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Abstract
Artificial Intelligence (AI) systems are increasingly pervasive: Internet of Things, in-car intelligent devices, robots, and 
virtual assistants, and their large-scale adoption makes it necessary to explain their behaviour, for example to their users 
who are impacted by their decisions, or to their developers who need to ensure their functionality. This requires, on the one 
hand, to obtain an accurate representation of the chain of events that caused the system to behave in a certain way (e.g., to 
make a specific decision). On the other hand, this causal chain needs to be communicated to the users depending on their 
needs and expectations. In this phase of explanation delivery, allowing interaction between user and model has the potential 
to improve both model quality and user experience. The XAINES project investigates the explanation of AI systems through 
narratives targeted to the needs of a specific audience, focusing on two important aspects that are crucial for enabling suc-
cessful explanation: generating and selecting appropriate explanation content, i.e. the information to be contained in the 
explanation, and delivering this information to the user in an appropriate way. In this article, we present the project’s roadmap 
towards enabling the explanation of AI with narratives.

Keywords  Explainable AI · Interactive machine learning · Human–machine interaction · Conversational explanations

1  Introduction

AI systems have huge potential to improve our lives, espe-
cially when deployed in high stake scenarios such as health-
care applications or automated driving, where erroneous 
decisions can have severe consequences [65, 106]. Their 
impact on human lives comes hand in hand with our need to 
understand why a system behaves in a certain way, to verify 
that it works as intended, and to estimate the extent to which 
its decisions can be trusted. In order to enable the use of AI 

systems in real-world applications, we need to find appropri-
ate ways for explaining their behaviour [29, 43, 97]. How 
to do that depends on the audience consuming the model 
explanations [5, 14, 24, 80]. For example, Machine Learn-
ing (ML) developers usually want to test and improve the 
system, and explanations provide a way of identifying model 
shortcomings to be fixed [48, 77]. For domain experts, such 
as medical staff or engineers using the system for domain-
specific applications, explanations serve to improve the co-
operation between the domain expert and the machine, e.g., 
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by providing a way of evaluating the reliability of a model’s 
decision, thereby increasing user trust in the system. In addi-
tion, domain experts might want to use explanations in order 
to learn from the AI by extracting knowledge that the AI 
acquired from large amounts of training data [80, 82].1

For explanation delivery, interaction between user and 
machine based on explanations is a central component (see 
Fig. 1 for an overview of the different tasks that need to 
be addressed in order to enable explanation in an interac-
tive loop), where the model provides an explanation to the 
user, and the user provides feedback to the model based on 
the explanation [45, 93, 99]. For ML developers, providing 
feedback to the model allows to efficiently fix deficiencies 
that were identified based on model explanations [49]. For 
domain experts, the interaction with model explanations 
benefits the user and the way they use the system: the abil-
ity to provide feedback to the model increases user satisfac-
tion [2, 86, 93] and their trust in the system [31]. Finally, 
the social sciences point out that explanations themselves 
should be embedded in interactive communication between 
the model as explainer and the user as explainee [61, 62].

The work presented here is part of the XAINES project2, 
that aims at explaining AI systems through narratives. A 
narrative is a form of discourse conveying information 
about an event by giving an account of meaningfully con-
nected events. In the context of explaining AI, explaining 

with narratives means to explain an event by recounting the 
events that caused it [66]. Communicating an explanation in 
the form of a narrative also addresses the fact that an event 
is usually affected by a set of causes that should be part of 
the explanation, rather than one factor in isolation [39].3 
As narratives are an elementary form of human expression 
[6], we hypothesize that they are an appropriate means to 
communicate explanations, in particular to users without 
ML background.

In the following, we present a summary of our accom-
plished, on-going and planned work on explanation genera-
tion (Sect. 2) and the interaction with explanations (Sect. 3), 
and outline how it contributes to approaching our ultimate 
goal of creating explainable AI. These works are separate 
contributions addressing different research questions which 
need to be answered in order to enable explainable AI. Fig-
ure 2 provides an overview over this article’s structure and 
how the presented works relate to the project’s research 
questions.

2 � Generating Explanations

Users request model explanations for different reasons 
and with different motivations in mind [28, 80, 82]. The 
XAINES project addresses these different user needs by dis-
tinguishing two types of explanations (see Fig. 3): ML narra-
tives convey the causal chain leading to a model prediction, 

Fig. 1   Interaction with explanations (middle part) plays a central role 
for explaining AI systems, which requires the generation of model 
explanations (left part) and the integration of user feedback (right 
part)

Fig. 2   Relation between the works presented in this article and the 
project’s research questions. The grey squares indicate the respective 
section numbers

1  We mainly focus on explanations for ML developers and domain 
experts, rather than laypeople, as the project involves domain-specific 
application scenarios, such as medical decision support, where an AI 
would support a domain expert. Some parts of the project address 
explanations that might be targeted to laypeople, e.g. the interactive 
exploration of NLP models (Sect. 3.2.1).
2  https://​www.​dfki.​de/​en/​web/​resea​rch/​proje​cts-​and-​publi​catio​ns/​
proje​cts-​overv​iew/​proje​kt/​xaines/.

3  Jacovi et al. [39] illustrate the set of causes affecting an event using 
an example of a self-driving car that crashed into a wall: The nar-
rative explaining this event is, that the car was driving at 50 km/h 
instead of the allowed 20km/h, because it misidentified a speed sign 
due to debris covering its camera. A bump in the road caused the 
speeding car to go off the road and crash into the wall. Here, several 
causes (debris on camera, misidentification of speed sign, bump in 
the road) affected the event.

https://www.dfki.de/en/web/research/projects-and-publications/projects-overview/projekt/xaines/
https://www.dfki.de/en/web/research/projects-and-publications/projects-overview/projekt/xaines/
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and can primarily be used to test and improve the model. 
For example, saliency maps as ML explanations [84] can 
reveal that a model picks up on irrelevant features to classify 
X-ray images [18]. Domain narratives describe sequences 
of domain-specific events that led to a specific outcome, and 
can for example be used by domain experts to assess if a 
model decision is justified.4 This latter type of explanations 
should be model invariant and accessible to consumers with-
out any knowledge about ML [8]. We explore the generation 
of both types of explanations in the context of processing 
visual content, focusing on two use-cases: (1) providing 
explanations for systems that process images, focusing on 
applications in the medical domain; (2) providing explana-
tions for systems that process video content.

2.1 � Linking Images with Language

AI systems developed for usage in the medical domain often 
involve image processing components, e.g. for speech-based 
image annotation [88] or medical decision support [73], 
where relevant information has to be extracted from domain-
specific data in various forms, such as X-ray images and 
health records [87]. In order to describe relevant information 
in an image or sequences thereof, we focus on the tasks of 
image captioning [41, 59, 104] and visual story telling [38]. 
Image captions have previously been explored as a means 
to explain decisions of image classifiers [35, 51] and Visual 
Question Answering (VQA) models [49], whereas in our 
work we investigate their use as domain narratives. In par-
ticular, we focus on the challenges of selecting the most 
relevant information from the images, and of addressing the 
needs of the respective target audience by generating per-
sonalized image descriptions. In [10], we propose an image 
captioning model that conditions generation on selected 
visual information to model the fact that humans restrict 

their explanation of an event to a subset of selected causal 
connections [61]. In [9], we investigate the use of transfer 
learning and machine translation for generating image cap-
tions in German. Due to a lack of non-English image cap-
tioning resources, such cross-lingual transfer is necessary in 
order to make natural language domain narratives accessible 
to non-English speakers.

2.1.1 � Image Captions as Explanations

Natural language is often pointed out as the most intuitive 
way of communicating an explanation, especially to non-
ML experts [23, 46], hence image captions as natural lan-
guage descriptions of image content appear to be an obvious 
choice for domain narratives. Moreover, recent progress in 
pre-training large multi-modal encoders on large multi-
modal datasets [12, 40, 76] has pushed the state-of-the-art 
for image captioning [37, 64]. However, Rohrbach et al. [81] 
raised awareness for the phenomenon of object hallucina-
tions, i.e. the description of objects that are not actually vis-
ible in an image. Such errors can potentially be very harmful 
when explaining image content in high-stake domains. One 
of the underlying research questions we aim to answer in the 
project is if image descriptions are suitable as domain narra-
tives, and how their interplay with ML explanations impacts 
the explanation process. To give ML explanations for the 
generated descriptions, we will explore the use of saliency 
methods such as Grad-CAM [83], which we had previously 
used for explaining classifier decisions in the context of skin 
cancer recognition [64, 67], for highlighting image regions 
that affected the generation of specific words in the descrip-
tion. Whereas we so far focused on the technical challenges 
of generating the explanations, a next step will be to evaluate 
the quality and adequateness of image captions as domain 
explanations in a user study.

2.2 � Linking Action with Language

Similar to how we use generated natural language sequences 
to describe image content, we can use natural language to 
describe actions performed by an embodied AI, for exam-
ple a robot or an AI-driven digital human. AI-driven digi-
tal humans have widely been used in industry simulation, 
remote education, healthcare, and entertainment. For many 
applications, it is important to understand the intention of 
AI-driven characters [72, 78]. For example, in the digital 
simulation of autonomous driving, the autonomous car 
needs to understand the behaviour of simulated pedestrians, 
for example whether the pedestrian is going to cross the 
street or not. In addition, some sequences of actions require 
domain knowledge, for instance when skilled workers per-
form manual assembly tasks in workshops, and it is useful 
to include domain knowledge into motion generation models 

Fig. 3   Examples of ML and domain narratives for a medical decision 
support system

4  Biran and McKeown [8] refer to this type of information as justifi-
cation.
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[13, 57]. It requires experts’ knowledge to explain why the 
actions should be executed in certain orders. We hypoth-
esize that when providing domain narratives, users can better 
understand and interact with generated motion.

2.2.1 � Alleviating the Data Bottleneck

For activity recognition, existing methods [7, 26, 108] usu-
ally require labeled 3D motion data as ground truth for 
model training. However, annotating 3D motion capture 
data with narrative explanations is cost-intensive and time-
consuming, even more so for domain-specific activities 
such as martial arts or dancing, where experts’ knowledge 
is required. One promising way to tackle this challenge is 
to use existing collections of video data [53, 68, 79]. There 
are huge amounts of videos available online that contain 
well-explained activities as subtitles in the timeline. For 
example, on the video sharing platform Youtube, people can 
learn physical skills with instructional visual movements 
and narrative textual explanation. In the XAINES project, 
our goal is to alleviate the issue of limited availability of 
labeled 3D data by leveraging existing video data with nar-
rative explanation. This way, domain-specific knowledge can 
be integrated into the motion generation model, which can 
synthesize target motion with narrative explanations.

In order to model 3D movement with textual explana-
tion, we first apply state-of-the-art 3D motion estimation 
approaches [30, 95] to reconstruct 3D movements from the 
2D videos. The textual annotation is then automatically 
aligned with the estimated 3D motion based on video time 
stamps. To include the rich variations of natural human 
movement, we apply deep generative model Variational 
Autoencoder (VAE) [44] to capture the statistical property 
of human movement [22]. In our work, the 3D motion data 
and textual annotation are jointly modeled together. Given 
high-level targets, our motion synthesis framework can cre-
ate the required motion from the textual explanation. For 
motion recognition, the synthetic motion generated from our 
model can serve as ground truth to improve model training.

2.2.2 � Multi‑modal Embeddings for Motion and Text

A common approach to model inputs from both modalities is 
learning joint embeddings for the multi-modal data. In [27], 
we propose a joint embedding model to learn the mapping 
between 3D motion and narrative description. Two autoen-
coders are deployed to learn the representation of 3D motion 
and natural language separately. For motion data, we use 
a hierarchical pose model to address the kinematic struc-
ture of the human model. For textual input, we apply the 
BERT model [19] which is pre-trained on large text corpora 
to create contextualized embeddings. Both inputs are then 
combined in a joint embedding space for pose and language. 

Given a textual description, our model can produce the cor-
responding motion using the hierarchical pose decoder. 
Theoretically, our model can also be used for generating a 
narrative explanation given the 3D motion.

Our model in [27] is trained on the KIT Motion-Language 
Dataset [71], which contains 3D pose data with human-
annotated sentences. However, the type of actions in this 
dataset is limited and the language annotation is quite sim-
ple. In XAINES, we plan to test our approach for complex 
martial arts actions such as Tai Chi or Capoeira with more 
detailed textual descriptions. Our model will automatically 
generate descriptive explanations to describe the motions in 
multiplayer games. The goal of each player can be derived 
from descriptive explanations. We also plan to investigate 
the performance of our approach on video data compared 
to 3D motion capture data. Our ultimate goal is to animate 
semantic-aware, high-fidelity AI-driven characters that 
can interact with users, while being explainable via textual 
descriptions.

3 � Interacting with Explanations

Our work presented above focuses on the generation of 
explanations for different AI-related components. Once the 
explanations are generated, the selected information needs 
to be communicated to the user. In this step of explanation 
delivery, we focus on making use of interaction between 
user and machine: First, we investigate how explanations can 
be delivered in an explanation-feedback loop, that aims at 
improving the model based on human feedback, and allows 
personalization of explanations. Second, we explore how to 
move beyond a one-way broadcast of explanation content 
by modelling explanation as a conversational interaction 
between user and machine.

3.1 � Explanation‑Based Feedback Loop

In this part of the project, we explore the interaction 
with explanations of classifier decisions in the Interac-
tive Machine Learning (IML) framework, which serves to 
improve ML models based on feedback gained from inter-
action with users. On the one hand, Explainable AI (XAI) 
is often considered a prerequisite for enabling meaningful 
interaction between user and machine, allowing the user to 
provide useful feedback based on which the model can be 
improved [31, 94, 99]. On the other hand, IML might be a 
necessary component of optimal XAI systems, as users pro-
vided with model explanations desire to provide feedback in 
order to adjust the model [86]. Hence, we hypothesize that 
investigating the application of IML approaches in an XAI 
context and vice versa can serve the goals of both paradigms. 
Building on related work exploring the explanation-feedback 
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loop [45, 89, 98], we will address the open questions of the 
best mechanism for integrating feedback into the model [1], 
the type of feedback that is most helpful for model improve-
ment, and how to best evaluate the framework, either in 
terms of model accuracy, or in terms of user-centric met-
rics. In [33], we provide a survey on improving Natural 
Language Processing (NLP) models with different types of 
human explanations. We consider human explanations as a 
promising type of human feedback, as models can be trained 
more efficiently with human explanations compared to label-
level feedback. The two most prominent types of human 
explanations used to improve NLP models are highlight 
explanations, i.e. subsets of input elements that are deemed 
relevant for a prediction, and free-text explanations [103], 
i.e. natural language statements answering the question why 
an instance was assigned a specific label. We plan to focus 
our future efforts on learning from feedback in the form of 
natural language explanations, as users generally perceive 
natural language as preferred way of interacting with mod-
els, and natural language explanations are less constrained 
and can consequently have a higher information content than 
highlight explanations. In addition to enabling IML through 
XAI, we ask how IML methods can be used for best render-
ing domain narratives. Along with providing a means for 
general model improvement, the interaction between user 
and model can be exploited to adapt explanations, e.g. as 
personalized image descriptions that take into account the 
user’s active vocabulary [15] or other features such as their 
preferred sentence length or level of detail. Our experiments 
in [10] show promising initial results for caption personali-
zation using interactive re-ranking of decoder output, which 
we plan to explore further in the future. In [32], we outline 
an approach for using text- and image-based data augmen-
tation to efficiently adapt image captioning models to new 
data based on user feedback. We plan to gain first insights 
on the effectiveness of these approaches based on simulated 
feedback, and to then consolidate findings in an interactive 
user study.

3.2 � Conversational Interaction as Narrative 
Explanation of AI

Human explanations are interactive and incremental, allow-
ing participants to challenge, query, negotiate, discuss and 
clarify the explanation content, ideally until mutual under-
standing and agreement is achieved [56]. In this part of the 
project, we aim at modelling this important aspect of expla-
nation as a goal-oriented dialog between the user and the 
machine, where the goal is to achieve mutual understanding 
with respect to the explanation [46, 61, 80]. We envision 
the dialog system to be adaptive with respect to the user, 
as the amount of detail of the explanatory dialogue should 
be conditioned on their abilities and expectations [61]. 

Oversimplified explanations that lead to unjustified trust 
must be avoided [28], therefore one challenge is to find a 
trade-off between persuasive and descriptive explanation 
strategies [35]. Other challenges include how to best pre-
sent the narrative, e.g. by splitting it into multiple install-
ments [16], and how to adapt user representations over time. 
We hypothesize that such questions can best be answered 
observing human conversational interaction, ideally in 
explanatory dialogue. To this end, we are currently in the 
progress of collecting resources that contain such interactive 
explanations between humans. So far, we identified three 
data types that we expect to contain such explanatory dia-
logue: datasets for information-seeking dialogue [54, 69, 
74], datasets for teacher-student interactions [20, 90], and 
video tutorials [60]. Our planned next steps are to analyse 
to which extent explanatory dialogue is present in these 
datasets and if they constitute a suitable resource for our 
purpose.

The proposed dialog system should also be able to recog-
nize user intent, by matching a user query with an appropri-
ate explanation method [50, 100, 102]. A query like Which 
parts of the input contributed most to model output? matches 
with an explanation method highlighting the salient parts 
of the input, e.g. based on input gradients [96]. In contrast, 
a query like What (general) patterns in the (training) data 
are responsible for an output? matches with an explanation 
resulting from a probing task [17]. For matching intent to 
explanation, we plan to explore standard intent classifica-
tion [52, 107] and textual similarity models [34, 105]. We 
established the aforementioned desiderata for text-based 

Fig. 4   Simplified concept of a Mediator [25] explaining the predic-
tions of a Model to the human Explainee. Step 1: The Explainee 
provides input to the Model. Step 2: The Model outputs a prediction 
based on the input. Step 3: The Mediator generates candidate expla-
nations based on the prediction and grey-box access to the Model. 
Step 4: The Mediator starts off the explanation dialogue with the 
Explainee. Step 5: The Explainee acts upon the explanation and asks 
follow-up questions until satisfied. Meanwhile, the Mediator keeps 
track of the dialogue state and the user’s mental model
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conversational agents explaining the behavior of NLP mod-
els as Mediators in [25] depicted in Fig. 4.

We are planning to investigate the above mentioned 
research questions associated with the implementation of 
an AI system explainable via conversational explanations 
within the use case of an interactive NLP model explorer, 
with a proof of concept in text classification and language 
modeling tasks, which we will describe in the following.5

3.2.1 � Interactive NLP Model Exploration

Many types of explanation-generating methods can be 
employed to diagnose the behaviour of NLP models [39, 55]. 
Our work builds on top of applications allowing to explore 
language models interactively [11, 47, 70, 91, 92, 98]. Our 
goal is to provide users with easy access to a better under-
standing of NLP model behaviour via conversational agents 
that can draw from a pool of explanations in a task- and 
model-agnostic manner. This means such an agent is trained 
to handle NLP models of different sizes and training objec-
tives. Although the task and model chosen by the user might 
be transparent, the pitfall that the agent has to circumvent is 
the one of generalization: For example, in feature attribution 
for sentiment analysis, words that are salient for one task 
and model might not be in a different context. The agent has 
to be able to abstract away these biases. At the same time, 
the agent as well as the underlying NLP model receive rich 
feedback from the dialog history [94] that can be utilized for 
improvement and better alignment with the user. The modal-
ity of natural language lends itself to very comprehensive 
explanations involving counterfactuals and insights about 
training data and dynamics that are not easily understood 
by people outside the NLP domain. Contrary to the previ-
ously described works in XAINES, our conversational inter-
actions present the narrative bit by bit, i.e. with each turn 
of the dialog, and with the simplest parts first, so users are 
not overwhelmed and are animated to ask follow-up ques-
tions. This enables human studies with laypeople. The two 
most pressing issues we identified are the lack of explanation 
dialog datasets [4, 101, 103] and evaluation standards [3, 58, 
103]. Both of them require a solid foundation through human 
evaluation: When constructing datasets, human annotators 
should be tasked to judge generated explanations accord-
ing to their preferences and additionally edit them to make 
them more natural and aligned with human expectations 
[103]. For evaluation, participants in user studies should be 
capable of simulating the underlying model [21] after the 

narrative has been presented and a mutual understanding 
has been reached. We also hope to close the gap of applying 
explainability methods to NLP problems beyond text clas-
sification, such as summarization, machine translation and 
open-domain question answering. Our proposed framework 
will require us to come up with solutions.

4 � Outlook

In this project description, we presented several parts of the 
on-going XAINES project and how they connect in order to 
explain AI with narratives. The project’s runtime is sched-
uled until August 2024, and we want to conclude our con-
tribution with a brief summary and an outlook on planned 
future work. For explanation generation, we focus on visual 
content: images and predictions of image classifiers, and 
(synthesized) motion in video data. So far, we completed 
work on image caption generation and synthesizing motion 
from textual descriptions, which can serve as integral com-
ponents for implementing explainable AI for concrete use-
cases, which we see in the medical domain and the develop-
ment of automated driving. We are currently in the process 
of creating a resource of dancing and martial arts videos 
annotated with textual descriptions, which can be used for 
training both text-to-motion and motion-to-text models. 
For communicating explanations, we focus on interaction 
between user and machine: First, we exploit interaction in 
the IML framework, where we aim to improve explainable 
models based on user feedback. This feedback can take many 
forms, and currently we focus on learning from feedback 
in the form of an explanation from user to machine, which 
has the potential to improve both the model and the model’s 
explanations. Planned next steps are to develop methods for 
learning classifiers from natural language explanations for 
tabular and multi-modal data as supported by the CLUES 
[75] and e-ViL [42] datasets. Second, we want to model the 
process of explaining as a conversational interaction between 
human and machine. Feldhus et al. [25] introduce a blue-
print of such a system, and a next step towards enabling 
conversational explanations will be to implement the sys-
tem conceptualized there. While there exists an open-source 
implementation for dialogue-based explanations based on 
tabular classification datasets by Slack et al. [85], the trans-
fer to more challenging applications requires the collection 
of task-specific datasets, which is another planned step in 
our future research outline.
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5  Note that this framework does not represent a demonstrator for all 
of XAINES, but is rather conceived for its own NLP use cases such 
as sentiment analysis. However, we are also exploring synergies with 
other parts of the project.
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