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Abstract The envelope theorem is extended to cover the class of discounted and au-
tonomous infinite horizon differential games that possess locally differentiable Nash equi-
libria. The theorems cover open-loop and feedback information structures and are applied
to an analytically solvable linear-quadratic game. The linear-quadratic structure permits ad-
ditional insight into the theorems that is not available in the general case. With open-loop
information, for example, the costate variable is shown to uniformly overstate the shadow
value of the state variable, but the growth rates of the two are identical.

Keywords Envelope theorem · Differential games · Open-loop Nash equilibria · Feedback
Nash equilibria

1 Introduction

The envelope theorem describes how the optimal value of the objective function of an opti-
mization problem changes as the parameters of the problem change. As any first-year Ph.D.
student in economics can attest, not only has it led to significant economic insights into
single-player optimization problems, it also proved to be particularly useful in applied work.
But because the envelope theorem is at present relatively underdeveloped for game-theoretic
problems, it finds far less use in this setting. For example, the past several decades has wit-
nessed an explosion of papers devoted to the derivation of game-theoretic equilibria in highly
stylized games using simple functional forms, whereas the envelope theorem has received
comparatively little attention in the extant game theory literature.
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There is some recent evidence that this is changing. For example, Caputo [3, 4] estab-
lished an envelope theorem for a generic class of static games with locally differentiable
Nash and Stackelberg equilibria, respectively. Caputo [6] further extended the envelope the-
orem to cover a general class of finite horizon differential games that possess locally dif-
ferentiable Nash equilibria, with either open-loop or feedback information structures. Even
more recently, Van Gorder and Caputo [16] derived an envelope theorem for a generic class
of finite horizon differential games with an open-loop information structure in which there
exist locally differentiable Stackelberg equilibria.

The present paper complements the above four by deriving the envelope theorem for
the seemingly ubiquitous class of discounted and autonomous infinite horizon differential
games possessing locally differentiable Nash equilibria. Two different information struc-
tures and their corresponding Nash equilibria are considered, to wit, (i) an open-loop infor-
mation structure and its associated open-loop Nash equilibria (OLNE), and (ii) a feedback
information structure and its corresponding feedback Nash equilibria (FNE). The central re-
sults demonstrate that if a certain transversality condition holds in the limit of the planning
horizon, then the envelope expressions for the aforesaid class of games under consideration
are essentially the same as those derived by [6].

Of all the envelope expressions, the change in an optimal value function with respect to a
change in the initial value of a state variable is arguably the most discussed and important in
economics. As may be seen in Theorems 9.1 and 14.10 of [5], the said envelope expression
for a general class of optimal control problems is equal to the initial value of the correspond-
ing costate variable. As a result, the initial value of the costate variable has the economic
interpretation of the shadow value of the initial state variable in optimal control problems.
Seeing as this envelope result and its resulting economic interpretation are so basic to in-
tertemporal economic theory, the said interpretation has at times been naively extended to
the setting of differential game theory without proof that it is indeed valid, as documented
by [6]. One contribution of the present paper is the demonstration that Caputo’s [6] envelope
result for the initial state vector, namely, that the initial value of the costate vector is equal
to the shadow value of the initial state vector for FNE, but not for OLNE, carries over to the
class of differential games contemplated here.

Another contribution of the paper, and arguably the most important, is the application
of the envelope theorem established here to an infinite horizon linear-quadratic differential
game, the work-horse structure of the field. The linear-quadratic structure permits an analyt-
ical solution for the OLNE and FNE, the associated costate variables, and all the envelope
expressions. As such, an explicit examination of the envelope results for a linear-quadratic
game and a comparison of the initial value of a costate variable with the shadow value of
the initial state variable are possible. Thus the linear-quadratic differential game permits the
explicit demonstration of the aforementioned result that for OLNE, the initial value of the
costate variable is not the shadow value of the initial state variable, but that it is for FNE.

Two surprising conclusions also emerge from the analysis of the linear-quadratic differ-
ential game, viz., (i) the absolute value of the costate variable is larger than the absolute
value of the shadow value of the state variable for OLNE, but (ii) their growth rates are
identical. These conclusions give some indication of how misleading it may be to treat a
costate variable as the shadow value of the associated state variable for OLNE. Finally, the
linear-quadratic game provides an opportunity to examine the magnitude of the difference
between the shadow value of a state variable and its corresponding costate variable. To this
end, a rudimentary numerical calculation is provided to give one a better feel for this differ-
ence in the linear-quadratic case.

We close this section by indicating the notational conventions adopted throughout the
paper: (a) all vectors are column vectors and are indicated in boldface, (b) the derivative of
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a scalar-valued function with respect to a column vector is a row vector, (c) the derivative of
a vector-valued function with respect to a vector is a Jacobian matrix, the number of rows
of which equal the number of functions being differentiated, and the number of columns of
which equal the number of elements in the vector that the derivative is taken with respect
to, (d) gradient vectors and Jacobian matrices are denoted by boldface subscripts on the
function being differentiated, and (e) the symbol “†” denotes transposition.

2 Definitions and Problem Statement

Consider the ubiquitous class of discounted infinite horizon differential games consisting of
a finite number of P players, indexed by p ∈ {1,2, . . . ,P }. Denote player-specific vari-
ables, functions, and parameters by upper indices. The state of the differential game at
each instant t ∈ [0,+∞) is given by the vector x(t) ∈ R

N . The initial value of the state
vector, denoted by x(0), is fixed at the value x0 ∈ R

N . At each instant t ∈ [0,+∞), each
player p ∈ {1,2, . . . ,P } chooses a control vector up(t) ∈ R

Mp
so as to maximize a payoff

functional. Furthermore, define u−p(t)
def=(u1(t),u2(t), . . . ,up−1(t),up+1(t), . . . ,uP (t)) as

the vector consisting of all the other players’ control vectors at time t .
The state of the differential game evolves according to the system of ordinary differential

equations ẋ(t) = g(x(t),u1(t), . . . ,uP (t);α), where α ∈ R
A is a vector of time independent

parameters that enters the transition function g(·) and the instantaneous payoff function
f p(·) of each player p ∈ {1,2, . . . ,P }. The integrand of the objective functional of every
player contains an exponential discount factor with a common and constant discount rate
r ∈ R++. The differential game is otherwise autonomous, i.e., f p(·),p ∈ {1,2, . . . ,P }, and
g(·) do not explicitly depend on the time variable t .

Putting the above together, the generic class of autonomous and discounted infinite hori-
zon differential games under consideration is therefore given by

Wp(β)
def= max

up(·)

∫ +∞

0
e−rtf p

(
x(t),up(t),u−p(t);α)

dt

s.t. ẋ(t) = g
(
x(t),u1(t), . . . ,uP (t);α)

, x(0) = x0, (1)

for p ∈ {1,2, . . . ,P }, where β
def=(α, r,x0) ∈ R

A+1+N is the vector of parameters of the game.

3 The Envelope Theorem for Open-Loop Nash Equilibria

The goal of this section is to derive the envelope theorem for the differential game defined
by Eq. (1) under the assumption that the information structure of the game is open-loop. The
following assumptions are therefore imposed on the game.

(A.1) f p(·),p ∈ {1,2, . . . ,P }, and g(·) are C(1) on their domains, ‖f (·)‖ ≤ C, and
‖fα(·)‖ ≤ C, where C is a positive constant and ‖ · ‖ is the Euclidean norm.

(A.2) The information structure for every player p ∈ {1,2, . . . ,P } is open-loop.
(A.3) An OLNE exists for all β ∈ B(β◦; δ), and is denoted by the P -tuple of vec-

tors v(t;β) = (v1(t;β),v2(t;β), . . . ,vP (t;β)) ∈ R
M1 × R

M2 × · · · × R
MP

, where
z(t;β) ∈ R

N is the associated state path, λp(t;β) ∈ R
N is the corresponding current-

value costate path of player p ∈ {1,2, . . . ,P }, and λ(t;β)
def=(λ1(t;β),λ2(t;β), . . . ,

λP (t;β)) ∈ R
NP .
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(A.4) The vector-valued functions (z(·),v(·),λ(·)) ∈ C(1) for all (t;β) ∈ [0,+∞) ×
B(β◦; δ).

(A.5) limt→+∞ e−rtλp(t;β)†∂z(t;β)/∂β = 0†
A+1+N for all β ∈ B(β◦; δ) and p ∈

{1,2, . . . ,P }.
Assumption (A.1) guarantees that the objective functional of each player converges for

all admissible pairs (x(·),u(·)) due to the presence of the exponential discount factor in
the integrand. Furthermore, as will be shown in the course of proving Theorem 1, it also
implies that the optimal value function Wp(·) of every player belongs to the class of locally
C(1) functions and that an interchange of the integration and differentiation operators is
permitted, both of which are necessary for a differential characterization of the envelope
theorem.

Supposition (A.2) specifies the information available to every player at each point in time
in the game. In particular, an open-loop information structure implies that the corresponding
OLNE at time t depends explicitly on t , the given initial value of the state vector x0, and
the parameters (α, r). Importantly, an OLNE at time t is not a function of the state vector at
time t , namely, x(t). Indeed, the open-loop information structure is evident in the notation
employed for an OLNE, namely, v(t;α, r,x0).

Assumption (A.3) presumes the existence of an OLNE. Alternatively, one can impose as-
sumptions on f p(·),p ∈ {1,2, . . . ,P }, and g(·) that imply the existence of an OLNE. How-
ever, imposing such assumptions on the differential game implies that the resulting envelope
results are not intrinsic to it but are instead conditioned on the said sufficient conditions for
existence. Consequently, such an approach reduces the generality and applicability of the
results. Note that in order to keep the theorems as general as possible, we do not require that
an OLNE converge to a steady state.

Supposition (A.4) is crucial to the analysis, as there is no guarantee that an OLNE is
differentiable from assumption (A.1). Note, however, that this assumption precludes some
classes of games, such as those that admit nonsmooth solutions, e.g., a bang–bang solu-
tion. It may therefore be stronger than needed to obtain the envelope results. Assumption
(A.4) can be relaxed to allow a zero measure set of nonsmooth points for an OLNE, hence
permitting the theorems to cover a broader class of games. Such a generalization, however,
does not affect the envelope theorems nor the linear-quadratic game examined. As a result,
the envelope theorems derived here are also valid for a slightly larger class of games than
indicated.

Assumption (A.5) is unique to the infinite horizon class of differential games. It restricts
the optimal values of the state and costate vectors in the limit of the planning horizon. The
assumption plays essentially the same role as a transversality condition on the costate vec-
tor in finite horizon differential games, and hence acts as a transversality condition for the
class of infinite horizon differential games under consideration. Note that the assumption
only requires convergence along an equilibrium path, and thus is not all that restrictive in
economics. Indeed, the assumption that an OLNE converges to a steady state, as is typically
made in analyzing infinite horizon control problems and differential games, along with a
regularity condition, are sufficient to yield assumption (A.5). To see this, first note that the
aforementioned regularity condition requires that ∂z(t;β)/∂β is continuous on the closure
of B(β◦; δ), which implies that ∂z(t;β)/∂β is bounded. Then observe that the assumption
that an OLNE converges to a steady state implies that limt→+∞ λp(t;β) = λp

ss(α, r), where
λp

ss(α, r) is the steady state value of λp(t;β). Combining the previous two conclusions im-
plies that limt→+∞ e−rtλp(t;β)†∂z(t;β)/∂β = 0†

A+1+N owing to the exponential discount
factor. In passing, note that because z(·) is a C(1) function on B(β◦; δ) by assumption (A.4),
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the continuity of ∂z(t;β)/∂β on the closure of B(β◦; δ) is sufficient to reach the regular-
ity condition. Intuitively, this condition means that there are no sudden jumps in the state
variable when a parameter reaches the boundary of the set for which an OLNE exists.

By the definition of an OLNE, the optimal time-path of the pth player’s control vector,
i.e., vp(t;β), is the solution to the optimal control problem

Wp(β)
def= max

up(·)

∫ +∞

0
e−rtf p

(
x(t),up(t),v−p(t;β);α)

dt

s.t. ẋ(t) = g
(
x(t),up(t),v−p(t;β);α)

, x(0) = x0. (2)

The current-value Hamiltonian function Hp(·) for optimal control problem (2) is defined as

Hp
(
x,up,v−p(t;β),λp;α) def= f p

(
x,up,v−p(t;β);α) + λp†g

(
x,up,v−p(t;β);α)

. (3)

As noted above, assumption (A.1) guarantees that the objective functional of each player
converges for all admissible pairs. As a result, the necessary conditions obeyed by an OLNE
are given by Theorem 6.11 of [1]. They take the ensuing form for the class of games under
consideration:

∂Hp

∂up

(
x,up,v−p(t;β),λp;α) = 0†

Mp, (4)

λ̇
p† = rλp† − ∂Hp

∂x

(
x,up,v−p(t;β),λp;α)

, (5)

ẋ = g
(
x,up,v−p(t;β);α)

, x(0) = x0, (6)

and hold for every p ∈ {1,2, . . . ,P }. With Eqs. (4)–(6) in place, the central result of this
section can be established.

Theorem 1 (Open-Loop Nash Equilibria) If the differential game (1) satisfies assumptions
(A.1)–(A.5), then for all β ∈ B(β◦; δ) and p ∈ {1,2, . . . ,P },Wp(·) ∈ C(1) and

∂Wp

∂α
(β) =

∫ +∞

0
e−rt

[
∂Hp

∂α

(
z(t;β),v(t;β),λp(t;β);α)

+
P∑

j=1,j �=p

∂Hp

∂uj

(
z(t;β),v(t;β),λp(t;β);α)∂vj

∂α
(t;β)

]
dt, (7)

∂Wp

∂x0
(β) = λp(0;β)†

+
∫ +∞

0
e−rt

[
P∑

j=1,j �=p

∂Hp

∂uj

(
z(t;β),v(t;β),λp(t;β);α)∂vj

∂x0
(t;β)

]
dt, (8)

∂Wp

∂r
(β) =

∫ +∞

0
e−rt

[
−tf p

(
z(t;β),v(t;β);α)

+
P∑

j=1,j �=p

∂Hp

∂uj

(
z(t;β),v(t;β),λp(t;β);α)∂vj

∂r
(t;β)

]
dt. (9)
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Proof Given assumption (A.3), the optimal value function Wp(·) defined in Eq. (2) can be
equivalently defined as

Wp(β)
def=

∫ +∞

0
e−rtf p

(
z(t;β),v(t;β);α)

dt. (10)

Recall that assumption (A.1) implies that the payoff functional of player p converges for all
admissible pairs. Furthermore, the Weierstrass M-test and Theorem A.14.1 in [5] imply that
Wp(·) ∈ C(1) and

∂

∂β

∫ +∞

0
e−rtf p

(
z(t;β),v(t;β);α)

dt =
∫ +∞

0

∂

∂β
e−rtf p

(
z(t;β),v(t;β);α)

dt (11)

for all β ∈ B(β◦; δ) and p ∈ {1,2, . . . ,P }. To prove Eq. (7), begin by differentiating Eq.
(10) with respect to α using Leibniz’s rule to arrive at the expression

∂Wp

∂α
(β) =

∫ +∞

0
e−rt

[
∂f p

∂x

(
z(t;β),v(t;β);α) ∂z

∂α
(t;β)

+
P∑

j=1

∂f p

∂uj

(
z(t;β),v(t;β);α)∂vj

∂α
(t;β) + ∂f p

∂α

(
z(t;β),v(t;β);α)]

dt.

(12)

Next, differentiate the identity g(z(t;β),v(t;β);α) − ż(t;β) ≡ 0N with respect to α to get

∂g
∂x

(
z(t;β),v(t;β);α) ∂z

∂α
(t;β) +

P∑
j=1

∂g
∂uj

(
z(t;β),v(t;β);α)∂vj

∂α
(t;β)

+ ∂g
∂α

(
z(t;β),v(t;β);α) − ∂ ż

∂α
(t;β) = 0N×A. (13)

Now premultiply Eq. (13) by the 1 × N row vector e−rtλp(t;β)†, integrate the resulting
inner product over [0,+∞), add the result to Eq. (12), and then use the definition of the
Hamiltonian given in Eq. (3) to simplify the notation. These steps yield

∂Wp

∂α
(β) =

∫ +∞

0
e−rt

[
∂Hp

∂x

(
z(t;β),v(t;β),λp(t;β);α) ∂z

∂α
(t;β)

+
P∑

j=1

∂Hp

∂uj

(
z(t;β),v(t;β),λp(t;β);α)∂vj

∂α
(t;β)

+ ∂Hp

∂α

(
z(t;β),v(t;β),λp(t;β);α) − λp(t;β)† ∂ ż

∂α
(t;β)

]
dt. (14)

Next, substitute the identity form of Eqs. (4) and (5) in Eq. (14) and then make use of

d

dt

[
e−rtλp(t;β)† ∂z

∂α
(t;β)

]
= e−rtλp(t;β)† ∂ ż

∂α
(t;β)

+ e−rt λ̇
p
(t;β)† ∂z

∂α
(t;β) − re−rtλp(t;β)† ∂z

∂α
(t;β) (15)
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to reduce Eq. (14) to

∂Wp

∂α
(β) =

∫ +∞

0
e−rt

[
∂Hp

∂α

(
z(t;β),v(t;β),λp(t;β);α)

dt

+
P∑

j=1,j �=p

∂Hp

∂uj

(
z(t;β),v(t;β),λp(t;β);α)∂vj

∂α
(t;β)

]
dt

− lim
t→+∞ e−rtλp(t;β)† ∂z

∂α
(t;β) + λp(0;β)† ∂z

∂α
(0;β). (16)

Finally, using assumption (A.5) and the fact that z(0;β) ≡ x0 implies ∂z(0;β)/∂α ≡ 0N×A

in Eq. (16) reduces it to Eq. (7).
To prove Eq. (8), first differentiate Eq. (10) with respect to x0 using Leibniz’s rule to get

∂Wp

∂x0
(β) =

∫ +∞

0
e−rt

[
∂f p

∂x

(
z(t;β),v(t;β);α) ∂z

∂x0
(t;β)

+
P∑

j=1

∂f p

∂uj

(
z(t;β),v(t;β);α)∂vj

∂x0
(t;β)

]
dt. (17)

Then differentiate the identity g(z(t;β),v(t;β);α) − ż(t;β) ≡ 0N with respect to x0 to
obtain

∂g
∂x

(
z(t;β),v(t;β);α) ∂z

∂x0
(t;β)

+
P∑

j=1

∂g
∂uj

(
z(t;β),v(t;β);α)∂vj

∂x0
(t;β) − ∂ ż

∂x0
(t;β) = 0N×N . (18)

Next, premultiply Eq. (18) by e−rtλp(t;β)†, integrate the result over [0,+∞), add it to
Eq. (17), and then simplify the resulting expression using Eqs. (3)–(5). These steps yield the
expression

∂Wp

∂x0
(β) =

∫ +∞

0
e−rt

[
−λ̇

p
(t;β)† ∂z

∂x0
(t;β) − λp(t;β)† ∂ ż

∂x0
(t;β) + rλp(t;β)† ∂z

∂x0
(t;β)

+
P∑

j=1,j �=p

∂Hp

∂uj

(
z(t;β),v(t;β),λp(t;β);α)∂vj

∂x0
(t;β)

]
dt. (19)

We now take a slightly different approach in finishing this proof than in proving Eq. (7).
Specifically, integrate the first term of the integrand in Eq. (19) by parts to get

−
∫ +∞

0
e−rt λ̇

p
(t;β)† ∂z

∂x0
(t;β) dt

= − lim
t→+∞ e−rtλp(t;β)† ∂z

∂x0
(t;β) + λp(0;β)† ∂z

∂x0
(0;β)

+
∫ +∞

0
e−rt

[
λp(t;β)† ∂ ż

∂x0
(t;β) − rλp(t;β)† ∂z

∂x0
(t;β)

]
dt. (20)
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Next, use assumption (A.5) and the fact that z(0;β) ≡ x0 implies ∂z(0;β)/∂x0 ≡ IN to
simplify Eq. (20), and then substitute the latter in Eq. (19) to arrive at Eq. (8).

To prove Eq. (9), first differentiate Eq. (10) with respect to r using Leibniz’s rule to get

∂Wp

∂r
(β) =

∫ +∞

0
e−rt

[
−tf p

(
z(t;β),v(t;β);α) + ∂f p

∂x

(
z(t;β),v(t;β);α) ∂z

∂r
(t;β)

+
P∑

j=1

∂f p

∂uj

(
z(t;β),v(t;β);α)∂vj

∂r
(t;β)

]
dt. (21)

Next, differentiate the identity g(z(t;β),v(t;β);α) − ż(t;β) ≡ 0N with respect to r to ob-
tain

∂g
∂x

(
z(t;β),v(t;β);α) ∂z

∂r
(t;β)

+
P∑

j=1

∂g
∂uj

(
z(t;β),v(t;β);α)∂vj

∂r
(t;β) − ∂ ż

∂r
(t;β) = 0N . (22)

As before, premultiply Eq. (22) by e−rtλp(t;β)†, integrate the result over [0,+∞), add it
to Eq. (21), and then simplify the resulting expression using Eqs. (3)–(5) and

−
∫ +∞

0
e−rtλp(t;β)† ∂ ż

∂r
(t;β) dt

= − lim
t→+∞ e−rtλp(t;β)† ∂z

∂r
(t;β) + λp(0;β)† ∂z

∂r
(0;β)

+
∫ +∞

0
e−rt

[
λ̇

p
(t;β)† ∂z

∂r
(t;β) − rλp(t;β)† ∂z

∂r
(t;β)

]
dt (23)

to get the expression

∂Wp

∂r
(β) =

∫ +∞

0
e−rt

[
−tf p

(
z(t;β),v(t;β);α)

+
P∑

j=1,j �=p

∂Hp

∂uj

(
z(t;β),v(t;β),λp(t;β);α)∂vj

∂r
(t;β)

]
dt

− lim
t→+∞ e−rtλp(t;β)† ∂z

∂r
(t;β) + λp(0;β)† ∂z

∂r
(0;β). (24)

Finally, using assumption (A.5) and the fact that z(0;β) ≡ x0 implies ∂z(0;β)/∂r ≡ 0N ,
Eq. (24) reduces to Eq. (9). �

Theorem 1 shows that the envelope theorem for discounted and autonomous infinite hori-
zon differential games with an open-loop information structure consists of two distinct ef-
fects when exogenous parameters change, a result fully parallel to that derived by [6, The-
orem 2] for the generic class of nonautonomous finite horizon differential games with an
open-loop information structure. Specifically, the envelope expressions consist of a direct
or explicit effect given by the first term on the right-hand side of Eqs. (7)–(9), and a strate-
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gic effect, which is captured by the second term on the right-hand side. The direct effect
is identical to its counterpart in an optimal control problem—see [5, Theorem 14.10]—and
captures the effect of a parameter change on the optimal value function of player p due to
the explicit appearance of the parameter in the control problem of player p. The strategic
effect, on the other hand, captures the impact of a parameter change on the optimal value
function of player p by way of the response of the other P − 1 players’ optimal controls to
the said parameter change. The strategic effect is identically zero in optimal control theory
in view of the fact that there is only one player.

The envelope result in Eq. (8) indicates that the shadow value of the initial state vector,
to wit, ∂Wp(β)/∂x0, is not equal to the costate vector evaluated at the initial time, namely,
λp(0;β). The difference between the two expressions is the aforementioned strategic effect.
This implies that interpreting the initial value of the costate vector as the shadow value
of the initial state vector in a differential game with an open-loop information structure
is not, in general, correct. Moreover, given the difficulty of deriving closed-form solutions
of differential games, Eq. (8) suggests that it will often times be difficult to determine the
shadow value of the initial state vector in differential games with an open-loop information
structure. Without putting any additional structure on the game, therefore, one cannot further
compare the costate vector and the shadow value of the initial state vector.

In light of the preceding conclusion, Sect. 5 therefore contemplates an analytically solv-
able class of linear-quadratic differential games and computes its OLNE. The added struc-
ture permits surprising conclusions regarding the shadow value of the state variable and
its corresponding costate variable that are not available in the general case. Another mat-
ter addressed in Sect. 5 is the magnitude of the difference between the costate variable and
the shadow value of the state variable. In the meantime, however, we take up the envelope
theorem for FNE.

4 The Envelope Theorem for Feedback Nash Equilibria

The analog to Theorem 1 for a feedback information structure is now established. Assump-
tion (A.1) is retained, while assumptions (A.2)–(A.5) are replaced with their feedback coun-
terparts.

(B.2) The information structure for every player p ∈ {1,2, . . . ,P } is feedback.
(B.3) A FNE exists for all β ∈ B(β◦; δ), and is denoted by the P -tuple of vectors

v(t, z(t;β);α, r)
def=(v1(t, z(t;β);α, r),v2(t, z(t;β);α, r), . . . ,vP (t, z(t;β);α, r)),

where z(t;β) ∈ R
N is the associated state path, λp(t;β) ∈ R

N is the correspond-

ing current-value costate path of player p ∈ {1,2, . . . ,P }, and λ(t;β)
def=(λ1(t;β),

λ2(t;β), . . . ,λP (t;β)) ∈ R
NP .

(B.4) The vector-valued functions (z(·),λ(·)) ∈ C(1) for all (t;β) ∈ [0,+∞)×B(β◦; δ) and
v(·) ∈ C(1) for all (t,x;α, r) ∈ [0,+∞) × {(x;α, r) : (x;α, r) = (z(t;β);α, r),β ∈
B(β◦; δ)}.

(B.5) limt→+∞ e−rtλp(t;β)†∂z(t;β)/∂β = 0†
A+1+N for all β ∈ B(β◦; δ) and p ∈

{1,2, . . . ,P }.
As before, assumption (B.2) describes the information that is available to every player at

each point in time of the game. In particular, the feedback information structure implies that
a FNE at time t depends, in general, explicitly on t , the value of the state vector at time t ,
namely x(t), and the parameter vector (α, r), as is clear from the notation v(t, z(t;β);α, r)

used to denote a FNE. A FNE also depends on the initial state, but such dependence is not
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direct, rather, it is indirect via the equilibrium state path z(t;β), as β
def=(α, r,x0). Further-

more, note that it is common to restrict the analysis of discounted and autonomous infinite
horizon differential games to stationary FNE, i.e., FNE that do not depend explicitly on t .
Nonetheless, it is entirely possible that the said class of games possess nonstationary FNE
as well, i.e., FNE that depends explicitly on t , as noted by [10, p. 97 and Exercise 4.5].
Accordingly, we have allowed for nonstationary FNE in our assumptions and notation. Sup-
position (B.3) asserts the existence of a FNE and its corresponding state and costate paths,
while assumption (B.4) presumes that the FNE is locally differentiable with respect to the
parameters. Supposition (B.5) is analogous to (A.5), and is essentially an infinite horizon
transversality condition. Note, in passing, the slight abuse of notation in moving from the
open-loop to the feedback information structure.

By the definition of a FNE, the optimal time-path of the pth player’s control vector, i.e.,
vp(t, z(t;β);α, r), is a solution to the optimal control problem

Wp(β)
def= max

up(·)

∫ +∞

0
e−rtf p

(
x(t),up(t),v−p

(
t, z(t;β);α, r

);α)
dt

s.t. ẋ(t) = g
(
x(t),up(t),v−p

(
t, z(t;β);α, r

);α)
, x(0) = x0. (25)

The current-value Hamiltonian for player p is defined as

Hp
(
x,up,v−p(t,x;α, r),λp;α)

def= f p
(
x,up,v−p(t,x;α, r);α) + λp†g

(
x,up,v−p(t,x;α, r);α)

. (26)

Because assumption (A.1) guarantees that the objective functional of each player converges
for all admissible pairs, Theorem 2.2 of [14] provides the necessary conditions that a FNE
must satisfy, namely

∂Hp

∂up

(
x,up,v−p(t,x;α, r),λp;α) = 0†

Mp, (27)

λ̇
p† = rλp† − ∂Hp

∂x

(
x,up,v−p(t,x;α, r),λp;α)

−
P∑

j=1,j �=p

∂Hp

∂uj

(
x,up,v−p(t,x;α, r),λp;α)∂vj

∂x
(t,x;α, r), (28)

ẋ = g
(
x,up,v−p(t,x;α, r);α)

, x(0) = x0, (29)

which hold for every p ∈ {1,2, . . . ,P }. With these conditions in place, the ensuing envelope
result for FNE may be proven.

Theorem 2 (Feedback Nash Equilibria) If the differential game (1) satisfies assumptions
(A.1) and (B.2)–(B.5), then for all β ∈ B(β◦; δ) and p = 1,2, . . . ,P ,Wp(·) ∈ C(1) and

∂Wp

∂α
(β) =

∫ +∞

0
e−rt

[
∂Hp

∂α

(
z(t;β),v

(
t, z(t;β);α, r

)
,λp(t;β);α)

+
P∑

j=1,j �=p

∂Hp

∂uj

(
z(t;β),v

(
t, z(t;β);α, r

)
,λp(t;β);α)∂vj

∂α

(
t, z(t;β);α, r

)]
dt,

(30)
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∂Wp

∂x0
(β) = λp(0;β), (31)

∂Wp

∂r
(β) =

∫ +∞

0
e−rt

[
−tf p

(
z(t;β),v

(
t, z(t;β);α, r

);α)

+
P∑

j=1,j �=p

∂Hp

∂uj

(
z(t;β),v

(
t, z(t;β);α, r

)
,λp(t;β);α)∂vj

∂r

(
t, z(t;β);α, r

)]
dt.

(32)

Proof By assumption (B.3), the optimal value function Wp(·) defined in Eq. (25) can be
equivalently defined as

Wp(β)
def=

∫ +∞

0
e−rtf p

(
z(t;β),v

(
t, z(t;β);α, r

);α)
dt. (33)

As before, assumption (A.1) implies that the payoff functional of player p converges
for all admissible pairs. In addition, by the Weierstrass M-test and Theorem A.14.1 in [5]
Wp(·) ∈ C(1) and

∂

∂β

∫ +∞

0
e−rtf p

(
z(t;β),v

(
t, z(t;β);α, r

);α)
dt

=
∫ +∞

0

∂

∂β
e−rtf p

(
z(t;β),v

(
t, z(t;β);α, r

);α)
dt (34)

for all β ∈ B(β◦; δ) and p ∈ {1,2, . . . ,P }. To establish Eq. (30), first differentiate Eq. (33)
with respect to α using Leibniz’s rule to get

∂Wp

∂α
(α) =

∫ +∞

0
e−rt

[
∂f p

∂x

(
z(t;β),v

(
t, z(t;β);α, r

);α) ∂z
∂α

(t;β)

+
P∑

j=1

∂f p

∂uj

(
z(t;β),v

(
t, z(t;β);α, r

);α)

×
[

∂vj

∂x

(
t, z(t;β);α, r

) ∂z
∂α

(t;β) + ∂vj

∂α

(
t, z(t;β);α, r

)]

+ ∂f p

∂α

(
z(t;β),v

(
t, z(t;β);α, r

);α)]
dt. (35)

Next, differentiate the identity form of Eq. (29) with respect to α to arrive at

∂g
∂x

(
z(t;β),v

(
t, z(t;β);α, r

);α) ∂z
∂α

(t;β)

+
P∑

j=1

∂g
∂uj

(
z(t;β),v

(
t, z(t;β);α, r

);α)
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×
[

∂vj

∂x

(
t, z(t;β);α, r

) ∂z
∂α

(t;β) + ∂vj

∂α

(
t, z(t;β);α, r

)]

+ ∂g
∂α

(
z(t;β),v

(
t, z(t;β);α, r

);α) − ∂ ż
∂α

(t;β) ≡ 0N×A. (36)

Now premultiply Eq. (36) by the 1 × N row vector e−rtλp(t;β)†, integrate the resulting
inner product over [0,+∞), add the result to Eq. (35), and then use the definition of the
Hamiltonian given in Eq. (26) to simplify the notation. The result of these steps is the ex-
pression

∂Wp

∂α
(β) =

∫ +∞

0
e−rt

[
∂Hp

∂x

(
z(t;β),v

(
t, z(t;β);α, r

)
,λp(t;β);α) ∂z

∂α
(t;β)

+
P∑

j=1

∂Hp

∂uj

(
z(t;β),v

(
t, z(t;β);α, r

)
,λp(t;β);α)

×
[

∂vj

∂x

(
t, z(t;β);α, r

) ∂z
∂α

(t;β)

]

+
P∑

j=1

∂Hp

∂uj

(
z(t;β),v

(
t, z(t;β);α, r

)
,λp(t;β);α)∂vj

∂α

(
t, z(t;β);α, r

)

+ ∂Hp

∂α

(
z(t;β),v

(
t, z(t;β);α, r

)
,λp(t;β);α) − λp(t;β)† ∂ ż

∂α
(t;β)

]
dt.

(37)

Next, substitute the identity form of Eqs. (27) and (28) in Eq. (37) to obtain

∂Wp

∂α
(β) =

∫ +∞

0
e−rt

[
∂Hp

∂α

(
z(t;β),v

(
t, z(t;β);α, r

)
,λp(t;β);α)

+
P∑

j=1,j �=p

∂Hp

∂uj

(
z(t;β),v

(
t, z(t;β);α, r

)
,λp(t;β);α)∂vj

∂α

(
t, z(t;β);α, r

)

+ rλp(t;β)† ∂z
∂α

(t;β) − λ̇
p
(t;β)† ∂z

∂α
(t;β) − λp(t;β)† ∂ ż

∂α
(t;β)

]
dt. (38)

Then substitute

d

dt

[
e−rtλp(t;β)† ∂z

∂α
(t;β)

]
= e−rtλp(t;β)† ∂ ż

∂α
(t;β)

+ e−rt λ̇
p
(t;β)† ∂z

∂α
(t;β) − re−rtλp(t;β)† ∂z

∂α
(t;β) (39)

in Eq. (38) and employ assumption (B.5) and the fact that z(0;β) ≡ x0 implies
∂z(0;β)/∂α ≡ 0N×A in the resulting expression to derive Eq. (30).
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To prove Eq. (31), first differentiate Eq. (33) with respect to x0 using Leibniz’s rule to
get

∂Wp

∂x0
(α) =

∫ +∞

0
e−rt

[
∂f p

∂x

(
z(t;β),v

(
t, z(t;β);α, r

);α) ∂z
∂x0

(t;β)

+
P∑

j=1

∂f p

∂uj

(
z(t;β),v

(
t, z(t;β);α, r

);α)∂vj

∂x

(
t, z(t;β);α, r

) ∂z
∂x0

(t;β)

]
dt.

(40)

Then differentiate the identity form of Eq. (29) with respect to x0 to derive the expression

∂g
∂x

(
z(t;β),v

(
t, z(t;β);α, r

);α) ∂z
∂x0

(t;β)

+
P∑

j=1

∂g
∂uj

(
z(t;β),v

(
t, z(t;β);α, r

);α)∂vj

∂x

(
t, z(t;β);α, r

) ∂z
∂x0

(t;β)

− ∂ ż
∂x0

(t;β) ≡ 0N×N . (41)

Now premultiply Eq. (41) by e−rtλp(t;β)†, integrate the result over [0,+∞), and add it to
Eq. (40). Then use Eqs. (26)–(28), the FNE analog of Eq. (20), assumption (B.5), and the
fact that z(0;β) ≡ x0 implies ∂z(0;β)/∂x0 ≡ IN to arrive at Eq. (31).

To prove Eq. (32), first differentiate Eq. (33) with respect to r using Leibniz’s rule to get

∂Wp

∂r
(α) =

∫ +∞

0
e−rt

[
−tf p

(
z(t;β),v

(
t, z(t;β);α, r

);α)

+ ∂f p

∂x

(
z(t;β),v

(
t, z(t;β);α, r

);α) ∂z
∂r

(t;β)

+
P∑

j=1

∂f p

∂uj

(
z(t;β),v

(
t, z(t;β);α, r

);α)

×
[

∂vj

∂x

(
t, z(t;β);α, r

) ∂z
∂r

(t;β) + ∂vj

∂r

(
t, z(t;β);α, r

)]]
dt. (42)

Then differentiate the identity form of Eq. (29) with respect to r to derive

∂g
∂x

(
z(t;β),v

(
t, z(t;β);α, r

);α) ∂z
∂r

(t;β)

+
P∑

j=1

∂g
∂uj

(
z(t;β),v

(
t, z(t;β);α, r

);α)

×
[

∂vj

∂x

(
t, z(t;β);α, r

)∂z
∂r

(t;β) + ∂vj

∂r

(
t, z(t;β);α, r

)]

− ∂ ż
∂r

(t;β) ≡ 0N×1. (43)
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Next, premultiply Eq. (43) by e−rtλp(t;β)†, integrate the result over [0,+∞), and add it to
Eq. (42). Then use Eqs. (26)–(28) and the FNE analog of Eq. (23) to simplify the resulting
expression and arrive at

∂Wp

∂r
(β) =

∫ +∞

0
e−rt

[
−tf p

(
z(t;β),v

(
t, z(t;β);α, r

);α)

+
P∑

j=1,j �=p

∂Hp

∂uj

(
z(t;β),v

(
t, z(t;β);α, r

)
,λp(t;β);α)∂vj

∂r

(
t, z(t;β);α, r

)]
dt

+ λp(0;β)† ∂z
∂r

(0;β) − lim
t→+∞ e−rtλp(t;β)† ∂z

∂r
(t;β). (44)

Finally, employ assumption (B.5) and the fact that z(0;β) ≡ x0 implies ∂z(0;β)/∂r ≡ 0N

to reduce Eq. (44) to Eq. (32). �

Theorem 2 establishes the envelope theorem for FNE of discounted and autonomous
infinite horizon differential games. Equations (30) and (32) characterize the effects of a
perturbation in α and r on the optimal value function of each player. They exhibit the same
structure as their open-loop counterparts given in Eqs. (7) and (9), respectively. The first term
on the right-hand side of Eqs. (30) and (32) is the direct or explicit effect that results from
the explicit appearance of the parameters α and r , while the second term on the right-hand
side of Eqs. (30) and (32), is, as before, the strategic effect that results from the other P − 1
players’ response to the perturbation in the parameters α and r . The main distinctive feature
of the envelope theorem for a feedback information structure lies with Eq. (31). Contrary to
the open-loop case, it demonstrates that the costate vector is equal to the shadow value of
the initial state vector, the familiar envelope result from optimal control theory and a result
fully consistent with the findings of [6].

In the remainder of the paper we apply Theorems 1 and 2 to a linear-quadratic class of
differential games. The linear-quadratic structure permits the explicit derivation of an OLNE
and a FNE and the corresponding envelope expressions. It also allows one to calculate and
sign the strategic term in Eq. (8), thereby permitting a comparison of the dynamic pattern of
the costate variable and the shadow value of the state variable for an OLNE.

5 A Linear-Quadratic Differential Game and Its OLNE

The linear-quadratic structure is one of the few for which an analytical solution for OLNE
and FNE can be derived. Such a game is characterized by a linear state equation and a
quadratic objective functional. This class of differential games is the work-horse of the field
and has been widely applied in economics. For example, Miller and Salmon [15], Cohen and
Michel [7], and Dockner and Neck [8] employ a linear-quadratic differential game to study
various macroeconomic issues, Dockner and Long [9] and List and Mason [13] employ the
structure to examine various matters in international pollution control, while Groot et al. [12]
use it to study natural resource extracting firms.

We contemplate a linear-quadratic differential game with two players, one state variable,
and one control variable for each player, as defined by

W 1(β)
def= max

u1(·)
−1

2

∫ +∞

0
e−rt

[
k1

[
x(t)

]2 + k2

[
u1(t)

]2]
dt, (45)
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W 2(β)
def= max

u2(·)
−1

2

∫ +∞

0
e−rt

[
l1

[
x(t)

]2 + l2
[
u2(t)

]2]
dt,

s.t. ẋ(t) = ax(t) + bu1(t) + cu2(t), x(0) = x0, (46)

where k1, k2, l1, l2, a, b, c, and r are constant scalars, x0 is the given initial value of the state

variable, α
def=(k1, k2, l1, l2, a, b, c), and β

def=(k1, k2, l1, l2, a, b, c, r, x0). Apart from some mi-
nor differences in notation, the linear-quadratic class of differential games defined by Eqs.
(45) and (46) is identical to that investigated by [10, Eqs. (7.1)–(7.3)]. Observe that we ex-
amine a subclass of linear-quadratic differential games in which only the square of the state
variable and the square of the pth player’s control variable appear in the integrand of the pth
player’s objective functional. Accordingly, the integrand function of the class is positively
homogeneous of degree 2 in the state variable and given player’s control variable. The said
class can be generalized in various ways, as noted by [10, p. 171], but we prefer, as do they,
to keep matters simple and not delve into such generalizations since they yield no additional
insight to the matters at hand and only serve to complicate the analytical solution of the
game. Following Dockner et al. [10, p. 173], we assume that the parameters k1, k2, l1, l2, and
r are positive.

For the remainder of the paper, we do not impose specific economic content on the above
game. Nonetheless, it is not difficult to provide an economic interpretation of the differential
game with the proper signs of the parameters. For example, Dockner et al. [10, pp. 172–173]
provide several different economic interpretations of the class of linear-quadratic differential
games.

In this section and the next, we explicitly derive an OLNE and a FNE for the linear-
quadratic differential game defined by Eqs. (45) and (46), and then calculate the envelope
properties of the optimal value functions by partial differentiation. This procedure may be
considered as a supportive example of Theorems 1 and 2. We begin by deriving the OLNE.

Let (v1(t;β), v2(t;β)) be an OLNE and z(t;β) be its corresponding state variable path.
The current-value Hamiltonians of the two players are then defined as

H 1
(
x,u1, u2, λ1;α) def= −1

2

[
k1x

2 + k2

[
u1

]2] + λ1
[
ax + bu1 + cu2

]
, (47)

H 2
(
x,u1, u2, λ2;α) def= −1

2

[
l1x

2 + l2
[
u2

]2] + λ2
[
ax + bu1 + cu2

]
. (48)

By Eqs. (4) and (5), the necessary conditions are given by

u1(t) = bk−1
2 λ1(t), (49)

u2(t) = cl−1
2 λ2(t), (50)

λ̇1(t) = k1x(t) + [r − a]λ1(t), (51)

λ̇2(t) = l1x(t) + [r − a]λ2(t). (52)

In order to solve the necessary conditions, substitute Eqs. (49) and (50) into the state equa-
tion and combine it with the Eqs. (51) and (52). These actions result in the canonical system

ẋ(t) = ax(t) + b2k−1
2 λ1(t) + c2l−1

2 λ2(t), (53)
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λ̇1(t) = k1x(t) + [r − a]λ1(t), (54)

λ̇2(t) = l1x(t) + [r − a]λ2(t). (55)

The canonical system defined by Eqs. (53)–(55) may be written in matrix notation as ẏ(t) =
Ay(t), where y(t)

def=(x(t), λ1(t), λ2(t))† and

A def=
⎡
⎣ a b2k−1

2 c2l−1
2

k1 r − a 0
l1 0 r − a

⎤
⎦ . (56)

In order to solve the canonical system, the eigenvalues μ1,μ2, and μ3 of A are required.
They are the solution to the characteristic equation |A − μI3| = [r − a − μ]2[a − μ] −
[r −a −μ]M = 0, where I3 is the identity matrix of order 3 and M

def= c2l1l
−1
2 +b2k1k

−1
2 > 0,

seeing as k1, k2, l1, and l2 are positive. The eigenvalues are thus given by

μ1 = 1

2

[
r −

√
r2 − 4a[r − a] + 4M

]
, (57)

μ2 = 1

2

[
r +

√
r2 − 4a[r − a] + 4M

]
, (58)

μ3 = r − a. (59)

Note that r2 − 4a[r − a] ≡ [r − 2a]2 ≥ 0, which, when combined with the fact that M > 0,
implies that the eigenvalues are real.

We now employ two more assumptions before solving for the OLNE. First, assume that
if the state equation is uncontrolled, i.e., if u1(t) ≡ 0 and u2(t) ≡ 0, then the resulting steady
state solution, namely x = 0, is globally asymptotically stable, the latter of which is equiv-
alent to a < 0. Second, assume that the steady-state solution of Eqs. (53)–(55), to wit, the
origin, is simple, thereby implying that |A| �= 0, or equivalently, that all of the eigenval-
ues of A are nonzero. As a result, there are two possible cases for the sign pattern of the
eigenvalues of A under the given assumptions, viz., (i) μ1 > 0,μ2 > 0, and μ3 > 0, or (ii)
μ1 < 0,μ2 > 0, and μ3 > 0. Case (ii) is maintained in what follows, seeing as the steady
state of the canonical system has a one-dimensional globally asymptotically stable manifold
in this case, thereby implying that the steady state can be reached given an initial condition
that lies on the said manifold. Because the product of the eigenvalues of a matrix equals its
determinant, it follows that |A| < 0 for case (ii).

Given the initial condition x(0) = x0, the unique solution of Eqs. (53)–(55) can be found
and then combined with Eqs. (49) and (50) to find the unique OLNE, which is found to be

v1(t;β) = x0bk−1
2 w2e

μ1t , v2(t;β) = x0cl
−1
2 w3e

μ1t . (60)

The corresponding state and costate time-paths are

z(t;β) = x0e
μ1t , λ1(t;β) = x0w2e

μ1t , λ2(t;β) = x0w3e
μ1t , (61)

where w def=(w1,w2,w3)
† ∈ R

3 is the eigenvector of A corresponding to the eigenvalue
μ1 < 0, and which satisfies the following system of linear equations:

w2 = −k1[r − a − μ1]−1 < 0, (62)
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w3 = −l1[r − a − μ1]−1 < 0, (63)

[a − μ1] + b2k−1
2 w2 + c2l−1

2 w3 = 0. (64)

Note that without loss of generality we have set w1 ≡ 1 as the normalization. Inspection of
Eq. (61) shows that assumption (A.5) is satisfied. Given Eqs. (60) and (61), it is straightfor-
ward to calculate the optimal value function for each player, namely,

W 1(β) = −1

2
x2

0 [r − 2μ1]−1
[
k1 + b2k−1

2 w2
2

]
< 0, (65)

W 2(β) = −1

2
x2

0 [r − 2μ1]−1
[
l1 + c2l−1

2 w2
3

]
< 0. (66)

Armed with the preceding two expressions, one can explicitly calculate the envelope results
given in Theorem 1. For player 1, say, the shadow value of the initial state is given by

∂W 1(β)

∂x0
= −x0[r − 2μ1]−1

[
k1 + b2k−1

2 w2
2

]
< 0, (67)

with an analogous result for player 2. By Eqs. (61) and (62), the corresponding initial value
of the costate variable is λ1(0;β) = x0w2 < 0. Note that λ1(0;β) and ∂W 1(β)/∂x0 have the
same sign but are not equal—the latter is shown below and is as predicted by Theorem 1.

The linear-quadratic structure provides the opportunity to explicitly show the envelope
results in Theorem 1. For player 1, for example, the right-hand side of Eq. (8) can be explic-
itly calculated using the Hamiltonian of player 1, i.e., Eq. (47), the OLNE given in Eq. (60),
and its corresponding state and costate paths displayed in Eq. (61), and is found to be

λ1(0;β) +
∫ +∞

0
e−rt

[
∂H 1

∂u2

(
z(t;β), v1(t;β), v2(t;β), λ1(t;β);α)∂v2

∂x0
(t;β)

]
dt

= x0w2 + x0[r − 2μ1]−1c2l−1
2 w2w3. (68)

Note that the strategic effect is positive, i.e., x0[r − 2μ1]−1c2l−1
2 w2w3 > 0, as μ1 < 0,

w2 < 0, and w3 < 0, while all the other parameters in it are positive. Substituting Eqs. (62)
and (64) in Eq. (68), it follows that

λ1(0;β) +
∫ +∞

0
e−rt

[
∂H 1

∂u2

(
z(t;β), v1(t;β), v2(t;β), λ1(t;β);α)∂v2

∂x0
(t;β)

]
dt

= x0w2[r − 2μ1]−1
[[r − 2μ1] + c2l−1

2 w3

]

= −x0[r − 2μ1]−1k1[r − a − μ1]−1
[[r − a − μ1] + a − μ1 + c2l−1

2 w3
]

= −x0[r − 2μ1]−1k1[r − a − μ1]−1
[[r − a − μ1] − b2k−1

2 w2

]

= −x0[r − 2μ1]−1
[
k1 + b2k−1

2 w2
2

] = ∂W 1(β)

∂x0
< 0, (69)

with the last equality following from Eq. (67). An analogous result can be derived for
player 2. Equation (69) confirms Eq. (8) of Theorem 1. The derivations of the remaining
envelope results in Theorem 1 are similar and so are omitted.

The linear-quadratic structure also yields two results that cannot be obtained in the gen-
eral case. The first follows from Eqs. (68) and (69), scilicet, that the costate variable λ1(0;β)
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is less than, i.e., is more negative than, the shadow value of the initial state ∂W 1(β)/∂x0,
seeing as the strategic effect is positive under the given assumptions. In other words, Eqs.
(68) and (69) show that λ1(0;β) < ∂W 1(β)/∂x0 < 0. Hence, the initial value of the costate
variable overstates the decrease in the optimal value function of player 1 due to an increase
in the initial state. Thus the strategic effect is beneficial to player 1, in that it partially offsets
the decline in the optimal value function of player 1 due to the increase in the initial state.

The second result generated by the linear-quadratic structure is that the growth rates of
the costate variable and shadow value of the state variable are the same. To see this, consider
a truncated but otherwise identical version of the infinite horizon differential game defined
in Eqs. (45) and (46), in which the fixed but arbitrary initial time is s ∈ [0,+∞) and the
discount factor is exp(−r[t −s]). Given that the OLNE is played from time 0 until time s, the

initial value of the state variable in the truncated game is given by x(s) = xs
def= x0e

μ1s from
Eq. (61). Then by Theorem 4.3 of [10], the OLNE of the original game is also the OLNE
of the truncated game in view of the fact that the OLNE is time consistent. Accordingly, by
either Eq. (67) or Eq. (69), the shadow value of the initial state at time s in the truncated
game for player 1 is given by

∂W 1

∂xs

(α, r, xs)

∣∣∣∣
xs=x0eμ1s

= −xs[r − 2μ1]−1
[
k1 + b2k−1

2 w2
2

]∣∣
xs=x0eμ1s

= −x0e
μ1s[r − 2μ1]−1

[
k1 + b2k−1

2 w2
2

]
. (70)

By Eq. (61), the value of the costate variable at time s for player 1 in the truncated game is

λ1(t − s;α, r, xs)
∣∣
xs=x0eμ1s

t=s

= xsw2e
μ1[t−s]∣∣

xs=x0eμ1s

t=s

= x0w2e
μ1s . (71)

Examination of Eqs. (70) and (71) shows that the growth rate of the shadow value of the
initial state at time s is the same as the growth rate of the costate variable at time s. Given
that s ∈ [0,+∞) is fixed but otherwise arbitrary, this proves that the aforesaid growths rate
are identical over the entire planning horizon. Again, a fully analogous result can be obtained
for player 2.

The preceding two paragraphs demonstrate that the main problem with treating the initial
value of the costate variable as the shadow value of the initial state is the magnitude of the
difference in their values for the class of linear-quadratic games under consideration. In
order to get some sense for the magnitudes involved in comparing the costate variable and
the shadow value of the state, assume the following values for the parameters: k1 = l1 = 1,
k2 = l2 = 0.75, a = −0.25, b = c = 1, r = 0.05, and x0 = 25. Figure 1 depicts the time-
paths of the costate variable and the shadow value for player 1. The numerical results show
that the costate variable is approximately 25 % lower than the shadow value of the state at
the initial time, but that it converges to the shadow value in the limit of the planning horizon
as the steady state is approached.

The above results have a policy implication. In oligopolistic resource extracting models
of the firm, for example, if a policy maker wants to protect the resource stock by regulating
the extraction rates of the firms, then the shadow value of the stock must be determined.
Unfortunately, given an open-loop information structure, the regulator will overestimate the
shadow value of the resource stock if the costate variable is used instead of the shadow value
of the stock. As a result, the policy maker will “over-regulate” the extraction rates and hence
reduce the welfare of the economy. In passing, it is important to remember that the above
results do not hold in general, but are limited to the linear-quadratic class of games under
consideration.
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Fig. 1 The costate variable and the shadow value of the state variable in a linear-quadratic differential game

6 A Linear-Quadratic Differential Game and Its FNE

Now we turn to the derivation of a FNE of the game defined in Eqs. (45) and (46). The
Hamilton-Jacobi-Bellman (HJB) equations for this game are

rW 1(x;α, r) = max
u1

{
−1

2

[
k1x

2 + k2

[
u1

]2] + ∂W 1

∂x
(x;α, r)

[
ax + bu1 + cu2

]}
, (72)

rW 2(x;α, r) = max
u2

{
−1

2

[
l1x

2 + l2
[
u2

]2] + ∂W 2

∂x
(x;α, r)

[
ax + bu1 + cu2

]}
, (73)

where x is any given admissible value of the state variable. In order to derive a FNE, one
must first solve Eqs. (72) and (73) to find the optimal value function of each player. To this
end, we propose a general functional form for Wp(·) containing an unknown parameter, and
then seek to determine the values of the two parameters such that the proposed functional
form for Wp(·) satisfies Eqs. (72) and (73). This information is then used to derive a FNE.

Given that the game under consideration is linear-quadratic, the method of undetermined
coefficients leads to the hypothesis that the optimal value functions are of the form

Wp(x;α, r) = 1

2
φpx2, p = 1,2, (74)

where φp,p = 1,2, are the unknown parameters of the optimal value functions to be de-
termined. Substituting Eq. (74) into the HJB equations, the first-order necessary conditions
associated with Eqs. (72) and (73) are given by

u1 = bk−1
2 φ1x, (75)

u2 = cl−1
2 φ2x. (76)
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Substituting Eqs. (75) and (76) back into the HJB equations, we get a standard system of
algebraic Riccati equations, namely,

k1 + [r − 2a]φ1 − b2k−1
2

[
φ1

]2 − 2c2l−1
2 φ1φ2 = 0, (77)

l1 + [r − 2a]φ2 − c2l−1
2

[
φ2

]2 − 2b2k−1
2 φ1φ2 = 0. (78)

Given that the parameters k1, k2, l1, and l2 are positive and that a < 0, Theorem 1 of [11]
implies that Eqs. (77) and (78) admit a unique negative solution, that is, φ1 < 0 and φ2 < 0,
both of which depend on the parameters of the game.

Substituting Eqs. (75) and (76) in the state equation yields

ẋ(t) = [
a + b2k−1

2 φ1 + c2l−1
2 φ2

]
x(t), x(0) = x0. (79)

By Theorem 2.4 of [2], there exists a unique and absolutely continuous solution of the

initial value problem given in Eq. (79), which is denoted by z(t;β) = x0e
ηt , where η

def= a +
b2k−1

2 φ1 + c2l−1
2 φ2 < 0. Furthermore, z(t;β) = x0e

ηt lives in the compact interval [0, x0],
seeing as η < 0. Hence the quadratic optimal value functions Wp(·) are bounded. Therefore,
using Eqs. (75) and (76), the strategies

v1(x;α, r) = bk−1
2 φ1x, v2(x;α, r) = cl−1

2 φ2x (80)

constitute a (subgame perfect) FNE by Theorem 4.4 of [10].
By using z(t;β) = x0e

ηt , it follows that the open-loop representation of the control paths
generated by the FNE is given by

ṽ1(t;β) = x0bk−1
2 φ1eηt , ṽ2(t;β) = x0cl

−1
2 φ2eηt , (81)

and the resulting optimal value functions of the two players are

W 1(β) = −1

2
x2

0 [r − 2η]−1
[
k1 + b2k−1

2

[
φ1

]2]
< 0, (82)

W 2(β) = −1

2
x2

0 [r − 2η]−1
[
l1 + c2l−1

2

[
φ2

]2]
< 0. (83)

Accordingly, the shadow value of the initial state x0 for player 1 is

∂W 1(β)

∂x0
= −x0[r − 2η]−1

[
k1 + b2k−1

2

[
φ1

]2]
< 0, (84)

with a similar result holding for player 2.
Next, we explicitly derive one of the envelope results for the FNE, say, Eq. (31) in Theo-

rem 2. In contrast to the open-loop case, the costate variable λp(t) is not explicitly specified
in the HJB equations that formed the basis for the preceding derivation of the FNE. In order
to get an explicit expression for the costate variable corresponding to the FNE, we turn to
the open-loop representations of the current-value Hamiltonians generated by the FNE.

Accordingly, the current-value Hamiltonian of, say, player 1, is given by

H 1
(
x,u1, v2(x;α, r), λ1;α) def= −1

2

[
k1x

2 + k2

[
u1

]2] + λ1
[
ax + bu1 + cv2(x;α, r)

]
. (85)
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In this case the necessary condition in Eq. (27) becomes

∂H 1

∂u1

(
x,u1, v2(x;α, r), λ1;α) = 0 ⇒ λ1 = k2b

−1u1. (86)

By substituting the open-loop representation of the control path generated by the FNE given
in Eq. (81), the explicit time-path of the costate variable corresponding to the FNE is found
to be

λ1(t;β) = x0φ
1eηt , (87)

hence λ1(0;β) = x0φ
1.

In order to show that ∂W 1(β)/∂x0 = λ1(0;β), first rearrange Eq. (77) to get

k1 + b2k−1
2

[
φ1

]2 = −rφ1 + 2aφ1 + 2b2k−1
2

[
φ1

]2 + 2c2l−1
2 φ1φ2

= −rφ1 + 2φ1
[
a + b2k−1

2 φ1 + c2l−1
2 φ2

]
. (88)

Then multiply Eq. (88) by x0 and use the definition η
def= a + b2k−1

2 φ1 + c2l−1
2 φ2 < 0 to

simplify the resulting expression and arrive at

−x0[r − 2η]−1
[
k1 + b2k−1

2

[
φ1

]2] = x0φ
1. (89)

Inspection of Eqs. (84) and (89) and recalling that λ1(0;β) = x0φ
1 confirms Eq. (31)

in Theorem 2. That is, we have explicitly shown that λ1(0;β), the initial value of the
costate variable, is identically equal to the shadow value of the initial state variable, namely,
∂W 1(β)/∂x0, for the FNE of the linear-quadratic differential game defined by Eqs. (45) and
(46), thereby permitting the conventional economic interpretation of the costate variable in
this case.

7 Summary and Conclusions

We have successfully extended the envelope theorem so as to apply to the class of au-
tonomous and discounted infinite horizon differential games. The presence of strategic ef-
fects in all but one of the envelope expressions in Theorems 1 and 2 requires that the equi-
librium of the game must be known in order to sign the said expressions. This fact limits
the application of the envelope results in differential games relative to optimal control prob-
lems, as explicit equilibria are derivable but for a limited class of differential games. Even
so, a comparison of Theorems 1 and 2 shows that when the information structure is of the
feedback variety, the initial value of the costate vector equals the shadow value of the initial
state vector, thereby permitting the conventional interpretation of the costate vector for FNE,
but not for OLNE.

Arguably, the most important contribution of the paper is the application of the gen-
eral envelope theorems to the work-horse class of differential games, videlicet, the linear-
quadratic class. By computing an OLNE and a FNE of the aforesaid game, we were able
to derive explicit expressions for the general envelope results given in Theorems 1 and 2.
In addition, the linear-quadratic structure permitted the derivation of two results that cannot
be obtained in the general setting. Specifically, it was shown that, given an open-loop in-
formation structure, the costate variable uniformly overstates the shadow value of the state
variable, but that the growth rates of the two are identical.
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