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Abstract
Explainable AI has become an important field of research on neural machine learning models. However, most existing meth-
ods are designed as tools that provide expert users with additional insights into their models. In contrast, in human-robot 
interaction scenarios, non-expert users are frequently confronted with complex, embodied AI systems whose inner workings 
are unknown. Therefore, eXplainable Human-Robot Interaction (XHRI) should leverage the user’s intuitive ability to col-
laborate and to use efficient communication. Using NICO, the Neuro-Inspired COmpanion, as a use-case study, we propose 
an XHRI framework and show how different types of explanations enhance the interaction experience. These explanations 
range from (a) non-verbal cues for simple and intuitive feedback of inner states via (b) comprehensive verbal explanations 
of the robot’s intentions, knowledge and reasoning to (c) multimodal explanations using visualizations, speech and text. We 
revisit past HRI-related studies conducted with NICO and analyze them with the proposed framework. Furthermore, we 
present two novel XHRI approaches to extract suitable verbal and multimodal explanations from neural network modules 
in an HRI scenario.

Keywords Explainable AI (XAI) · Neuro-robotics · Human–robot interaction  · Trust in artificial intelligence

1 Introduction

According to the concept of Theory of Mind (ToM) [43], 
humans have the intuitive ability to understand the inten-
tions, knowledge, and reasoning of an interaction or col-
laboration partner by ascribing mental states and thoughts to 
their opposites. For these assumptions to arise, the other per-
son does not need to explicitly communicate their thought 
or action. Instead, humans rely on interpreting non-verbal 
cues such as gestures and facial expressions, as well as high-
level verbal explanations of intentions, actions, and prior 
assumptions, before requiring more detailed explanations of 
a reasoning process. It is likely that such mechanisms also 
play a significant role when humans collaborate with robots. 
Therefore, we argue that explanations in Human–Robot 

Interaction (HRI) should encompass a range of commu-
nication and interpretation methods, from the ability to 
express non-verbal cues to formulating possible issues on 
a high level, and explaining underlying AI processes in-
depth. To this end, we propose a framework for eXplainable 
Human–Robot Interaction (XHRI).

The XHRI framework covers three stages of explana-
tions: (1) intuitive and fast communication with non-verbal 
cues like gestures, gaze, facial expressions, and non-speech 
sounds to establish rapport and signal attention or possible 
issues, (2) linguistic high-level explanations of the robot’s 
intentions, actions, assumptions as part of its symbolic 
component, (3) detailed, in-depth explanations of neural 
and machine learning modules used by the robot that rely 
on non-symbolic mediums such as visualizations. As an 
example, consider the scenario shown in Fig. 1: A user asks 
the humanoid robot NICO to hand over the lemon. Initially, 
NICO confirms that it understood the task and will carry it 
out. Subsequently, NICO uses non-verbal communication by 
displaying a stylized surprised facial expression to indicate 
an issue. The person recognizes immediately that a problem 
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occurred, and NICO explains, on a high level, that it cannot 
identify the lemon. Since the person is positive that there is 
a lemon on the table, he asks NICO to explain what objects 
the robot is recognizing on the table.

We apply this framework to revisit a series of past HRI-
related studies that were conducted on the child-sized 
humanoid robot NICO [31], the Neuro-Inspired COmpan-
ion. While these studies were originally aimed at diverse 
HRI-aspects, we re-analyze them in this article from the 
perspective of explainability. We show that both non-verbal 
communication and high-level linguistic explanations affect 
the human-robot interaction positively. We also analyze a 
wizard-of-oz-like study that shows the positive effect of pro-
viding in-depth explanations in natural language for a neural 
reasoning component.

Based on these findings, we present two specific novel 
approaches for XHRI: First, we extend the neural object 
detector RetinaNet [41] to realize an explainable object-
picking scenario, similarly as shown in Fig. 1. By utilizing 
the detector’s confidence and a novel reasoning module, we 
create a hybrid neuro-symbolic object detector. Second, we 
apply a neural explanation method to an end-to-end grasp-
learning approach to analyze which part of the visual input 

is relevant for the robot’s motor actions. These two XAI-
abilities can enable robots to explain their actions and deci-
sions to human interaction partners in many contexts.

In summary, our contributions are as follows:

– A hybrid neuro-symbolic framework for XHRI based on 
Theory of Mind.

– A re-analysis of past HRI studies on the NICO robotic 
platform. The results are interpreted within the XHRI 
framework, and conclusions are drawn for the effects and 
design of non-verbal, high-level, and in-depth explana-
tions.

– Two novel approaches for XHRI that extend a neural 
object detector and a neural end-to-end grasp-learning 
approach with the ability to explain their processing.

The remainder of this article is structured as follows: In 
related work, a summary of Theory of Mind and an overview 
of XAI methods that can be applied to neural approaches is 
provided. The methodology section introduces the proposed 
XHRI framework, which is used to structure the review of 
existing HRI studies and novel XAI methods. Additionally, 
a neuro-symbolic control architecture and the humanoid 

Fig. 1  NICO, the humanoid robot, assists a person. NICO uses non-
verbal communication to signal to have an issue with a received 
request; it can explain the issue on a symbolic level and, when 
prompted, can also visualize elements of the underlying neural pro-
cessing. The visualization is accompanied by a verbal explanation 

of what is shown and requires an external display, disrupting the 
human–robot interaction. Therefore, visualizations should only be 
used when necessary and complemented by a verbal description of 
what is shown. The NICO robot used in this task consists only of the 
upper body, see Fig. 3 for the fully-equipped NICO
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robot NICO are presented. The NICO robot was employed 
in various HRI studies and is used to introduce two novel 
XHRI approaches. Finally, we summarize the results, con-
tributions, and future work in the conclusion.

2  Related Work

In the following, Theory of Mind is introduced as a founda-
tion for our eXplainable Human-Robot Interaction (XHRI) 
framework. Then, a brief overview of eXplainable AI in 
HRI is presented, before introducing XAI methodologies 
for explaining neural networks.

2.1  Theory of Mind in HRI

A large body of research in HRI and psychology established 
evidence for humans assigning anthropomorphic attributes 
to inanimate objects such as robots and artificial agents 
[20, 21, 35]. Notably, humans seem to attribute thought 
processes to agents, as formulated in the conceptual frame-
work of “Theory of Mind” (ToM) [43]. This enables users 
to predict the robots’ behavior and model their mental states, 
such as beliefs, desires, intents and emotions, similar to 
how they perceive a human interaction partner. A review of 
human–robot versus human–human interaction is given by 
Krämer et al. [35], while Hellstrom and Bensch [21] provide 
an overview of ToM in robotics with respect to “understand-
able robots”.

The assumption that humans employ ToM during interac-
tions with robots is supported by preliminary results from 
functional neuroimaging studies [19]. Banks [4] replicated 
an established test-suite for assessing implicit signals for 
Theory of Mind towards humans with robots, showing that 
participants exhibit similar implicit signals as long as social 
cues expressed by the robots are sufficiently similar to those 
used by humans and interpretable.

Empirical studies with artificial agents and robots are in 
line with this view, suggesting that humans exhibit behav-
iour in human-robot interaction that is similar to human-
human interaction [35]. For example, the authors of [38] 
demonstrate that humans build a mental model of a robot’s 
factual knowledge, extrapolating from their own knowledge, 
and taking into account information about the origin of the 
robot. A study on a robot’s reaction to being touched by par-
ticipants [49] show that a passive movement after touching 
can evoke the impression of familiarity towards the partici-
pant, while a repelling movement induces the attribution of 
intentionality, and no reaction led to a negative impression of 
the robot. In a qualitative evaluation of a museum agent [34], 
users employed human-like conversation methods, with the 
majority of users greeting the system and about a third say-
ing good-bye, despite the fact that they could just walk away 

from the agent. Furthermore, many participants of that study 
asked anthropomorphic questions that seemed to assume or 
probe human-like beliefs, emotions and thoughts, such as 
“How are you?”, or even “Are you in love?”. Other studies 
reported a tendency of users to communicate freely with 
agents, even if they were told that they would understand 
only a strictly predefined set of verbal commands [24, 54].

While we focus on human Theory of Mind towards robots 
in this work, there has been longstanding research arguing 
for the need to implement a ToM towards humans in robots 
as well, to enable the prediction of human behavior and act 
depending on the user’s context [11, 56]. In the context of 
explanations, it has been argued that modelling the user’s 
mind properly is an integral part of a successful explana-
tion and that considering the perspective of the explainee 
can influence human-human explanations considerably [45].

2.2  Use of Explainable AI in HRI

Through the widespread success of deep learning in mul-
tiple disciplines, the technology quickly found its way into 
robotics. Deep neural approaches significantly increased 
performance in perceptual problems relevant to the field, 
such as computer vision [65] or natural language processing 
[68], but also control and planning [57]. However, a major 
criticism of deep neural networks is the lack of transparency, 
as their decision-making process is inherently difficult to 
explain. In an attempt to derive interpretable models, vari-
ous methods emerged under the term eXplainable AI (XAI) 
[3, 15]. While these approaches succeeded in making mod-
els more transparent to some extent, most of the developed 
approaches fail to offer explanations that are understandable 
for a lay user [46]. Yet, in the field of human-robot inter-
action [60], the need for explaining and communicating a 
robot’s actions and intent in an intuitively understandable 
manner has been pronounced by many authors [2]. Further-
more, XAI approaches outside HRI are typically concerned 
with data-driven models [3] rather than autonomous, goal-
driven agents. A review by Anjomshoae et al. [2] on explain-
able agents and robots demonstrates that most work in this 
area either presents conceptual studies, lacks evaluation, or 
focuses on simplistic scenarios only, highlighting the lack 
of holistic and empirically validated approaches in the field.

This stands in contrast to longer-established research 
in HRI on how to effectively communicate information to 
increase the understandability of robots, using different 
terms such as readability [63], legibility [40], transparency 
[67], predictability [10], and many others [21, 55]. The main 
benefits of explainable HRI mentioned in the literature are 
increased trust and confidence in the system, as well as 
higher performance and efficiency in collaborative tasks. 
Additional drivers include teaching explanations for edu-
cating users about the robot and debugging in case of errors 
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and failures [2, 59]. Contrary to developments in XAI and 
deep learning, Sheh [59] found that existing work in effec-
tive communication of explanations in HRI predominantly 
assumed implementations based on white-box models, there-
fore disregarding any of the recently developed explanation 
methods for deep neural models. We address this gap in the 
state of the art with the proposed framework for eXplainable 
Human-Robot Interaction and two examples for explaining 
black-box neural approaches.

2.3  Explaining Neural AI

Explaining Data-driven Neural Learning. The recent devel-
opment of XAI in deep learning (i.e. mainly supervised 
learning) focuses on enabling an understanding of a trained 
network; thus, many XAI approaches fall into the category 
of local, post-hoc (passive) attribution explanation [53, 58]. 
For example, in computer vision tasks, the explanation is 
usually represented as a saliency map [62]. The main prin-
ciple of saliency maps is to identify parts of the input that 
are most influential for the decision derived by the neural 
network. Among the pioneer works in XAI is Class Activa-
tion Map (CAM), which was proposed by Zhou et al. [70] to 
highlight class-specific discriminative regions in the input 
image.

However, a drawback of this method is that the network’s 
architecture has to be modified and the network retrained. 
This shortcoming is addressed in Grad-CAM [58] which 
instead leverages the gradient information of the neural net-
work to identify relevant image regions for the obtained pre-
dictions. Along the direction of the gradient, the algorithm 
allows highlighting input-specific sub-areas that contribute 
to the predicted class label. A similar approach is LIME 
[53], which is a model-agnostic explanation approach that 
does not require adjustment of the model architecture.

These visual explanation techniques can be applied to 
most existing vision tasks and can provide valuable ben-
efits to human-robot interaction [12]. Specifically, when the 
participant is curious or reliant on the recommendation or 
action of a robotic partner, an explanation can provide reas-
surance to the participant.

Explaining Reinforcement Learning. While most lines of 
XAI works in the field of supervised learning are applicable 
to image classification [33, 61] and visual question answer-
ing [58], explaining long-term decisions in reinforcement 
learning (RL) [64] remains challenging. Specifically, the 
additional temporal dimension of the episodic learning in 
RL hinders the use of explainable methods. However, recent 
success in reinforcement learning is a result of prior works 
conducted in deep learning [37]. Similarly, saliency maps to 
explain the decision-making in Deep Reinforcement Learn-
ing (DRL) have been adopted and promise to provide valu-
able insights into a model’s reasoning process [17, 22, 69].

However, a common drawback of such methods is that 
only the agent’s local input (state) is considered for deci-
sion-making. These methods neglect that perturbation-based 
explanations can introduce noise in the distorted regions that 
are irrelevant for the action taken by the agent [52]. Also, 
these visualization techniques are not necessarily under-
standable to a layman [47].

A different direction of explainable RL utilizes reward 
decomposition as a metric to derive an explanation of the 
robot’s actions [25]. An agent’s reward is factored into a sum 
of meaningful reward types which can be associated with 
the selected action. Although this allows to explain why one 
action is preferred to another, this approach of explaining 
RL is currently limited to Q learning [64], which relies on a 
discrete action space and deterministic dynamics.

To increase the faithfulness of explanations for RL, the 
causality of actions is considered [26, 42]. These methods 
enable learning a causal graphical model [14] while learn-
ing an optimal policy. In contrast to the attribution explana-
tion mentioned, the causal graphic model seeks to reveal the 
model’s functions and behaviour. In practice, this causality 
property is of great interest to HRI since a practitioner might 
be more concerned with an illustrative graph with a contras-
tive explanation (e.g., What-if question). This would allow 
the robot to respond to why one action was preferred over 
another. This strengthens our argument that XRL methods 
in HRI require trustworthy and accountable systems, which 
could shift the field’s attention towards the development of 
interactive methods and post-hoc RL explanations.

3  Methodology

First, we propose the novel eXplainable Human-Robot Inter-
action framework XHRI that allows to categorize types of 
explanations in human-robot interaction. Then, the struc-
ture of hybrid neuro-symbolic control architectures that are 
promising for social robots is outlined. Finally, we introduce 
the Neuro-Inspired COmpanion (NICO) [31] which is uti-
lized in various neuro-robotic and HRI experiments.

3.1  Framework for eXplainable Human‑Robot 
Interaction (XHRI)

A robot that is interacting and collaborating with humans 
in a domestic or other dynamic environment has to explain 
its behaviour. The explanation aims to establish trust and 
enable a smooth collaboration by informing the user about 
the robot’s state, beliefs, desires, and intentions. However, 
explanations can be obtrusive, time-consuming, and inter-
fere with the robot’s actual task. Therefore, like in a human 
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collaboration, an efficient communication of the explana-
tions is required.

Humans ascribe mental states, thoughts, and intentions 
to other people, forming a Theory of Mind, and employ 
this concept similarly when interacting with robots (see 
Sect. 2.2). From the point of view of HRI, this finding is 
promising insofar as robots are perceived naturally and 
intuitively, analogously to a human interaction or collabo-
ration partner. However, on the other hand, the projection of 
thoughts and intents on the robot implies the possibility of 
the attribution of false assumptions on the side of the human. 
Therefore, we argue that the two fundamental functions of 
explanations in social HRI are to (a) communicate the model 
of the robot’s current state to supply the interaction partner 
with information to construct a meaningful ToM, thus ena-
bling an intuitive perception of the robot, and (b) update 
and correct the humans’ assumptions continuously. If both 
aspects are sufficiently fulfilled, a natural, predictable, trust-
ful, and efficient human–robot interaction can be achieved.

However, explaining a robot’s behavior can be challeng-
ing. Typically, modern robots are realized using a neuro-
robotic architecture that consists of different symbolic and 
sub-symbolic (neural) components, rather than being a 
monolithic system. When explaining the state of the robot 
to users, it requires not only different explanation techniques 
for the distinct systems, but also different communication 
modalities, as illustrated in Fig. 2. In the following, we dis-
tinguish between three levels of communication: non-verbal, 
verbal, and multimodal explanations. A summary of these 
categories is provided in Table 1.

Non-verbal Explanations can be a powerful feedback 
mechanism, especially for interactions with non-expert users 
and in noisy environments. Gestures, emotions, or gaze pro-
vide intuitive and non-obstructive feedback during the inter-
action. This can also appear in parallel to ongoing verbal 
communication. Using non-verbal communication, the user 
can be quickly informed about the robot’s responsiveness, 
even before slower, in-depth processing is completed. For 
example, the robot can look at a person that is speaking, 
signaling its attention, even before processing the contents 

of the speech. Information from symbolic and neural sub-
systems can be abstracted and communicated on this level. 
Additionally, a robot should be able to use this communica-
tion in both directions: it needs to be able to produce non-
verbal cues and to react to them. However, the expressive-
ness of non-verbal explanations is limited and not suited to 
communicate complex reasoning processes.

Verbal Explanations can be used on a symbolic level 
to summarize and verbalize the robot’s current state, 
announce its next action, or communicate its knowledge 
and observations. While some symbolic agents have a con-
siderable complexity and would require equally complex 
explanations, the main focus at this level is to answer and 
explain the robot’s actions, intentions, and knowledge on a 
high level in an accessible manner. Ideally, complex rela-
tionships in symbolic systems can be explained faithfully 
in natural language. For example, a robot can inform the 
user about its assumptions, as queried from a knowledge 
base, its logical reasoning steps, and derived conclusions. 
Emerging research in XAI focuses on extracting symbolic 

Table 1  Explanation techniques for symbolic and neural modules 
across different modalities in the XHRI framework. Approaches for 
explaining neural modules, particularly in the robotics domain, are 

emerging research. Two novel multimodal explanation techniques for 
explaining neural models in HRI are presented in Sect. 5

Non-verbal Verbal Multimodal

Symbolic Abstract symbolic information expressed e.g. as 
gestures, emotions, gaze

Language generated from symbolic information Data visualization (e.g. 
graphs) with verbal 
instructions and context 
description

Neural Learned emotion expression, extracted symbolic 
information (e.g. surprisal, error detection)

Rationalization generation using language 
models, extracted symbolic information (e.g. 
detected objects, confidence)

Neural XAI techniques (e.g. 
saliency maps) with verbal 
instructions and context 
description

Fig. 2  The relationship between the user’s Theory of Mind, the 
robot’s state, and means of communicating information from different 
components in a neural-symbolic robot architecture
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explanations from neural networks and communicating 
them in natural language. Due to the understandability 
and expressiveness of these explanations, we argue that 
developing these approaches further and deploying them to 
social robots will be crucial for achieving explainable HRI.

Multimodal Explanations are often required to convey 
explanations for neural modules and rely on the XAI meth-
odology as described in Sect. 2.3. On this level of explana-
tions, a robot should be able to explain the inner workings 
of its neural modules and why a certain input has led to its 
current actions, outputs, or decisions. Such neural models, 
with millions of learnable parameters, cannot be explained 
directly in terms of their computations. Adequate visu-
alization- and explainability techniques have to be devel-
oped that can seamlessly be integrated with the previous 
two levels of explanations. As current approaches for 
neural network explanation largely rely on visualization 
techniques [62], they require additional display outputs. 
Further, inferring information from visualizations requires 
substantial interpretation on the side of the user, opening 
up the possibility of misunderstandings, especially with 
non-expert users. We argue that due to these limitations, 
visualizations should not be employed by themselves when 
interacting with non-expert users, but rather in conjunction 
with information assisting in interpreting the visualiza-
tion in the form of a multimodal explanation. In the case 
of symbolic subsystems, visualizations can be leveraged 
to summarize information, for example, in diagrams or 
graphs, together with a verbal explanation.

In summary, explainable AI in the context of human-
robot interaction can be communicated on three levels:

– Intuitive and non-verbal feedback and communication 
in both directions between the robot and the human 
interaction partner.

– Verbal explanations in natural language.
– Multimodal explanations using visualizations accom-

panied by verbalization and assisting information.

We argue that, when communicating explanations, it 
should be done in the most intuitive, unobtrusive, and 
efficient way possible before escalating to more complex 
explanations. As illustrated in Fig. 1, this can start with 
abstract, non-verbal communication to signal an issue, 
continue with a verbal statement providing a high-level 
explanation, and end in a detailed multimodal explana-
tion with a visualization to explain the inner workings of 
a neural module. Such a visualisation of the neural module 
should be accompanied by verbal explanations.

3.2  A Neuro‑robotic Architecture

Neuro-robotic architectures are hybrid neuro-symbolic 
systems. The architecture depicted in Fig. 4 is representa-
tive of the neuro-robotic architectures realized on robots 
such as the NICO (Sect. 3.3), which was employed in vari-
ous HRI studies. A central symbolic agent controls the 
main behavior of the robot and the execution of neural 
modules. This main symbolic agent consists of a reasoning 
mechanism and a knowledge base; it can be realized as a 
state machine, a logic program, or a sequence of impera-
tive commands. This central component enables complex 
robot behavior. Even though most of a robot’s functionality 
can be realized with neural modules, the symbolic compo-
nent manages a variety of processes and data distribution, 
e.g., recording images from the cameras, preprocessing 
them, and forwarding the image to a neural network mod-
ule. Furthermore, the symbolic agent manages the load-
ing process and distribution of computational results or 
neural modules. This symbolic component is a white box 
in the sense that its state, processing, and knowledge can 
be queried.

In contrast, the neural modules act as black boxes, their 
processing is intransparent due to their complexity. Neural 
modules often form a bridge between the robot and the 
physical environment by realizing sensing or actuation 
functionality. Input from a robot’s sensors is processed 
by the neural modules, and the derived information can 
be integrated as symbolic knowledge into the symbolic 
agent. Likewise, symbolic knowledge can be transformed 
by neural modules to create motor or actuator commands.

Examples of obtaining symbolic representations from 
sensory input are identifying and locating objects in an 
image, recognizing the facial expression of a human face, 
generating text from an audio signal, or identifying objects 
by their characteristic sounds or haptic properties. Simi-
larly, an action derived from a symbolic representation can 
be translated into a motor command to grasp an object, a 
facial emotion that is displayed via LEDs, or speech that is 
generated from text. Neural modules can also perform rea-
soning tasks without directly interacting with the robot’s 
sensors or actuators. For example, models that learn to 
play a game and decide which next move is ideal [1]. 
Finally, neural end-to-end models directly transform raw 
sensory information into actions, such as end-to-end grasp 
learning [32]. However, even for these modules, there is 
usually a symbolic agent controlling the overall process.

This neuro-robotic control architecture is utilized in the 
NICO robot and is reflected in our proposed framework for 
eXplainable Human-Robot Interaction.
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3.3  NICO, the Neuro‑Inspired COmpanion

NICO [31] (see Fig. 3) is designed to represent a child-sized 
humanoid robot that enables research on embodied neuro-
cognitive models. The robotic design and software compo-
nents are open-source1. The design of this robot combines 
aspects of humanoid and social robotics. The robot’s sensors 
comprise vision, audio, and haptic perception. NICO’s arms 
and hands allow human-like movements and object manipu-
lation. In conjunction with the overall human-like propor-
tions, the movable head, hands, arms and option to display 
stylized emotions make NICO well-suited for HRI studies.

NICO’s appearance and proportions roughly follow that 
of a young child with a height of about one meter. NICO’s 

head is an adaptation of the open iCub design, featuring a 
stylized human appearance. The frame-like body of NICO 
can either be covered in clothing or with 3D-printed solid 
parts, as shown in Fig. 1.

NICO’s motor abilities mimic that of a human with 30 
DoF that control head, arm and leg motion: To perform gaze 
shifts and to signal attention, NICO’s head can perform yaw 
and pitch motions. NICO’s arms have six DoF, three in the 
shoulder, one in the elbow, and two in the wrist to perform 
gestures and to grasp and manipulate objects. The arms end 
in Seed Robotics’ RH4D-articulated hands with three fin-
gers, which can be exchanged for compatible end-effectors. 
Finally, NICO has legs with six DoF each.

NICO’s sensing abilities encompass sight, hearing and 
haptic perception. Two See3CAM CU135 cameras with a 
wide-angle and a 4K resolution are installed in NICO’s head. 
For sound perception, NICO can be equipped with pinnae 
which embed Soundman OKM II binaural microphones. 
Haptic sensing is realized with a combination of feedback 
from the robot’s motors to register the current load on each 
DoF and OPTOFORCE OMD-10-SE-10N7 force sensors at 
the tips of the fingers.

Non-verbal communication can be realized not only with 
head motion and arm and hand gestures; NICO can also 
display stylized emotions and other patterns via LED arrays 
in the mouth and eye region. Additionally, an integrated 
speaker allows verbal communication.

Overall, NICO is designed to be an accessible, affordable, 
open-access platform for supporting research on explainable 
human-robot interaction.

4  Re‑analysis of HRI Experiments with NICO 
from an XAI perspective

In this section, we will re-analyze and summarize a series 
of past HRI experiments conducted with NICO from the 
perspective of our proposed XHRI framework. While most 
of the selected experiments are not originally focused on 
XAI, they either highlight examples for the implementa-
tion of individual elements that are required in the XHRI 
framework, or demonstrate effects of explanations and com-
munication modalities. The studies are re-interpreted in the 
context of XAI. For ease of reading, we provide a summary 
of the analyzed studies in Table 2.

The studies reported below by Kerzel et al. [28] and 
Churamani et al. [9] are concerned with displaying and 
learning emotions, an important prerequisite for commu-
nicating non-verbal explanations when viewed through the 
lens of the XHRI framework. In [71], the effects of non-
verbal communication on trust, a main driver for explainable 
AI research in HRI, are examined. The work summarized 
in [6] combine verbal utterances and non-verbal cues to 

Fig. 3  NICO, the Neuro-Inspired COmpanion

1 Further information, open-source CAD files, and the NICO API are 
available at https:// www. inf. uni- hambu rg. de/ en/ inst/ ab/ wtm/ resea rch/ 
neuro botics/ nico. html.

https://www.inf.uni-hamburg.de/en/inst/ab/wtm/research/neurobotics/nico.html
https://www.inf.uni-hamburg.de/en/inst/ab/wtm/research/neurobotics/nico.html
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communicate emotions, demonstrating the utility of multi-
modal communication. As an experiment in verbal commu-
nication, the study [27] demonstrates the effect of explaining 
the current state of the robot in a grasping task by verbaliz-
ing symbolic information derived from a state machine con-
trolling the robot. In [8], users are involved in a personalized 
dialogue, for which symbolic information is extracted from 
neural modules and stored in a knowledge base, illustrat-
ing an approach for lifting sub-symbolic information to the 
symbolic space, where information can be expressed ver-
bally. Finally, the effects of verbal explanations on how a 
robot is perceived are explicitly assessed in the study [1], 
where the strategy behind the current move in a competitive 
board game is explained. For details on the experiments, we 
refer to the original articles; in this paper, we highlight those 
aspects of the studies relevant for XHRI.

Furthermore, the studies reported below illustrate differ-
ent ways to communicate the internal state of a robot and 
its intentions, plans and requests to users. In summary, the 
studies highlight that different communication channels are 
necessary for an intuitive HRI-experience and the commu-
nication of explanations. However, the studies also high-
light a need for computational XAI approaches for extracting 
explanations from sub-symbolic modules of a robot, e.g., 
neural networks, that are suitable for non-verbal and verbal 
explanations.

4.1  Non‑verbal Communication: The Role 
of Displaying and Recognizing Emotions in XAI

We summarize four studies that demonstrate the effect of 
NICO recognizing or showing emotions in an HRI scenario.

Showing Emotion Expressions: Facial expressions are 
an essential aspect of non-verbal communication. Besides 
universal communication of information, they can be used 
in parallel to verbal communication. NICO can display a 
variety of emotions with the LEDs located at the mouth and 
eyebrow area. The recognizability of seven different emo-
tions was evaluated with human participants by Kerzel et al. 
[31]. Twenty participants were asked to name the emotion 
that the robot displayed. A subset of 5 emotions (neutral, 
happiness, sadness, surprise, and anger) could be identified 
reliably by the participants.

For evaluating the change in perception of a robot that 
displays emotions with facial gestures, the participant’s 
perception of NICO was assessed before and after interact-
ing with the robot. After observing the displayed emotions 
of the robot, a significant increase in anthropomorphism, 
animacy, likeability, and safety was observed. The study 
shows that NICO is able to express basic emotions with the 
facial display, an essential prerequisite for non-verbal social 
communication within our XHRI framework. Furthermore, 

expressing this ability has an overall positive effect on how 
participants perceive the human-robot interaction.

Recognizing and Mirroring Emotion Expressions: In a 
study conducted by Churamani et al. [9], NICO was used 
not only to display emotions but also to recognize them. 
A convolutional neural network in conjunction with a self-
organizing map was employed for perceiving the five emo-
tions anger, happiness, neutral, surprise and sadness. Addi-
tionally, two Multi-Layer-Perceptron (MLP) networks were 
implemented for learning to mirror the emotions on NICO’s 
face-LED display, with one network learning to recognize 
and mirror emotions in general while the other network was 
learning to display the emotions as expressed by a specific 
individual. Depending on the experimental conditions, 
NICO was able to recognize and mirror two to four of the 
five above-mentioned emotions, depending on how much the 
networks were trained with individual interaction partners.

The results demonstrate the potential to adaptively learn 
and express emotions in humanoid robots by learning from 
online interaction. A solution to not only continually learn 
[51] and improve this perception and communication of 
emotional states, but also to accommodate and adapt to inter-
individual differences was implemented. Two important 
parts of human-robot interaction in relation to robot Theory 
of Mind, relevant to the XHRI framework, were addressed: 
First, learning to identify emotions of humans as a basis for 
forming a model of the condition of the human mind, and 
second, communicating emotions to the human via facial 
expression.

Non-verbal Communication in a Cooperative Scenario: 
Zörner et al. [71] analyzed the influence of non-verbal com-
munication in developing trust with a robot in a cooperative 
scenario. In the fictional experimental scenario, two NICO 
robots offer information and advice to the user who has to 
assign (fictional) limited resources to the different actions 
suggested by the two robots as a measurement of trust. After 
the experiment, the Godspeed questionnaire and Risk Pro-
pensity Scale [44] are assessed.

For the evaluation of the experiment, the data of 45 par-
ticipants were analyzed. The Godspeed questionnaire reveals 
a significantly greater rating in anthropomorphism and ani-
macy of the robot that communicated with non-verbal cues. 
This study further confirms the importance of non-verbal 
communication and that it can foster trust in human-robot 
interaction. From the point of view of XHRI, this finding is 
especially relevant, as trust is one of the main reasons for the 
development of explainable robots. Therefore, for the goal of 
fostering trust in robots, non-verbal communication requires 
careful consideration alongside explanation contents.

Emotionally Engaging HRI: To assess the change in 
human perception of a robot expressing emotions, the dif-
ference between a socially engaging and a competitive 
robot was researched by Beik-Mohammadi et al. [6]. In the 
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experiment, a human and NICO played a competitive game. 
In the between-subject study, the socially engaging robot uti-
lizes NICO’s facial LEDs to express emotion, gestures, and 
different voice pitches to convey emotion. The competitive 
robot did not utilize these social features and was portrayed 
as rational.

During the experiment, the sentiment of the participants 
was automatically analyzed with face recognition and a neu-
ral network that estimates the sentiment of the participant’s 
face. After the experiment, the Godspeed and Mind Percep-
tion [16] questionnaires were used to assess the differences 
in perception of both settings. Twenty-two participants took 
part in the study.

The evaluation of the Godspeed questionnaire shows that 
the socially engaging NICO was perceived as more likable 
and received higher animacy ratings than the competitive 
robot. The analysis of the expressed emotions during the 
interaction with the robot revealed that the participants dis-
played a wider range of emotions when interacting with the 
socially engaging robot. Specifically, a significant increase in 
happiness was noticeable, in contrast to the interaction with 
the competitive robot, which was dominated by a display of 
neutral emotions.

Overall, the robot displaying emotions was more engag-
ing for the participants. From an XAI perspective, the 
results, again, suggest that using non-verbal communication 
strongly influences the perception and willingness to interact 
with a robot, which is vital for successful explanations in an 
HRI context.

4.2  Verbally Explaining Symbolic, Hybrid 
Neurosymbolic and Neural Reasoning Processes

After having reviewed studies that use non-verbal explana-
tions, we present a summary of three studies that (mainly) 
use verbal communication to explain the symbolic, neuro-
symbolic or neural AI behind the robot’s actions.

Active Requests and Explanations in Grasp Learning—
Symbolic Reasoning. Kerzel et al. [29] conducted an HRI 
study where non-expert participants assisted NICO in learn-
ing how to grasp, either instructed by a human experimenter 
or by NICO. The participants helped to collect data samples 
for a neural end-to-end architecture for grasp learning. In 
this approach, the visuomotor ability of the robot is learned 
in a supervised way, based on samples the robot collects 
semi-autonomously from interaction with the environment 
[32]. The approach is semi-autonomous, as the robot can, 
in principle, continuously collect samples on its own, but 
initially, an object must be placed into NICO’s hand and 
occasionally, objects might slip from the robot’s hands or 
roll off the table. This problem could be detected by the 

robot using haptic sensing, but human assistance is required 
to place the object back into NICO’s hand.

A state machine controls the image recording, motor 
actions, and haptic sensing to ensure that a sample is col-
lected correctly. Additionally, the state machine uses the 
facial emotion display and triggers speech output to keep 
the interaction partner informed about its current state and 
to request assistance. During the experiment, NICO explains 
to the participants its actions, “I will try to grasp the object. 
Oh no! I failed to grasp the object.”, request assistance, “It’s 
training time. Place the training object in my right hand.”.

It could be shown that in the condition where NICO 
communicated directly with the participants, the users were 
much more engaged in the learning process. This was not 
only reflected in their subjective assessment of NICO as hav-
ing a higher perceived safety, animacy, and anthropomor-
phism, but also in the behavioral measure of how often the 
participants physically interacted with the robot or the grasp 
object on their own initiative to ensure NICO can handle the 
object without error. Re-interpreted in an XAI context, the 
study provides evidence that a robot explaining its actions 
and goals has a positive effect on the user’s trust and engage-
ment. In this study, the explanations were extracted from the 
symbolic control realized as a state machine.

Personalized Dialogue Using Symbolic Knowledge 
Bases—Hybrid Neuro-symbolic Reasoning. NICO was uti-
lized to study the effects of a personalized dialogue system, 
where the robot remembers previous users and personalizes 
the communication accordingly [8, 50]. In an object-learning 
scenario, users taught NICO to recognize the location of 
objects on a table. 27 participants were divided into two 
groups. While the first group was presented with a baseline 
scenario of only the teaching task, the second group was 
engaged in a personalized interaction with NICO prior to the 
task. In this condition, the robot asked for personal informa-
tion such as their name and nationality while tracking and 
learning their faces. The personal information was stored in 
a symbolic knowledge base. After the teaching task, in a sub-
sequent second interaction, NICO recognized participants by 
their faces and way of speaking. NICO greeted them by their 
name and involved the users in another short personalized 
dialogue, retrieving the previously stored information.

The perception of the robot in both conditions was 
assessed using a Godspeed questionnaire [5] and a custom-
ized version of the UTAUT questionnaire [39], alongside 
questions regarding NICO’s attentive and recognizing capa-
bilities. On the Godspeed questionnaire, the group involved 
in the personalized dialogue gave significantly higher ratings 
in likeability and safety, while the UTAUT dimension of 
social acceptance was perceived as worse compared to the 
baseline condition.

This work is an example demonstration of how symbolic 
information can be extracted from neural models and stored 
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in a symbolic knowledge base to be afterwards commu-
nicated in natural language, thus forming a hybrid neuro-
symbolic system. While the study focused on enhancing the 
interaction through personalization, information lifted from 
neural models and stored in a symbolic knowledge base can 
likewise be used for generating verbal explanations. Addi-
tionally, in the XHRI context, personalizing dialogue is of 
particular importance for adapting explanations to a user, 
which is an important aspect of explanations identified in 
the social sciences [45].

Explaining Strategies in a Competitive Board Game—
Neural Network-based Reasoning. In [1], two virtual NICO 
robots played a competitive board game against each other. 
Both robots’ actions were based on a neural reinforcement 
learning approach. In an HRI study, a human participant is 
observing the match. While one robot provided explanations 
for the actions, the other robot only announced the moves 
without providing any reasoning of how these might impact 
the game or the strategic advantage. The explanations about 
the robots’ actions were communicated in natural language 
and provided reasons for the move that are also understand-
able for participants that are not familiar with the game. The 
human-likeness and general perception of the robots, as well 
as their perceived competence [66] and trust in the robots’ 
ability to be victorious, were measured using the Godspeed 
questionnaire [5] and enhanced by questions (Fig. 4).

Both robots used the same reinforcement learning agent 
based on the Deep Q-Network model [48]. It was trained 
by playing the game against different greedy strategies as 
well as self-play. As explanations in natural language are 

required, post-hoc visualization approaches such as a heat-
map of Q-values are insufficient. Therefore, a rule-based 
rationalization approach was employed, with hard-coded 
explanations. While these explanations are not faithful to the 
models’ reasoning, they generate plausible natural language 
utterances to examine the effect of explanations in this sce-
nario. An illustration of the scenario with two NICO robots 
playing the game of Ultimate Tic-tac-toe is shown in Fig. 5.

In total, data of 92 participants were evaluated. A Wilcoxon 
test of the anthropomorphism for the measures of the XAI (M 
= 12.42, SE = 0.53) and non-XAI robot (M = 10.97, SE = 
0.56) reveals a significant difference. Similarly, the Kruskal-
Wallis test [36] shows a difference in the measures of animacy 
for the two robots (p = 0.008). In an XAI context, the study 
demonstrates that a robot that verbally explains its actions sig-
nificantly influences the perception of the robot. We would like 
to highlight that in the conducted study, the robot does not uti-
lize non-verbal communication. The study shows the effect that 
robots that provide verbal explanations are perceived favorably.

4.3  Discussion

The previous HRI studies conducted on the NICO robot 
show that the general use of non-verbal communication can 
positively influence the perception of the robot in terms of 
animacy, anthropomorphism, safety and likability. Further, 
we re-interpret the result of the studies as indicative that 
explanations of a robot’s actions contribute to perceiving the 
robot as more human-like in three of the studies presented. 
However, it is formally not possible to disentangle these 

Fig. 4  Hybrid neuro-symbolic control architecture for robots. While the symbolic white-box modules are accessible for inspection, the neural 
back-box modules require specialized XAI approaches



247KI - Künstliche Intelligenz (2022) 36:237–254 

1 3

Ta
bl

e 
2 

 M
et

a-
an

al
ys

is
 o

f H
R

I s
tu

di
es

 o
n 

th
e 

N
IC

O
 ro

bo
t w

ith
in

 th
e 

X
H

R
I f

ra
m

ew
or

k.
 T

he
 e

ffe
ct

s 
re

po
rte

d 
ar

e 
th

e 
re

su
lts

 o
f t

he
 re

sp
ec

tiv
e 

stu
dy

 a
nd

 n
ot

 n
ec

es
sa

ril
y 

di
re

ct
 e

ffe
ct

s 
of

 e
xp

la
na

-
tio

ns

St
ud

y
Su

m
m

ar
y

Ex
pl

. L
ev

el
s

Pa
rti

ci
pa

nt
s

A
bi

lit
ie

s u
se

d
In

ve
nt

or
y

Eff
ec

t

K
er

ze
l e

t a
l. 

(2
01

7)
 [3

1]
Pa

rti
ci

pa
nt

s r
at

e 
m

ot
io

nl
es

s 
N

IC
O

 w
ith

 a
nd

 w
ith

ou
t 

fa
ci

al
 e

m
ot

io
n 

di
sp

la
y.

N
on

-v
er

ba
l

20
Fa

ci
al

 d
is

pl
ay

G
od

sp
ee

d
A

nt
hr

op
om

or
ph

is
m

+
, a

ni
-

m
ac

y+

C
hu

ra
m

an
i e

t a
l. 

(2
01

7a
) [

9]
N

IC
O

 is
 le

ar
ni

ng
, r

ec
og

ni
z-

in
g 

an
d 

di
sp

la
yi

ng
 e

m
o-

tio
ns

.

N
on

-v
er

ba
l

10
C

am
er

as
, f

ac
ia

l d
is

pl
ay

–
–

Zö
rn

er
 e

t a
l. 

(2
02

1)
 [7

1]
In

 a
 c

oo
pe

ra
tiv

e 
sc

en
ar

io
, t

he
 

pa
rti

ci
pa

nt
 h

as
 to

 c
ho

os
e 

be
tw

ee
n 

tw
o 

so
lu

tio
ns

 
pr

es
en

te
d 

by
 tw

o 
di

ffe
re

nt
 

ro
bo

ts
. O

ne
 ro

bo
t d

is
pl

ay
s 

em
ot

io
ns

 u
si

ng
 n

on
-v

er
ba

l 
co

m
m

un
ic

at
io

n,
 w

hi
le

 th
e 

ot
he

r d
oe

s n
ot

.

N
on

-v
er

ba
l

45
Fa

ci
al

 d
is

pl
ay

, g
es

tu
re

s
G

od
sp

ee
d,

 R
is

k 
Pr

op
en

si
ty

 
Sc

al
e

A
nt

hr
op

om
or

ph
is

m
+

,a
ni

m
ac

y+
,c

or
re

la
tio

n 
se

lf-
as

se
ss

ed
 

ris
k-

ta
ki

ng
 b

eh
av

io
r a

nd
 tr

us
t 

m
ea

su
re

d

M
oh

am
m

ad
i e

t a
l. 

(2
01

9)
 [6

]
Pa

rti
ci

pa
nt

s p
la

y 
a 

co
m

pe
ti-

tiv
e 

ga
m

e 
ag

ai
ns

t e
ith

er
 a

n 
em

ot
io

na
l o

r c
om

pe
tit

iv
e 

N
IC

O
.

N
on

-v
er

ba
l, 

Ve
rb

al
22

Fa
ci

al
 d

is
pl

ay
, g

es
tu

re
s, 

vo
ic

e
G

od
sp

ee
d,

 M
in

d 
Pe

rc
ep

tio
n

A
ni

m
ac

y+
,li

ka
bi

lit
y+

K
er

ze
l e

t a
l. 

(2
02

0)
 [2

9]
U

se
rs

te
ac

h 
N

IC
O

 h
ow

 to
 

gr
as

p 
ac

co
rd

in
g 

to
 N

IC
O

’s
 

ve
rb

al
 g

ui
da

nc
e.

N
on

-v
er

ba
l, 

Ve
rb

al
24

C
am

er
as

, f
ac

ia
l d

is
pl

ay
, 

vo
ic

e,
 a

rm
 a

nd
 h

an
d

G
od

sp
ee

d
Sa

fe
ty

+
,a

ni
m

ac
y+

,a
nt

hr
op

om
or

ph
is

m
+

C
hu

ra
m

an
i e

t a
l. 

(2
01

7b
) [

8]
, 

N
g 

et
 a

l. 
(2

01
7)

 [5
0]

U
se

rs
 a

re
 re

co
gn

iz
ed

 a
nd

 
in

vo
lv

ed
 in

 a
 p

er
so

na
liz

ed
 

di
al

og
ue

.

Ve
rb

al
27

C
am

er
as

, m
ic

ro
ph

on
es

, v
oi

ce
G

od
sp

ee
d,

 U
TA

U
T 

Li
ke

ab
ili

ty
+

,sa
fe

ty
+

,so
ci

al
 

ac
ce

pt
an

ce
-

A
m

bs
do

rf
 e

t a
l. 

(2
02

2)
 [1

]
Pa

rti
ci

pa
nt

s o
bs

er
ve

d 
ga

m
e-

pl
ay

 o
f t

w
o 

N
IC

O
 ro

bo
ts

 
co

m
pe

tin
g 

in
 th

e 
ga

m
e 

U
lti

-
m

at
e 

Ti
c-

ta
c-

to
e 

an
d 

be
t o

n 
th

e 
w

in
ne

r. 
W

hi
le

 o
ne

 ro
bo

t 
ex

pl
ai

ne
d 

its
 m

ov
es

, t
he

 
ot

he
r j

us
t a

nn
ou

nc
ed

 th
em

.

Ve
rb

al
92

C
am

er
as

, v
oi

ce
G

od
sp

ee
d,

 P
er

ce
iv

ed
 C

om
-

pe
te

nc
e

A
nt

hr
op

om
or

ph
is

m
+

, a
ni

-
m

ac
y+



248 KI - Künstliche Intelligenz (2022) 36:237–254

1 3

effects post hoc. Studies examining the impact of integrat-
ing emotions and personality (i.e. Mohammadi et al. [6]) 
or dialogue personalization (Churamani et al. [8]) high-
light the importance of incorporating insights from general 
human-robot interaction when designing explanations. In 
the experiment by Ambsdorf et al. [1], a wizard-of-oz-like 
approach for rule-based natural language rationale genera-
tion was implemented. Despite the lack of faithfulness in 
these explanations, they demonstrate a significant effect and 
highlight their importance in social robot interaction.

In summary, these results show the usefulness of multi-
modal explanations in HRI. However, they also show a need 
for XAI methods that can generate faithful natural language 
rationales that allow for communicating complex explana-
tions in agreement with the model’s decision-making or 
transform complex XAI visualizations for intuitive verbal 
and non-verbal communication.

However, state-of-the-art XAI approaches currently do 
not allow for meaningful information abstraction of neural 
models to express explanations verbally. Researchers and 
practitioners should consider multimodal explanations that 
combine visualizations with a verbal utterance or textual 
description. This could allow for more introspective explana-
tions of neural modules and provide additional assistance to 
a user in interpreting the information presented. We suggest 
that extending these visualization methods by accompanying 
verbal and textual information is another promising research 
direction for HRI. To this end, we propose two new XAI 
methods in the next section.

5  Neural XAI Approaches for Human–Robot 
Interaction

As demonstrated in the previous section, re-analyzing HRI 
studies from an XAI perspective shows the importance of 
(a) non-verbal communication between a robot and a human 

collaboration partner, (b) explanations for the symbolic-level 
control of the robot and (c) explanations for the neural mod-
ules of the robot. However, the latter was only evaluated 
regarding its effect on the HRI without inspecting the actual 
underlying neural approach. In this sense, it was a wizard-of-
oz-like study with hardcoded explanations instead of human-
generated ones.

In this section, we will extend previous work with 
two novel approaches to incorporate neural XAI into 
a human–robot interaction scenario: the first approach 
explains a neural object detector by leveraging the detec-
tor’s confidence and a reasoning mechanism to detect pos-
sible issues. The second example goes one step further and 
employs Grad-CAM to visualize and explain a neural end-
to-end grasping approach.

5.1  Explaining Neural Object Detection in an HRI 
Scenario

Detecting objects, i.e. identifying objects and their loca-
tion in the input image is a fundamental ability in robotics. 
For instance, Eppe et al. [13] use the neural object detec-
tor RetinaNet [41] to enable NICO to grasp objects on a 
table. RetinaNet classifies and localizes objects in an image 
in terms of an object class with classification confidence 
and a bounding box. However, this visual representation of 
the detected objects can become confusing due to overlap-
ping detections and does not serve well as an explanation of 
why an object was or was not detected. To address this lack 
of explainability, we present an approach that leverages a 
combination of the detector’s confidence and a reasoner to 
anticipate and explain potential issues in the robot’s visual 
perception.

RetinaNet is a single-stage object detector, which uses a 
focal loss during training to balance a large number of nega-
tive samples against the small number of positive samples 
and to focus the network updates on challenging samples. 
RetinaNet’s architecture consists of a convolutional ResNet 
[18] that is linked at different levels to a multi-scale Feature 
Pyramid Network (FPN) that has a high spatial resolution 
as well as complex visual features. From different levels of 
this FPN, subnetworks for object classification and bounding 
box regression are extended.

We use RetinaNet in a scenario where NICO picks objects 
from a table, as depicted in Fig. 1. For training, images with 
class and bounding box annotations are required. To avoid 
the need for human annotation, we employ a sim-to-real 
approach and train RetinaNet with 350 synthetic images 
of 18 different everyday objects from the YCB object set 
[7] created in Blender2. We train the image detector for 10 

Fig. 5  Two humanoid robots play a game of UTTT against each 
other. Screenshot of a video sequence that was provided to the par-
ticipants

2 https:// www. blend er. org/.

https://www.blender.org/
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epochs based on a pre-trained ResNet50 using an Adam opti-
mizer with a learning rate of 1e-5, the default batch size of 1, 
and a steps parameter of 350. We evaluate the model on 35 
test images with a total of 105 object instances and achieve 
a precision of ∼95% and a recall of ∼100%, i.e. all objects 
are detected correctly, but a few objects are detected twice. 
As this result is sufficient, and we are mainly concerned with 
the XHRI aspects of this work, we avoid further optimiza-
tion (Fig. 6).

We evaluate the approach on a set of 20 real-world images 
with 119 instances of everyday objects from the YCB object 
set. As expected, transferring a model from simulation to 
the real world causes issues: objects are detected multiple 
times, objects are detected but belong to the wrong class 
(false positives), and objects are not detected at all (false 
negatives). While the sim-to-real transfer could be improved 
using domain randomization, i.e. introduction of randomized 
variance with regard to colour, geometry, and other proper-
ties of the objects during training [23], we instead focus on 
improving the detector in an explainable manner.

Multiple and false detections can be addressed by filtering 
out detections with confidence below a fixed threshold; with-
out such a measure, the number of false positives can be very 
large. Following the literature, we evaluate the approach for 
fixed thresholds of 0.5 and 0.7 and achieve a precision and 
recall of about 77% and 63% (0.5 threshold) and 92% and 
59% (0.7 threshold). It can be observed that the higher the 
threshold, the more false positives are filtered out along 
with some true positives. The results also reflect the similar 
nature of some objects (i.e. two similar Jell-O packages; 
peach and lemon).

First, we address multiple detections of the same object 
in the image. If the intersection over union (IoU) of the 
bounding box of two objects is larger than 85%, only the 
detected object with the higher confidence is kept; the 
rest is discarded. This decision can be explained to the 
user, e.g., “I found a lemon with confidence of 0.77, but it 

intersected with a peach which had a higher confidence of 
0.93”. Also, the information can be integrated into sym-
bolic reasoning. In this example, if NICO is instructed to 
grasp a lemon but only recognizes a peach, it could further 
investigate. The results in Table 3 show that the recall 
and precision of this approach are slightly smaller; this 
is because double detections often contain the right clas-
sification along with an incorrect one. However, the table 
also shows that the total number of false-positive detec-
tions is lowered from about 13% to 11% for a threshold of 
0.7 and from 26% to 21% for a threshold of 0.5, reducing 
the number of detected objects and the complexity of the 
explanation.

The second mechanism we introduce is a double-thresh-
old for detection. Objects that are detected with a thresh-
old of 0.7 are marked with a green bounding box, while 
those that are detected with a threshold of 0.5 are marked 
with a red bounding box to indicate a possible issue. This 
can also be verbalized to the user: “Perhaps I found a 
red mug with low confidence of 0.56.”. Figure 7 shows an 
example output for image detection with both mechanisms 
and a sample verbalization.

We show that exploiting the confidence of RetinaNet 
and mechanisms along with a check for overlapping 
bounding boxes can generate verbal (i.e. text-only) as 
well as multimodal (i.e. text and image) explanations for 
a neural image detector.

Within our framework, this approach is an example for 
generating verbal explanations for a neural module from a 
robot’s architecture. While the internal processing of the 
neural object detector is complex and can not be altered by 
a non-expert, the model’s output and subsequent symbolic 
reasoning can be explained in plain terms; for instance, the 
choice of the object with the highest detection confidence 
in case of multiple recognitions or the rejection of a pos-
sible recognized object that a detection confidence below 
a threshold. Such explanations can help non-experts find 
solutions for perceptual issues by modifying the robot’s 
environment, e.g., users could realize that particular 
objects are often confused and replace one of them with a 
more distinct object.

Fig. 6  Top row: Images from the synthetic training set. Bottom row: 
Images from the synthetic test set with bounding boxes and classifica-
tion found by the trained RetinaNet

Table 3  Results for sim-to-real object detection with RetinaNet using 
thresholds of 0.5 and 0.7 without and with the IoU-based post-pro-
cessing to avoid multiple detections of the same object

Setting Precision Recall False Pos.

Threshold 0.5 ∼74% ∼63% ∼26%
Threshold 0.7 ∼88% ∼59% ∼13%
Thres. 0.5 IoU filter ∼79% ∼56% ∼21%
Thres. 0.7 IoU filter ∼89% ∼53% ∼11%
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5.2  Explaining Neural End‑to‑end Grasp Learning

Above, we utilize a neural object detector’s confidence and 
an additional reasoning module to de-clutter and explain 
object detection results. However, the method still does not 
provide an insight into RetinaNet. Furthermore, the approach 
only works in a modular architecture. In the above example, 
we use RetinaNet as one neural module to detect objects, 
and we require a second neural module for motor control. 
We cannot apply this explanation approach to an end-to-end 
neural architecture that directly maps an input image to a 
joint configuration because we need suitable samples to train 
RetinaNet (i.e. bounding boxes of objects), which would not 
be available for such an end-to-end approach.

As described in Sect. 2.3 Grad-CAM can be applied to 
any CNN-based neural network to visualize what parts of the 
input image are relevant to the output. Grad-CAM does not 
require architectural modifications, so we can directly apply 

it to an architecture used for end-to-end grasp learning. We 
adapt the architecture from Kerzel et al. [32], which consists 
of two convolutional layers (32 filters, 3x3 kernel, ReLU 
activation), two dense layers (64 units, Sigmoid activation) 
and an output layer with six neurons (Sigmoid activation), 
one for each joint of NICO’s arm. While the network has 
only a fraction of the learnable parameters and complexity 
of state-of-the-art vision networks like RetinaNet, its com-
pactness allows successful training with a limited number 
of samples.

We create four synthetic datasets; each dataset has 400 
samples, consisting of an image of a red-blue grasp object 
on a table from NICO’s perspective and a suitable joint con-
figuration to grasp the object, normalized to [0..1]. Except 
for the first dataset, one additional distractor object is placed 
on the table. This distractor object is a small sphere in green, 
gray and red. Samples are generated by using a genetic 
inverse kinematics solver [30].

We train the network five times for each dataset with 
an 80-10-10 train-validation-test split, the Mean Squared 
Error (MSE) over the joint values as a loss function, and 
an Adadelta optimizer with an initial learning rate of 0.1, a 
batch size of 20, and an early-stopping patience of 10.

Table 4 shows the results of the five averaged training 
runs for each condition. As expected from previous work 
[27], distractor objects are challenging for such end-to-end 
approaches; this is reflected in the significant increase in the 
MSE for all three datasets with distractor objects. We also see 
that the detrimental effect increases when the distractor object 
resembles the grasp object. The green distractor caused the 
smallest increase, and the red distractor object, looking like 
the grasp object, caused the largest increase. The dataset size 
of 400 samples is the same as for the initial realization of the 
approach [32] and works well if no distractor object is present. 
Still, it can be assumed that more samples are needed for the 
network to learn to ignore distractors (Fig. 8).

However, this explanation of the network behaviour is 
gained from extensive experiments with a series of data-
sets; this method is not applicable to generate explanations 
during an ongoing interaction. Instead, we are interested 
in explaining an already trained neural model: We apply 
Grad-CAM (2.3) to the best-performing model from the 
dataset without a distractor object. As Grad-CAM only 
computes a gradient toward a single neuron in the output 
layer, we choose the first shoulder joint and visualize the 
relevance of input image regions to see “which regions 
of the input image are relevant with regard to comput-
ing the values for the first shoulder joint”, as depicted in 
Fig. 9. The Grad-CAM visualization shows that both the 
blue and red parts of the grasping tool contribute substan-
tially to the computation of the joint values. An expert 
can conclude from this visualization that the network has 
not learned to ignore task-irrelevant clutter and takes the 

Fig. 7  Example of applying RetinaNet trained on simulated data 
to a real-world image. The system gives the following explanation 
(from top to bottom): I found a bowl with high confidence of 0.93; 
I found a ball with high confidence of 0.92; perhaps I found a mug 
with low confidence of 0.68, but it was on top of a bowl which had 
slightly higher confidence of 0.69, so perhaps I found a bowl; I found 
an orange with high confidence of 0.9; Perhaps I found a banana with 
low confidence of 0.50 
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distractor object into account, thus explaining a possible 
grasp error. However, for a non-expert, this interpreta-
tion might not be obvious. For such a user, a multimodal 
explanation combining visual and verbal information can 
be helpful, e.g., the Grad-CAM image could be shown to 
the user along with the instruction to look for highlighted 
areas that do not overlap with the grasping object.

Within our framework, this approach serves as an exam-
ple for generating a multimodal explanation for a neural 
module that is part of a neuro-robotic architecture; it illus-
trates that a non-verbal or verbal explanation alone might not 
always be sufficient to convey the complex neural processing 
of such a module to a user. Added visualizations, however, 
can provide an intuitive explanation.

This application of Grad-CAM demonstrates how multi-
modal explanations, in this case, a visualization along with 

the verbal or textual description that highlights relevant 
parts of the visual input for computing the value of the first 
shoulder joint can allow a non-expert user to gain an under-
standing of how a neural module functions and what might 
have caused an unwanted behavior.

6  Conclusion

We present a novel an eXplainable Human–Robot Interac-
tion (XHRI) framework for humanoid robot social inter-
action and collaboration founded on Theory of Mind and 
hybrid neuro-symbolic architectures. Humans intuitively 
build a representation of their interaction partner’s inten-
tions, knowledge, and reasoning. Based on evidence from 
literature, it can be assumed that this ability extends to 
robotic interaction partners. We re-analyze a set of HRI stud-
ies conducted on the humanoid robot NICO and show how 
explanatory communication on different levels (non-verbal 
cues, verbal and multimodal) improve the perception of a 
robot in multiple categories.

We argue that the medium of the interaction should be 
context-dependent, and explanations should use efficient and 
intuitive communication channels that do not interfere with 
the actual task at hand. Therefore, our framework suggests 
using non-verbal social cues such as facial expressions and 

Fig. 8  Top: NICO collects samples in a virtual environment by plac-
ing an object and recording its corresponding joint values. Bottom 
row: Image part of the collected samples without and with distractor 
objects in different colors (no distractor; green, gray and red distrac-
tors)

Table 4  MSE and SD of training the neural end-to-end grasping 
approach with different datasets averaged over five training runs. The 
MSE shows that a distractor object significantly lowers the perfor-
mance. The effect is more pronounced if the distractor resembles the 
grasp object

No distractor Green dist. Gray dist. Red dist.

0,03764 0,07312 0,08450 0,09766
±0, 00834 ±0, 00004 ±0, 00029 ±0, 00636

Fig. 9  Grad-CAM visualization of the neural end-to-end grasp 
approach for the first shoulder joint shows which part of the input 
image (right side) is relevant to generate the output. The blue and 
red parts of the grasp object are visible in both Grad-CAM visualiza-
tions. The lower Grad-CAM explains why red distractor objects are 
detrimental for grasping; they show up prominently in the Grad-CAM 
visualization; the network has not learned to ignore these distractors
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gestures to signal the robot’s status and issues. If the lim-
ited expressiveness of such cues is insufficient, comprehen-
sive verbal explanations can explain the robot’s intentions, 
knowledge, or reasoning. Such explanations are usually suf-
ficient to describe the high-level reasoning and control of 
a neuro-robotic agent. For explaining neural modules that 
often realize specialized sensing, actuation or reasoning 
tasks, it is also desirable to provide a brief verbal explana-
tion. However, sometimes additional visualizations or other 
ways of communication need to be combined with a verbal 
message to communicate an explanation for complex neural 
modules efficiently. Future work in XAI should focus on 
expressing neural reasoning processes faithfully in natural 
language and intuitive multimodal representations. In HRI, 
it is crucial to supplement purely visual explanations with 
accompanying information using speech or text, to sup-
port non-expert users with easy-to-interpret multimodal 
explanations.

To this end, we provide two example approaches that 
facilitate explanation for modules in a neuro-robotic archi-
tecture. One model enables us to derive verbal explanations 
for a neural object detector and the second model provides 
a visualization for a neural grasping approach along with a 
suggestion on how the visualization can be explained ver-
bally to the user. In future work, we will evaluate the pre-
sented neural XHRI framework in further user studies. We 
hope the proposed XHRI framework will provide a guideline 
for the formulation of future research and evaluation studies 
for the integration of XAI and HRI.
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