s = 1 , single- and multi-phase fine-tuning are equivalent

Accuracy Method k = 1 (%) k = 2 (%) k = 3 (%) k = 4 (%) k = 5 (%) k = 6 (%) k = 7 (%) k = 8 (%)

Top-1 Single-phase 24.5 30.0 22.0 26.3 11.8 10.9 5.0 8.2
Multi-phase 24.5 31.1 32.5 37.2 38.1 39.3 40.0 41.0

Top-5 Single-phase 46.5 56.9 46.0 52.7 31.8 27.2 16.7 22.7
Multi-phase 46.5 57.1 58.1 62.8 64.1 64.9 65.8 66.6

Fig. 4  Left: Top-1 accuracy as a 
function of the number of mod-
ules k fine-tuned for multi-phase 
fine-tuning with step size s = 1 
and single-phase fine-tuning. 
Right: Number of training 
epochs. Note that for k = s = 1 , 
the two fine-tuning approaches 
are equivalent

2 There was no significant difference between the loss graphs for sin-
gle- and multi-phase fine-tuning for k = 2 ; their plots were thus omit-
ted.
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We observe that for most values of k, applying single-
phase fine tuning results in a sharp increase in the valida-
tion loss before it starts to decrease. In contrast, multi-phase 
fine-tuning results in a consistently decreasing validation 
loss for all values of k. Although the same parameters are 

eventually trained by both approaches, we believe that divid-
ing the training into multiple phases is beneficial as it allows 
smoother changing of the layer weights.

For example, consider the top-3 layers, indexed by 
(L − 2) , (L − 1) , and L, where L is the final layer of the 
network. By unfreezing all the layers at once, weights in 
layer (L − 2) can start to prematurely adapt to those in layers 
(L − 1) and L, which may still be far from the values they 
eventually converge to. Including more layers over several 
phases smooths abrupt changes in layer weights.

Results suggest that multi-phase fine-tuning can also pro-
vide an experimental way to decide how many layers should 
be fine-tuned. We can add more layers in phases and monitor 
the validation loss. As long as performance improvements 
are observed, we can continue fine-tuning more layers.

Fig. 5  Top: Top-1 accuracy 
(left) and total number of fine-
tuning epochs (right) for single- 
and multi-phase fine-tuning 
with stepsize s = 2 . Bottom: 
Top-1 accuracy (left) and total 
number of fine-tuning epochs 
(right) for single- and multi-
phase fine-tuning with stepsize 
s = 3 . Note: for k = s = 2 (top) 
and k = s = 3 (bottom), both 
approaches are equivalent

Table 3  Effect of step-size s for 
fine-tuning top-6 modules by 
multi-phase fine-tuning

 The values in bold highlight the 
best-performing method

Step-size s Top-1 
accuracy 
(%)

Epochs

1 39.3 30
2 32.7 36
3 24.9 49
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5  Conclusion

A key question in transfer learning is how many layers 
to fine-tune to take advantage of the generality of lower 
layers’ features, while allowing the network to fit to the 
target task. We proposed multi-phase fine-tuning, starting 
by only fine-tuning the weights in the last fully-connected 
layer, and adding more layers in subsequent phases. We 
applied it to transfer learning from the domain of object 
recognition to SLR using one of the most commonly used 
network architectures, GoogLeNet. Results show that com-
pared to earlier fine-tuning approaches, multi-phase fine-
tuning has a higher classification accuracy and requires 
less training time for this pair of domains. In addition, 
it provides a constructive approach to decide how many 
layers’ weights to fine-tune. Future work includes extend-
ing the work presented here into a complete continuous 
sign language recognition system working on sequences 
of gestures. We also aim to investigate the applicability 
of multi-phase fine-tuning in other domains beyond sign 
language recognition.
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