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Abstract Scientific workflows are becoming increas-

ingly popular for compute-intensive and data-intensive

scientific applications. The vision and promise of sci-

entific workflows includes rapid, easy workflow design,

reuse, scalable execution, and other advantages, e.g.,

to facilitate “reproducible science” through provenance

(e.g., data lineage) support. However, as described in

the paper, important research challenges remain. While

the database community has studied (business) work-

flow technologies extensively in the past, most current

work in scientific workflows seems to be done outside

of the database community, e.g., by practitioners and

researchers in the computational sciences and eScience.

We provide a brief introduction to scientific workflows

and provenance, and identify areas and problems that

suggest new opportunities for database research.

Keywords Scientific workflows · Provenance

1 Introduction

A scientific workflow is a description of a process for ac-

complishing a scientific objective, usually expressed in

terms of tasks and their dependencies [76,59,25]. Scien-

tific workflows aim to accelerate scientific discovery in

various ways, e.g., by providing workflow Automation,

Scaling, Adaptation (for reuse), and Provenance sup-

port; or ASAP for short. For the automated execution

of repetitive tasks, e.g., batch processing a set of files in a

source directory to produce a set of output files in a tar-

get directory, shell scripts are traditionally used. Com-

mon processing examples include data (re-)formatting,

subsetting, cleaning, analysis, etc. Compute-intensive
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workflows often result from computational science sim-

ulations, e.g., running climate and ocean models, or

other simulations ranging from particle-physics, chem-

istry, biology, ecology, to astronomy, and cosmology [58].

Scientific workflows can be simple, linear chains of tasks,

but more complex graph-structured dependencies are

also common; e.g., one can think of tools like Make and

Ant as special cases of workflow automation [6].

Workflows need to be scalable and fault-tolerant to

execute reasonably fast in the presence of compute-

intensive tasks and “Big Data”. For example, a param-

eter sweep experiment may require running a program

thousands of times with slightly altered input parame-

ters, thus consuming many compute cycles and produc-

ing so much data that manually managing it quickly be-

comes impossible. Distributed Grid or cloud computing

technologies [24,86,94] and other parallel frameworks

such as MapReduce [23] and dataflow process networks

[54,3,82] can be used to scale workflow execution by

exploiting parallel resources.

In addition to optimizing compute cycles, workflows

should also save costly “human cycles”, e.g., by sup-

porting user-friendly workflow designs that are easy to

adapt and reuse. Similarly, scientific workflows should

encourage modeling at an appropriate level of granu-

larity, so that the underlying experimental process is

effectively documented, thus improving communication

and collaboration between scientists, and experimental

reproducibility. Many current systems allow to record

the provenance (i.e., processing history and lineage) of

results, and to monitor runtime execution. Provenance

data can then be queried, analyzed, and visualized to

gain a deeper understanding of the results, or simply

to “debug” a workflow or dataset by tracing its lineage

back in time through the workflow execution.
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In the following, we introduce and describe different

aspects and research challenges of scientific workflows

(Section 2) and provenance (Section 3). We provide a

short summary and conclusions in Section 4.

2 Scientific Workflows

We give a brief overview of various aspects of scientific

workflows, and then summarize related research chal-

lenges. Our terminology and perspective are influenced

by our work on Kepler [57], a scientific workflow system

built on top of Ptolemy II [33].

2.1 Workflow Models of Computation (MoCs)

Figure 1 depicts a simple example workflow in the form

of a dataflow process network [50,53]. Boxes represent

actors (computational steps) which consume and/or

produce tokens (data) that are sent over uni-directional

channels (FIFO queues). In a process network, actors

usually execute as independent, continuous processes,

driven by the availability of input tokens. Alternatively,

in some variant models, actors may be invoked by a

director (a kind of scheduler) which coordinates over-

all execution. Thus, different models of computation

(MoCs) can be implemented via different directors [33].

Let W be a workflow consisting of actors connected

through dataflow channels.1 With W we can associate

a set of parameters p̄, input datasets x̄, and output

datasets ȳ (not shown in Fig. 1). A model of computa-

tion (MoC) M prescribes how to execute the parame-

terized workflow Wp̄ on x̄ to obtain ȳ. Therefore, we can

view a MoC as a mapping M :W×P̄×X̄ → Ȳ which for

any workflow W ∈ W, parameter settings p̄ ∈ P̄ , and

inputs x̄ ∈ X̄, determines a workflow output ȳ ∈ Ȳ , i.e.,

ȳ = M(Wp̄(x̄)). Most workflow systems employ a single

MoC, while Kepler inherits from Ptolemy II several of

them (and also adds new ones).

The PN (process network) MoC, e.g., is modeled af-

ter Kahn process networks [50], where each actor ex-

ecutes as an independent, data-driven process. Thus,

channels in PN correspond to unbounded queues over

which ordered token streams are sent, and actors in

PN block (wait) only on read operations, i.e., when not

enough tokens are available on input ports. Process

networks naturally support pipeline-parallelism as well

as task- and data-parallelism. In the SDF (synchronous

dataflow) model, each actor has fixed token consump-

tion and production rates. This allows the director to

1 Here we ignore a number of details, e.g., actor ports, sub-
workflows “hidden” within so-called composite actors, etc.
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Fig. 1 A simplified bioinformatics workflow that reads a list
of lists of genetic sequences: each sequence is aligned; each se-
quence group is then checked for chimeras, which are filtered
out; the rest of the group is passed through. The remaining
aligned sequences are identified via a reference database, and
all identified sequences are arranged into a phylogenetic tree.

construct a firing schedule prior to executing the work-

flow, to replace unbounded queues by buffers of fixed

size, and to execute workflows in a single thread, invok-

ing actors according to the static schedule [54].

Finally, let DAG be a MoC that restricts the work-

flow graph W to a directed, acyclic graph of task de-

pendencies, e.g., as in Condor’s DAGMan [78]. In the

DAG MoC, each actor node A ∈ W is executed only

once, and A is executed only after all A′ ∈ W preced-

ing A (denoted A′ ≺W A) have finished their execu-

tion. We make no assumption whether W is executed

sequentially or task-parallel, but only require that any

DAG-compatible schedule for W satisfy the partial order

≺W induced by W . A DAG director can obtain the legal

schedules of ≺W via a topological sort of W . Finally,

note that the DAG model can easily support task- and

data-parallelism, but not pipeline-parallelism.

Research Issues. What are suitable MoCs that best sat-

isfy the different requirements of scientific workflows?

Apart from the basic dataflow MoCs above, there are

many other formalisms that could be used as founda-

tional models for scientific workflows. For example, for

the Taverna system [67] a workflow model equivalent to

the λ-calculus is described in [80]. For business work-

flows, Petri nets have been used as a rich and solid

foundation, with many theoretical results and practi-

cal analysis tools readily available. It is interesting to

study to what extent scientific workflows could employ

the models and analysis tools developed for business

workflows. Curcin & Ghanem [20] ask whether a single

system (or a single MoC in our terminology) can cover

the requirements of different domains, and conclude

“... it is highly unlikely that standardization will

occur on any one system, as it did with BPEL

in the business process domain.”

Indeed, the control-oriented modeling common in busi-

ness process management, and dataflow-oriented mod-
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eling in scientific workflows reflect different ways of think-

ing about workflows [60,75].

Different formalisms also imply different modeling

and analysis opportunities. In databases, e.g., the rela-

tional algebra, relational calculus, and cost-based mod-

els yield algebraic, semantic, and cost-based optimiza-

tion techniques, respectively (pushing selections, query

minimization, join-ordering, etc.) Petri net models, on

the other hand, allow detailed analysis of concurrent ex-

ecution behavior, e.g., properties like reachability, live-

ness, and boundedness. Dataflow networks are amenable

to behavioral analysis and verification [54,40,53].

In summary, the quest for suitable models of compu-

tation, e.g., to adequately represent computations and

to expose and exploit different forms of parallelism, con-

tinues. A possible direction are hybrid models [44,88],

which combine techniques from databases, concurrency

models, and stream-processing.

2.2 Workflow Execution

As mentioned in the introduction, workflows need to

be scalable to handle compute-intensive and big data

loads. Both implicit and explicit approaches have been

used to distribute and parallelize workflow execution.

Consider, e.g., MapReduce [23] and its popular open

source implementation Hadoop. In [85] an approach is

described which allows particular Kepler actors to be

distributed onto a Hadoop cluster, i.e., the workflow

engine is used for orchestration, but is itself not dis-

tributed. On the other hand, Nimrod/k [3] (also built

on top of Kepler) uses an implicit technique that al-

lows multiple invocations of an actor to execute simul-

taneously on parallel resources. The approach requires

no special configuration to use, but assumes that ac-

tors do not maintain state between invocations. Vrba

et al. [81] propose to use Kahn process networks di-

rectly to model parallel applications, and argue that

this MoC is a flexible alternative to MapReduce. They

also report efficiency gains of their framework when

comparted to Phoenix, a MapReduce framework specif-

ically optimized for executing on multicore machines.

Recently, the availability of cloud computing has of-

fered new computational resources to many fields in

science. Wang & Altintas [84] report on early experi-

ences with the integration of cloud management and

services into a scientific workflow system; Zinn et al. [94]

propose an approach to support streaming workflows

across desktop and cloud platforms.

Research Issues. The problem of efficient, scalable work-

flow execution is intricately linked to the underlying

workflow MoC: the more parallelism is exposed by a

workflow language and MoC, the more opportunities

there are for exploiting it. An algebraic approach for

workflow optimization, well-suited for parameter sweeps,

is presented in [72]. In essence data are represented by

relations, while actors are mapped to operators that

either invoke a program or evaluate a relational alge-

bra expression. The semantics of the operators enables

workflow optimization by means of rewriting. Analy-

sis and optimization of dataflow process networks [54,

53] and approaches that combine dataflow, MapReduce,

and other parallel techniques with database technolo-

gies are also promising [74,79,87,88,10]. Last not least,

the reemergence of Datalog in real-world, distributed,

and workflow applications [43,46,2] presents unique op-

portunities for database researchers interested in work-

flows and provenance [27].

2.3 Workflow Design

Scientific workflow design shares characteristics with

component-based development, serviced-oriented design,

and scripting, in that preexisting software components

(viewed as black boxes) and services are “glued”, i.e.,

wired together to form larger applications. In order to

save human cycles, scientific workflow design should be

easy and fast, and ideally feel more like storytelling

and less like programming. Abstractions like “boxes-

and-arrows” and flow-charts are often used to develop

graphical versions of workflows in a GUI, or to visualize

workflow designs, even if they have been specified textu-

ally. Depending on the workflow model, different graph

formalisms might be used. The simplest designs can be

thought of as linear sequences of processing steps, pos-

sibly with a stream-processing model like a UNIX pipe.

On the other end of the spectrum are complex workflow

graphs that can be nested, involve feedback loops, spe-

cial control-flow elements, etc. For example, Taverna

workflows can be nested, have dataflow and control-

flow edges, and support a streaming MoC. In addition,

Kepler workflows can also have cycles, e.g., to model

feedback-loops, or even combine different MoCs when

nesting workflows: a top-level PN workflow, e.g., may

have SDF subworkflows [42]. While there can be prac-

tical reasons to employ such sophisticated models [73],

complex workflow structures can make it more difficult

to adapt and reuse workflows.2

When independently developed, third-party tools

and services are combined into workflows and science

2 Similarly, in business process modeling, more abstract
models, e.g., BPMN, and simple, structured models (e.g.,
series-parallel graphs) can be easier to understand and reuse
than unstructured or lower-level models, e.g., Petri nets.
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mashups [45], the resulting designs can be “messy” and

may involve complex wiring structures and various forms

of software shims3, i.e., adapters that transform data

so that (part of) the output of one step is made to fit

as an input for another step [48]. According to [56], a

study of 560 scientific workflows from the myExperi-

ment repository [22] showed that over 30% of workflow

tasks are shims. The proliferation of shims and complex

wiring is a limiting factor to wider workflow adoption

and reuse. Such designs are hard to understand (shims

distract from the “real science”) and difficult to main-

tain: shims and complex wiring make designs “brittle”,

i.e., sensitive to changes in data structures and work-

flow steps. Complex designs also limit the use of work-

flows for documenting and communicating the ideas of

the experiment, and require expert developers with spe-

cialized programming skills, thus increasing the cost for

workflow development and maintenance.

BioMoby [19] aims to improve workflow design by

annotating inputs and outputs of actors with semantic

type information and enabling the system to provide

a wide range of common conversions automatically and

transparently. The approach relies on domain experts to

create semantic tags and the appropriate conversions.

Wings [41] is another system that uses semantic rep-

resentations to automate various aspects of workflow

generation. The approach described in [11,12] facili-

tates service composition and thus scientific workflow

design by exploiting structural types, semantic types,

and schema constraints between them. Under certain

assumptions, schema constraints can be used to auto-

matically generate the desired schema mappings [35],

allowing scientists to more easily connect workflow com-

ponents [11]. The “templates and frames” approach of

[71] aims at simplifying workflow design via a struc-

tured composition of control-flow and dataflow.

Research Issues. How can we further simplify workflow

design, make workflows less brittle w.r.t. change, and

thus more easily evolvable and reusable? How can work-

flow development become more like storytelling and less

like programming? The COMAD model (Collection-

Oriented Modeling and Design), implemented as a Ke-

pler director [61,62,32], and the related VDAL model

(Virtual Data Assembly Lines) [92,91] use a conveyor-

belt assembly-line metaphor to create workflow designs

that are mostly linear, and thus easier to understand

and modify. Instead of using shims and complex wiring

to ship just the required data fragments to only those

actors where they are immediately needed, the conveyor-

belt approach instead provides every actor with a sub-

scription mechanism to “pick-up” only the relevant parts

3 A physical shim is a thin strip of metal for aligning pipes.
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Fig. 2 Workflow redesign from Fig. 1 with COMAD/VDAL.
Actors can modify parts of the shared data collections that
are streamed through the pipeline; Read Sequences, e.g., pro-
cesses each file entry, replacing it with a collection of the same
name containing all sequences found in the file.

of the nested (XML-like) data stream for processing.

The resulting data is added back to the data stream

on the fly. Every actor thus gets a chance to work on

those parts of the data stream that it has subscribed to,

leaving other parts untouched. In this way, changes to

those other parts, i.e., outside an actor’s read scope, will

not affect that actor’s functionality, making the over-

all approach much more change resilient. As a result,

even more so than on a physical assembly line, steps

can be easily added, swapped, replaced, or removed

in these approaches [62,91,32]: For example, Figure 2

shows a COMAD redesign of the workflow from Fig. 1.

Note that the shim actor ArrayToSequence4 is no longer

needed, as the system takes care of the shim problem

(a type mismatch, requiring a map-like iteration) using

a mechanism based on XPath-like actor configurations

(read and write scopes). Similarly, the branching has

been eliminated, since Align passes data through to Fil-
terChimeras, resulting in a simpler, more user-friendly

design.

As another example, in a curation workflow [31]

data and metadata undergo various quality checks (e.g.,

Do lat/long-coordinates agree with geo-locations? Is the

location spelled right? Are the dates plausible? ), and

subsequent clean-up steps: Here, adding, removing, or

replacing an actor will not “break” the workflow, but

only change its curation behavior gracefully.

In contrast, in conventional workflows or scripts,

complex wiring and control-flow usually prevent simple

actor insertions, replacements, or deletions, and work-

flow changes are much more difficult and error-prone.

These techniques are initial steps towards scientific

workflow design for “mere mortals” [62], but more work

is needed. In COMAD, e.g., users have to configure ac-

tors by devising simple queries in the style of XPath or

XQuery. Further advances would aim, e.g., at improv-

4 This shim actor turns a data array token into a sequence
of individual data tokens.
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ing data and schema-level support in workflows. Based

on structural and semantic information one could de-

velop an “auto-config” option for assembly-line work-

flow designs, where not only shims get absorbed by the

system infrastructure, but where actor scope configu-

rations (queries) are automatically inferred. The user-

friendly, linear designs currently result in a trade-off be-

tween human and compute cycles: all data flows through

all “stations” (actors) in this workflow model. New anal-

ysis techniques could be developed that keep workflow

user-views simple, while optimizing executable work-

flow plans [93]. Workflow design technology might also

benefit from functional programming ideas, e.g., con-

catenative, point-free programming and arrows [47].

2.4 Workflow Management and Reuse

Workflow reuse can happen at multiple levels: a scien-

tist may reuse a workflow with different parameters and

data, or may modify a workflow to refine the method;

workflows can be shared with other scientists conduct-

ing similar work, so they provide a means of codify-

ing, sharing, and thus spreading the workflow designer’s

practice. A prominent scientific workflow repository is

myExperiment [22], which aims to “make it easy to find,

use and share scientific workflows and other Research

Objects, and to build communities”; it currently has

more than 5000 members in 250 groups, and a share of

over 2000 workflows.5 There is also some work on busi-

ness process model repositories [90], but the scientific

community is more likely to share workflows as a means

to accelerate scientific knowledge discovery, whereas the

incentive to publicly share business processes or ETL

workflows is limited by commercial interests [18].

Research Issues. Cohen-Boulakia & Leser argue that “a

wider adoption of SciWFM will only be achieved if the

focus of research and development is shifted from meth-

ods for developing and running workflows to searching,

adapting, and reusing existing workflows” [18]. They

propose a number of research directions and problems

to better support users of workflows and workflow repos-

itories; e.g., new ways to describe what users search

(workflow sketches); search for similar (sub-)workflows;

and searching and querying of workflow runs and prove-

nance. The construction of workflow repositories also

entails the development of techniques to deal with the

heterogeneity of workflow specifications and metadata,

considering aspects such as versioning, view manage-

ment, configuration, and context management. The de-

velopment of specific languages for scientific workflows

5 as of July 2012; see http://www.myexperiment.org

might again borrow ideas from similar efforts for busi-

ness processes. BPQL [26], e.g., enables queries over

the structure of a process as well as temporal queries

addressing their potential behavior; a graph matching

algorithm for workflow similarity search is described in

[29]. Given the different nature and structure of busi-

ness and scientific workflows [60], it is interesting to

study how techniques from one area might be adapted

or extended for the other.

3 Provenance and Scientific Workflows

Provenance is information about the origin, context,

derivation, ownership, or history of some artifact [17].

In the context of scientific workflows a suitable model of

provenance (MoP) should be based on the underlying

model of computation (MoC). We can derive a MoP

from a MoC by taking into account the assumptions

that a MoC entails, and by recording the observables

it affords. In this way, a MoP captures or at least bet-

ter approximates real data dependencies for workflows

with advanced modeling constructs. A provenance trace

T can be built from a workflow run object R, by ignor-

ing irrelevant observables I, and adding non-functional

observables M that are deemed relevant. With slight

abuse of notation, we can say that T = R − I + M ,

i.e., a trace T (a MoP object), is a “trimmed” work-

flow run R (a MoC object), for which some observables

are ignored (I) while others (additional metadata) are

modeled (M). More formally, the implementation of a

MoC M of a scientific workflow system defines an oper-

ational semantics, which in turn can be used to define a

notion of “natural processing history” or run Rx̄ ȳ for

ȳ = M(Wp̄(x̄)). Given a run Rx̄ ȳ, the semantics given

by M allows us to check whether Rx̄ ȳ is a “faithful”

(or legal) execution of ȳ = M(Wp̄(x̄)). For example, the

order of actor firings in a legal run Rx̄ ȳ must conform

to ≺W ; and p̄, x̄, and ȳ must appear in Rx̄ ȳ as inputs

and outputs, respectively.

Observables. The records of a run Rx̄ ȳ of a workflow

execution of ȳ = M(Wp̄(x̄)) are built from basic ob-

servables associated with M. For M = DAG, the ob-

servables of a run are the single firings of an actor A,

together with the inputs d and outputs d′ of the fir-

ing, recorded as fired(d,A, d′). We may dissect firing

events into smaller observables, e.g., into two records

of the form received(A,m1(d)) and sent(A,m2(d′)), and

a third record of the form caused(m1,m2). This can be

useful for MoCs such as CSP (Communicating Sequential

Processes) or MPI (Message Passing Interface), where

actors react to different messages, not just the read (in-

put/token consumption) and write (output/token pro-

http://www.myexperiment.org
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duction) that we used here for DAG. Similarly, job-based

(or Grid) workflow systems are usually based on the

DAG MoC. For these, fired(d,A, d′) may be modeled dif-

ferently, e.g., based on a job’s start and finish events.

3.1 Models of Provenance (MoPs)

The models for provenance used in scientific workflow

systems include custom models such as the RWS (read,

write, state-reset) model [13], and community efforts

such as the Open Provenance Model (OPM) [68]. OPM

was developed as a minimal, generic standard for prove-

nance, not just for workflows. In OPM, events are re-

corded when actors consume tokens (used events) and

produce tokens (wasGeneratedBy events). Thus, stor-

ing provenance data can effectively make persistent the

data tokens that have been flowing across workflow

channels, either through the actual data or by handlers.

Event records typically include an identifier for the

actor (e.g., a service or program). The specific port or

parameter of the actor associated with the data token

can also be recorded, which corresponds to the role

in OPM’s usedBy and generatedBy events. Each event

is generally recorded along with its timestamp. While

OPM only considers processes, additional information

can be recorded like the notion of state-reset events

and rounds in RWS, which define logical units of work.

The collection of event records defines a directed acyclic

graph (DAG) that represents the execution history.

The OPM also defines wasTriggeredBy and was-

DerivedFrom relationships. The former denotes that an

instance of an actor execution is causally linked to a pre-

ceding actor execution, while the later denotes that a

data artifact results (at least partially) from processing

an earlier artifact. Under an extended interpretation of

the OPM used and wasGeneratedBy relations, wasTrig-

geredBy and wasDerivedFrom relations can be inferred,

which is not always the case in terms of the original

standard. The agents in the OPM, correspond in sci-

entific workflow systems either to software entities that

execute workflow components, or to users that initiate

and monitor the execution of a workflow. Both cases

can be represented in OPM by the wasControlledBy

relation.

Research Issues. While OPM and its W3C successor

PROV are gaining popularity, by design they leave out

specifics of MoCs and custom MoPs. Elements specific

to workflows are not present, like firing constraints [27]

or the workflow structure. OPM’s temporal semantics

is somewhat ambiguous as pointed out in [69]. An in-

teresting area of research is the development of richer

provenance models, corresponding to different work-

flows systems and MoCs. For example, the DataONE6

Provenance Working Group develops a unified MoP re-

flecting scientific workflows provenance from different

systems (initially: Kepler, Taverna, VisTrails, and R).

3.2 Capturing Provenance

Provenance in workflows is not limited to the execution

of a fixed workflow, but can also include the history

of the workflow design, i.e., workflow evolution prove-

nance. VisTrails [37] keeps track of all the changes that

have led to new versions of a given workflow. Formally, a

vistrail is a tree in which nodes represent workflow ver-

sions and edges correspond to operations in a change

algebra, such as addConnection or addModule.

Difficulties in capturing provenance arise in prac-

tice, as scientific workflow systems are built on and

interoperate with other systems, e.g., databases, par-

allel computing platforms, web services, scripting lan-

guages, etc. Provenance data originating from lower-

level components needs to be made accessible to the

workflow system, e.g., resource usage statistics, failures,

and repeated execution attempts in parallel programs.

Swift [39] captures such information from high level

SwiftScript programs by means of wrapping scripts run-

ning in the background. Each level of abstraction as-

sociated with a software layer may include different

provenance observables: e.g., the PASS system supports

provenance at the file system, workflow engine, script

language, and browser levels [70].

Research Issues. It is desirable to keep the overhead

for capturing provenance to a minimum. An interesting

possibility is to study declarative, domain-specific lan-

guage for provenance in computing systems. This will

allow the user to define relevant provenance information

at the desired granularity.

With the use of cloud computing and key-value stores

for scientific computing, it becomes challenging to cap-

ture the necessary provenance data, since these plat-

forms can only be accessed through interfaces.7 With

respect to recording overhead, data poses the greatest

challenge, since in some cases the size of provenance

data can exceed the combined input and output data

[15]. Thus, with large-scale data it is essential to iden-

tify the information to record and to employ efficient

data management techniques.

6 http://www.dataone.org/
7 See, for example, Amazon’s Simple Storage Service (S3)

http://aws.amazon.com and Simple Workflow Service (SWS)

http://www.dataone.org/
http://aws.amazon.com
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3.3 Storage and Querying

Scientists want to use provenance data to answer ques-

tions such as: Which data items were involved in the

generation of a given partial result? or Did this ac-

tor employ outputs from one of these two other actors?

Such questions addressed over the provenance data rep-

resented by a directed graph translate into two well-

known types of directed graph queries: reachability and

regular path queries.

A reachability query over a directed graph G re-

turns pairs (x, y) of nodes, connected by a path in G.

The paths themselves are often not computed. In ad-

dition to simple graph-traversal and transitive closure

algorithms, specialized techniques can be used, e.g., us-

ing simpler structures such as chains or trees to com-

pute and compress the transitive closure. In [49], a path-

tree is introduced along with additional techniques to

yield a more efficient solution. An approach specifi-

cally for provenance graphs is introduced in [8]: a la-

beling scheme captures parallel instantiations (forks)

along with loops; labels are of logarithmic length and

generated in linear time.

Reachability queries can be computed by RDBMSs

with simple extensions. While transitive closure is not

a first-order query, it is still a maintainable relation

through first-order (plus aggregation for some cases)

queries [30]. This database technique is used, e.g., in

the Swift system [39]. A recent extension of Swift [38]

now uses a SQL function with a RECURSIVE clause.

An extended form of reachability query is presented

in [66], where the authors consider fine-grained prove-

nance data resulting from Taverna workflows that also

operate on lists. Their approach is based on using the

workflow specification as an index. This is particularly

useful to reduce search time for focused queries, where

users are interested only in selecting the inputs related

to one specific output.

A regular path query (RPQ) over an edge-labeled,

directed graph G returns all pairs of nodes (x, y) which

are connected in G via a path π whose labels spell a

word that matches a given regular path expression R.

Regular path expressions are built similar to regular ex-

pressions (e.g., concatenationR1·R2, alternationR1|R2,

Kleene-star R∗, etc.) but can also include graph-specific

extensions such as R−1, denoting edge reversal.

The evaluation of RPQs via simple paths (i.e., paths

without repeated nodes) is NP-complete [63] in general,

but drops to PTIME when allowing non-simple paths

as well. The traditional approach to evaluate RPQs is

to view the graph as a non-deterministic finite automa-

ton, then construct an equivalent deterministic finite

automaton to be used as an (often very large) index. To

achieve a more efficient evaluation, a heuristic approach

is presented in [52], based on finding rare labels and us-

ing them as starting points for bi-directional searches.

Each search corresponds to a sub-query, and the combi-

nation of results yields the result for the original query.

The fact that rare labels are chosen restricts the search

significantly and thus the overall computation required.

An alternative way to evaluate RPQs is the transla-

tion to Datalog queries. A direct translation is given in

[4], whereas [77] provides another, optimized method.

Query languages able to express RPQs include those

originally developed for semistructured data integration

systems such as STRUDEL [36] and proposed exten-

sions on SPARQL. Such languages and other alterna-

tives are discussed in greater depth in [89]. However,

graph queries issued directly against physical data rep-

resentations (e.g. XML or RDF) can be difficult to ex-

press and expensive to evaluate. In [7] QLP, a high-level

query language for provenance graph queries is intro-

duced to address these shortcomings. It provides con-

structs for querying both structure and lineage infor-

mation complemented with optimization and lineage-

graph reduction techniques.

Visual querying is also well suited for provenance

data. In particular, VisTrails [37] includes a visual query-

by-example interface; additionally, it can perform key-

word search on provenance data.

Research Issues. Efficient storage and querying of large

amounts of provenance data remain important areas of

research, in particular, as more provenance data is being

produced and shared. The use of information retrieval

techniques in databases has received significant atten-

tion (e.g. [55]), their application specifically to prove-

nance data represents another interesting research di-

rection. Provenance data can also be seen as (detailed)

variants of event logs of information systems, thus pro-

viding interesting new areas and applications of pro-

cess mining [1]. This approach could allow discovering a

workflow from provenance data, monitoring its confor-

mance to the expected behavior, or improving the work-

flow by identifying, e.g., opportunities for optimization

and parallelization.

3.4 Interoperability

Today’s scientific experiments are very complex, involv-

ing multiple teams working in collaboration and using

various scientific workflow systems to design and exe-

cute respective workflows. In this collaborative setting,

an output data product of a workflow is often used as an
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input data product of another workflow. Thus, to com-

pletely understand a data product we need its prove-

nance information along with provenance information

of all the dependent data products. Thus, we need to

integrate all the provenance information to effectively

answer all provenance queries.

Heterogeneous MoPs. Most scientific workflow systems

provide a method for recording provenance. However,

these systems use specific provenance and storage mod-

els. For example, Kepler records OPM-based provenance

into a relational database, whereas COMAD employs

its own provenance model and stores provenance infor-

mation into an XML file. In order to answer provenance

queries, we need to develop methods to integrate prove-

nance information from various MoPs. A mediation-

based approach to solve this problem is presented in

[34], whereas in [64] a framework and common data

model for traces is proposed.

Lack of Shared Data Identification. While working col-

laboratively, a scientist may copy a data product into

his local system and then perform some formatting tasks

before using it as an input data product. The copying

and formatting tasks may give rise to a different identi-

fier for the same data, as the identification management

is being done by individual systems in isolation. Thus,

it is important to identify these copies so that they are

linked appropriately and correct dependencies are es-

tablished. Missier et al. [65] observe this problem and

provide a prototypical foundation toward solving it.

3.5 Provenance Applications

Privacy-aware Provenance. While provenance informa-

tion is very useful, it often carries sensitive information

causing privacy concerns, which can be tied to data,

processes, and workflow specifications. It is possible to

infer the value of a data product, the functionality (be-

ing able to guess the output of an actor given a set of in-

puts) of a process, or the execution flow of the workflow.

In [21] a mathematical foundation to achieve ε-privacy

for a process or a workflow is developed. This model

is able to compute the input/output combinations for

which the required level of ε-privacy is achieved.

SecurityViews [16] are developed in order to provide

a partial view of the workflow through a role-based ac-

cess control mechanism, and by defining a set of access

permissions on processes, channels, and input/output

ports as specified by the workflow owner at design time.

Two techniques are developed in [28] to customize

the provenance information based on scientists privacy

and data sharing requirements. This approach adheres

to a provenance model in which the scientist wants to

share the customized provenance data.

While trying to honor the privacy concerns, cur-

rent techniques remove the private information without

providing clear guarantees of what queries could be an-

swered using the customized provenance. Also, as the

provenance information often is very large, it is impor-

tant to develop techniques so that privacy and publi-

cation requirements can be expressed at a higher level

(for e.g. workflow specification, data collection, etc).

Information Overload. Provenance data captured by ex-

ecuting a workflow is often larger than the size the ac-

tual data [14]. ZOOM*UserViews [9] provides a par-

tial, zoomed-out view of a workflow, based on the user-

defined distinction between relevant and irrelevant ac-

tors. Provenance information is captured based on this

view. Another approach in [28] does not impose any re-

striction in capturing provenance information. It allows

scientists to specify the customization requests on the

provenance information to remove the irrelevant parts,

which allows scientists to better understand the rele-

vant parts of the provenance information.

The volume explosion of provenance information gives

rise to two very challenging issues: how to effectively

and efficiently (i) visualize and browse provenance in-

formation under different levels of abstraction, and (ii)

specify what are the relevant portions of the provenance

information.

Debugging. Provenance recording also enables a natu-

ral way of debugging workflows. For instance, data val-

ues can easily be inspected and checked for correctness.

In addition, by comparing a workflow description with

a trace of its run, actors that never fire can easily be

detected. For this purpose, a static analysis technique is

described in [95] to infer an abstract provenance graph

(APG) from a VDAL style workflow description de-

scribed earlier. The APG allows identifying incorrect

configurations and actors that are never fired.

An interesting research issue is how to use prove-

nance data potentially including time-stamps to ana-

lyze the efficiency of a workflow execution. Indepen-

dent subworkflow executions would be easily identifi-

able from data dependencies in a trace graph. Those in-

dependent subworkflows should optimally be executed

in parallel and time-stamps in the trace would allow

finding places with suboptimal scheduling.

Fault Tolerance. Similarly to database recovery using

log files, provenance can be used to efficiently recover

faulty workflow executions as shown in [51]. The trace



Scientific Workflows and Provenance: Introduction and Research Opportunities 9

contains all data items processed and created before

the fault as well as the status of invocations at the

time of the fault. Thus, successfully completed invo-

cations can be skipped and data that was in the intra-

actor queues at the time of the fault is restored. The

challenges in developing recovery techniques are that

(1) actors can be invoked multiple times and maintain

state from one invocation to the next; (2) data can be

transported between actors outside of the queue-based

infrastructure, circumventing provenance recording; (3)

non-trivial scheduling algorithms are used for multiple

actor invocations, which are based on data availability.

Some MoCs such as COMAD use complex data struc-

tures which are exchanged between actor invocations

in fragments and therefore implicit dependencies be-

tween data artifacts exist that have to be maintained.

This requires special consideration during the recovery

process. Furthermore, the stateful layer in each actor

handling the scope matching requires new techniques

in order to allow an efficient recovery.

4 Summary and Conclusions

Scientific workflow systems can help scientists design

and execute computational experiments efficiently, but

many research issues remain to be solved. We have

given an introduction and overview on scientific work-

flows and provenance and highlighted a number of re-

search areas and problems. Business workflows (and

business process modeling) have been and are being

studied extensively by the database community. With

this paper we hope to help trigger or reignite inter-

est in the database community to address some of the

challenges in scientific workflows. After all, database re-

searchers were among the first to explore the challenges

in scientific workflows and to apply database technolo-

gies towards them [83,5]. In the era of data-driven scien-

tific discovery and Big Data, there was probably never

a better time for researchers to embrace the challenges

and opportunities in scientific workflows and to advance

the state-of-the-art in data-intensive computing.
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Matching Algorithms for Business Process Model Sim-
ilarity Search. In: Intl Conf. on Business Process Man-
agement (BPM), pp. 48–63 (2009) 5

30. Dong, G., Libkin, L., Su, J., Wong, L.: Maintaining Tran-
sitive Closure of Graphs in SQL. Int. J. Information Tech-
nology 5 (1999) 7

31. Dou, L., Cao, G., Morris, P.J., Morris, R.A., Ludäscher,
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