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Abstract
State machine replication is used to increase the availability of a service such as a data management system while ensuring
consistent access to it. State-of-the-art implementations are based on a command log to gain linear write access to storage
and avoid repeated transmissions of large replicas. However, the command log requires non-trivial state management such
as allocation and pruning to prevent unbounded growth.
By introducing in-place replicated state machines that do not use command logs, the log overhead can be avoided. Instead,
replicas agree on a sequence of states, and former states are directly overwritten. This method enables the consistent,
fault-tolerant replication of basic data management primitives such as counters, sets, or individual locks with little to no
overhead. It matches the properties of fast, byte-addressable, non-volatile memory particularly well, where it is no longer
necessary to rely on sequential access for good performance. Our approach is especially well suited for small states and
fine-granular distributed data management as it occurs in key-value stores, for example.

Keywords Replicated State Machine · Consistency · Consensus · Non-volatile memory

1 Introduction

State machine replication [1] is a general technique to in-
crease service availability in the presence of failures without
losing strongly consistent, i.e., linearizable [2], access to it.
Its realization requires that multiple processes agree on the
same sequence of commands. Consensus protocols such as
Paxos [3] or Raft [4] are needed to achieve this reliably in
the presence of failures.

Current state-of-the-art designs of replicated state ma-
chines (RSM) rely on a command log to keep track of
previously agreed-upon commands. While this design en-
ables replicating even large states, the use of command logs
incurs state management overhead to prevent the local state
from growing unbounded. This overhead includes log al-
location, truncation, log recovery, and snapshotting. These
mechanisms must be kept in sync with the consensus pro-
tocol among replicas, further increasing the complexity of
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such systems [5]. The challenges and overhead associated
with a log make the RSM approach cumbersome to repli-
cate small states.

In this article, we introduce the notion of in-place RSMs.
In contrast to their log-based counterpart, in-place RSMs
directly agree on a sequence of states without using a log.
The resulting architecture only requires a small, constant set
of state variables. It enables with little overhead the fault-
tolerant, consistent access to small states, such as counters,
sets, locks, or small pieces of metadata like current group
memberships, elected leaders, and more. These are ubiqui-
tous primitives used in data management systems, ranging
from databases over object stores to key-value stores.

To survive large-scale failures such as power outages,
the replicated state must be stored on a persistent medium.
Traditional persistent storage technologies heavily favor se-
quential, coarse-grained access, which would make it costly
for in-place RSMs to gain persistence. With the recent ad-
vent of 3D XPoint based memory [4], such as Intel Optane
DC Persistent Memory (DCPMM) [6], we have a persis-
tent storage that features byte-addressability with sub-mi-
crosecond latency for the first time. These properties are
promising for the fast, fine-granular persistence of in-place
RSMs.
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The main contributions of this article are:

� We propose the in-place RSM architecture, which is op-
timized for fine-granular replication by avoiding the use
of a command log (Section 4).

� We discuss how in-place RSMs can be used in a dis-
tributed key-value store using a separate RSM instance
for every key-value pair (Section 5).

� We compare the expected access pattern of log-based
and in-place RSMs on systems equipped with Intel’s
DCPMM and NVDIMM-N (Section 6.2).

2 StateMachine Replication

The simplest network service uses a single, centralized
server that exposes an application interface. Clients use the
interface by sending requests to the server. While this design
is simple, the service becomes unavailable if the server fails
or becomes inaccessible, which is often undesirable and can
become costly for critical services. A common technique to
make the system more fault-tolerant is to replicate the server
to several physical machines. This is called state machine
replication [1].

In the following, we first give a general introduction to
replicate state machines (RSMs). We then discuss two RSM
architectures in more detail. First, the log-based design that
can replicate states of arbitrary sizes and is commonly used
in scientific literature to date. Second, we propose a novel
approach called the in-place architecture, which is opti-
mized for small replicated states.

2.1 General Design

The general method of building a replicated state machine
is simple. First, the service is represented by a deterministic
state machine. A state machine consists of a (possibly un-
bounded) number of states and a set of transition functions
that define changes from the current state to the next state
based on some input (we refer to [7, Chapter 8] for a more
formal definition). Afterward, multiple copies, called repli-
cas, of the state machine are created and placed on multiple,
independent servers. The following steps are then repeated
during the operation of the service:

1. Replicas receive commands in client requests, which are
treated as inputs to the state machine.

2. Replicas then agree on the command order.
3. Replicas execute the commands individually in the

agreed order.
4. After the client’s command was executed on enough

replicas, the client is notified of the execution result.

Commands can modify or read the state machine’s cur-
rent state. The state machine must act deterministically to

ensure that all replicas that have executed the same se-
quence of commands will be in the same state. Thereby, an
RSM can provide strongly-consistent, i.e., linearizable [2],
access to the replicated state while tolerating individual
replica failures.

2.2 The Consensus Problem

Agreeing on the command ordering is the most critical task
of an RSM as it ensures replicas to not diverge over time.
Solving this problem safely requires using a consensus pro-
tocol [8] such as Paxos [3, 9] or Raft [10]1.

A consensus protocol ensures that all (non-faulty) pro-
cesses agree on a single value. Specifically, it must satisfy
the following safety properties [9]:

Nontriviality: Some process must have proposed any
value learned.

Stability: Any process can learn at most one value.
A learned value cannot be changed later.

Consistency: Two different processes cannot learn dif-
ferent values.

Consensus protocols are typically based on quorum de-
cisions [12]. A quorum is a set of processes that has a non-
empty intersection with all other quorums in the system.
Quorums are often defined so that every majority in the
system is a quorum. To make progress, consensus proto-
cols require the existence of a non-faulty quorum of pro-
cesses. With majority based quorums, an RSM can tolerate
a minority of failed replicas.

Although the existence of a non-faulty quorum is a nec-
essary condition for progress, it is not sufficient. Fischer
et al. [8] have shown that no consensus protocol can exist
that guarantees progress in an asynchronous system, even
if only a single process fails. Typically, a centralized co-
ordinator called leader that orders concurrently submitted
commands is elected to alleviate this problem [9]. Progress
is then guaranteed as long as the leader does not fail.

3 The Log-Based RSM Architecture

The log-based RSM architecture is the approach commonly
discussed in literature (e.g., [5, 9, 10, 13]). It uses a com-
mand log that intermediately represents the replicated state
as depicted in Fig. 1.

1 RSMs can also be implemented with atomic broadcasts [11]. Both
problems are equivalent from a theoretical perspective.
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Fig. 1 Overview of the log-based RSM architecture. The replicated state consists of a single set. As replicas work at arbitrary speed, some replicas
have not applied the agreed upon command at time the client received a response

Fig. 2 Overview of the in-place RSM architecture. The replicated state consistent of a single set. In contrast to the log-based architecture, replicas
agree on a sequence of replica states instead of a sequence of commands

3.1 Overview

Every replica consists of its local state machine’s current
state, a command log that contains a sequence of commands
that the RSM has agreed upon, and a consensus module that
exchanges messages with the other replicas by executing a
consensus protocol. The command log is typically placed on
a persistent medium so that a crashed replica, e.g., caused
by a power outage, can recover by replaying the learned
commands.

Clients can access the replicated state by sending a com-
mand to one of the replicas (step 1). The consensus module
of this replica now proposes the command as a candidate
for the next available slot in the command log (step 2). As
replica 1 has already learned two commands in the example,
it proposes the new command for slot 3. Note that the other
replicas may also concurrently propose other commands for
the same slot. However, the safety properties of consensus
ensure that all replicas agree on the same command for slot
3. Once an agreement is reached, the chosen command is
inserted into the log at the respective position (step 3). If
the replica has also learned every previous command, it can
apply the new command to its local state (step 4) and notify
the client of the result (step 5).

Consensus is used in the log-based architecture to learn
commands for specific slots in the log instead of directly
agreeing on the RSM’s next state. The agreed-upon order
of commands is explicitly stored in the log of each replica.
Thus, log-based RSMs directly realize the general steps
outlined in Section 2.1.

This design has the advantage that the amount of trans-
ferred data is independent of the replicated state’s size—the
consensus module agrees on proposed commands. Thus, a
command log fits well if the replicated state is much larger
than individual commands.

3.2 The Cost of the Command Log

Managing the command log in an RSM is a challenging
task. Several factors must be considered in an actual im-
plementation. Most obviously, the command log has to be
stored somewhere. If the replicated state is large, the im-
plied storage overhead of managing a command log may
be small in comparison. However, this is not the case if
the replicated state itself is small. For instance, the RSM
used in Fig. 1 only manages a single set. If the set itself
remains small, then the command log quickly grows orders
of magnitude larger than the actual state.
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In addition to the direct storage requirements, a large
command log also increases recovery time after a crash, as
all commands have to be replayed first. Therefore, it is cru-
cial to prevent the log from growing unbounded. However,
it is not sufficient to discard the prefix of the log as then
the full state cannot be recovered. A local snapshot of a
replica’s state is needed before the log can be truncated up
to that point.

Adding a snapshotting mechanism first appears to be
straight-forward because snapshots do not have to be syn-
chronized across replicas. However, it introduces a high
degree of complexity when building a productive system
for several reasons [5]. These include:

� Command log and snapshot need to be mutually consis-
tent. The possibility of a failed snapshot must also be
considered.

� Serializing a large snapshot to a persistent medium is
time and resource-intensive and can impact the replica’s
capacity to process new commands.

� A fallen-behind replica may need to catch-up by request-
ing missing commands. If the command was already
truncated in other replicas, full snapshots must be trans-
mitted, which can incur high bandwidth costs and delays.

Despite the numerous factors that must be considered
when managing a command log, such state management
is seldom discussed in literature in the context of RSMs.
While some proposals sketch solutions to these issues,
they are most often not mentioned. Only a minority of ap-
proaches discuss them in more depth. As noted by Chandra
et al. [5], there is a gap between literature and produc-
tion-ready use of log-based RSMs. This gap makes RSMs
challenging to implement and results in protocols whose
correctness remains unproven.

4 The In-Place RSM Architecture

We propose the in-place RSM architecture, which is opti-
mized to replicate states of small sizes. As it does not rely
on a command log, the complex state management outlined
in Section 3.2 is not needed.

Although the general structure of the in-place architec-
ture is similar to the log-based approach, the use of con-
sensus is fundamentally different. Instead of agreeing on
a sequence of commands for specific slots in a log, an in-
place RSM agrees directly on the sequence of state machine
states. Thus, it especially shines when the replicated state
is small enough to be repeatedly transmitted over the net-
work (i.e., the data management is latency-bound and not
bandwidth-bound) and is combined with a storage medium
that allows fast, byte-addressable access such as NVRAM
(see Section 4.3). For example, in-place RSMs can be used

for basic primitives such as counters, sets, locks, or small
system-wide metadata such as current process group mem-
berships or leaderships without the complexity of managing
a log. Furthermore, the small storage and protocol overhead
of an in-place RSM makes it easy to deploy many parallel,
independent RSM instances that share the same physical
machines. As we will discuss in Section 5 in more detail,
this property is beneficial, for example, to replicate individ-
ual key-value pairs of a key-value store each in a separate
RSM instance.

4.1 Overview

The high-level design of an in-place RSM, depicted in
Fig. 2, resembles its log-based counterpart. Initially, a client
submits a command to any replica (step 1). The replica’s
consensus module then proposes a new state as the next
state of the RSM. It first fetches the replica’s current state
(step 2), applies the received command on the state, and
then proposes the result by sending messages to the other
replicas. If no concurrent proposal of another replica ex-
ists, this proposal will eventually be accepted as the next
state of the RSM (step 3). Every replica that learns the new
state can immediately override its current local state (step
4). The local state must be stored on a persistent medium
if replicas need the ability to recover from crashes. Finally,
the client is notified that its command succeeded (step 5).

In contrast to using a log, no replica explicitly stores the
sequence of commands. Instead, the sequence is only im-
plied by the current replica state. Thus, replicas can quickly
catch-up if they have missed past consensus decisions, e.g.,
due to message loss caused by unreliable communication
channels. For example, replica 2 in Fig. 2 may not learn
state ’fBg’. However, it can still safely overwrite its local
state if it learns a subsequent proposed state. In contrast,
replicas in the log-based approach must learn all previous
agreed-upon commands before new commands can be exe-
cuted or have to request a potentially large snapshot of the
state. Of course, the consensus protocol must be modified
for in-place RSMs, ensuring that only up-to-date replicas
succeed with their proposal.

4.2 Modified Consensus

Current consensus algorithms are either directly build
around a command log [10], generalized dependency graphs
that allow multiple equivalent command orderings [14], or
can only be used to agree on a single command [9]. Sys-
tems that use the latter kind of algorithms typically chain
multiple consensus instances—one for each slot in the log.
However, the managed state grows in all cases with the
number of learned commands, which eventually needs to
be actively truncated. To meet the demands of our in-place
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RSM architecture, we designed a new consensus algorithm
that can agree on an arbitrary number of values in se-
quence (i.e., states of the RSM) without additional memory
requirements.

Our algorithm is based on classical single-decree
Paxos [9]. In the following, we describe the high-level
approach. We refer to [15] for the full algorithm.

4.2.1 Paxos Consensus

Single-decree Paxos can be used by a set of processes to
agree on a single value. Paxos distinguishes the roles of
the proposer, acceptor, and learner. Proposers propose val-
ues, acceptors vote on the proposals, and learners collect
acceptor votes and may learn a proposed value.

Paxos is executed in two phases, as shown in Algo-
rithm 1. In the first phase, a proposer first chooses a
(unique) round number. Rounds are used to order con-
current proposals. The proposer then announces to all
acceptors its intent to propose a value in this round during
the second phase. Acceptors reply with their current vote
if they have not seen a higher numbered proposal.

If the proposer has received a quorum of ack replies,
it proceeds to phase 2. It proposes the most recent value
received in phase 1 messages. If no acceptors have voted
for a value yet, it can choose its own value, e.g., a value
received from a client. The proposer sends the proposal to
all acceptors, who vote for it if they have not seen a higher
numbered proposal. Learners collect the votes.

Once a learner has received votes for the same proposal
from a quorum, the included value was learned by con-

sensus. The protocol ensures that the learned value never
changes: Intuitively, as a quorum has voted for value v,
every proposer will receive a least one instance of v in a
phase 1 ack message. Thus, no other value will be proposed
anymore.

4.2.2 RMWPaxos: Enhancing Paxos with Consistent
Quorums

Single-decree Paxos can only be used to agree on a sin-
gle value. If agreement on a sequence of values is needed,
e.g., commands in an RSM, multiple single-decree Paxos
instances are necessary.

To avoid the need to clean-up old instances, we extended
single-decree Paxos so that a single Paxos instance can
agree on an arbitrarily long sequence of values. We call
this modified protocol RMWPaxos [15], as it supports the
consistent application of arbitrary read-modify-write opera-
tions on a single value. Informally, the protocol supports the
following semantics (see [15] for a formal problem state-
ment):

Given a current agreed-upon state s and a set of con-
currently received commands C , all processes agree on the
next state s0 such that 9c 2 C W s0 = c.s/.

Already applied commands must never be ‘lost’. Once s0
was agreed on, the next agreed state in the sequence must
be c.s0/ for some command c. Thus, one of the main chal-
lenges in developing the protocol is reliably detecting the
current agreed-upon state before applying a new command
to propose the next value.

We achieve this by augmenting Paxos with the notion of
consistent quorums. A quorum is consistent if all acceptors
in it have voted for the same state. Otherwise, the quorum
is inconsistent. We can use this concept to modify phase 2
of Paxos (see Fig. 3):

After a proposer p has completed phase 1, it checks
if the quorum has responded consistently. It does so by
comparing all included values in the received ack messages.
If they are the same, then the quorum is consistent, the state
is reliably established, and the corresponding command is
successfully finished. Then, p knows with certainty that
the system has agreed on this value, and no newer agreed-
upon value exists. Thus, p can apply a client command
and propose the result as the next value in the sequence. If
p succeeds with its proposal, it can update its local state
machine with the proposed value and notify the client that
issued the command.

If the quorum is inconsistent, p does not knowwhich was
the last agreed-upon value (cf. Fig. 3, step two). In order
to prevent the system from ‘losing’ commands, p cannot
immediately propose a new value. Instead, it must propose
the most recent value received in phase 1, similar to single-
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Fig. 3 Using the in-place con-
sensus protocol to propose sub-
sequent states of an RSM with 7
replicas (acceptors). Round num-
bers are omitted for simplicity

decree Paxos (cf. Algorithm 1, Line 4–8). Afterward, p can
retry by executing the protocol from the beginning.

An inconsistent quorum may indicate that some other
proposers executed the protocol concurrently. However, it
can also be the result of message loss or other failures. In
this case, the proposer cannot decide with certainty which
(or if any) of the received values was agreed-upon judging
from phase 1.

4.3 Persisting the State with NVRAM

The in-place RSM architecture promises less state over-
head and protocol complexity than log-based designs when
fault-tolerant access is needed on a fine-granular scale. Tra-
ditional persistent storage media such as HDDs or SSDs are
not the best fit for the needs of in-place RSMs. They can
only be accessed on a block granularity. Operating systems
(OS) employ a paging mechanism to handle access to these
block devices efficiently. Pages often have a size of 4KiB,
but they can also be larger on current systems. To access
any data on the persistent storage, the OS fetches the cor-
responding page into main memory. If the data is modified,
the page is marked as dirty. It is eventually written back to
the persistent medium, either explicitly by the application
or due to periodic synchronizations by the OS.

The use of multiple in-place RSMs, e.g., to replicate in-
dividual key-value pairs of a key-value store (Section 5)
results in an access pattern dominated by fine-granular ran-
dom-access writes. However, such an access pattern cannot
be efficiently handled by the paging mechanism for several
reasons: First, writing a full page upon every modifica-
tion causes write amplification as the modified data is often
much smaller than a single page. Second, different RSM
instances may not share the same page, increasing the risk
of page faults.

With the recent availability of 3D XPoint based mem-
ory, such as Intel’s DCPMM, we now have a persistent
storage medium that features byte-granular access with sub-
microsecond latency. These properties are promising for the
needs of in-place RSMs. While several performance studies
exist that discuss DCPMM’s applicability in various areas,
none has evaluated the persistent access patterns that oc-
curs when using in-place RSM’s. Therefore, we investigate
them in Section 6.2.

5 Use Case: Distributed KV-Store

Our modified consensus protocol RMWPaxos (see Sec-
tion 4.2.2) makes it possible for an in-place RSM to agree
on a sequence of values with a constant number of addi-
tional state variables. Periodic state truncation and manage-
ment is not needed, which makes it easy and affordable
to deploy an arbitrary number of RSM instances in par-
allel on the same set of physical machines. This property
can be used to easily replicate individual key-value pairs in
a distributed key-value store. We have outlined a possible
architecture in Fig. 4.

A fundamental challenge in a distributed kv-store is to
divide the key-space across multiple physical machines in a
fault-tolerant manner. This can be achieved by using a struc-
tured overlay network, such as Chord [16] and Chord# [17].

Fig. 4 Design of a replicated key-value store using in-place RSMs for
each individual key-value pair
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They arrange the keyspace in a virtual ring. Each server is
responsible for a part of the keyspace, managing all key-
value pairs in the assigned ring segment. A given key can
be found by executing the routing protocol of the overlay
network.

To improve data availability in case of a server failure,
key-value pairs must be placed on independent servers, for
example by symmetric replication [18]. The ring segments
that servers manage do not have to be of the same size.
Thus, two key-value pairs located on the same machine
may have their replicas located on differing servers. For
simplicity, this is not shown in Fig. 4.

The replicas of a key-value must be kept in sync to pre-
vent clients from receiving inconsistent or outdated infor-
mation when accessing a key (strong consistency model).
For that, each key-value pair and its replicas can be han-
dled as an instance of an in-place RSM. If a client wishes
to access or modify a key’s value, it can send the respective
command to a replica. The replicas execute the consen-
sus protocol outlined in Section 4.2.2 to compute the key-
value pair’s new state before sending a response back to the
client. By this design, client requests can be processed con-
sistently as long as a quorum (e.g., a majority) of replicas
is available.

By itself, this approach can handle arbitrary commands
that target a single key-value pair. To consistently handle
modifications that span multiple key-value pairs, a multi-
key transaction protocol [19] can be implemented on top of
our in-place RSM.

6 Experiments and Evaluation

In this section, we evaluate two aspects regarding the use
of in-place RSMs. First, we discuss and evaluate the effects
of deploying in-place RSMs in an in-memory distributed
system by using the distributed key-value store Scalaris as
an example (Section 6.1).

We then investigate the influence and performance con-
sequences when Intel’s DCPMM is used as local persistent
storage for in-place RSMs. Here, we compare the perfor-
mance of the respective access patterns of the different ap-
proaches executed on RAM, NVDIMM-N, and DCPMM
(Section 6.2).

6.1 Deployment in a Distributed KV-Store

We have implemented RMWPaxos in the context of
Scalaris [20], a distributed key-value store written in Er-
lang. Scalaris features the architecture outlined in Section 5.
A detailed evaluation can be found in [15].

The deployment of RMWPaxos in Scalaris to treat every
k/v-pair as its own RSM revealed two advantages.

Fig. 5 Throughput comparison of RMWPaxos with leader-based ap-
proaches using 5 replicas. RMWPaxos can avoid the leader bottleneck
by distributing load across many instances

First, it increases the flexibility of placing replicas of a
given key on physical machines. The decision can be made
on a per-key basis, which can be useful, e.g., to ensure
geographic proximity in systems spanning across multiple
data centers. Typically, this placement decision can only be
made on the basis of individual shards or partitions when
using log-based RSM approaches.

Second, it allows a better load distribution across mul-
tiple instances. As mentioned in Section 2.2, consensus al-
gorithms typically benefit from using a leader to handle
concurrency efficiently. Paxos also benefits from a leader
since two proposers may repeatedly invalidate each other’s
proposals. However, the leader becomes the bottleneck of
the system under high load. Deploying an RSM instance
per key reduces the number of requests each individual
instance has to handle. Depending on the access pattern ex-
hibited by the system, it can even alleviate the need for a
leader entirely.

To quantify this effect, we deployed Scalaris on a clus-
ter with two Intel Xeon E5-2670 v3, 2.40GHz per cluster
node. All nodes were fully connected with 10Gbit/s Eth-
ernet links. We deployed five Scalaris nodes on separate
cluster nodes, each representing one replica. Two separate
cluster nodes were used to generate client requests. We de-
ployed RMWPaxos with different system sizes, i.e., number
of keys. The keys were accessed using a Pareto distribution
with ˛ = 1.16 (80% requests target 20% of keys) to simu-
late skew. Fig. 5 shows the results using a read-dominated
workload (95% reads, 5% writes).

6.2 Evaluating DCPMM for In-Place RSMs

We evaluate the use of DCPMM as local storage backend
for in-place RSMs and compare the random-access pattern
of multiple in-place RSMs to the sequential access of a log-
based RSM implementation. Overall, we study the follow-
ing three access patterns:
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Log: Typical access pattern using a command
log. Our log implementation resembles
the implementation approach of the log
in PMDK [21]. The log consists of a pay-
load and a header containing the current
log size. Log entries are written in two
steps to ensure failure atomicity. First,
the log entry is appended to the log and
persisted. Next, the new log size is per-
sisted in the header. For simplicity, we
ignore log-truncation. Instead, we use
a maximum log size of 500MB, after
which writes wrap-around and overwrite
previous commands.

Single In-Place: The expected access pattern of a single
in-place RSM. We overwrite the singu-
lar value using a simple copy-on-write
scheme. The persisted value consists of
a header, and two value versions. The
header indicates which version was writ-
ten last. As with our log, writes are
executed in two steps. First, the old ver-
sion is overwritten and persisted. Then,
the header is updated in an atomic write.

Multi In-Place: Similar to Single In-Place, but with
100,000 independent values. Values are
accessed using a Zipf distribution [22]
with a high skew (˛ = 0.9). This mimics
multiple, independent in-place RSM in-
stances as used, for example, to manage
distinct key-value pairs in a key-value
store.

Writes have to be performed in two steps as DCPMM can
only guarantee write atomicity up to 8byte values. There-
fore, the use of a small 8byte header is required to indicate
that a larger write completed.

Although our evaluation is motivated by the use of in-
place RSMs, these primitives are generally applicable. For
instance, database systems often rely on write-ahead log-
ging to ensure the durability of transactions. In contrast,
the copy-on-write scheme used in the in-place access pat-
tern can update values of arbitrary (albeit fixed) size in a
failure atomic manner.

As a reference frame for the DCPMM performance, we
also execute our measurements on both volatile RAM and
NVDIMM-N. NVDIMM-N is a traditional DIMM with
flash storage on the same module. The DIMM is accessed
directly during regular operation. In the event of a power
failure, data is copied from the volatile to the non-volatile
medium with battery power. An overview of the used hard-
ware is given in Table 1.

Table 1 Experimental setup

RAM & NVDIMM-N Optane DCPMM

Env. CentOS 7
pmdk 1.8, GCC 9.1

CentOS 7
pmdk 1.8, GCC 9.1

CPU 2x Intel Xeon Silver 4116 2x Intel Xeon Platinum
8280L

Memory 192GB DDR4,
32GB NVDIMM-N

3TB Intel Optane DCPMM

To manage access to the persistent media, we used
PMDK’s [21] pmem_persist function with tempo-
ral stores [23]. Writes to the volatile storage are simple
memcpy calls. To avoid cross-NUMA effects, we used
process pinning to utilize a CPU core on the same NUMA
region as the used memory regions. Furthermore, we con-
figured both DCPMM and NVDIMM-N to use DAX [24]
to bypass the page cache of the OS.

Every measurement consists of 50 million writes. We
show both the 99th percentile of the observed write laten-
cies and the number of writes per second. Every measure-
ment was repeated 10 times. The 99% confidence interval
is always within 5% of the reported median. The results
are shown in Fig. 6.

The Log and Single In-Place strategy exhibit near-iden-
tical performance on volatile main memory. In contrast,
the Multi In-Place strategy is noticeably slower in both
throughput and latency for writes larger than 256 bytes.
This effect results from the significantly higher cache miss
rate of the Multi In-Place strategy, caused by its random-
access pattern. This effect could not be observed on both
NVDIMM-N and Optane DCPMM, as cache lines are al-
ways invalidated by the flush performed as part of PMDK’s
pmem_persist call.

For smaller writes, NVDIMM-N outperformed DCPMM
by up to a factor of 5. Such a large discrepancy was un-
expected. However, we observed that DCPMM has a large
penalty for repeatedly flushing the same cache lines. Pre-
vious performance studies made a similar observation, re-
porting an almost 8-fold increase in latency when flushing
a single cache line compared to sequential access [25].

This effect impacts the Single In-Place strategy most,
as it overwrites the same value repeatedly. This results in
a lower throughput compared to the other strategies on
DCPMM. However, Log and Multi In-Place are also af-
fected. The header in Log must be updated after every ap-
pend operation. Due to the high access skew of the Multi
In-Place strategy, approx. 30% of requests target 0.1%
of all RSM instances, whereas the most written instance
is targeted by nearly 4.5% of all requests. As writes are
more distributed, Multi In-Place features a slightly higher
throughput with lower latencies as the Log strategy.

The same effect causes the performance peak at 64byte
values (cache line size) for both In-Place strategies on
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Fig. 6 Comparing different access patterns on volatile main memory and byte-granular, persistent memory

DCPMM. The cache line with the 8byte header overlaps
with multiple values or value versions due to the dense
memory layout for smaller values.

Van Renen et al. [25] propose to alleviate this issue by
using several fields for the header located on different cache
lines, which are written alternating. This solution is also
applicable to our In-Place strategies by maintaining more
versions than just the latest two.

Even with our non-optimized implementations, Log and
Multi In-Place achieved more than one million writes per
second with less than 2 microseconds latencies for writes
up to a kilobyte. This exceeds the write throughput of every
existing consensus system known to us, for both Ethernet
interconnects (e.g. [10, 26, 27]), and RDMA-aware sys-
tems (e.g. [13, 28]) leveraging low-latency interconnects
like InfiniBand [29]. These results are promising for de-
ployments of the in-place RSM architecture on systems
with DCPMM or similar storage technologies available in
the future. We conclude that persisting fine-granular state is
likely no longer a performance bottleneck on such systems.

7 RelatedWork

7.1 Consensus

Many consensus protocols have been designed for the use
in log-based state machine replication. Paxos-derived [3,
9, 14, 30] approaches typically chain a sequence of sin-
gle-agreement consensus instances to agree on a log. Log
pruning and other state management are not part of the core
protocol, which Chandra et al. [5] identified as one of the
main challenges for designing a productive system based
on Paxos. In contrast, approaches like Raft [10] or Zab [31]

are directly centered around the command log’s semantics.
However, this comes at the cost of less flexible protocols.
For instance, Raft requires a leader for safety, whereas basic
Paxos does not.

In recent years, consensus protocols were adapted to
leverage the properties of low-latency, RDMA-aware in-
terconnects [13, 28], programmable switches [27], as well
as FPGAs [32]. These approaches are also centered around
a log and require additional state management.

7.2 Persistent MainMemory

In recent years, various persistent main memory technolo-
gies are under active development. Intel’s Optane DC Per-
sistent Memory [6], 3D XPoint [4], became the first emerg-
ing technology with a commercially available product. A
number of performance studies have been conducted to un-
derstand its properties in various settings, such as raw read/
write performance [33, 34], basic primitives such as page
propagation, and logging [25], as well as more complex
index-structures [35–37] and storage engines [38].

However, to our knowledge, no other work exists to date
that uses the byte-granularity of persistent main memory in
the context of consensus to enable a more fine-granular use
of replicated state machines. While the required persistent
primitive—repeated in-place updates of a single value—is
also used in some persistent date structures, we are not
aware of any work that performs a direct evaluation of this
primitive in isolation.
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8 Conclusion

This article introduced the notion of in-place replicated state
machines, which are optimized for replicating fine-granular
states by avoiding the state management overhead associ-
ated with a command log. We have demonstrated that many
independent in-place RSM instances can be deployed by
using the distributed key-value store Scalaris as an exam-
ple. Such granularity alleviates the need for a distinguished
leader and improves load distribution across all replicas.

Until now, the use of in-place RSMs was restricted to
domains where replication on volatile memory was suffi-
cient, due to the properties of the currently available storage
technologies. The first results on Intel’s DCPMM indicate
that the new upcoming byte-addressable persistent memory
technologies provide the properties required for the fine-
granular persistence that the in-place architecture offers.
We believe that such fine-granular persistence may become
more relevant as these new types of memory gain more
exposure in future mainstream systems.
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