

Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-860405

Martin Hahmann, Claudio Hartmann, Lars Kegel, Wolfgang Lehner

Large-Scale Time Series Analytics

Erstveröffentlichung in / First published in:

Datenbank-Spektrum. 2019. 19(1), S. 17–29. Springer. ISSN 1610-1995.

DOI: https://doi.org/10.1007/s13222-018-00304-5

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-853467

Large-Scale Time Series Analytics

Novel Approaches for Generation and Prediction

Martin Hahmann1 · Claudio Hartmann1 · Lars Kegel1 · Wolfgang Lehner1

Received: 4 October 2018 / Accepted: 27 December 2018 / Published online: 21 January 2019
© Gesellschaft für Informatik e.V. and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
More and more data is gathered every day and time series are a major part of it. Due to the usefulness of this type of data,
it is analyzed in many application domains. While there already exists a broad variety of methods for this task, there is still
a lack of approaches that address new requirements brought up by large-scale time series data like cross-domain usage or
compensation of missing data. In this paper, we address these issues, by presenting novel approaches for generating and
forecasting large-scale time series data.

Keywords Data analytics · Time series generation · Time series forecasting · Big Data

1 Introduction

Big Data and the trend of extensive data gathering have been
around for years, so we assume these subjects to be known
and jump right to the core of this paper. Looking closer at
what is actually collected under the label of Big Data, we
find time series to be one of the most prominent data types.
There are several reasons for this. First and foremost, it
simply is pretty useful to monitor measurements over time.
Furthermore, the general drive for digitalization places sen-
sors in more and more areas of life, that all contribute to
the growth of time series data. In this paper, we showcase
two solutions that were developed in the Competence Cen-
ter for Scalable Data Services and Solutions (ScaDS) [25].
Both originate from two different projects and contradict
some of the most common Big Data assumptions: “We are
drowning in data” and “More data is always better”. We

Martin Hahmann
martin.hahmann@tu-dresden.de

� Claudio Hartmann
claudio.hartmann@tu-dresden.de

Lars Kegel
lars.kegel@tu-dresden.de

Wolfgang Lehner
wolfgang.lehner@tu-dresden.de

1 Database Systems Group, Technische Universität Dresden,
Dresden, Germany

propose a feature-based approach for time series genera-
tion in Sect. 2. Although vast amounts of time series data
do exist, they might not be available to everyone or lack
some characteristics a user requires [18]. Our cross-domain
approach allows the generation of time series datasets of
any desired size and specific characteristics based on a real
world dataset. Two of the main use cases for generated
data are scaling experiments and the evaluation of so called
what-if scenarios. In Sect. 3, we describe a cross-sectional
forecasting approach which is specifically designed for the
prediction of datasets that consists of a multitude of time
series [8]. Our forecast technique represents many time se-
ries with one model and can predict their future behavior in
short time. Furthermore, the specifically selected training
data of many time series contributes to the model train-
ing which enables the compensation of noisy behavior and
missing values which is crucial when forecasting Big Data
time series.

2 Feature-based Comparison and
Generation of Time Series

Considering the abundance of collected data, the idea of
time series generation at first looks pretty paradoxical if
not superfluous. However, there are two major reasons that
make this idea very important: system evaluation and data
availability.

Final edited form was published in "Datenbank Spektrum". 19 (1), S. 17-29. ISSN: 1610-1995.
https://doi.org/10.1016/j.intacc.2008.04.005

1

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

http://crossmark.crossref.org/dialog/?doi=10.1007/s13222-018-00304-5&domain=pdf
http://orcid.org/0000-0002-5334-059X

System evaluation is a crucial phase in many industrial
and organizational processes. It is done in order to test and
verify component performance, to assess system robustness,
and to estimate the correct sizing of necessary resources.
Generated datasets are key to this phase by providing com-
parability and a variety of possible inputs for the systematic
and thorough assessment of a system [6, 13, 26]. In addi-
tion, generated datasets can include user-given hypotheses.
Thus, they allow users to study system behavior and assess
risks in possible future scenarios [17, 22].

Data availability covers the many side conditions that
accompany data gathering in general. While data is often
available, it might not be available in the required amount
or quality. This can be due to very complex and expensive
measurement procedures or because of sensitive and error-
prone sensors. In addition to these technical issues, data
availability is often restricted by legal regulations concern-
ing privacy and intellectual property. With generated time
series, the impact of these issues can be lessened, e.g. by
compensating missing or erroneous data and by anonymiz-
ing confidential data [2, 11, 20].

Time series generation has been applied in a multitude of
domains. It is used for simulating weather parameters such
as wind speed and solar radiation, for the assessment of re-
newable energy power plants and further various evaluation
purposes [2, 11, 13, 15, 19, 20].

Existing approaches typically represent isolated solu-
tions tailored to specific domains and applications. Thus,
each approach employs an individual generation method
based on individual time series characteristics arising from
domain specifics. Concerning the importance of time se-
ries generation, this poses a challenge as it makes the topic
difficult to access and costly to adapt to new domains.

We address this issue by proposing a feature-based con-
cept for time series generation. For this, we first analyze
existing methods for time series generation and derive a set
of universal core properties from each generation method.

2.1 State-of-the-Art Time Series generation

We distinguish between two classes of generation ap-
proaches: generation methods with model and without
model. The former capture information from a given dataset
as a model, before generating time series from it. The latter
only takes given time series as input. In general, generation

Table 1 Properties of genera-
tion methods

SM MC ANN BT MD AV RE GA

Dataset-oriented – – X – – X X X
Deterministic – – X X X X X X
Stochastic X X – – – – (X) (X)

Innovative – – X – X X X X

methods share four principal properties that express what
they generate and how. These are defined as follows:

Dataset-oriented There are two different input scopes
for a generation method: either it focuses on one time se-
ries at a time or on the whole dataset at a time. By process-
ing each time series individually, the method only repro-
duces the characteristics of one sequence. Dataset-oriented
methods utilize the full feature space and are able to take
relationships of time series into account [11, 15].

Deterministic A deterministic generation method takes
time series values as is. It reproduces deterministic charac-
teristics of a time series such as long-term trend and cycli-
cal seasons. Random characteristics are shuffled or recom-
bined [11, 26].

Stochastic A stochastic generation method models the
random characteristics of a time series. This model is then
used to simulate new random values instead of taking the
randomness as is [14, 23].

Innovative There are methods that do not only reflect
given characteristics but also incorporate new characteris-
tics in a generated dataset. Such innovative methods are
important when it comes to inflating a dataset or providing
“what-if” scenarios [7, 16, 17].

We reviewed three common generation methods with
model. All of them capture time series characteristics as
scalar values or small matrices. Statistical Models (SM) typ-
ically reproduce the value distribution of a given time series
using normal, Weibull, or Reighley distributions [14]. In
addition, correlations can be modeled with autoregressive
models. Markov chains (MC) aim to represent correlation
and distribution characteristics by capturing state transition
probabilities from one discrete time instance to another.
Generation is done by simulating these transitions with a set
of probabilities, generated from a sample. Artificial neural
networks (ANN) are universal function approximators and
inter-connect artificial neurons in order to transmit signals.
The transmission activity depends on connection weights
that are trained using given data. With regard to our prin-
ciple properties, ANNs are considered as dataset oriented,
deterministic, and innovative. In contrast, SM and MC only
fulfill the stochastic property.

As methods without model, we reviewed four ap-
proaches. Bootstrapping (BT) splits a time series into
intervals of the same length and permutes the values within
these intervals [26]. Obtained results stay similar to the
original data as long as the chosen interval length is rea-

Final edited form was published in "Datenbank Spektrum". 19 (1), S. 17-29. ISSN: 1610-1995.
https://doi.org/10.1016/j.intacc.2008.04.005

2

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

sonably small. The method only fulfills the deterministic
property. Modification (MD) extracts features from a time
series and applies a factor such that each feature is shifted
to an expected target value [16]. Thus, the technique is
deterministic and innovative. Averaging (AV) evolves new
time series by averaging given time series from a dataset. It
can be combined with varying weights in order to increase
variety [7]. This method is dataset-oriented, deterministic
and innovative. Recombination (RE) first decomposes the
values of time series into a long-term trend, cyclical sea-
sons and residuals. Then it shuffles these components and
recombines them in a new order. Time series generated in
that way keep the characteristics of the original dataset but
in new combinations. Overall, recombination is a dataset-
oriented and deterministic method that is able to innovate
new combinations of characteristics. Genetic Algorithms
(GA) generate time series by combining randomly selected
given time series and ensure that the result is as close
as possible to a given set of characteristics [15]. This
method is considered as dataset-oriented, deterministic and
innovative.

Table 1 summarizes the properties of the described gen-
eration methods. We can state that none of them fulfills all
the criteria we defined as important.

2.2 Feature-based Representation

We introduce our feature set for a general time series model
along with the notion of feature-based similarity. Our goal
is to provide features for a unified time series representation
that include time and measurement information as well as
an identifier for each time series.

We define a time series as a sequence of measurements
xt = Œx1; :::; xT � ordered by their timestamp t . Conse-
quently, a time series dataset X is a set of N time series
X = x1

t ; :::; xN
t . Typically, time series from a dataset share

a set of characteristics.
We illustrate our approach with three time series

datasets: a Smart Metering dataset [27], a wind speed
dataset, and a dataset of macro- and micro-economic time
series from the M3-Competition [19].

Time Series Components Most time series from the
aforementioned domains exhibit deterministic patterns.
Wind speed is often stronger in winter than in other sea-
sons while solar irradiation has a strong daily season.
Consequently, this seasonal behavior also arises in times
series representing renewable energy production. In long-
term studies, also trends can be observed. If human be-
havior is involved, time series can exhibit other seasonal
cycles, e.g. weekly patterns in energy consumption due to
a different behavior of consumers during weekdays and
weekends. Economic time series may exhibit long term
changes due to, e.g. an increase in sales of a product. As

a consequence, we argue that extracting these components
from time series is important for their characterization.

A time series consists of base (ba), trend (tr), season
(seas), and residual (res) components. The base is the long-
term mean of the time series while the trend represents the
long-term change of the mean. A season is a cyclically
repeated behavior. Individual time series can have several
seasonal components with different cycle lengths L. For
the remainder of this paper, we refer to the base, trend, and
season components as deterministic components.

Residuals are stochastic components of time series,
which represent unstructured information that is usually
assumed to be random. These components describe the
time series model which is adopted in this work.

Time Series Model A time series xt is a combination of
components:

xt = bat + trt +
SX

s=1

seass;t + rest (1)

We adopt an additive combination of components which is
a common assumption in many domains. The season length
Ls ; 1 � s � S as well as the number of seasons S is fixed
for every dataset.

In order to extract these components from a time series,
a decomposition technique is used. Knowing the season
length, it performs non-unique splits into trend, season, and
residuals which can be further used for component anal-
ysis. A widely applied decomposition technique proposed
by Cleveland [5] is based on Loess smoothing, a locally
weighted regression approach. It is a versatile and robust
decomposition technique which can handle every type of
season length. Therefore, we adopt it for multi-seasonal
decomposition.

Fig. 1 illustrates the multi-seasonal decomposition for
a time series from the Smart Metering Project dataset.
Fig. 1a shows the first 20 days of the time series in a half-
hourly granularity. We can observe daily peaks in con-
sumption, with less intensive consumption on the week-
ends. We assume a half-hour season granularity for the
extraction of the daily season, which results in the season
component shown in Fig. 1b. A clear daily pattern with
higher consumption during the day and a small peak at
noon can be identified. We further aggregate the remainder
to a daily granularity and extract the weekly season which
is shown in Fig. 1c. The values show that consumption
is higher during the weekdays than the weekend. Finally,
we aggregate the time series to a monthly granularity and
extract the yearly season shown in Fig. 1d. Due to the short
time interval of two years, the monthly values are rather
fluctuating. Nevertheless, they show an increased energy
consumption during the winter months. In addition, the

Final edited form was published in "Datenbank Spektrum". 19 (1), S. 17-29. ISSN: 1610-1995.
https://doi.org/10.1016/j.intacc.2008.04.005

3

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

a b

c d

Fig. 1 Multi-seasonal decomposition. . (a) Series, (b) daily season, (c)
weekly season, (d) yearly season

decomposition also yields a base, a trend component, and
a residual component (not shown).

Time Series Features Time series components are fur-
ther reduced to features fk.1 � k � K/ that form a short
representation of a time series capturing its most important
characteristics. We represent the deterministic components
with base value (�1), trend slope (�2), and a season mask
(�s;l) for every season s. The stochastic component is repre-
sented by three moments: standard deviation (sd), skewness
(skew), and kurtosis (kurt) as well as the autocorrelation of
lag 1 (acf1).

(2) diminish the influence of outliers compared to the most
common feature values. The lowest datum still within 1.5-
fold interquartile range (IQR) of the lower quartile is scaled
to 0, while the highest datum still within 1.5-fold IQR of the
upper quartile is scaled to 1. Based on the scaled features,
the feature-based distance of two time series xi and xj is
the vector of distances of every scaled feature:

f s
k W dk

�
xi ; xj

�
=

ˇ̌
f s
k

�
xi

�
− f s

k

�
xj

�ˇ̌
: (2)

If a generation method expresses a feature well, the fea-
ture-based distance of a generated and a given time se-
ries will be near 0, thus expressing a high similarity. If it
does not well express a feature, this distance increases. We
can now describe an error threshold for time series gen-
eration that contains an upper and a lower threshold. Two
time series are considered similar if every feature distance
is within the upper bound q. With the lower threshold p,
the user defines the minimum distance that two time series
should have. A lower bound of zero allows perfect similar-
ity. A higher value, ensures a minimum deviation between
two time series which can be desirable during time series
generation.

2.3 Feature-based Generation

Our proposed feature-based generation method is based on
recombination and statistical modeling, similar to [11]. It
extends some concepts in order to be more accurate with
respect to feature-based similarity.

Our approach addresses all of the defined required prop-
erties: (1) by utilizing recombination, it focuses on a dataset
rather than a single time series, (2) by relying only on sta-
tistical characteristics, it is cross-domain, (3) by simulating
residuals, it generates a new stochastic component, and (4)
by relying on modifiable features, it can evolve time series
with new characteristics.

By taking user-given error thresholds into account, our
approach allows the generation of time series with an ex-
pected similarity to the original data. For each time se-
ries xi 2 X , we generated one time series exi 2 eX with
the expectation that their feature-based distance fulfills
p � dk.xi ;exi / � q for every feature. Subsequently, we
describe how the deterministic components and the stochas-
tic component were processed.

Recombination of Deterministic Components The de-
terministic part of a time series can be reconstructed by its
features as follows:

dett = �1.xt / + .t − 1/ � �2.xt /

+
SX

s=1

�s;.t−1/%Ls+1.xt /
(3)

The resulting vector of features is a representation of
a time series that can be used in the assessment of similarity
as well as the generation of time series. In the following,
we define a feature-based distance measure.

Feature-based Similarity We propose a similarity mea-
sure that incorporates our features in order to assess the
similarity of generated time series. To a certain degree,
it combines traditional similarity measures like raw-value,
histogram, and autocorrelation similarity. The determinis-
tic features capture the raw-value shape of the time series,
while the stochastic features represent the value distribution
histogram as well as the autocorrelation. Using the feature
similarity, the user can express an error threshold that de-
fines his/her expectation of similarity during time series
generation.

In order to define the feature-based distance, features
have to be scaled to a common range first. This range has to
(1) standardize the value range across different features and

Final edited form was published in "Datenbank Spektrum". 19 (1), S. 17-29. ISSN: 1610-1995.
https://doi.org/10.1016/j.intacc.2008.04.005

4

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

where % is the modulo operator. We used this relationship
in order to draw recombination candidates that have simi-
lar features as a given time series and recombine them. For
every deterministic feature, we calculate the feature-based
distance for every pair of given time series. These distances
are stored in a similarity matrix to identify neighboring
components. Subsequently, a nearest neighbor search was
carried out on the similarity matrix to identify neighboring
features that fulfill the error thresholds. For every determin-
istic feature, each given time series is annotated with a set
of candidates. From the recombination candidates, one can-
didate per feature is randomly selected, i.e., one candidate
for the base value, one candidate for the trend slope andPS

s=1Ls candidates for the season masks. Their recombi-
nation creates the deterministic part of the newly generated
time series ext . If two recombinations contain the same
components, they are considered as duplicates. If a recom-
bination matches the components of a given time series, it
is considered as original time series. Both anomalies must
be monitored and should only occur in negligible amounts
in order to make sure that they do not influence the results
of the generation.

Simulation of Stochastic Component The stochastic
component includes the remaining random information that
cannot be modeled. In order to describe this component,
its value distribution and the remaining autocorrelation can
be used. Our feature-based approach captures these char-
acteristics with the features: standard deviation, skewness,
kurtosis, and autocorrelation.

To generate a component that agrees with these features,
we use a composite statistical model. It combines a distri-
bution function that generates random values with a simu-
lation of an autoregression model. In the absence of signifi-
cant autocorrelation the generation was carried out with the
distribution function only. For the distribution function we
utilize the Pearson Distribution System which contains a set
of eight different distribution functions that cover a large
space of distribution moments. For each moment combina-
tion, a distribution function is selected based on its ability
to provide a sample for these moments. For a given time
series xi , a time series exi is generated, whose moments
are expected to be in the scaled feature range of standard
deviation, skewness, and kurtosis. In the presence of signif-
icant autocorrelation, an autoregressive model is simulated
to weave autocorrelation into the generated residuals. For
this, an AR.1/ model is used. The simulation is transformed
to the expected distribution that we defined above.

2.4 Evaluation

We evaluated our approach on the three already introduced
time series datasets from the energy, weather, and economic
domain. Our feature-based generation method (FBG) was

compared to three generation methods that have been re-
cently cited in the literature. Each method was used to
generate a dataset for the example datasets. The size of
the generated dataset was equal to the size of the original
dataset. There was one exception for the Smart Metering
data, where only 100 time series were generated due to the
runtime costs of the genetic algorithm. To get a better un-
derstanding of the results we give a short description of the
compared generation approaches.

The method from Iftikhar et al. [11] is based on recom-
bination. It splits a time series into season mask, base com-
ponent, and a remainder. The season masks are clustered,
shuffled, and assigned to another base component and re-
mainder from the same cluster. A trend component is not
considered from this method which is why we exclude the
trend feature from the further comparison.

A second comparison was carried out with an imple-
mentation of the Markov chains used by Pesch et al. [23].
Each time series was decomposed into determinstic and
stochastic components. In contrast to [23], we adopted the
multi-seasonal decomposition instead of the trend and sea-
son elimination that the authors applied. The evaluation
only considers the stochastic component since the genera-
tion of deterministic components is not part of the original
method.

We also re-implemented the genetic algorithm from
Kang et al. [15]. The intial population consisted of 20 time
series (Smart Metering, M3-Competition) and 10 (Wind
Speed) that were randomly selected. It never contained the
original time series which sets the feature target for the
generated time series.

The feature-based generation method was set to a lower
error threshold p = 0.01 and an upper threshold q = 0.05
for all features and all experiments. First, each generation
methods was applied to the dataset from the referred do-
main, second it was applied to all domains.

Recombination on Smart Metering Dataset Fig. 2
compares FBG with the recombination method. The x-axis
shows the feature fk , the y-axis shows the feature-based

a b

Fig. 2 Feature-based distance of recombination. (a)Deterministic fea-
tures, (b) stochastic features

Final edited form was published in "Datenbank Spektrum". 19 (1), S. 17-29. ISSN: 1610-1995.
https://doi.org/10.1016/j.intacc.2008.04.005

5

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

distance of the generated dataset as boxplot. For each
generated time series the feature-based distance to its orig-
inal time series was calculated. FBG only evolves time
series whose deterministic components respect the error
threshold q (Fig. 2a). The base component also respects
the threshold p. However, there are rare cases where the
season component of a given time series is not recombined,
leading to an identical season. The recombination method
generates series whose feature distances are higher to the
given series.

The feature-based method also generates stochastic com-
ponents whose features are similar to their given counter-
parts (Fig. 2b). Although the moment features from FBG
are remarkably good, they are not below the expected error
threshold q.

Markov Chain on Wind Speed Dataset The Markov
chain only generates a stochastic component. As the fea-
ture distance shows, it reproduces the given features for the
Wind dataset well (Fig. 3). The feature-based generation
method yields better results but the skewness is higher than
for the Markov chain.

Genetic Algorithm on M3-Competition Data Fig. 4
compares FBG with the genetic algorithm on the M3-Com-
petition dataset. For the deterministic components, FBG
does not exceed the user-given error threshold q (Fig. 4a). In
less than 8%, there was no recombination candidate found
which is why the component was identical with the given
one. The genetic algorithm generated components that are
highly similar to the given ones. The base value and trend
slope have a median feature distance of 10 % while the
season masks differ from given season masks by only 2 %.

Regarding the stochastic component, FBG provides more
similar residuals in terms of standard deviation and au-
tocorrelation. However, the genetic algorithm outperforms
regarding skewness and kurtosis (Fig. 4b) for the same rea-
son as in the experiments above. Moreover, due to the short
series length, the generator for the random component de-
viates a lot from the expected moments.

Summary In general, FBG outperforms the other meth-
ods on the deterministic components due to the error thresh-
olds. The stochastic features are sometimes better repre-

Fig. 3 Feature-based distance of Markov chain

a b

Fig. 4 Feature-based distance of genetic algorithm. (a) Deterministic
features, (b) stochastic features

sented by Markov chains since they have a more compre-
hensive model for generating residuals. The good results of
the genetic algorithm on the M3-Competition dataset are
due to the 3000 iterations leading to the best results on
some of these features. Most importantly, this evaluation
shows that generation methods from different domains and
applications are comparable regarding their expressiveness.
Regarding the universality of our feature-based distance, we
can state that it corresponds to the raw-value-based simi-
larity measures from the literature. The four moments of
a time series do not represent the full spectrum of a his-
togram which is why these features only correspond to the
histogram in special cases.

3 CSAR: The Cross-sectional Autoregression
Model

In many application scenarios a lot of data is collected
from multiple sources. This creates a large number of time
series originating from the same domain which have to be
analyzed, modeled, and forecast.

Usually, the task of forecasting focuses on only one time
series x. For the forecasting, a model is optimized on the
values of the time series to represent them as good as pos-
sible and then this model is used to calculate the requested
forecast values [4]. Fig. 5 shows an example of a time series
represented by the connected black crosses �. The x-axis
of the diagram denotes the time and the y-axis denotes the
corresponding measure values. The red crosses mark the
forecast values bxT +1; :::;bxT +h. The exact number of re-
quested forecast values is called forecast horizon h. In the
example three values are predicted h = 3. The prediction of
long forecast horizons entails additional problems beyond
the focus of this work. Therefore, we limit ourselves to one-
step ahead forecasts with h = 1.

In order to produce accurate forecasts, a model has to
address two very important characteristics of time series.
First, the trend characteristic which sums up all long term

Final edited form was published in "Datenbank Spektrum". 19 (1), S. 17-29. ISSN: 1610-1995.
https://doi.org/10.1016/j.intacc.2008.04.005

6

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Fig. 5 Example time series and forecast with a forecast horizon of
h = 3

changes without reoccurring patterns. Second, the season-
ality which describes regularly reoccurring patterns within
fixed intervals. The example time series in Fig. 5 has a sea-
sonality with a season length of s = 12, which is recog-
nizable at the reoccurring peaks, but lacks a clearly visible
trend, e.g., a continuous rise or decline in the measured val-
ues. Between the time series and the x-axis of Fig. 5 there
is a secondary representation of the same time series. Each
square represents one time series value. Historical values
are marked by gray squares with a solid contour, forecast
values are marked by light gray squares with a dashed con-
tour. In the remainder of this paper, we will use this rep-
resentation to visualize how time series values are used to
calculate forecasts.

Data collection has shifted towards more and more time
series being recorded on increasingly fine structural and
temporal granularities. This leads to new requirements for
the forecasting process [9] which we illustrate in the fol-
lowing using the already introduced Smart Metering dataset
as an example.

R1 – Numerous Series The high number of time series,
makes the application of models that only predict one series
at a time very difficult, as it requires the creation of a large
number of models. The example dataset consists of more
than 6000 individual time series which demand an equal
number of forecast models. Training such an amount of
models is a very time consuming task. Suitable prediction
of large-scale time series datasets necessitates a modeling
technique that provides forecast values for a large number
of time series in reasonable time.

R2 – Incomplete Data Time series originate from a mul-
titude of different data sources, e.g., Smart Meters of in-
dividual households and enterprises. Malfunctions during
recording or data collection can lead to missing values and
incomplete time series which many forecasting techniques
are not able to work with. While only 5% of the overall
data is missing in the example dataset, 29% of all time se-

ries have an incomplete history. For only a few time series,
data can often be completed by applying imputation meth-
ods or searching for compensation values from similar time
series[28]. However, these approaches become costly and
often infeasible if datasets with thousands of time series are
considered. Hence, large-scale forecasting techniques must
provide accurate predictions despite incomplete data.

R3 – Increasingly Fine Granularity The increasingly
fine structural and temporal granularity at which time series
are monitored makes them prone to noise originating from
external influences, e.g., the operation times of domestic
appliances which are unique per household and will vary
on a daily basis [21]. This makes modeling hard as time
series behavior does not seem to be deterministic and de-
scribable. Therefore, a large-scale modeling technique has
to compensate noisy behavior of time series.

While different existing approaches address one or two
of these requirements, there is no approach that fulfills all
of them. Therefore, we introduce our Cross-Sectional Au-
toregression model (CSAR) for large-scale time series fore-
casting.

3.1 CSAR-Modelling

In this section, we describe in detail how our CSAR model
is working. It combines the qualities of cross-sectional fore-
casting [9] and ARIMA [3], thus CSAR meets all the re-
quirements R1 to R3 and is adaptable to different datasets
with their unique characteristics.

Cross-sectional forecasting is an approach that does not
model individual time series in their entire temporal extent.
Instead, so-called cross-sections are chosen that contain the
measure values of all time series of a data set at a certain
point in time [9]. In Fig. 6, the vertical rectangles col-
ored in blue and red represent such cross-sections. A cross-
sectional forecasting model represents future cross-sections
based on a weighted sum of historical cross-sections. In
doing so, one model represents an entire dataset and a fast
forecast calculation for all time series is ensured. Further-
more, by using the data of many time series, noisy behavior
and missing values can be compensated. Noisy data of in-
dividual series is covered by the data of others, such that
there is no negative influence on the model training and
the overall behavior of the source domain of the data is still
properly represented. Incomplete series that cannot be mod-
eled at all by other forecast techniques can still be forecast
with the cross-sectional model that is trained on the other
series of the dataset. Altogether, this leads to a significant
improvement of the forecast accuracy compared to tradi-
tional forecast techniques with less execution time.

For the combination with cross-sectional forecasting the
ARIMA model is a logical choice. It is a mature forecast
technique and suits the paradigm of cross-sectional fore-

Final edited form was published in "Datenbank Spektrum". 19 (1), S. 17-29. ISSN: 1610-1995.
https://doi.org/10.1016/j.intacc.2008.04.005

7

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Fig. 6 CSAR model with one
seasonal and two non-seasonal
AR components

casting. We follow the structure of ARIMA [3] and high-
light the adaptations we introduced to combine every in-
dividual component with the paradigm of cross-sectional
forecasting. We begin with the integration component. It
is a preparation step and removes static seasonal and trend
components from the analyzed time series. Afterwards, we
focus on the actual modeling components. The autoregres-
sion component calculates forecast values based on histor-
ical time series values. The moving average component is
an error correction mechanism. Forecasts for historical time
series values and the corresponding forecast errors are cal-
culated. These error values are used to calculate the actual
forecasts for the analyzed time series. In the CSAR model,
these components serve a similar purpose.

Integration The integration component removes trend
and seasonal characteristics from the time series and makes
them stationary. Every time series is differentiated indi-
vidually, such that the properties of each time series are
preserved and not changed by the influence of other series.
When the integration is used, every time series is differen-
tiated first, then the dataset is forecast, and finally the series
are integrated to obtain the forecast values for the original
time series. As in the ARIMA model there is a distinction
between a non-seasonal and a seasonal case.

The non-seasonal differentiation is used to eliminate
trend characteristics. The first degree of numeric differenti-
ation is shown in Eq. (4). The value x0

t of the differentiated
time series is calculated as the difference of the original
time series value xt and an earlier value xt−d divided by
their distance d . In the usual case, when there are no
missing values we set d = 1 and x0

t is calculated directly
from the corresponding value xt and its predecessor xt−1.
If there are one or more missing values directly before
xt then d is increased, such that the next available value
xt−d is used for the differentiation. The division by their

distance is necessary to represent the trend change from
one period to the next one.

x0
t =

xt − xt−d

d
(4)

This kind of numeric differentiation is called backward
differentiation since we are looking backwards from the
current point in time t . Alternatives like forward differ-
entiation x0

t = .xt+d − xt/=d or a symmetrical approach
x0
t = .xt+d − xt−d /=2d are not suited for the task of fore-

casting since the differentiation of the last value of the time
series is not possible; this value is crucial for the forecast
calculation in most if not all forecast methods. The absence
of the first value as it is the case for the backward differen-
tiation is not a problem if the time series is long enough to
train a model without depending on this first value.

The seasonal differentiation is used to eliminate reoccur-
ring seasonal patterns. Eq. (5) shows how x0

t is calculated
by the difference of xt and its corresponding value in a pre-
vious season xt−D�s. s is the seasonality of the dataset which
is either known from the contextual information about the
dataset or can be determined, e.g., using the auto-correlation
function. When the value in the direct preseason is avail-
able we set D = 1, otherwise D is increased such that the
next available corresponding seasonal value of xt is used
to calculate the differentiated value.

x0
t = xt − xt−D�s (5)

The seasonal differentiation does not need a division by the
size of the gap that is bridged, since it is assumed that the
seasonal behavior is stable over time and should be removed
entirely.

Autoregression The autoregressive part of the CSAR
model is a combination of the cross-sectional forecasting
approach and the autoregressive part of ARIMA. It pre-
dicts all time series of a dataset based on their most recent
historical observations. The autoregressive part of CSAR

Final edited form was published in "Datenbank Spektrum". 19 (1), S. 17-29. ISSN: 1610-1995.
https://doi.org/10.1016/j.intacc.2008.04.005

8

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

consists of non-seasonal and seasonal components and the
optimized weights are applied to cross-sections which span
over all time series in the dataset. Hence, every time series
is forecast based on a weighted sum of its own historical
values while the model parameters (the weights) are op-
timized on all time series of the dataset which have the
necessary historical data.

The Eqs. (6) and (7) show how the predictions are cal-
culated in the non-seasonal and seasonal case. In the non-
seasonal case (Eq. 6), the forecast values bExt+1 are calcu-
lated as the weighted sum of their direct predecessor values
Ext to Ext−.p−1/ weighted with the model parameters �1 to
�p . p denotes the number of non-seasonal autoregressive
model components. Ext refers to the cross-section at time
t which contains the historical values xn

t of every individ-
ual time series xn. Additionally, there is a constant part c
which is also optimized during the model training and used
for every time series. c can be excluded in order to fit the
optimal model to a dataset.

In the seasonal case (Eq. 7), bExt+1 is calculated by
the corresponding seasonal historical values Ext−s+1 to
Ext−P �s+1 with a time distance of s periods. P is the num-
ber of seasonal autoregressive model components. The
seasonal weights are represented by ˚1 to ˚P .

bExt+1 = c + �1 � Ext + ::: + �p � Ext−.p−1/ (6)
bExt+1 = c + ˚1 � Ext−s+1 + ::: + ˚P � Ext−P �s+1 (7)

Fig. 6 shows an example of five time series x1 to x5 with
a season length of s = 12 which are predicted using the
same CSAR model. The model shown in this example is
comparable to an autoregressive (AR) model with two non-
seasonal and one seasonal component. The difference is,
that this model is not applied to only one individual time
series but, following the idea of the cross-sectional fore-
casting approach, to cross-sections which are highlighted
by vertical boxes that stretch over all time series. The solid
arrows show how the involved cross-sections (highlighted
in blue) contribute to the model training. The two short ar-
rows represent the non-seasonal components of the model
and the long arrow reaching back exactly one season rep-
resents the seasonal component. Every time series which
has values in all involved cross-sections contributes to the
model creation. Thus, the model represents how in average
the target cross-section of the training data can be composed
from the historical values for all involved time series. In the
example, these are the time series x1, x4 and x5. Series
x3 for example does not contribute to the model creation
since it has no value for the seasonal component and the
correction terms (leftmost three cross-sections colored in
blue). The dotted arrows represent correction terms which
are necessary due to the combination of seasonal and non-
seasonal components. They subtract the direct predecessor

values from Ext−s+1 in the same way as the direct prede-

cessors of bExt+1 would add up in the forecast value. In
doing so, the seasonal component only represents the ac-
tual seasonal change. There are always as many correction
terms to every seasonal component as the model contains
non-seasonal components and they are also mandatory for
a time series in order to contribute to the model creation.
The data for the model creation is still, as in the cross-sec-
tional forecasting model, situated exactly one season before
the model application which is represented by the dashed
arrows in Fig. 6. The optimized model is now used to calcu-
late the forecast values for the target period t +1. A forecast
value can be calculated for every time series which has his-
torical values in all involved cross-sections (highlighted in
red). In the example, these are the time series x1 to x3.
Series x4 for example cannot be forecast because it has
no values for the second non-seasonal component (leftmost
cross-section entirely colored in red).

Eq. (8) shows the corresponding formula to the model
of Fig. 6. Next to the constant c there are two non-seasonal
components with the respective weights �1 and �2 and one
seasonal component with its weight ˚1 followed by the two
corresponding correction terms.

bExt+1 = c + �1 � Ext + �2 � Ext−1 + ˚1 � Ext−s+1

+ .−˚1�1/ � Ext−s + .−˚1�2/ � Ext−s−1
(8)

Considering this example, it becomes clear how a CSAR
model is created on a multitude of time series like a cross-
sectional forecast model but offers higher flexibility in the
selection of the underlying data. The model keeps the pos-
itive properties of the cross-sectional forecasting model.
This means, it is still possible to compensate for high levels
of noise and to handle time series with missing values since
the creation of a model does not solely depend on the histor-
ical data of only one time series. Please note, albeit CSAR
can compensate for missing values a higher model com-
plexity (more non-seasonal and/or seasonal model compo-
nents) increases the risk of cases where missing values for-
bid the forecast calculation of individual time series when
they occur in the base for the forecast calculation. Hence,
for very sparse datasets a less complex model may lead to
better forecasting results. Although it might not represent
the dataset as good as possible, it can predict more of the
incomplete series.

Error Terms Moving average components from the
ARIMA model are not applicable in combination with
a cross-sectional model where the core idea is that the
same model parameters are used for all time series of
a dataset. In contrast to the autoregressive components, the
moving average does not rely on the most recent historical
values but applies a smoothing process to the full history of
a time series x. This is done by using error terms as shown

Final edited form was published in "Datenbank Spektrum". 19 (1), S. 17-29. ISSN: 1610-1995.
https://doi.org/10.1016/j.intacc.2008.04.005

9

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

in Eq. (9) where the error e at time t is the difference of the
original time series value x and the corresponding forecast
bx. Eq. (10) shows the calculation of a forecast value
using moving average components. The forecast bxt+1 re-
sults from subtracting the error terms et to et−q+1 from
the constant part c, respectively from a forecast calculated
by autoregressive components. Every error component is
weighted with a corresponding parameter � , q denotes the
number of error terms which influence the current forecast.

et = xt −bxt (9)

bxt+1 = c − �1 � et − ::: − �q � et−q (10)

part c or the corresponding forecast calculated by a CSAR
model without error terms.

ent +1 =
1

f + F

� fX

i=1

ent−i +
FX

j=1

ent−j �s
�

(11)

bxn;t+1 = c − ent +1 (12)

In this way, it is possible to compensate the forecast errors
for time series which are systematically mispredicted. Ac-
tually, we have assumed, that a high number of error terms
would be necessary to obtain a reliable error component. As
the evaluation in the next section will show, this is not the
case and a few error terms already lead to improvements of
the forecast accuracy.

3.2 Evaluation

We conduct an experimental study to evaluate the accuracy
and execution time of our CSAR model. CSAR is imple-
mented in the statistical computing environment R [24]. The
experiments are executed on a six-core AMD Opteron(tm)
server with 32GB of RAM. For the evaluation we use two
real world datasets:

Smart Metering The first dataset is the already men-
tioned Irish Smart Meter dataset. We use the last complete
week of data as evaluation part. For this dataset we exe-
cuted our experiments on different time granularities from
30 min to daily energy consumption. Due to space limita-
tions, we only present the 6 hour granularity in this paper
since this shows the effects we want to emphasize during
the evaluation best.

Payment The second dataset is taken from the IJCAI-
2017 Data Mining Contest [12]. It consists of payment
transactions of 2000 distinct shops in daily granularity mon-
itored over 494 days. We use the number of payments per
shop and day of the last 14 days as evaluation period. None
of the time series has a complete history which means that
every time series is either not monitored right from the be-
ginning or has missing values in its history. Compared to
a complete dataset, 40% of data is missing.

Forecast Accuracy In the first experiment, we evalu-
ate the accuracy of our forecasting approach on two dif-
ferent aggregation levels per dataset. We begin with the
top aggregation level where all base time series are aggre-
gated only grouped by the time. This represents for ex-
ample the overall energy consumption of all households
and enterprises in the Energy dataset. Afterwards, we an-
alyze the base aggregation level where each base time se-
ries is evaluated individually. As comparison methods we
use the ARIMA model as implemented in the auto.arima-
function of the forecast package of R [10] and the cross-
sectional forecasting model (CS) as presented in [9]. To

Considering this calculation, it becomes clear that missing
values make this approach impossible since the calculation
of a forecast value depends on the error terms of all histor-
ical values of the time series.

There are already concepts available to apply smoothing
techniques such as exponential smoothing to incomplete
time series [1]. In the proposed solution, the next available
historical predecessor value is used instead of the direct pre-
decessor and its weight is lowered depending on how many
missing values are bridged. Although, this solution could
be transferred to the moving average part of the ARIMA
model, the missing values of different time series are not
evenly distributed in the dataset (see the example in Fig. 6)
and, thus, an individual adaptation of the model parame-
ters for every time series with missing values is required.
This contrasts the core idea of the cross-sectional forecast-
ing approach to train a single model with one single set of
parameters for a multitude of time series.

For the CSAR model we introduce an alternative way
to incorporate the error terms into the forecast calcula-
tion. Instead of applying the moving average function of
Eq. (10) we use the average of the error terms of each indi-
vidual time series of the dataset and include these into the
forecast calculation. Eq. (11) shows how the average error
et
n
+1 for time series n at time t is calculated. The first

sum collects the non-seasonal forecast errors for the peri-
ods directly prior to period t . The second sum collects all
seasonal forecast errors which are situated exactly one or
more full seasons prior to t . The error terms of the individ-
ual time series are summed up and divided by the number
of non-seasonal f and seasonal error terms F . If a time se-
ries misses values to calculate either forecast or error these
specific values are neglected during the error calculation
and f or F are lowered accordingly for this time series.
Finally, Eq. (12) shows how the error is incorporated into
the forecast calculation by subtracting it from the constant

Final edited form was published in "Datenbank Spektrum". 19 (1), S. 17-29. ISSN: 1610-1995.
https://doi.org/10.1016/j.intacc.2008.04.005

10

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Fig. 7 Forecast error on top
and base aggregation level.
(a) Energy—top level, (b)
payment—top level, (c) en-
ergy—base level, (d) pay-
ment—base level

a b

c d

enable the application of ARIMA, we filled missing val-
ues with zero values. CS is represented by a CSAR model
with only one non-seasonal autoregressive component and
the constant part. Additionally, we include the native fore-
cast where every predicted period shows the same value as
its predecessor bxn

t+1 = xn
t . This states our baseline. Any

forecasting technique performing worse, is not suited for
the specific dataset. For a comparison with other forecast-
ing techniques, i.e., Triple Exponential Smoothing, Vector
Autoregression, Croston’s Method, and Hierarchical Fore-
casting, please refer to the evaluation of [9].

The ARIMA model is always applied at the evaluation
aggregation level, which means the data is aggregated first
and then forecast. CS and CSAR are applied on the base
level and the forecasts are aggregated afterwards to obtain
the top level. The optimal metaparameters for CSAR, i.e.,
number of seasonal and non-seasonal autoregressive com-
ponents and error terms as well as the degree of integration,
were optimized manually. The model parameters, i.e., the
weights of the autoregressive model components and the
constant c, were optimized using the optim-function of R.

All datasets are divided into a training and an evaluation
part as mentioned in the dataset description. All data pre-
ceding the evaluation part may be used for the model train-
ing. We apply a rolling forecast and create a new model

for every period t in the evaluation part of each dataset to
calculate the forecast values. Then, we compare the fore-
casts to the corresponding time series values and calculate
the forecast error with the SAPE measure (Symmetric Ab-
solute Percentage Error):

SAPE =
jx −bxj

.jxj + jbxj/=2 � 100; (13)

x denotes the real time series value and bx is the corre-
sponding forecast of one of the evaluated techniques. If
the time series value and the corresponding forecast both
equal zero we assume a forecast error of zero. Values in
the evaluation part that a method was not able to predict
are filled with a zero forecast and, therefore, punished with
a maximum error.

The results of this experiment are shown in Fig. 7. Each
diagram presents the forecast errors for one dataset and ag-
gregation level as a Box-Whisker-Plot. The y-axis denotes
the SAPE forecast error. Each box represents the forecast
errors of one forecast technique. The red cross in each box
denotes the corresponding average error.

The first two diagrams (Fig. 7a–b) show the results of
the top aggregation level. Our new CSAR model (right-
most box) performs best on both datasets. For the Payment
dataset all approaches perform well since the number of

Final edited form was published in "Datenbank Spektrum". 19 (1), S. 17-29. ISSN: 1610-1995.
https://doi.org/10.1016/j.intacc.2008.04.005

11

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Table 2 Comparison of execution times

CSAR ARIMA

0,1 1,0 0,2 1,1 2,2

0.4 s 0.4 s 0.8 s 0.9 s 5.9 s 42min38s

ther increase of the number of model components leads to
a higher execution time with super linear growth.

The sixth column shows the execution time of ARIMA.
Note, the execution time of the ARIMA model was mea-
sured on ten individual time series and the overall execution
time was extrapolated using the number of time series in the
dataset. Moreover, we did not use the auto.arima function
which includes the search for the optimal metaparameters
and would have lead to a much higher execution time. Com-
pared to the ARIMA model CSAR has a significantly lower
execution time, as only one model is created for an entire
dataset. For the Energy dataset on its original 30min granu-
larity ARIMA is not even able to provide forecasts in time
since the execution time exceeds the monitoring granularity
by more than 40%.

Therefore, we can show that CSAR meets the require-
ment R1 and in combination with the results from the first
experiment satisfies all the requirements (R1 to R3) on the
prediction of large-scale time series datasets.

4 Conclusion

In this paper, we presented two unconventional approaches
for the analysis of large-scale time series data. Both high-
light novel ways to address and overcome some of the chal-
lenges that the Big Data trend poses on time series ana-
lytics. Our feature-based generation method enables more
exhaustive and more meaningful evaluations for systems
that process time series data in a large scale by providing
data sets which are tailor-made for the specific use case.
In addition, it offers an approach for characterization and
comparison of time series datasets allowing more insights
and cross-domain application. The CSAR model for fore-
casting provides highly accurate results in a short amount
of time while overcoming noise and missing data, two of
the major challenges in large-scale time series analytics.

Funding This work was funded by the German Federal Ministry
of Education and Research within the project Competence Center
for Scalable Data Services and Solutions Phase 1—ScaDS Dresden/
Leipzig (BMBF 01IS14014A).

References

1. Aldrin M, Damsleth E (1989) Forecasting non-seasonal time series
with missing observations. J Forecast 8(2):97–116

2. Bilbao J, de Miguel AH, Kambezidis HD (2002) Air temperature
model evaluation in the north mediterranean belt area. J Appl Me-
teorol 41(8):872–884

3. Box GEP, Jenkins GM, Reinsel GC (2008) Time series analysis:
forecasting and control. Wiley, Oxford

4. Chatfield C (2000) Time-series forecasting. Chapman &Hall, CRC,
New York. ISBN: 9781584880639

overall payments does not fluctuate very strong on a daily
basis. For the energy dataset the native forecast performs
significantly worse since there is a strong seasonality which
this approach cannot model. The cross-sectional forecasting
model performs better than the ARIMA model because it in-
corporates the knowledge of all base time series which leads
to a better representation of the overall datasets. CSAR per-
forms even better and profits from the higher adaptability.

The results for the base aggregation level are shown in
the Fig. 7c–d. As each time series is evaluated individually,
it is much harder to achieve a high accuracy. The diagrams
show again that the adaptability of the CSAR model leads
to the most accurate forecasting results. The forecast errors
of CSAR are the overall best for the energy data and on par
with the best comparison method for the Payment data. For
Energy and Payment the time series on the base level still
have some predictable properties. This leads to acceptable
results for ARIMA which is only outperformed by CSAR.

In summary, our CSAR model performs best for both
datasets without requiring a manual preparation of the data
or any missing value treatment. Thus, of all compared tech-
niques CSAR is suited best to derive accurate forecasts for
noisy and incomplete datasets and satisfies the requirements
R2 and R3.

Execution Time In the second experiment we evaluate
the execution time for different complexities of CSAR and
compare them with those of ARIMA. Using the set-up of
the previous experiments, we calculate forecasts for the base
level of the Energy dataset and monitor the execution time
for the prediction of one one-step ahead forecast for all
time series of the dataset. We execute the experiment ten
times and use the average time of all ten passes for the
comparison.

The results of the experiment are presented in Table 2.
The first five columns show different complexities of our
CSAR model using the notation: number of seasonal, non-
seasonal parameters. First of all, there is no difference be-
tween the execution times for seasonal and non-seasonal
models. They access the same amount of data and have
to optimize the same number of parameters. Hence, I/O
cost and computation times are quite similar. The addition
of more model parameters increases the execution time by
making model training and parameter optimization more
costly due to an increased amount of data that has to be ac-
cessed. Combining seasonal and non-seasonal components
further increases the execution time since the correction
terms have to be taken into account (ref. Sect. 3.1). A fur-

Final edited form was published in "Datenbank Spektrum". 19 (1), S. 17-29. ISSN: 1610-1995.
https://doi.org/10.1016/j.intacc.2008.04.005

12

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

5. Cleveland RB, Cleveland WS, McRae JE, Terpenning I (1990)
STL: a seasonal-trend decomposition procedure based on loess.
J Off Stat 6(1):3–73

6. Cuddihy MA, Drummond JB Jr., Bourquin DJ (1994) Vehicle crash
data generator. US patent/grant: US5608629A

7. Forestier G, Petitjean F, Dau HA, Webb GI, Keogh E (2017) Gener-
ating synthetic time series to augment sparse datasets. Proc ICDM.
https://doi.org/10.1109/ICDM.2017.106

8. Hartmann C, Hahmann M, Habich D, Lehner W (2017) CSAR: the
cross-sectional Autoregression model. Proc DSAA. https://doi.org/
10.1109/DSAA.2017.27

9. Hartmann C, Hahmann M, Rosenthal F, Lehner W (2015) Exploit-
ing big data in time series forecasting: a cross-sectional approach.
Proc DSAA. https://doi.org/10.1109/DSAA.2015.7344786

10. Hyndman RJ, Khandakar Y (2008) Automatic time series for fore-
casting: the forecast package for R. J Stat Softw. https://doi.org/10.
18637/jss.v027.i03

11. Iftikhar N, Liu X, Danalachi S, Nordbjerg FE, Vollesen JH (2017)
A Scalable Smart Meter Data Generator Using Spark. OTM. https://
doi.org/10.1007/978-3-319-69462-7_2

12. IJCAI (2017) IJCAI 2017 – Data Mining Contest. http://tb.am/
s0a3o. Accessed 08.02.

13. Jones DI, Lorenz MH (1986) An application of a Markov chain
noise model to wind generator simulation. Math Comput Simul
28(5):391–402

14. Kaminsky FC, Kirchhoff RH, Syu CY, Manwell JF (1991) A com-
parison of alternative approaches for the synthetic generation of
a wind speed time series. J Sol Energy Eng 113(4):280–289

15. Kang Y, Hyndman RJ, Smith-Miles K (2017) Visualising forecast-
ing algorithm performance using time series instance spaces. Int J
Forecast 33(2):345–358

16. Kegel L, Hahmann M, Lehner W (2017) Feature-driven time series
generation. Proc 29th GvDB Workshop, p. 54–59

17. Kegel L, Hahmann M, Lehner W (2017) Generating what-if sce-
narios for time series data. Proc SSDB. https://doi.org/10.1145/
3085504.3085507

18. Kegel L, Hahmann M, Lehner W (2018) Feature-based compari-
son and generation of time series. Prof SSDBM. https://doi.org/10.
1145/3221269.3221293

19. Makridakis S, Hibon M (2000) The M3-Competition: results, con-
clusions and implications. Int J Forecast 16(4):451–476

20. Müller H, Haberlandt U (2015) Temporal rainfall disaggregation
with a cascade model: from single-station disaggregation to spatial
rainfall. J Hydrol Eng. https://doi.org/10.1061/(ASCE)HE.1943-
5584.0001195

21. Neupane B, Pedersen TB, Thiesson B (2014) Towards flexibil-
ity detection in device-level energy consumption. Workshop Proc
ECML PKDD. https://doi.org/10.1007/978-3-319-13290-7_1

22. van Paassen AHC, Luo QX (2002) Weather data generator to
study climate change on buildings. Build Serv Eng Res Technol
23(4):251–258

23. Pesch T, Schröders S, Allelein HJ, Hake JF (2015) A new Markov-
chain-related statistical approach for modelling synthetic wind
power time series. New J Phys. https://doi.org/10.1088/1367-2630/
17/5/055001

24. R Core Team (2014) R: A Language and Environment for Statis-
tical Computing. R Foundation for Statistical Computing, Vienna,
Austria

25. Rahm E, Nagel WE, Peukert E, Jaekel R, Gaertner F, Stadler PF,
Wiegreffe D, Zeckzer D, Lehner W (2019) Competence center
ScaDS Dresden/leipzig: overview and selected research activities.
Datenbank Spektrum 19(1)

26. Schaffner J, Januschowski T (2013) Realistic tenant traces for en-
terprise DBaaS. Work Proc ICDE. https://doi.org/10.1109/ICDEW.
2013.6547423

27. The Commission for Energy Regulation (2015) CER smart meter-
ing project. http://www.ucd.ie/issda/data/commissionforenergyregu
lationcer/. Accessed 18.12.2017

28. VDE e.V. (2011) Messwesen Strom (Metering Code); VDE-AR-N
4400

Final edited form was published in "Datenbank Spektrum". 19 (1), S. 17-29. ISSN: 1610-1995.
https://doi.org/10.1016/j.intacc.2008.04.005

13

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

https://doi.org/10.1109/ICDM.2017.106
https://doi.org/10.1109/DSAA.2017.27
https://doi.org/10.1109/DSAA.2017.27
https://doi.org/10.1109/DSAA.2015.7344786
https://doi.org/10.18637/jss.v027.i03
https://doi.org/10.18637/jss.v027.i03
https://doi.org/10.1007/978-3-319-69462-7_2
https://doi.org/10.1007/978-3-319-69462-7_2
http://tb.am/s0a3o
http://tb.am/s0a3o
https://doi.org/10.1145/3085504.3085507
https://doi.org/10.1145/3085504.3085507
https://doi.org/10.1145/3221269.3221293
https://doi.org/10.1145/3221269.3221293
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001195
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001195
https://doi.org/10.1007/978-3-319-13290-7_1
https://doi.org/10.1088/1367-2630/17/5/055001
https://doi.org/10.1088/1367-2630/17/5/055001
https://doi.org/10.1109/ICDEW.2013.6547423
https://doi.org/10.1109/ICDEW.2013.6547423
http://www.ucd.ie/issda/data/commissionforenergyregulationcer/
http://www.ucd.ie/issda/data/commissionforenergyregulationcer/

	Large-Scale Time Series Analytics
	Abstract
	Introduction
	Feature-based Comparison and Generation of Time Series
	State-of-the-Art Time Series generation
	Feature-based Representation
	Feature-based Generation
	Evaluation

	CSAR: The Cross-sectional Autoregression Model
	CSAR-Modelling
	Evaluation

	Conclusion
	References

	ADP3ADB.tmp
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /
	Martin Hahmann, Claudio Hartmann, Lars Kegel, Wolfgang Lehner

