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Abstract It is known (see e.g. Weibull (1995)) that ESS is not robust against mul-
tiple mutations. In this article, we introduce robustness against multiple mutations
and study some equivalent formulations and consequences.
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1 Introduction

The key concept in evolutionary game theory is ESS introduced by Maynard Smith
and Price (1973) and early developments and applications to evolutionary biology
are reported in Maynard Smith (1982). Some of the references to modern devel-
opments include Cressman (2003), Hofbauer and Sigmund (1998), Weibull (1995).
ESS deals with the situation when there is only one rare mutation that can influ-
ence the population.

In practical scenarios, an incumbent strategy may be subjected to invasions
by several mutations. As an example, we can consider bird nesting. During the
season, birds search for a good location. To get the best location, they may need
to compete with several others. In game theoretic terminology, this corresponds
to the invasion of multiple mutations. Thus it is desirable to study the influence of
multiple mutations. To the best of our knowledge, we are not aware of any studies
which have dealt with the case of multiple mutations.
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In Weibull (1995) (and Vincent and Brown (2005)), it is noted that ESS is, in
general, not robust against multiple mutations. One possible way to approach this
issue may be to model this situation as a multi-player game and study the cor-
responding ESS. While there have been works dealing with ESS and multi-player
games (see e.g. Broom et al. (1997)), we are not aware of any on the connection of
this theory with multiple mutations. In this work, we take alternative approach,
where we extend the notion of ESS to take care of the multiple mutations. We
provide some interesting consequences. Our approach leads to useful refinement of
Nash equilibrium.

Our article is structured as follows. After the introductory section, we introduce
evolutionary stability against multiple mutations in Section 2. We show that evolu-
tionary stability against multiple mutations is equivalent to evolutionary stability
against two mutations in a special case. In Section 3, we provide an equivalent
formulation. Using the ideas in this equivalent formulation, we show that evolu-
tionary stability against multiple mutations is equivalent to evolutionary stability
against two mutations. Section 4 introduces the concept of local dominance and
discusses its connections with evolutionary stability. It also draws differences with
strict Nash equilibrium. In Section 5, we establish the fact that evolutionarily sta-
ble strategy against multiple mutations is necessarily a pure strategy, a property
shared by strict Nash equilibrium. One consequence of this fact is the existence
of uniform invasion barrier. We characterize the evolutionarily stable strategies
against multiple mutations in 2 × 2 games. We conclude our article with some
comments and directions for further research in Section 6.

2 Evolutionary Stability

We consider symmetric games with payoff function u : ∆ × ∆ → R, where ∆ is
probability simplex in Rk and u is given by the affine function

u(p, q) =
k∑

i,j=1

piqju(ei, ej).

Here e1 = (1, 0, 0, · · · , 0), · · · , ek = (0, · · · , 0, 1) ∈ Rk denote the pure strategies of
the players. We, first recall the definition of an evolutionarily stable strategy (ESS
for short).

Definition 2.1 A strategy p ∈ ∆ is called ESS, if for any mutant strategy r 6= p,
there is an invasion barrier ε(r) ∈ (0, 1) such that

u(p, εr + (1− ε)p) > u(r, εr + (1− ε)p) for all 0 < ε ≤ ε(r). (1)

We gather some notations that we use in due course:

BR(p) = {q ∈ ∆ : u(q, p) ≥ u(r, p) ∀r ∈ ∆},
∆NE = {p ∈ ∆ : p ∈ BR(p)}.

By definition, an ESS is robust against any single mutation r appearing in
small proportions. A natural question that arises is that whether an ESS is robust
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against multiple mutations. It is known (see e.g. Weibull (1995)) that an ESS may
not be robust against multiple mutations. We now provide an example to illustrate
this fact.

Example 2.1 Consider the 2 × 2 symmetric game with fitness (or, payoff) matrix

U =

(
−1 0
0 −1

)
. The unique ESS of this game is p = (1

2 ,
1
2 ).

Consider r1 = (1
4 ,

3
4 ) and r2 = (3

4 ,
1
4 ). Now, for any 0 < ε < 1

2 ,

u(p, εr1 + εr2 + (1− 2ε)p) = −1

2
.

But

u(r1, εr
1 + εr2 + (1− 2ε)p) = −

[
ε(

10

16
+

6

16
) + (1− 2ε)

1

2

]
= −1

2
.

Thus p is not robust against simultaneous mutations r1, r2, whenever they appear
in equal propositions.

The above example makes it clear that the Definition 2.1 is inadequate to
capture the robustness or evolutionary stability against multiple mutations. This
motivates the following definition.

Definition 2.2 Let m be a positive integer. A strategy p ∈ ∆ is said to be evo-
lutionarily stable (or robust) against ‘m’ mutations if, for every r1, · · · , rm 6= p,
there exists ε̄ = ε̄(r1, · · · , rm) ∈ (0, 1) such that

u(p, ε1r
1 + · · ·+ εmr

m + (1− ε1 − · · · − εj)p)

> max
1≤i≤m

u(ri, ε1r
1 + · · ·+ εjr

j + (1− ε1 − · · · − εj)p),

for all ε1, . . . , εj ∈ (0, ε̄].

Remark 2.1 Clearly if m = 1, then the above definition coincides with the definition
of ESS.

Definition 2.3 If ε̄ in Definition 2.2 can be chosen independent of (r1, r2, · · · , rm),
then we refer to ε̄ as a uniform invasion barrier for p corresponding to m mutations.

Remark 2.2 The uniform invasion barrier ε̄, in general, depends on m. However, we
can choose a bound on the total fraction i.e., ε1 + ε2 + · · ·+ εm of the m mutations
can be taken to be independent of m. We come back to this point later.

We now provide a surprising result albeit with a very simple proof.

Theorem 2.1 Let m > 2 and p ∈ ∆. If the strategy p is evolutionarily stable against

two mutations with uniform invasion barrier, then it is evolutionarily stable against m

mutations with uniform invasion barrier.

Proof Let p be evolutionarily stable against two mutations with uniform invasion
barrier ε̄. Let r1, r2, · · · , rm be m strategies different from p.
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Let εi ∈ (0, ε̄m ], i = 1, 2, · · · ,m. Consider

w = ε1r
1 + ε2r

2 + · · ·+ εmr
m + (1− ε1 − ε2 − · · · − εm)p

= (ε1 + · · ·+ εm−1)s+ εmr
m + (1− ε1 − ε2 − · · · − εm)p,

where

s =
ε1

ε1 + · · ·+ εm−1
r1 + · · ·+ εm−1

ε1 + · · ·+ εm−1
rm−1.

Obviously (ε1 + · · ·+ εm−1), εm ≤ ε̄. Now considering s and rm as mutations, we
have

u(p, w) > max{u(s, w), u(rm, w)},

since p is robust against two mutations with uniform invasion barrier ε̄. Thus

u(p, w) > u(rm, w).

Instead of rm, we can use any rj , j = 1, 2, · · · ,m − 1 in the above analysis which
leads to

u(p, w) > u(rj , w)

for every j = 1, 2, · · · ,m. Thus p is evolutionarily stable against m mutations and
ε̄
m is uniform invasion barrier corresponding to m mutations. ut

Remark 2.3 The theorem assumes the existence of uniform invasion barrier. This
is, indeed, the case as we show later.

3 An Equivalent Formulation

In this section, we provide an equivalent formulation for the evolutionary stability
against two mutations.

Theorem 3.1 For p ∈ ∆, the following are equivalent:

(a) p is robust against two mutations;

(b) p ∈ ∆NE , and, for every q ∈ BR(p) \ {p} and r ∈ ∆,

u(p, q) > u(q, q) and u(p, r) ≥ u(q, r).

Proof We start with (a) ⇒ (b). Assume that p is robust against two mutations. In
particular p is an ESS. Let q ∈ BR(p) \ {p} and r ∈ ∆. For small enough ε1, ε2 > 0,
we must have

u(p, (1− ε1 − ε2)p+ ε1q + ε2r) > u(q, (1− ε1 − ε2)p+ ε1q + ε2r).

Rearranging the terms, we get

ε1{u(p, q)− u(q, q)}+ ε2{u(p, r)− u(q, r)}+ (1− ε1 − ε2){u(p, p)− u(q, p)} > 0.

Since q ∈ BR(p), the third term is zero and hence, for small enough ε1, ε2 > 0, we
have

ε1[u(p, q)− u(q, q)] + ε2[u(p, r)− u(q, r)] > 0.
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Since p is an ESS and q ∈ BR(p) \ {p}, we have u(p, q) > u(q, q). From this and the
above inequality, it follows that u(p, r) ≥ u(q, r).

We now show that (b) ⇒ (a). Assume (b). Let the mutations r1, r2 appear in
proportions ε1, ε2 respectively. For i = 1, 2, let

hi(ε1, ε2) := u(p, ε1r
1 + ε2r

2 + (1− ε1 − ε2)p)− u(ri, ε1r
1 + ε2r

2 + (1− ε1 − ε2)p)

We need to show that for ε1, ε2 small enough, hi(ε1, ε2) > 0 for each i = 1, 2. Note
that

hi(ε1, ε2) = ε1[u(p, r1)− u(ri, r
1)]

+ ε2[u(p, r2)− u(ri, r2)] + (1− ε1 − ε2)[u(p, p)− u(ri, p)]. (2)

Fix i. If ri ∈ BR(p), then the third term on the R.H.S. of (2) is zero. By hypothesis,
u(ri, ri) < u(p, ri) and u(ri, rj) ≤ u(p, rj), for j 6= i. Therefore, for ε1, ε2 > 0,
hi(ε1, ε2) > 0 whenever ri ∈ BR(p).

Now let ri 6∈ BR(p). Then u(p, p)− u(ri, p) > 0. Hence for sufficiently small ε1
and ε2, we must have h(ε1, ε2) > 0. Thus p is robust against two mutations. ut

Remark 3.1 The above characterization suggests the following interpretation of
evolutionary stability against multiple mutations: An ESS is robust against mul-
tiple mutations if and only if it dominates all strategies that are best responses to
it.

A careful observation of the proof of Theorem 3.1 shows that evolutionary
stability against 2 mutations is equivalent to evolutionary stability against any
m mutations, m ≥ 2. We now prove this equivalence. Note that in the previous
section, we showed this result when there is uniform invasion barrier.

Theorem 3.2 A strategy is evolutionarily stable against two mutations if and only if

it is evolutionarily stable against m mutations, where m > 2.

Proof We will only show that evolutionary stability against two mutations implies
the evolutionary stability against m mutations, the other part being trivial.

Let p be evolutionarily stable against two mutations. Let r1, r2, · · · , rm be
m mutations that appear with proportions ε1, ε2, · · · , εm, respectively. For i =
1, 2, · · · ,m, let

hi(ε1, ε2, · · · , εm) := u(p, ε1r
1 + ε2r

2 + · · ·+ εmr
m + (1− ε1 − ε2 − · · · − εm)p)

− u(ri, ε1r
1 + ε2r

2 + · · ·+ εmr
m + (1− ε1 − ε2 − · · · − εm)p)

We need to show that for ε1, ε2, · · · , εm small enough, hi(ε1, ε2, · · · , εm) > 0 for
each i = 1, 2, · · · ,m. Note that

hi(ε1, ε2, · · · , εm) = ε1[u(p, r1)− u(ri, r1)] + ε2[u(p, r2)− u(ri, r2)]

+ · · ·+ εm[u(p, rm)− u(ri, rm)]

+ (1− ε1 − ε2 − · · · − εm)[u(p, p)− u(ri, p)]. (3)

Fix i. If ri ∈ BR(p), then u(ri, p)− u(p, p) = 0. From Theorem 3.1, we have

u(ri, ri) < u(p, ri) and u(ri, rj) ≤ u(p, rj)
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for all j 6= i. As a result, we have hi(ε1, ε2, · · · , εm) > 0 for ε1, ε2, · · · , εm > 0,
whenever ri ∈ BR(p).

Now let ri 6∈ BR(p). Then u(p, p) − u(ri, p) > 0. Thus for sufficiently small
ε1, ε2, · · · , εm > 0, we must have h(ε1, ε2, · · · , εm) > 0. And hence p is evolutionarily
stable against m mutations. ut

Remark 3.2 As a result of the Theorem 3.2, if a strategy is evolutionarily stable
against m ≥ 2 mutations, we refer to it simply as evolutionarily stable against
multiple mutations, by suppressing the number m.

4 Local Dominance

In evolutionary game theory, ESS is characterized by means of two notions: uni-
form invasion barrier and local superiority. Uniform invasion barrier is already
introduced. Local superiority of a mixed strategy p implies that u(p, q) > u(q, q)
for every q 6= p in a neighborhood of p. The interpretation of this notion is as
follows: p is ESS if and only if in a neighborhood of p, there can not be any other
symmetric Nash equilibrium other than p. We now introduce the corresponding
generalization of local superiority to the case of multiple mutations.

Definition 4.1 (Local Dominance) A strategy p ∈ ∆ is said to be locally domi-
nant if there is a neighborhood U of p such that u(p, r) ≥ u(s, r) and u(p, r) > u(r, r)
for every s, r ∈ U \ {p}.

Remark 4.1 Note that if p is locally dominant, then we can easily show that

u(p, r) ≥ u(s, r) and u(p, r) > u(r, r)

for every s ∈ ∆ and r ∈ U \ {p}, where U is the neighborhood as in the definition
of local dominance.

We now show that evolutionary stability against multiple mutations and local
dominance are equivalent.

Theorem 4.1 A strategy p is evolutionarily stable against multiple mutations if and

only if it is locally dominant.

Proof Assume that p is locally dominant. By definition, p is an ESS. Let q ∈ BR(p)
and q, r 6= p. To show that p is robust against multiple mutations, it suffices to
show that u(p, r) ≥ u(q, r).

Note that rε = εr+ (1− ε)p is close to p whenever ε > 0 is small enough. Since
p is weak locally dominant, for ε > 0 small enough, we must have

0 ≤ u(p, rε)− u(q, rε) = ε[u(p, r)− (q, r)].

This implies that u(p, r) ≥ u(q, r).
Now assume that p is robust against multiple mutations. Let s 6= p. We first

show that there exists a neighborhood V = V (s) of p such that

f(r) := u(p, r)− u(s, r) ≥ 0 (4)
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for all r ∈ V \ {p}.
Now

f(eiε) = ε[u(p, ei)− u(s, ei)] + (1− ε)[u(p, p)− u(s, p)],

where eiε = εei + (1− ε)p.
If s ∈ BR(p), then, by hypothesis, f(eiε) ≥ 0 for every 0 ≤ ε ≤ 1. If s /∈ BR(p), then
clearly there exists ε̄i(s) ∈ (0, 1) such that f(eiε) > 0 for 0 ≤ ε < ε̄i(s).

Thus f(r) ≥ 0 when r ∈ L;

L = {w ∈ ∆ : w = εei + (1− ε)p for some 1 ≤ i ≤ k, 0 ≤ ε < min
1≤i≤k

ε̄i(s)}.

This clearly implies that f(r) ≥ 0 for every r in the convex hull V = V (s) (which
is also a neighborhood of p) of L. Therefore u(p, r) ≥ u(s, r) for every s and
r ∈ U := ∩ki=1V (ei). This implies that p is locally dominant. ut

In the following proposition we show that the inequality in the local dominance
is strict for all s whose support has a non-empty intersection with the support of
p.

Theorem 4.2 Let p be robust against multiple mutations. Then there is a neighborhood

U such that u(p, r) > u(s, r) for all r ∈ U and s ∈ U such that supp(s)∩supp(p) = ∅.

Proof Let p be evolutionarily stable against multiple mutations and let

C = {p ∈ ∆ : pi = 0 for some i ∈ supp(p)}.

Clearly C is compact and p ∈ C. We can choose ε̄ > 0 such that

u(p, ε1r + ε2s+ (1− ε1 + ε2)p) > u(r, ε1r + ε2s+ (1− ε1 − ε2)p)

for all r, s ∈ C and 0 < ε1, ε2 ≤ ε̄. Hence

u(p, ε1r+ε2s+(1−ε1 +ε2)p) > u(α1r+α2s+(1−α1 +α2)p, ε1r+ε2s+(1−ε1 +ε2)p)

for every 0 < α1, α2, ε1, ε2 < ε̄. If we choose U = B(p; ε̄), then from the above we
have

u(p, r) > u(s, r)

for all r, s 6= p ∈ U . ut

We now make a definition.

Definition 4.2 (Strict Local Dominance) A strategy p ∈ ∆ is said to be strictly
locally dominant if there is a neighborhood U of p such that u(p, r) > u(s, r) for
every s, r ∈ U \ {p}.

A strict Nash equilibrium is always strictly locally dominant. We may think
that the other way is also correct. However it is not the case as the following
example shows.
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Example 4.1 Consider the 2× 2 symmetric game with fitness matrix

U =

(
−1 0

0 0

)
.

Clearly BR(e2) = ∆, and hence it is not a strict symmetric Nash equilibrium. But
e2 is an ESS, since for any q 6= e2,

u(q, q) = −q2
1 < 0 = u(e2, q).

Furthermore, for q, r 6= e2,

u(q, r) = −q1r1 < 0 = u(e2, r).

Therefore, by Theorem 3.1, e2 is robust against m mutations, for any m ≥ 1.

5 Pure Strategies and Uniform Invasion Barrier

An ESS can be mixed. On contrary, evolutionarily stable strategy against mul-
tiple mutations is always pure. We now prove this fact. Note that a strict Nash
equilibrium is also necessarily pure.

Theorem 5.1 An evolutionarily stable strategy against multiple mutations is neces-

sarily a pure strategy.

Proof Let p be evolutionarily stable against multiple mutations. If possible, let p
be not a pure strategy. Let p = (p1, p2, · · · , pk). Let ε̄ = ε̄(e1, e2, · · · , ek) be the
invasion barrier corresponding to all the k pure mutations. Let r = α1e

1 + α2e
2 +

· · ·+αke
k + (1−α1 −α2 − · · · −αk)p, where 0 < α1, α2, · · · , αk < ε̄. Then, we have

k∑
i=1

piu(ei, r) = u(p, r) > max{u(e1, r), u(e2, r), · · · , u(ek, r)}, (5)

which is a contradiction. Thus p must be pure. ut

So far we have not answered the question of existence of uniform invasion
barrier. We now answer this question.

Theorem 5.2 If p is robust against multiple mutations, then it has uniform invasion

barrier.

Proof Let p be robust against multiple mutations. Then p is necessarily pure.
Without loss of generality, let us assume that p = ek.

Let ε̄ be the invasion barrier corresponding to the pure strategies e1, · · · , ek−1.
We show that ε̄

m is invasion barrier for any m mutations with m ≥ k − 1.
Let r1, r2, · · · , rm be m mutations with proportions ε1, ε2, · · · , εm respectively.

Choose αji , i = 1, 2, · · · ,m, j = 1, 2, · · · , k such that ri = α1
i e

1 + α2
i e

2 + · · ·+ αki e
k.

Consder

w = ε1r
1 + ε2r

2 + · · ·+ εmr
m − (1− ε1 − ε2 − · · · − εm)p

= β1e
1 + β2e

2 + · · ·+ βke
k + (1− β1 − β2 − · · · − βk)p

= β1e
1 + β2e

2 + · · ·+ βk−1e
k−1 + (1− β1 − β2 − · · · − βk−1)p
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where

βi = ε1α
i
1 + ε2α

i
2 + · · ·+ εmα

i
m and i = 1, 2, · · · ,m.

If we choose ε1, ε2, · · · , εm ≤ ε̄
m , then from the definition of evolutionary stability

we have,

u(p, w) > u(ej , w), j = 1, 2, · · · , k − 1.

Thus for any i, i = 1, 2, · · · ,m, we have

u(p, w) =
k∑
j=1

αjiu(p, w) >
k∑
j=1

αjiu(ej , w) = u(ri, w).

Here we have used the above k− 1 inequalities together with the fact that p = ek.
Thus p is evolutionarily stable against m mutations with ε̄

m as the uniform invasion
barrier.

Note that any invasion barrier corresponding to m mutations is also invasion
barrier corresponing to n mutations, where n < m. This completes the proof the
thoerem. ut

Remark 5.1 As a consequence of the proof, we note that the bound on the total
fraction of the m mutations ε1 + ε2 + · · · + εm can be chosen to be ε̄, which is
independent of m.

A careful observation of the proof of the Theorem 5.2 gives a complete charac-
terization of evolutionary stability against multiple mutations in 2× 2 games. We
omit the proof as it is essentially contained in the proof of the Theorem 5.2.

Theorem 5.3 For two player games, a pure strategy p is evolutionarily stabile against

multiple mutations if and only if it is ESS.

Remark 5.2 We believe that this result is not true for games with three or more
strategies. However, we neither have a proof nor a counter example.

6 Conclusions

In this article, we introduced and studied the evolutionary stability against mul-
tiple mutations. We showed that the number of mutations ( m ≥ 2) is invariant.
Further the evolutionarily stable strategy against multiple mutations is necessarily
a pure strategy. This notion coincides with ESS in the case of 2 × 2 symmetric
games, as long as the ESS is pure. Like in the case of ESS, we do not have any
general result on the existence. Again it is in general non-unique. In deed, strict
Nash equilibrium, itself, can be non-unique.

Our study also leaves several question to explore further. Firstly, note that
classical Hawk-Dove game does not have any evolutionarily stable strategy against
multiple mutations. We do not know if this has any implication in evolutionary
biology as of now.

In 2× 2 case, an ESS is evolutionarily stable against multiple mutations if and
only if the ESS is pure. We believe that this result is not true in general case.
However, we do not have any counter example.
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Whether evolutionary stability against multiple mutations can be seen as a
concept related to multiplayer games seems to be an interesting issue to be ex-
plored. If such a connection can be drawn, we can, hopefully, apply our results in
situations modeled as multiplayer games e.g., in bird nesting.
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