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Abstract Cloud Computing has the potential to signifi-
cantly change the IT world. It promises dramatic reductions
in cost and time-to-market. This paper gives an introduction
to cloud computing, thereby stating how cloud computing
tries to fulfill these promises. Furthermore, this paper stud-
ies the state-of-the-art of cloud computing platforms and an-
swers the question of how well the current generation of
systems meets these promises. Based on that analysis, this
paper states several fundamental questions that need to be
addressed when designing a cloud computing platform. The
focus of the paper is on database workloads; more specifi-
cally, on online transaction processing workloads (OLTP) in
public clouds.

1 Introduction

The IT requirements of most organizations are simple. First,
they want to collect all data that is available. This data in-
cludes external data from, e.g., the public Web, and inter-
nal data that an organization has collected from their cus-
tomers, their employees, their products, etc. A second wish
is to build services on all the available data. For example, an
organization could wish to analyze the data in order to op-
timize its processes, or an organization could be interested
in developing new pricing models based on customer prefer-
ences. Most organizations would like to adapt their services
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Fig. 1 Data services in the cloud

frequently and bring them into production as soon as possi-
ble. The services should be allowed to access the entire data
pool: There are no silos. Third, organizations have a num-
ber of operational requirements. For instance, services must
never fail. Figure 1 depicts the resulting IT landscape with a
layer of services and a layer of data management.

Guess what? It is possible to achieve all these require-
ments. The question is no longer whether it is possible to
implement a specific service or to collect a particular data
set; the real question is whether it is worthwhile. Putting it
differently, when introducing a new service, organizations
ask the following questions: How much will it cost? How
long will it take to get it into production? What kind of ex-
pertise do I need to develop it and operate it?

Cloud computing promises to lower the bar for new
services to become worthwhile by making things cheaper,
faster, and automating tasks that traditionally had to be car-
ried out by experts. This way, cloud computing helps op-
timizing the long tail of processes which are currently not
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supported by IT and helps to reduce the cost of those pro-
cesses that indeed are already automated. The purpose of
this paper is to list the promises of cloud computing in more
detail, study the state of the art, and analyze what needs to
be done so that cloud computing fulfills its promises.

Cloud computing technology is typically classified along
three dimensions:

— Deployment Type: The alternatives are public clouds
which offer their services to a general audience and pri-
vate clouds which are operated by an organization for its
internal purposes.

— Service Type: The alternatives are infrastructure ser-
vices (laaS) which provide basic computing resources
(CPU cycles, storage, and network bandwidth), platform
services (PaaS) which provide a framework to develop
and deploy new, custom services, and software services
(SaaS) which provide a fully-fledged, canned applica-
tion.

— Supported Workloads: The typical workloads that organi-
zations would like to deploy on a cloud are online trans-
action processing (OLTP), analytics (OLAP), complex
event processing (CEP), and testing.

While this paper tries to be as general as possible, the fo-
cus of this paper is on public clouds that provide plat-
form services (PaaS) (e.g., databases, queues, and applica-
tion servers), and support OLTP workloads.

According to its goals, the rest of this paper is struc-
tured as follows: Sect. 2 revisits the basic principles of cloud
computing and its most important promises. Section 3 lists
the most important offerings on cloud computing and sum-
marizes the main results of a recent study [11]. Section 4
discusses some of the critical open questions with regard
to designing a data management system in the cloud. Sec-
tion 5 contains conclusions. This paper is based on a recent
keynote presentation at the IEEE Data Engineering Con-
ference [10]. The slides of that talk are available at the
conference web site, at the ETH Systems Group web site
(http://systems.ethz.ch), and upon request from the authors.

2 Promises

This section discusses why cloud computing can help to re-
duce cost and time-to-market. Before doing so, however, the
most important principles of cloud computing are explained.

2.1 Principles of Cloud Computing

Cloud computing is based on three important principles that
depend on each other and can only provide additional value
if implemented in concert:

@ Springer

1. Automation: Mundane task of maintaining an IT infras-
tructure such as starting a machine, stopping a machine,
installing software, backups, etc. are automated. More
concretely, a cloud computing provider offers a REST
or Web Service API for executing such tasks in an auto-
mated way.

2. Virtualization: This principle mandates that no piece of
software (neither data nor program code that defines ser-
vices) is ever bound to any hardware resources. Virtual-
ization makes it possible to provision hardware resources
flexibly to data and services. It is, therefore, a require-
ment for the pay-as-you-go paradigm.

3. Pay-as-you-go pricing model: Users only pay for hard-
ware and software resources that they consume. That
is, consumption of resources is metered and the unit of
metering is typically fine-grained. For instance, storage
and network bandwidth consumption are typically me-
tered in the granularity of GBs. CPU consumption is
typically priced per hour.! To make this pay-as-you-go
model work, the provided services must be elastic. That
is, users must be able to release resources if they are no
longer needed and users must be able to provision addi-
tional resources if required. Ideally, a PaaS offering im-
plements elasticity automatically. So the platform auto-
matically grows and shrinks the provisioned resources
for a specific service based on the demand for that ser-
vice.

The remainder of this section shows how these principles in
concert—if implemented correctly—can help to reduce cost
and time-to-market.

2.2 Cost

There are a number of reasons why CFOs are getting inter-
ested in cloud computing. The first reason is a direct con-
sequence of the pay-as-you-go model. As a result, organi-
zations turn capital expenses into operational expenses. In
other words, organizations avoid investments that may never
pay back if the new service is not a success.

Even for successful services, cloud computing can have
several cost advantages: First, the utilization of the hard-
ware resources can be improved. This effect is a direct con-
sequence of virtualization. If services are flexibly assigned
to hardware resources, then several services with little de-
mands can be packed into the same machine. If the popu-
larity and workload of one of these services increases, then
that service can be moved to another machine. In all, bin
packing can be used in order to minimize the number of ma-
chines that are active at any moment in time. Correspond-

! Amazon Elastic Compute # (Amazon EC2). http:/aws.amazon.com/
ec2/,2010.
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ingly, cloud computing is often considered an enabling tech-
nology for green computing (aka energy-efficient comput-
ing). In related work, the cost savings of cloud computing
have been referred to as statistical multi-plexing of comput-
ing resources [1].

Further cost reductions can be achieved by an economy
of scale. Cloud computing providers can purchase hardware
cheaper because of volume effects. Furthermore, cloud com-
puting providers can operate data centers at locations with
cheap energy, another direct consequence of virtualization.
Finally, it is worth to employ super-engineers to operate and
optimize these data centers. Most organizations cannot af-
ford (nor attract) such engineers because the optimization
potential is not big enough. In a PaaS environment, it is
possible to continuously fine-tune the infrastructure and the
platform in order to achieve further cost reductions. Such
opportunities typically do not arise in a traditional software
deployment model because upgrades to new releases of plat-
form components (e.g., databases) require a huge effort.

Finally, cloud computing promises to reduce the cost to
avoid failures and the cost of having failures. Cloud com-
puting is typically implemented on clusters with cheap com-
modity hardware instead of expensive mainframes. Failures
inside this infrastructure are the normal case and not an ex-
ception. In order to provide highly reliable services on this
unreliable infrastructure, cloud services have to be designed
to automatically deal with all kinds of failures. Thus, cloud
services typically use home-grown distributed fabrics based
on recent results of distributed computing research in order
to detect, tolerate and/or automatically repair various kinds
of failures [5, 7]. This way, the cost of avoiding failures is
reduced as cheaper hardware and fewer stand-by engineers
on weekends and at night are required. The cost of having
failures is reduced by minimizing the effect of any kind of
failure on the system.

2.3 Time to Market

Arguably, the biggest advantage of cloud computing is the
potentially faster time-to-market. In many organizations, the
savings in IT infrastructure cost are negligible compared to
the lost opportunity of being fast. Cloud computing can re-
duce time-to-market because it eliminates several steps in
the process of developing and deploying a service. Most im-
portantly, up-front hardware provisioning is not necessary
if cloud computing technology is adopted. Again, as a re-
sult of virtualization and the pay-as-you-go paradigm, or-
ganizations should not think about the hardware resources
that a service may consume once it is deployed. Instead, the
required hardware resources should be provisioned dynam-
ically based on the real (rather than estimated) workload.
Estimating the workload generated by a service and pro-
visioning hardware accordingly is an expensive and time-
consuming task. This task can only be carried out after the

service has been implemented because it is based on bench-
marking. Therefore, removing this task will immediately
impact the time-to-market.

In general, it is difficult to measure time-to-market of a
software project. In particular, it is difficult to estimate the
savings in time-to-market of a particular cloud computing
product. However, it is possible to benchmark the elasticity
of a cloud computing product. If a cloud computing product
is indeed fully elastic, then hardware provisioning is not an
issue and time-to-market can be reduced.

3 State of the Art

While the promises of cloud computing are compelling, it is
not at all clear that all cloud computing providers deliver on
these promises. This section outlines the results of a recent
study that assessed the state-of-the-art [11]. In a nutshell,
that study showed that the differences in cost and elasticity
of the different providers are immense. The next section tries
to look behind the curtain and lists crucial design questions
that cloud providers must face.

3.1 Players

There are a number of companies that provide cloud services
or cloud-enabled services at various levels and for different
kinds of clouds. Arguably, the three most prominent compa-
nies that have PaaS offerings in a public cloud are Amazon,
Google, and Microsoft. As mentioned in the introduction,
this work focuses on this kind of cloud services. This sub-
section describes the offerings of these companies at a high
level. The market is highly dynamic and the services itself
and many of their details are subject to constant change.

3.1.1 Amazon

Amazon offers a suite of IaaS and PaaS services that can
be used to deploy data-intensive services in the cloud as
part of Amazon Web Services, AWS for short.> Among the
most famous laaS services are S3 and EBS for data storage
and EC2 for the rental of virtual machines. Amazon’s most
prominent PaaS services are RDS and SimpleDB. Amazon
RDS is a so-called database as a service. That is, RDS al-
lows users to create a relational database and execute SQL
statements (schema, data manipulation, and queries) on such
databases using a REST or Web Service interface. The ser-
vice requires managing the database instance directly. Thus,
users start and stop database instances and control the size of
the CPU and the memory of the instance that handles SQL
requests to the database. Amazon charges per CPU hour that

2 Amazon Web Services. http://aws.amazon.com/, 2009.
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the database is online, depending on the selected CPU and
memory of the database server. In addition, prices may vary
by region: In 2010, using a data center in the USA has been
cheaper than using a data center in Europe.

SimpleDB is an alternative to RDS. As opposed to RDS,
SimpleDB does not support fully-fledged SQL. Instead,
SimpleDB provides a simplified query interface that allows
executing range queries, but no joins or aggregates. If an
application programmer wishes to execute those kinds of
queries on top of SimpleDB, custom code must be written
as part of their application. SimpleDB has a slightly more
flexible data model than RDS which is based entirely on the
SQL (relational) data model: In SimpleDB, records of the
same domain can have different formats. Furthermore, the
pricing model of SimpleDB is different: In SimpleDB, users
pay for the consumed CPU hours and traffic while process-
ing queries.

Both SimpleDB and RDS can be used in order to deploy
(OLTP) services. Neither of them, however, is sufficient be-
cause they merely provide the database tier. In order to de-
ploy the application logic and a Web server, Amazon pro-
vides the EC2 service. EC2 allows provisioning virtual ma-
chines in the Amazon cloud using, again, a REST or Web
Service interface. These virtual machines can be configured
to run Linux or Windows and can be used to install any kind
of software (e.g., application servers). It is possible to se-
lect a data center for the EC2 machines and, of course, it
makes sense to collocate EC2 machines and database ser-
vices (i.e., SimpleDB or RDS) in the same data center. EC2
prices, again, depend on the time (measured in the granu-
larity of hours) that an EC2 virtual machine is rented, the
size of the CPU, and possibly the location of the data center.
Furthermore, network bandwidth to communicate with EC2
machines from the outside is charged. The total cost of run-
ning a service in the Amazon cloud is the cost to run EC2
machines plus the cost to run SimpleDB and/or RDS plus
the outgoing and ingoing network traffic of the services into
and out off the Amazon cloud.

3.1.2 Google

Google has a dedicated PaaS service called AppEngine. Ap-
pEngine allows to develop and deploy data-intensive ser-
vices written in Java or Python. Furthermore, AppEngine
provides a service to host a relational database and enables
embedding queries and update statements to that database
into the Java or Python code. As a database language,
AppEngine supports GQL (Google Query Language) which
is an SQL dialect. GQL is a dramatic simplification of SQL,
somewhere in between real SQL and the queries supported
by SimpleDB. For better or worse, AppEngine does not pro-
vide much flexibility and control on how the application and
the database is deployed in the Google cloud. All config-
uration is done automatically. The pricing model is a true
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pay-as-you-go model: That is, if a service is (virtually) in-
active, no cost is incurred. (Only a marginal monthly fee to
keep the data of the database consistently is charged.) For
active services, Google charges network traffic and the CPU
hours consumed for processing requests.

3.1.3 Microsoft

Recently, Microsoft has also started to offer a suite of IaaS
and PaaS services to deploy data-intensive services in their
cloud. This suite of services is branded Microsoft Azure.
The services and the whole approach resemble those offered
by Amazon AWS and it can be expected that the similar-
ities will become even bigger in the near future. In order
to host data-intensive services, for instance, Azure provides
two particular services: (a) Windows Azure which plays the
same role as EC2 and allows running application logic in a
virtual machine; (b) SQL Azure which corresponds to RDS
and supports a relational database. The pricing model of
Windows Azure is the same as of EC2. The pricing model
of SQL Azure involves a flat monthly fee that depends on
the size of the database and includes the cost of processing
queries (independent of the query workload).

3.2 Results

The results of a comprehensive performance study compar-
ing the current offerings from Amazon, Google, and Mi-
crosoft for OLTP workloads have been presented in detail
in [11]. In the remainder of this section, these results are
briefly summarized in order to motivate the discussion of
the next section. We believe that these results are represen-
tative for the state-of-the-art in PaaS cloud computing in the
year 2010 as Amazon, Google, and Microsoft are currently
the most prominent players in the market. We present our
findings with regard to cost and elasticity. These two crite-
ria are crucial to implement the most important promises of
cloud computing. (As stated in Sect. 2.3, elasticity is impor-
tant in order to reduce the time-to-market.) All experiments
were carried out with the TPC-W benchmark.®> Again, more
details of the experimental set-up and explanations of the
effects and results can be found in [11].

3.3 Cost

Table 1 shows the cost per Web Interaction of the various
ways to deploy the TPC-W on the platforms provided by
Amazon, Google, and Microsoft. A Web Interaction of the
TPC-W benchmark models the click of a user in an online
bookstore (e.g., searching for a book, putting a book into a

3Transaction Processing Performance Council. TPC-W 1.8. http:/
www.tpc.org/tpecw/, 2002.
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Table 1 Cost per Web interaction [m$], Vary EB

Emulated Browsers (EB)

1 10 100 500 1000 3000 9000
Amazon RDS 1.211 0.126 0.032 0.008 0.006 0.005 -
Amazon SimpleDB 0.384 0.073 0.042 0.039 0.037 - -
Google AppEngine 0.002 0.018 0.026 0.028 - - -
MS SQL Azure 0.775 0.084 0.023 0.006 0.006 0.005 0.005
shopping cart, etc.). The TPC-W benchmark defines several ~ 1able2 Maximum load sustained [EBs]
mixes of such Web Interactions and Table 1 shows the re- Max. EB
sults for the so-called Ordering Mix. Furthermore, Table 1
shows the cost per Web Interaction for a varying number of ~ Amazon RDS 3750
emulated browsers (EB). An emulated browser simulates a Amazon SimpleDB 1000
user. So, the column for 1000 EBs shows the results for 1000 Google AppEngine 500
concurrent users. Again, the TPC-W benchmark defines the MS SQL Azure 9000

thinking time of such an (EB) user.

Intuitively, the cost of a Web Interaction should not de-
pend on the number of concurrent users. If you buy milk in a
supermarket, then you would not expect the price per gallon
to depend on the number of other people who are in the same
or in another supermarket. You would expect to pay the price
that is displayed at the cooling rack. As shown in Table 1,
unfortunately, all providers of the state-of-the art have prices
which vary depending on the load. Even worse, the prices
are completely unpredictable because all cloud providers
sell CPU hours or network bandwidth, but not “Web Inter-
actions” (or requests) which is what really matters to busi-
nesses. Surprisingly, the different platforms show different
behavior. While for Google AppEngine the prices per Web
Interaction increase with the number of users, the prices for
Amazon and Microsoft decrease with the number of users.
This is due to the fact, that Google AppEngine has an initial
free quota whereas Amazon and Microsoft have high start-
ing costs (e.g., $10-$100 per month for SQL Azure) which
only amortize with bigger workloads.

The most striking observation that can be drawn from Ta-
ble 1 is that the differences in cost are huge. There are no
differences in quality here: A TPC-W Web Interaction is a
TPC-W Web Interaction, regardless of whether it is served
by the Amazon or, say, the Google cloud. (All providers
have roughly comparable SLAs and response times—so,
there really is no difference in the quality of a Web Inter-
action here.) Continuing the “milk” example, you would ex-
pect that milk is more expensive in a boutique shop on Fifth
Avenue, New York, than in a supermarket in, say, Kansas
City. However, you would not expect the differences in price
to be three orders of magnitude. As Table 1 shows for the
cloud offerings, the differences in price can be several or-
ders of magnitude between different providers. Even worse,
the differences in price can be several orders of magnitude
even with the same provider, depending in this case on the

number of concurrent users, a parameter which is typically
not known in advance.

The big question is not answered by Table 1: Does cloud
computing reduce cost? Unfortunately, there is no simple
answer to this question (otherwise, we would try to give
it) because it is difficult to find the right baseline. Unfor-
tunately, the official TPC Web site no longer lists results for
the TPC-W benchmark on traditional IT infrastructures so it
is not possible to infer a baseline from there. The huge vari-
ances shown in Table 1 indicate, however, that cloud com-
puting can reduce cost if done right, but it can also signifi-
cantly increase cost if not done right.

3.4 Elasticity

As stated in Sect. 2.3, one promise of cloud computing is to
reduce time-to-market for IT projects. As explained in that
section, a cloud computing solution must be elastic in order
to fulfill that promise. That is, the provider must be able to
adapt quickly to workload changes. Benchmarking elasticity
is not trivial and we are currently working on a comprehen-
sive benchmark for this purpose. (Initial ideas are presented
in [3].) Table 2 shows the results of a simple experiment that
we conducted in order to see at what point a cloud provider
hits its limits. Obviously, a fully elastic service should (vir-
tually) never hit its limits. Unfortunately, even with a mod-
est (university) budget it was possible to reach the limits of a
single deployment of the TPC-W in the Amazon and Google
clouds.

The only deployment of the TPC-W benchmark which
was able to sustain our maximum load of 9000 EBs (i.e.,
simulated concurrent users of a book store) was MS SQL
Azure. Amazon RDS drops out at 3750 EBs. The reason
why MS SQL Azure out-scales Amazon RDS although they
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use a similar architecture (see Sect. 4.1) is, that Amazon
RDS uses a less powerful machine for the primary copy.
As a matter of fact, MS SQL Azure also has an inher-
ent scaling limit of the master copy, which was simply not
reached in this experiment. Amazon SimpleDB was able to
handle a load of 1000 EBs before it started to drop write
requests. The worst performance in this experiment had
Google AppEngine with only 500 EBs. The main reasoning
behind it is, that we tried to follow the TPC-W specifica-
tion as close as possible including the consistency require-
ments. Google AppEngine offers transactions so we used it
to implement the consistency requirement of TPC-W. Only
afterwards, we were informed, that Google AppEngine does
not implement concurrent transactions. Thus, Google Ap-
pEngine was executing one transaction at a time. We as-
sume, that without using the offered transaction guarantees,
Google AppEngine would have been able to scale further.

4 Big Questions

The previous two sections described the promises of cloud
computing and analyzed the state-of-the-art. Our conclusion
is that cloud computing does not yet live up to its promises.
One reason may be that the products are not yet mature. That
is reasonable because most offerings have been launched
only recently and we expect all products to make quantum
leaps in cost and performance in the near future. There seem
to be, however, also more fundamental design issues on how
to build a PaaS for cloud computing. This section summa-
rizes the discussions on seven such design questions that we
have been debating with people in the research community
and industry.

4.1 How to Partition the Data?

Figure 2a shows the reference architecture of Web-based
data services. (HTTP)-requests from clients are handled by
a Web server which passes them to an application server.
The application server executes the application logic written
in a programming language like Java or C#. The applica-
tion code includes calls to the database in order to read and
write objects; typically, those calls are implemented using
SQL. Calls to the database are handled by a database server.
The database server evaluates the SQL queries and synchro-
nizes concurrent calls to the same data. Finally, the data is
stored persistently by a storage system. The storage system
could be a Storage Area Network (SAN) or disks which are
attached locally to the machine that runs on the database
server.

The big question is how to map the components of the
architecture of Fig. 2a to (virtual) machines in the cloud.
As will become clear in the remainder of this subsection,
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the answer to this question implies how data is partitioned,
how the consistency of the data is maintained, and how load
balancing is carried out. Figures 2b and 2c sketch two fun-
damentally different approaches to answer these questions.

Figure 2b sketches the approach that was pioneered by
Salesforce. The idea is to partition the data by tenant. A ten-
ant is a customer of the Force.com cloud. Correspondingly,
all requests will be routed by tenant. That is, all requests
of the same customer are handled by the same Web server,
application server, and database server. The Web and app
servers of several tenants can be hosted by the same ma-
chine. Likewise, the same machine can serve the database
of many tenants.

The big advantage of the Salesforce approach is that off-
the-shelf Web, app, and database servers can be used. Fur-
thermore, several small customers can share the same ma-
chine so that a high utilization can be achieved, one of the
most important goals of cloud computing (Sect. 2). On the
negative side, Salesforce needs to apply complex optimiza-
tions in order to determine which set of tenants should be
hosted by which machine. Essentially, this task involves
solving a dynamic bin-packing problem. If the load of a ten-
ant grows, it may become necessary to move it (or another
co-located tenant) to a different machine in order to meet the
SLAs.

The architecture of Fig. 2b has also been adopted by Mi-
crosoft as part of its SQL Azure service. In SQL Azure,
applications define a logical unit of consistency. This log-
ical unit of consistency represents a set of tables that are
managed by the same database server. All requests to data
of such a logical unit of consistency are synchronized by
that database server. Again, SQL Azure hosts several logi-
cal units of consistency with a single machine, thereby solv-
ing a similar bin-packing problem as Salesforce. In order
to limit the cost of moving logical units of consistency be-
tween machines, SQL Azure limits the size of a logical unit
of consistency; currently, the limit is 50 GB. If a service
requires access to a larger data pool, the application code
of that service must federate between several logical units
of consistency. Currently, Microsoft provides no support for
this federation task.

The biggest downside of the approach is, that the archi-
tecture requires finding a partitioning scheme, and that the
load of every partition fits entirely on at least one server. In
the light of many new social applications data becomes in-
creasingly more connected. Thus, finding a good partition-
ing scheme becomes increasing more complicated.

Figure 2c depicts the approach taken by Google, 28 ms,
and several other start-ups. Many of the proponents of the
so-called NoSQL movement* seem to have adopted this ap-
proach. The idea is to pool all the data and all computing

4S. Edlich, The List of No SQL databases. http://nosql-database.org/,
2010.
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Fig. 2 Architectures

resources of a data center. That is, the data is stored in a
distributed storage system such as a key-value store or a
distributed database system. Each incoming request may be
handled by a different (virtual) machine; a virtual machine
that is currently not busy. That virtual machine will load the
application code to handle the request from the distributed
storage system, interpret that application code thereby read-
ing and updating data objects from the distributed storage
system. That is, all these virtual machines are stateless.

The big advantage of this approach is that it avoids any
kind of data silos: Any service can virtually access all the
data stored in the cloud as shown in Fig. 1. A second advan-
tage is that failures are easy to handle: Since the virtual ma-
chines are stateless, they can fail anytime without data loss;
only the requests that were currently processed by that ma-
chine are lost. Fault-tolerance at the storage level can be im-
plemented using data replication. A third advantage is that
a high utilization can be achieved without the need to solve
a complex bin-packing problem. On the negative side, con-
current accesses from different virtual machines to the same
data object need to be synchronized. Furthermore, this ap-
proach involves re-implementing essentially the whole sys-
tem’s stack. Doing so brings the opportunity to simplify the
stack and merge several layers into a single tier as shown in
Fig. 2c and for example implemented in [4].

The final verdict which of the two approaches, Fig. 2b vs.
Fig. 2c, to adopt for data services in the cloud, has not been
made. The experimental results presented in [11] indicate
that the approach of Fig. 2¢ is more cost-effective if many
small services need to be hosted. On the other hand, large-
scale applications with strong consistency requirements can
only be handled using the approach of Fig. 2b given the cur-
rent state-of-the-art.

4.2 Consistency vs. Availability?

A second open question that needs to be addressed in both
approaches discussed in the previous subsection is, how to
deal with the infamous CAP theorem [8]. This theorem spec-
ifies that it is impossible to achieve strong consistency of

(b) Partitioning

(c) Load

data (C), 100 percent availability (A), and resilience to net-
work partitioning (P). It is possible to achieve two of these
properties, but not all three.

Since network partitioning is a fact of life, two schools
have formed. The first school propagates that strong con-
sistency is crucial and tries to maximize availability un-
der this constraint. The second school, on the contrary,
prioritizes availability and tries to maximize consistency.
Both camps have strong arguments: Strong consistency (i.e.,
ACID transactions) makes it easier to build applications and
to operate data services. Without strong consistency, com-
plex application logic needs to be implemented that detects
and compensates for data inconsistencies. Often, such data
repairs involve expensive manual work. Prioritizing avail-
ability is also justified because businesses loose revenue
whenever their services are not available.

Again, there is no clear answer to the question “consis-
tency” or “availability”. In practice, the right answer de-
pends on the application and business scenario. As a result,
various levels of consistency have been defined [14, 17, 18]
in order to give application developers a way to trade consis-
tency for increased availability. A more recent line of work
has studied protocols to trade consistency for cost [4, 12].

4.3 Control Architecture?

Together with the question of consistency and partitioning
comes the question of the control architecture. Most current
distributed database systems use master/slave architectures
which make it easy to implement strong consistency guar-
antees. In such a scenario, the master coordinates all writes
and propagates the decisions to the slaves. Depending on the
configuration, either the master is responsible for all reads
and writes (e.g., MS SQL Azure uses this model) or some/all
of the reads are offloaded to the slaves. The advantage of
the master/slave architecture is the simplicity of the design.
On the downside, the master is a potential bottleneck in the
system. Further, this kind of system reduces the availabil-
ity because it requires always a connection to the master for
writes at all times.
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In multi-master architectures, a set of masters share the
responsibility by acting on either distinct ranges of the data
or assigned individual sets of items. For example, Yahoo
PNUTS [6] uses a multi-master architecture in which the
mastership for every record can be individually assigned to
one of the geographically distributed nodes in the system.
Obviously, for such a model multi-record transaction guar-
antees are harder and more expensive to achieve than in the
case of a single master architecture. However, failures only
render parts of the systems unavailable for writes.

An extreme form of multi-master architectures is fully
distributed control, often using distributed hash tables such
as Chord [16] or Pastry [15] for routing request. Here, the
ownership of records seamlessly migrates between servers
in the case of failures, making the approach well-suited
for high availability. However, implementing stronger levels
of consistency implies higher overhead in this architecture.
Amazon Dynamo [7] is an example for a system using this
control architecture.

Although, it is possible to cover almost the full spectrum
of consistency vs. availability for the different partitioning
schemes, some control architectures are more suited than
others for certain system requirements.

4.4 Other Open Questions

There are a number of other open questions which have been
addressed in the literature and which are relevant for the
right design of a cloud infrastructure:

How to store the Data? As shown in Fig. 2, the storage
system is a critical component of the systems stack. There
are three open questions evolving around this layer:

— What is the right API of the storage system? Tradition-
ally, a storage system (e.g., a disk or a SAN) has a simple
put/get interface. Data items are identified by keys (e.g.,
a URL or a block address) and retrieved in the granu-
larity of blocks (e.g., chunks of 512 bytes). With current
hardware trends, it might make sense to implement richer
APIs. For instance, it might become economically viable
to push down predicates and richer query processing se-
mantics into the storage system. This idea is old and has,
for instance, been explored in the context of idisks [9].
Lately, the same idea has been implemented in the con-
text of main-memory databases, e.g., [19].

— What is the right data model? Next to the well-known
relational model, key-value stores have become increas-
ingly popular. As the name implies, the simplest form is
an (un-)ordered set of key/value pairs. Dynamo [7] and
Amazon S3° are the most prominent examples using this

5 Amazon, Simple Storage Service (S3). http://aws.amazon.com/s3/,
20009.
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model. A natural extension to this model is to associate
more than one value to a key. This model is for exam-
ple supported by BigTable [5], PNUTS [6] and Amazon
SimpleDB.° As the biggest remaining difference to the
relational model, the key/values are not required to be of
the same relation and can be more flexibly defined.

However, recently more and more exotic data mod-
els have been used in the various systems. Ranging from
the possibility to store objects (e.g, MongoDB”) up to
three-dimensional structures (e.g., Cassandra®). How to
generalize the advantages of the different new models is
still an open question.

— What is the right storage media? There have been a great
deal of advancements in storage technology, the latest de-
velopment being phase-changing memory [13]. The tra-
ditional approach relies heavily on hard disks as part of
a storage hierarchy. Finding the right performance/cost
trade-offs is still an open question. Furthermore, it is un-
clear how to evolve a storage cloud with evolving tech-
nology.

What is the right programming language?  Another heated
debate concerns the right programming language for de-
veloping data services in the cloud. Again, there are two
camps. The first camp insists that the choice of the pro-
gramming language should be made independent of deploy-
ment considerations. That is, the same programs should run
in the cloud as in traditional IT infrastructures. The other
camp argues that new programming paradigms are needed
in order to exploit the promises of the cloud. This discus-
sion is tightly coupled to the discussion on the other open
technical questions. Existing programming languages and
legacy applications can only be cloud-enabled if the ap-
proach of Fig. 2b is chosen. Only in that approach can exist-
ing application servers be leveraged in the cloud. The pro-
ponents of the approach of Fig. 2c argue for other more con-
strained programming models. As mentioned in Sect. 4.1,
the NoSQL movement belongs to this camp. Noticeably,
Google AppEngine only supports subsets of Java and SQL;
again, trading programming comfort for cost efficiency.
PIQL is a recent approach to restrict SQL in order to achieve
predictable performance [2].

5 Conclusion

Although cloud computing is often considered as a hype,
most people also agree that it is here to stay due to the as-

6 Amazon, SimpleDB Developer Guide (API Version 2009-04-15).
http://docs.amazonwebservices.com/AmazonSimpleDB/, 2009.

710gen, MongoDB. http://www.mongodb.org, 2010.
8Facebook, Cassandra. http://incubator.apache.org/cassandra/, 2009.
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sociated economical benefits. Nevertheless, none of the cur-
rently available solutions covers all of the promises of the
cloud yet. At the same time, more and more systems appear
on the market with an increasing variety of approaches to
achieve the promises. It remains to be seen, which of the
possible architectures, programming languages, data mod-
els will survive over time and if the architectures will con-
solidate to one reference architecture as happened for the
relational database system.
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