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Abstract One of the contributions of this work is to formulate the problem
of energy-efficient power control in multiple access channels (namely, channels
which comprise several transmitters and one receiver) as a stochastic differ-
ential game. The players are the transmitters who adapt their power level to
the quality of their time-varying link with the receiver, their battery level, and
the strategy updates of the others. The proposed model not only allows one to
take into account long-term strategic interactions but also long-term energy
constraints. A simple sufficient condition for the existence of a Nash equilib-
rium in this game is provided and shown to be verified in a typical scenario.
As the uniqueness and determination of equilibria are difficult issues in gen-
eral, especially when the number of players goes large, we move to two special
cases: the single player case which gives us some useful insights of practical
interest and allows one to make connections with the case of large number of
players. The latter case is treated with a mean-field game approach for which
reasonable sufficient conditions for convergence and uniqueness are provided.
Remarkably, this recent approach for large system analysis shows how scala-
bility can be dealt with in large games and only relies on the individual state
information assumption.
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1 Introduction

Power control has always been recognized as an important problem for mul-
tiuser communications (Foschini and Miljanic, 1993; Yates, 1995). With the
appearance of new paradigms such as ad hoc networks (Gupta and Kumar,
1997), unlicensed band communications, and cognitive radio (Fette, 2006;
Mitola and Maguire, 1999), the study of distributed power control policies has
become especially relevant; in such networks, terminals can freely choose their
power control policies and do not need to follow orders from central nodes.
The work reported in this paper precisely falls into this framework that is, the
design of distributed power control policies in multiuser networks. More pre-
cisely, the assumed network model is a multiple access channel (MAC), which,
by definition, includes several transmitters and one common receiver. A brief
overview of previous works about power allocation for MACs is presented
by Belmega et al (2009). In our framework, based on a certain knowledge
which includes his individual channel state information, each transmitter has
to tune his power level at each time instance. The literature of power control
is vast and here we will only refer to the two closest bodies of related works.
In the first body, the goal is to minimize the transmit power under constraints
(data rate constraints typically). While energy minimization is sought, energy-
efficiency is not necessarily high when measured in terms of a benefit to cost
ratio (as it is done in Physics or Economics). Clearly, energy minimization and
energy-efficiency maximization are two different approaches whose relevance
depends on the context under consideration (see Goodman and Mandayam
(2000) and related works for more justifications) and cannot be compared in
general. The results provided in this paper concern the second body of works,
in which the goal is to maximize energy-efficiency which is measured as an
average number of successfully decoded bits per Joule consumed by the trans-
mitter.

In the original formulation proposed by Goodman and Mandayam (2000)
and re-used in most related works (e.g., Meshkati et al, 2006; Bonneau et al,
2008; Lasaulce et al, 2009; Buzzi and Saturnino, 2011), the problem of energy-
efficient power control is modeled by a sequence of static games which are
played independently from stage to stage. One implicit motivation behind this
choice is that, in scenarios in which the channel state (i.e., the quality of the
transmitter-receiver link) corresponds to i.i.d. realizations of a given random
variable, correlating the power levels from block to block is a priori not rele-
vant. But, when there exists a strategic interaction, this approach may be very
suboptimal and the main drawback of the formulation of Goodman et al is pre-
cisely that it generally leads to an outcome (Nash equilibrium) which is not
efficient. Motivated by this observation, Le Treust and Lasaulce (2010) pro-
posed a repeated game formulation of the problem. One of the strong features
of their formulation w.r.t. the famous pricing approach from Saraydar et al
(2002) (which also aims at improving the efficiency of the game outcome on
each block) is that each transmitter only needs to have individual channel state
information. Although the repeated game model by Le Treust and Lasaulce
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(2010) takes into account the fact that transmitters interact several/many
times, the corresponding work has one major weakness: there is a need for
a normalized stage game which does not depend on the realization channels.
This normalization is valid only if no player has his power constraint active
and even in this case, there is a loss of optimality in terms of expected utilities
(note that this optimality loss is also undergone by the static game formula-
tion with pricing proposed by Saraydar et al (2002)). This is one of the main
reasons why we propose a different formulation which is based on stochas-
tic games. One of the goals of the present paper is to study the influence of
long-term strategic interaction in a game with states and long-term energy
constraints (e.g., the limited battery life typically) on energy-efficient power
control. Indeed, in the work of Goodman and Mandayam (2000) and related
references (e.g. Meshkati et al, 2006; Bonneau et al, 2008; Lasaulce et al, 2009;
Buzzi and Saturnino, 2011), the terminals always transmit, which amounts to
considering no constraint on the available energy. More specifically, the energy-
efficient power control problem in MAC under long-term energy constraints
is modeled by a stochastic differential game (SDG) in which the existence
of a Nash equilibrium is proven. But the problem of characterizing the per-
formance of distributed networks modeled by SDG becomes hard and even
impossible when the number of players becomes large. The same statement
holds for determining individually optimal control strategies. For instance, in
a previous work from Mériaux et al (2011b), equilibrium control strategies are
proposed but they are not optimal strategies. This is where mean-field games
come into play. Mean-field games (Lasry and Lions, 2007) represent a way of
approximating a stochastic differential (or difference) game, by a much more
tractable model. Under the assumption of individual state information, the
idea is precisely to exploit as an opportunity the fact that the number of play-
ers is large to simplify the analysis. Typically, instead of depending on the
actions and states of all the players, the mean-field utility of a player only
depends on his own action and state, and depends on the others through an
mean-field. It seems that the most relevant work in which mean-field games
have been used for power control is given by Tembine et al (2010). Compared
to the latter reference, the present work is characterized by a different utility
function (no linear quadratic control assumptions is made here), a more real-
istic channel evolution law, and the fact that the battery level of a transmitter
is considered as part of a terminal state.

The remaining of the paper is organized as follows. Section 2 gives a brief re-
view of the static game formulation of the energy-efficient power control prob-
lem. Section 3 introduces the stochastic dynamic game modeling the energy-
efficient power control game under long-term energy constraints. In Section 4,
two particular cases of the game are studied. The single player case highlights
the impact of a long-term energy constraint on the transmitter power pol-
icy. Then the large system case is modeled by a mean-field game. Section 5
concludes this work.

Notations: In the following, scalars and vectors are respectively denoted
by lower case symbols and underlined lower case symbols. The vector
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a−k = (a1, . . . , ak−1, ak+1, . . . , aK) denotes the vector obtained by dropping
the k-th component of the vector a. With a slight abuse of notation, the
vector a can be written

(
ak, a−k

)
, in order to emphasize the influence of its

k-th component. ∇xf and ∆xf respectively represent the gradient and the
Laplacian of the function f w.r.t. the vector x. divx is the divergence operator
w.r.t. the vector x. 〈 , 〉E represents the scalar product in the space E.

2 Review of the static game formulation of the energy-efficient
power control problem

The purpose of this section is to provide a brief review of how Goodman and Mandayam
(2000) formulated the power control problem. The motivation for this is twofold.
It allows us to have a reference for comparison and also allows us to build in a
clearer manner the SDG formulation. The communication scenario is a multi-
ple access channel (Cover and Thomas, 1991). There are K ≥ 1 transmitters
and one receiver. Each transmitter sends a signal to a common receiver and
has to choose the power level of the transmitted signal. In order to optimize
his individual energy-efficiency, i.e., the ratio of his throughput to its transmit
power, each transmitter has not only to adapt his power level to the quality
of the channel or link between him and the receiver but also to the power
levels chosen by the others. The static game formulation of this problem is as
follows.

Definition 1 (Static game model of the power control problem)
The strategic form of the static power control game is a triplet
Ḡ = (K, {Pi}i∈K, {ūi}i∈K) where:

• K = {1, 2, ...,K} is the set of transmitters;
• Pi = [0, Pmax

i ] is the action space of player i ∈ K;
• the utility function of player i ∈ K is given by

ūi(p1, p2, ..., pK) =
Rf (γi(p1, p2, ..., pK))

pi
[bit/J], (1)

where:
–

γi(p1, p2, ..., pK) =
pi |hi|

2

∑

j∈K,j 6=i

pj
∣∣hj

∣∣2 + σ2
; (2)

– ∀i ∈ K, hi ∈ R
2 is a vector of parameters which represent the quality

of the channel between transmitter i and the receiver;
– σ2 is a constant which models the communication noise effects at the

receiver;
– R is a constant in [bit/s] which corresponds to the communication data

rate (see Goodman and Mandayam, 2000);
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Fig. 1 Typical form of the utility function regarding to the transmit power.

– the function f : R+ → [0, 1] is a sigmoidal or S-shaped function which
represents the packet success rate; recall that a sigmoidal function
is convex up to a point and then concave from this point. Addition-
ally, f is assumed to be sufficiently regular so that ūi is differentiable
on Pi. See the work of e.g. Rodriguez (2003); Meshkati et al (2005);
Belmega and Lasaulce (2011) for a justification.

The above performance metric can be seen as a tradeoff between the data
rate conveyed over the air and the electromagnetic pollution (since the radiated
power is concerned) in the corresponding region. Fig.1 illustrates the typical
shape of the utility function with regard to transmit power. A consequence of
the use of this utility function is that the optimal transmit power generally
does not make the maximum power constraint active. Precisely, this static
game can be shown to be quasi-concave and has therefore a pure NE (see e.g.
Lasaulce and Tembine, 2011). Additionally, this NE is unique and is given by:

∀i ∈ {1, ...,K}, p∗i =
σ2

|hi|
2

β∗

1− (K − 1)β∗ (3)

where β∗ is the unique solution of the equation

xf ′(x) − f(x) = 0. (4)

It has been shown by Goodman and Mandayam (2000), Meshkati et al
(2006), that this equilibrium is not Pareto-optimal. Assuming that the chan-
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nel coefficients are i.i.d., one could have thought that the study the one-shot
energy-efficient power control problem was sufficient to understand problems
of energy-efficient power control over time. But even with i.i.d. channel coeffi-
cients, there is a new phenomenon when the game is played over time which is
not taken into account by the one-shot game: strategic interactions over time.

Moving to repeated game is a way to take into account these interactions
and Le Treust and Lasaulce (2010) have shown that more efficient solutions
can be obtained in such a framework. However, to account for channel vari-
ations and varying energy level in the battery, using repeated games is not
sufficient. Stochastic games become necessary and are useful to further im-
prove efficiency. The main problem is that both the analysis and algorithm
design become complicated. This is why we propose to use mean-field games.
Therefore, the merit of the proposed approach is to apply stochastic games in
the energy-efficient power control framework to obtain efficient solutions and
simplify both the analysis and design of algorithms when the system is large. In
particular, only the individual channel state information, battery state, and
the interference level at the receiver are needed to implement the proposed
power control policy. This is an attractive practical feature which is not avail-
able for competitive approaches based on stochastic games with finite number
of players.

3 A stochastic differential game formulation

In this section, we present an SDG which is built from the static game de-
scribed in the previous section. Time is assumed be continuous that is, t ∈ R.
This assumption has been discussed in other works on power control (see e.g.
Foschini and Miljanic, 1993; Olama et al, 2006; Tembine et al, 2010). In par-
ticular, it is relevant in scenarios in which the channels are subject to fast
fading or interpreted as a limiting case for slow fading channels. From now on,
we will make appear explicitly the channel states as arguments of the instan-
taneous utility function which will be denoted by ui instead of ūi. The time
horizon of the game is finite, it is the interval ranging from T to T ′. However
the methodology can be extended to infinite horizon (with time average pay-
off) because the underlying processes are ergodic (the proposed channel model
is ergodic and the remaining energy dynamics is ergodic).

Definition 2 (SDG model of the power control problem)
The stochastic differential power control game is defined by the 5−tuple
G = (K, {Pi}i∈K, {Xi}i∈K, {Si}i∈K, {Ui}i∈K) where:

• K and Pi are defined by Def. 1;
• Xi is the state space of player i. The game state at time t is defined by

Xi(t) = [Ei(t), hi(t)]
T and follows the evolution law:

dX i(t) =

[
−pi(t)

1
2

(
µ− hi(t)

)
]
dt+

[
0
η

]
dWi(t); (5)
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• Ei(t) is the energy available for player i at time t;
• ∀i ∈ K, Wi(t) are mutually independent Wiener processes of dimension 2;
• µ ≥ 0 and 0 ≤ η < +∞ are constants which physical interpretation is given

in Prop. 1;
• Si is the set of feedback control policies for player i (see e.g. Basar and Olsder,

1999). A control policy will be denoted by pi(T → T ′) with pi(t) =
pi(t,X(t)), and T , T ′ two reals such that T ′ ≥ T ;

• the average utility function Ui is defined by:

Ui

(
p(T → T ′)

)
= E

[∫ T ′

T

ui(p(t), X(t))dt+ q(X(T ′))

]
, (6)

where p(T → T ′) =
(
p1(T → T ′), p2(T → T ′), ..., pK(T → T ′)

)
is the con-

trol strategy profile, X(t) = [X1(t), X2(t), ...XK(t)]T is the state profile,
q(X(T ′)) is the utility at the final state, and ui is the instantaneous utility.

The motivations for selecting the proposed dynamics for the state Xi are
as follows. The term dEi(t) = −pi(t)dt means that the variation of energy
during dt is proportional to the consumed power for the transmission. Indeed,
the proposed model accounts for a cost when transmitting. This is fully rel-
evant for transmitters having a finite amount of energy at disposal like cell
phones, unplugged laptops, small base stations which have to be autonomous
energetically speaking, etc. Such terminals have a battery with a finite amount
of energy over a certain period of time and need to be recharged when empty.
Our model holds over a horizon which lies strictly between two recharging
instants. Over such a horizon, the available energy is a non-increasing func-
tion of the time. Although the assumed evolution law can be used for both
fast and slow fading, in practice, when implementing a discrete-time version
of the control policy, the energy decrease from sample to sample is stronger
in the second case. Taking into account the energy of the battery in the game
model changes the outcome of the game. For instance, if the battery of a
transmitter is empty, the optimal power level has to be zero and cannot be
the power levels recommended by the static game approach such as those given
by Goodman and Mandayam (2000) or Saraydar et al (2002).

As far as time horizons are concerned, T and T ′ can be chosen arbitrarily
provided that T ′ ≥ T . Of course, the statistics of the evolution law are required
to be stationary on this interval. In particular, µ and η have to be fixed.
As for the order of horizon measured in second, it depends on the targeted
application. Note that, in practice, if those parameters need to be known and
updated, appropriate estimation schemes (with well-chosen time windows) are
implemented. Let us consider two cases, fast and slow power control. For fast
power control (the statistics are given by the path loss which is fixed), if the
evolution approximates a discrete-time power control problem for which the
(fast fading) channel is i.i.d. from block to block (in this case, η is large), T ′−T
is of the order of the second (a packet duration is typically 1 ms in cellular
systems). In practice, most often, power levels are updated from block to block
(meaning that typical updating frequency ranges from 100 Hz to a few kHz).
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As shown by Foschini and Miljanic (1993), deriving continuous-time power
control policies are still useful since it is possible to build practical discrete-
time algorithms from them. Additionally, when one studies the convergence
of these discrete time algorithms, often, it amounts to studying continuous-
time dynamics. For slow power control, if the evolution law represents the
variation of the pathloss/shadowing/slow fading (as assumed by Olama et al
(2006) and related works), the time horizon is much larger, typically of the
order of a minute or more (this depends on the mobile velocity of course). For
both fast and slow power control, the number of samples to approximate the
integrals can be of the same order since the updating frequencies are different.

Although being simple, the dynamics for the channel gain hi(t) capture
several typical effects in wireless communications. Before commenting on these
effects, let us state a property of the random process hi(t).

Proposition 1 (Channel dynamics property)
Let hi(t) = (xi(t), yi(t)) be governed by the dynamics defined in the SDG G,
then we have that:

lim
t→+∞

E[hi(t)] = µ,

lim
t→+∞

E[|hi(t)|
2]− E[|hi(t)|]

2 = 2η2.
(7)

The stationary probability density functions mx : R → P(R), my : R → P(R)
of the two components xi, yi of hi are:





mx(xi) =
1

η
√
2π

e
− (xi−µx)2

2η2 ,

my(yi) =
1

η
√
2π

e
− (yi−µy)2

2η2 .
(8)

The proof of this result is simple and provided in Appendix A. This shows that
the proposed dynamics allow one to model Rician channels namely, channels
with zero-mean gains; this is possible by tuning |µ| ≥ 0 which represents

the Rice component. Also, by choosing the variance 2η2 in an appropriate
manner, one can account for the fading effects. As a relevant comment, note
that the assumed channel dynamics can also be seen as a limiting case of the
important Gauss-Markov discrete-time model used to model time correlation
for the channel gains (Agarwal and Honig, 2012). To conclude on the choice
of these dynamics, we will see in Sec. 4 that they also possess an interesting
property for the mean-field dynamics under investigation.

At this point, we can define a Nash equilibrium of the SDG G and state
our existence result.

Definition 3 (Nash equilibrium of G)
A control strategy profile p∗(t,X(t)) = (p∗1(t,X(t)), . . . , p∗K(t,X(t)) is a feed-
back Nash equilibrium of the SDG if and only if ∀i ∈ K, p∗i is a solution of the
control problem

sup
pi(T→T ′)

E

[∫ T ′

T

ui

(
pi(t,X(t)), p∗−i

(t,X(t)), X(t)

)
dt+ q(X(T ′))

]
, (9)
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subject to

dX(t) =

[
−[pi(t), p

∗
−i
(t)]T

1
2

(
1l⊗ µ− h(t)

)
]
dt+

[
0
η

]
dW(t), (10)

where 1l = (1, 1, ..., 1) ∈ R
K , h(t) = [h1(t), h2(t), ...hK(t)]T, ⊗ stands for the

Kronecker product, and W(t) = [W1(t),W2(t), ...,WK(t)]T.

Regarding to the existence of a Nash equilibrium, one can state the follow-
ing proposition (the function f is defined by Def. 1).

Proposition 2 (Existence of a Nash equilibrium in G)
A sufficient condition for the existence of a Nash Equilibrium in G is that for

all (θ0, γ0) such that f ′(γ0)γ0 − f(γ0) = θ0γ
2
0 , we have that 2θ0 − f ′′(γ0) 6= 0.

For the proof of this result and for clarifying some points in the sequel, we will
use the (auxiliary) Bellman function, which is defined by:

vi(T,X(T )) = sup
pi(T→T ′)

E

[∫ T ′

T

ui(p(t), X(t))dt+ q(X(T ′))

]
. (11)

Proof According to Bressan (2010), a sufficient condition for the existence of
a Nash equilibrium for the SDG is the existence of a solution to the Hamilton-
Jacobi-Bellman-Fleming (Fleming and Soner, 1993) equation for each trans-
mitter

0 = sup
pi(T→T ′)

[
ui(X(t), p(t,X(t))) − pi(t,X(t))

∂vi(t,X(t))

∂Ei

]

+
1

2
〈µ− hi(t),∇h

i
vi(t,X(t))〉R2 +

∂vi(t,X(t))

∂t
+

η2

2
∆h

i
vi(t,X(t)).

(12)

There exists a solution if the function

H

(
X(t), p−i

(t,X(t)),
∂vi(t,X(t))

∂Ei

)
=

sup
pi(T→T ′)

[
ui(X(t), p(t,X(t)))− pi(t,X(t))

∂vi(t,X(t))

∂Ei

] (13)

is smooth (see Evans (2010) for more details). And with a similar reasoning
as Mériaux et al (2011a), we can show that finding optimal power control

p∗(T → T ′) = (p∗1(T → T ′), . . . , p∗n(T → T ′)) (14)

such that ∀i ∈ K, p∗i (T → T ′) ∈

arg max
pi(T→T ′)

[
ui

(
X(t), pi(t,X(t)), p∗−i

(t,X(t))

)
− pi(t,X(t))

∂vi(t,X(t))

∂Ei

]

(15)
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amounts to solving ∀i ∈ K, ∀t ∈ [T, T ′]

f ′(γi(t))γi(t)− f(γi(t)) =
γi(t)

2

R

∂vi(t,X(t))

∂Ei

(
σ2 +

∑n
j 6=i |hj(t)|

2p∗j (t)

|hi(t)|
2

)2

.

(16)

Note that we consider that ∂vi(t,X(t))
∂Ei

≥ 0, otherwise the optimal power
p∗i (t) → ∞. The existence of a non-zero solution depends on the term

θi =
1

R

∂vi(t,X(t))

∂Ei

(
σ2 +

∑n
j 6=i |hj(t)|

2p∗j (t)

|hi(t)|
2

)2

. (17)

It can be checked that there exists a threshold θmax such that if θi < θmax,
there exists a unique global maximizer γ∗ different from 0 and if θi ≥ θmax, 0
is the global maximizer.
We call for the implicit function theorem to state smoothness of

H

(
X(t), p−i

(t,X(t)), ∂vi(t,X(t))
∂Ei

)
, we define

g : [0, θmax[×R
+ → R

(θ, γ) → f ′(γ)γ − f(γ)− θγ2.
(18)

g is C∞, then if g(θ0, γ0) = 0, there exists ϕ : R → R such that γ0 = ϕ(θ0).
ϕ is C∞ and

∂ϕ

∂θ
(θ0) = −

∂g(θ0,γ0)
∂θ

∂g(θ0,γ0)
∂γ

. (19)

In our case, it writes
∂ϕ

∂θ
(θ0) =

γ0
2θ0 − f ′′(γ0)

. (20)

If 2θ0 − f ′′(γ0) 6= 0, then smoothness is ensured. �

Remarkably, the proposed sufficient condition holds for all particular choices
of efficiency function made in the literature. In particular, it holds for the
information-theoretic choice of Belmega and Lasaulce (2011). Indeed, if f(x) =
e−

a
x , a ≥ 0 we have that:

{
e
− a

γ0 ( a
γ0

− 1) = θ0γ
2
0 ,

2θ0 − (a
2

γ4
0
− 2a

γ3
0
)e−

a
γ0 6= 0,

(21)

which gives

2θ0 −

(
a

γ0
− 2

)
aθ0

a− γ0
6= 0. (22)

While Nash equilibrium uniqueness is an attractive property of the static
game Ḡ, this property is not easy to be verified for the SDG G. Rather, this
type of games has generally a large number of equilibria. Concerning the ex-
plicit determination of Nash equilibrium power control policies, it has to be
mentioned that this task is also not easy a priori. Precisely, as written in
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(12), the determination of a Nash equilibrium requires to solve a system of K
Hamilton-Jacobi-Bellman-Fleming equations, coupled by the state X(t). In-
terestingly, there are two limiting cases of G for which both uniqueness and
existence issues are much easier. The first special case is when there is only
one player (note that the corresponding optimization problem has not been
studied in the literature). The second case is when the number of players is
large, making the mean-field game analysis fully relevant. These two cases are
the purpose of the next section.

4 Two relevant special cases of G: K = 1 and K → +∞

4.1 The single-player case (K = 1)

One of the interests in analyzing the single-user case is to separate the effects
due to the long-term energy constraint from those due to interaction between
players (two effects can incite the transmitter to be off, namely a bad channel
state, and high interference level). Indeed, in the single-player case only the
former effects appear. Below, it is proven through simple equations that the
transmitter is not always on. The fraction of time during which the transmitter
has to be off is approximated, which is of practical interest. When moving to
the case of several players, players can also have an interest in not transmitting
(as observed by Mériaux et al (2011a)), making appropriate time-sharing poli-
cies natural equilibria. Summing up, both reducing the interference between
the transmitters and long-term energy constraint can incite a transmitter to
be off.

In this section, we therefore study the special case of the game G in which
there is only one player. In this context, there is obviously no interaction
between players and the main interest of this case is to show the influence of
the long-term energy constraint. From the preceding section, it can be seen
that determining an optimal control policy amounts to solving the following
equation in γ1(t):

f ′(γ1(t))γ1(t)− f(γ1(t)) =
γ1(t)

2

R

∂v1(t,X1(t))

∂E1

σ4

|h1(t)|
4
. (23)

By denoting γ∗
1 (t) the largest solution of the above equation, an optimal control

policy follows (see (2)):

p∗1(t) =
σ2

|h1(t)|
2
γ∗
1 (t)), (24)

with γ∗
1 (t) ≥ 0. Interestingly, γ∗

1(t) = 0 can also occur at given time instants. In
particular, this depends on the channel quality |h1(t)|. If the latter is too low,
transmitting is not energy-efficient, leading to a vanishing transmit power.
With the same reasoning as Mériaux et al (2011a), the fraction of the time
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Fig. 2 Exact probability of the transmitter being off and lower bound of this probability

depending on
∂v1(t,X1(t))

∂E1
.

during which the transmitter is off can be assessed by using a simple lower
bound on the probability that γ∗

1(t) = 0:

Pr

[
max f ′′ ≤ 2

∂v1(t,X1(t))

∂E1

σ4

R|h1(t)|
4

]
≤ Pr[γ∗

1 (t) = 0]. (25)

Many Monte Carlo simulations have shown that this lower bound is reason-
ably tight, one of them is provided in figure 2. This result is of practical interest
since it allows one to quantify the impact of a long-term energy constraint on
power control policies, which is one of the goals of this paper.

4.2 The mean-field game analysis (K → +∞)

4.2.1 Convergence to the mean-field game

We have mentioned in the preceding sections that the SDG becomes more
and more difficult to analyze when the number of players increases. However,
our problem has a special structure which can be exploited and simplifies
the problem when K is large. Indeed, from a given player standpoint, what
matters in terms of utility is a weighted sum of the played actions. The relevant
quantity which affects the utility of player i is the following quantity:

Ii(t) =
1

K

∑

j∈K,j 6=i

pj(t)|hj(t)|
2. (26)
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The quantity Ii(t) is called the interference in communication networks. Here,
we have normalized this quantity. There are many justifications of practical
interest for this normalization (see e.g. Tulino and Verdú, 2004). For example,
it is fully justified in randomCDMA systems (Meshkati et al, 2006). If it can be
proven that if Ii(t) converges, then the game G converges to a mean-field game.
To justify the convergence here, the conventional weak law of large numbers
is not applicable since the random processes pj(t)|hj(t)|

2 are interdependent.
However, there still exist some conditions under which convergence is ensured.
One of them is the exchangeability or indistinguishability property which is
defined next.

Definition 4 (Exchangeability)
The states X1, X2, ..., XK are said to be exchangeable in law under the feed-
back strategies α if they generate a joint law which is invariant by permuting
the players indices , i.e.,

∀ K, L (X1, . . . , XK | α) = L
(
Xπ(1), . . . , Xπ(K) | α

)
, (27)

for any bijection π (one-to-one mapping) defined over {1, . . . ,K}.

To guarantee this property for the game under study we make the following
assumptions:

– each player only knows his individual state;
– each player implements an homogeneous admissible control:

pi(t) = α(t,X i(t)); (28)

– E

[∫ T ′

T

α(t,X i(t))
2 dt

]
< +∞.

As a consequence of the exchangeability property in G, the game now com-
prises generic players. From now on, we call s(t) = [E(t), h(t)]T the generic
individual state of a player. The state dynamics of a generic player is given by
the following stochastic differential equations (SDEs):

{
dE(t) = −α(t, s(t))dt,
dh(t) = 1

2

(
µ− h(t)

)
dt+ ηdW(t).

(29)

where µ, η are time-independent.
Before discussing the convergence of G to a mean-field game, we introduce

some notations to define the mean-field game concept properly. Let (Ω,P,F)
be a complete filtered probability space, on which a one-dimensional standard
Brownian motion W is defined with F = (Ft)t≥0, being its natural filtration
augmented by all the P−null sets (sets of measure-zero with the respect P.)
The filtration Ft will be combined with the one generated by the initial state
of the players. Note that at time t the trajectory generated by state dynamics
(29) is in Ft. The state given by the channel gains and the battery levels follows
a certain distribution which evolves over time: this distribution is called the
mean field.
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Proposition 3 (Convergence to the mean-field game)
If the states (X i(t))i,t and the admissible controls (α(t,X i(t)))i,t preserve the

indistinguishability property and the (X i(0))i are indistinguishable, then the

stochastic differential game converges to a mean-field game.

Proof

Ii(t) =
1

K

[ K∑

j=1

α(t,Xj(t))|hj(t)|
2 − α(t,X i(t))|hi(t)|

2

]
,

=

∫

s

|h|2α(t, s)MK
t (ds)−

α(t,X i(t))|hi(t)|
2

K
,

(30)

with

MK
t =

1

K

K∑

j=1

δsj(t), (31)

where δsj(t) is the Dirac measure concentrated at sj(t).

If the number of transmitters becomes very large (K → ∞), we can con-
sider that we have a continuum of transmitters. The convergence of the in-
terference term when K → ∞ needs to be proven. Using admissible control,
E[α(t,X i(t))|hi(t)|

2] < ∞, then

lim
K→∞

α(t,Xi(t))|hi(t)|
2

K
= 0. (32)

To prove Ii(t) converges weakly, it suffices to prove
∫
s
|h|2α(t, s)MK

t (ds) con-

verges weakly. A sufficient condition is the weak convergence of the process
MK

t . Since we have chosen the control law that preserves the indistinguishabil-
ity property, we can use the work by Tembine and Huang (2011) which states
that there exists a distribution mt such that

mt = lim
K→∞

MK
t . (33)

This distribution mt is the mean-field. In our case, the evolution of the state
of the transmitters does not depend on the index of the transmitters and each
each transmitter state law satisfies the system (29). Thus, the indistinguisha-
bility property holds. �

4.2.2 Solution to the mean-field response problem

We are now in position to define the solution concept of the SDE (29).

Definition 5 Let T, T ′ > 0 such that [T, T ′] is the horizon of the game.We say
that the state distribution mt(s) is a weak solution to the state dynamics (29)
if mt is integrable over [T, T

′] and for any infinitely continuously differentiable
function φ over (T, T ′)× R

3 with compact support (test function), one has

EmT
[φT (.)] +

∫ T ′

T

Emt

[
∂tφt(.)− 〈∇sφt, D

∗(t, s)〉R2 +
η2

2
∆sφt

]
= 0, (34)
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where Emt
is the expectation with the respect to mt and D∗(t, s) is the drift

vector [−α(t, s), 1
2 (µ− h(t))]T.

Assuming that D∗ is sufficiently regular in time t and in state s, we examine
the existence of a solution s(.) which is F -adapted,

E

[
sup

t∈[T,T ′]

|s(t)|2

]
< +∞, (35)

and s() has continuous paths.
A consequence of Itô’s formula (see e.g. Karatzas and Shreve, 1991) states

that the law of the SDE starting from distribution mT is a weak solution
of the partial differential equation (29). We deduce, from the Definition 5,
the equation satisfied by the distribution of the states, i.e., Fokker-Planck-
Kolmogorov forward equation is given by:

∂mt

∂t
−

∂

∂E
(mtα) + divh(mt

1

2
(µ− h))−

η2

2
∆hmt = 0. (36)

With the new parameters of the game defined as:

Î(t,mt) =

∫

s

|h|2α(t, s)mt(ds), (37)

γ̂(s(t),mt) =
p(t)|h(t)|2

σ2 + Î(t,mt)
, (38)

û(t) =
Rf(γ̂(s(t),mt))

p(t)
=: r̂(s(t), p(t),mt), (39)

we can formulate the mean-field response problem in which each generic user
best-responds to the mean-field:

v̂T = sup
p(T→T ′)

E

[
q(s(T ′)) +

∫ T ′

T

r̂(s(t), p(t),m∗
t )dt

]
, (40)

where m∗
t is the mean-field optimal trajectory and mT is assumed to be given.

A solution of the mean-field response problem is a solution of
{

∂v̂t
∂t

+ H̃(s(t), ∂v̂t
∂E

,mt) +
1
2 〈µ− h,∇hv̂t〉R2 + η2

2 ∆hv̂t = 0,
∂mt

∂t
+ ∂

∂E
(mt

∂
∂u′

H̃(s(t), ∂v̂t
∂E

,mt)) + divh(mt
1
2 (µ− h)) = η2

2 ∆hmt,
(41)

with v̂T ′ = q(s(T ′)), mT known and

H̃(s, u′,m) = sup
p
{r̂(s, p,m)− p.u′}. (42)

As for the SDG case, the first equation is a Hamilton-Jacobi-Bellman-Fleming
equation. But it is now coupled with a Fokker-Planck-Kolmogorov equation.
The former one is a backward equation whereas the latter one is a forward
equation. The other main difference between the SDG and the MFG is that
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in the former, each transmitter needs full knowledge of the channel states and
the transmit powers of the other players to compute the outcome of the game,
whereas in the latter only the knowledge of individual state and the mean-field
is required to compute the outcome. In our model, although this mean-field
cannot be directly known by the transmitters or the common receiver, it ag-
gregates in the interference term which can be known by the receiver. Conse-
quently, once the game is solved, given the interference at the receiver (which
can be broadcast to every transmitters), its channel state and its battery state,
each transmitter knows the power value it should use. The solution provides
every transmitter a function of interference, channel state and battery state
which output is the stable power control policy.

4.2.3 Uniqueness of the solution

Interestingly, a sufficient condition can be given for the solution of the mean-
field response problem to be unique. First, we recall the definition of positive-
ness for an operator.

Definition 6 (Positiveness of an operator)
We say that the operator O : E → E is positive (denoted by O ≻ 0) if

∀x 6= 0E , 〈x,Ox〉E > 0,

where 0E is the neutral element of E .

Proposition 4 (Uniqueness of the mean-field response problem solu-
tion) A sufficient condition for the uniqueness of the solution to the mean-field

response problem is for all triplet (s, u′,m) ∈ R
3 × R× P(R3),

−
1

m

∂

∂m
H̃(s, u′,m) ≻ 0,

∂2

∂u′2 H̃(s, u′,m) > 0,

∂2

∂m∂u′ H̃(s, u′,m)−
1

2

( ∂2

∂m∂u′
H̃(s, u′,m))2

∂2

∂u′2 H̃(s, u′,m)
≻ 0.

(43)

The proof of this proposition is given in Appendix B.

5 Conclusion

This paper provides a stochastic differential game formulation of the energy-
efficient power control problem initially introduced in Goodman and Mandayam
(2000). This formulation allows one to better optimize the global efficiency of
the network, account for long-term energy constraints, and take into account
propagation effects such as time correlation for the channel gains. The prob-
lem is that this model becomes intractable when the number of transmitters
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becomes large. Instead of seeing large networks as a curse, they can be seen as
a blessing since under the large system assumption, the game can be approx-
imated by a mean-field game. Under the assumption of individual state infor-
mation, the idea is precisely to exploit the large number of players to simplify
the analysis. The authors believe the present paper provides several interesting
results to go into this direction but must admit that the numerical analysis
and the design aspect still require a lot of efforts to make this approach more
practical (in the same way as random matrix theory was initially introduced
in the wireless literature by Tse and Hanly (1999) and shown to be of prac-
tical interest later on by e.g., Dumont et al (2010)). Nonetheless, this paper
provides several interesting results on the mean-field game approach. Under
the exchangeability assumption, the stochastic differential game is shown to
converge to a mean-field game as the number of players increases. This new
game simplifies and even makes possible the equilibrium analysis since the
equilibrium derivation only requires the knowledge of the individual state and
the mean-field to solve a system of two equations. To be more precise, each
transmitter needs to know its channel state, its battery state and the instanta-
neous interference it undergoes. For this, the receiver only needs to feed back
the instantaneous interference. In the mean-field model, this instantaneous in-
terference is the same for all the transmitters. Hence, the required signal is
a broadcast to all the transmitters. Remarkably, this signal is fully scalable
since, in theory (up to quantization effects), the amount of signalling does
not depend of the number of transmitters. This framework allows us to derive
simple sufficient conditions for the existence and uniqueness of an equilibrium
power control policy.

A Proof of Proposition 1

Both results can be proven by using Ito’s formula (see e.g. Karatzas and Shreve, 1991). For
the mean, from (5), one has

dE[hi(t)] =
1

2
(µ − E[hi(t)])dt, (44)

then E[hi(t)] = µ(1 − e−
t
2 ) + hi(0)e

− t
2 . The limit when t goes to +∞ writes

lim
t→+∞

E[hi] = µ. (45)

For the variance, assume that for the two components xi and yi of hi:

dxi(t) = gx(t)dt+ ηdWx,

dyi(t) = gy(t)dt+ ηdWy,
(46)

with Wx and Wy two independent Wiener processes of dimension 1. Then

dxi(t)
2 = (2xi(t)gx(t) + η2)dt+ 2xi(t)ηdWx, (47)

and

dE[xi(t)
2] = E[(2xi(t)gx(t) + η2)]dt. (48)
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If gx(t) = 0, E[xi(t)2] = xi(0)2 + η2t and limt→∞ E[xi(t)2] = ∞. That is the reason why a
deterministic term is needed in (5). With gx(t) =

1
2
(µx − xi(t)), one has

dE[xi(t)
2] = E[2xi(t)

1

2
(µx − xi(t)) + η2]dt, (49)

then
dE[xi(t)2]

dt
= −E[xi(t)

2] + µxE[xi(t)] + η2. (50)

The solution of this differential equation has the form

E[xi(t)
2] =

(

xi(0)
2 +

∫ t

0

(

µxE[xi(t
′)] + η2

)

et
′

dt′
)

e−t,

=

[

(

µ2
x + η2

)

et
′

+ 2µx

(

xi(0) − µx

)

e
t′

2

]t

0

e−t,

=
(

µ2
x + η2

)

(1 − e−t) + 2µx

(

xi(0) − µx

)

(e−
t
2 − e−t),

(51)

thus
lim

t→+∞
E[xi(t)

2] = µ2
x + η2. (52)

The analogous is true for yi. Hence we have

lim
t→+∞

E[|hi(t)|
2] = |µ|2 + 2η2, (53)

and finally
lim

t→+∞
E[|hi(t)|

2]− E[|hi(t)|]
2 = 2η2. (54)

Regarding to the probability density functions, applying the Kolmogorov forward equa-
tion to the state hi with the dynamics given in (5), one has for the component xi

∂mx(xi, t)

∂t
=−

∂

∂xi

[

mx(xi, t)
1

2
(µx − xi)

]

+
η2

2

∂2mx(xi, t)

∂x2
i

,

=
1

2
mx(xi, t) −

1

2
(µx − xi)

∂mx(xi, t)

∂xi

+
η2

2

∂2mx(xi, t)

∂x2
i

.

(55)

The stationary case gives

0 =
1

2
mx(xi)−

1

2
(µx − xi)

∂mx(xi)

∂xi

+
η2

2

∂2mx(xi)

∂x2
i

. (56)

One can check that m̂x(xi) =
1

η
√

2π
e
−

(xi−µx)2

2η2 is a solution of (56). This is the stationary

density of xi. The analogous can also be written for yi: m̂y(yi) =
1

η
√

2π
e
−

(yi−µy)2

2η2 . �

B Proof of Proposition 4

The proof follows the the same principle as in chapter Risk-sensitive mean-field games in
the notes Mean-field stochastic games by Tembine. Only the sketch of the proof is given
here. To prove the uniqueness of the solution, we suppose that there exists two solutions
(v1,t,m1,t), (v2,t,m2,t) of the above system. We want to find a sufficient condition under
which the quantity

∫

s
(v2,t(s)− v1,t(s))(m2,t(s)−m1,t(s))ds is monotone in time, which is

not possible.
{

m1,T (s) = m2,T (s),
v1,T ′ (s) = v2,T ′ (s),

(57)
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Compute the time derivative

St =
d

dt

(
∫

s

(v2,t(s)− v1,t(s))(m2,t(s)−m1,t(s))ds

)

,

=

∫

s

(
∂v2,t

∂t
(s) −

∂v1,t

∂t
(s))(m2,t(s)−m1,t(s))ds,

+

∫

s

(v2,t(s)− v1,t(s))(
∂m2,t

∂t
(s) −

∂m1,t

∂t
(s))ds.

(58)

To express the first term, the difference between the two HJBF equations is taken and
multiplied by m2,t −m1,t:

∫

s

(
∂v2,t

∂t
−

∂v1,t

∂t
)(m2,t −m1,t)ds =

∫

s

H̃(s(t),
∂v1,t

∂E
,m1,t)(m2,t −m1,t)ds−

∫

s

H̃(s(t),
∂v2,t

∂E
,m2,t)(m2,t −m1,t)ds

+

∫

s

η2

2

∂2v1,t

∂h2
(m2,t −m1,t)ds−

∫

s

η2

2

∂2v2,t

∂h2
(m2,t −m1,t)ds

+
1

2

∫

s

〈µ− h(t),∇hv1,t〉R2 (m2,t −m1,t)ds−
1

2

∫

s

〈µ− h(t),∇hv2,t〉R2 (m2,t −m1,t)ds.

(59)
For the second term, the difference between the two FPK equations is taken and multiplied
by v2,t − v1,t:

∫

s

(
∂m2,t

∂t
−

∂m1,t

∂t
)(v2,t − v1,t)ds =

−

∫

s

∂

∂E
(m2,t

∂

∂u′
H̃(s(t),

∂v2,t

∂E
,m2,t))(v2,t − v1,t)ds

+

∫

s

∂

∂E
(m1,t

∂

∂u′
H̃(s(t),

∂v1,t

∂E
,m1,t))(v2,t − v1,t)ds

+

∫

s

η2

2

∂2m2,t

∂h2
(v2,t − v1,t)ds−

∫

s

η2

2

∂2m1,t

∂h2
(v2,t − v1,t)ds

+
1

2

∫

s

divh(m2,t(µ− h(t)))(v2,t − v1,t)ds−
1

2

∫

s

divh(m1,t(µ− h(t)))(v2,t − v1,t)ds.

(60)
By integration by parts

∫

s

divs(k)φds = −

∫

s

k divs(φ)ds, (61)

then
∫

s

(
∂m2,t

∂t
−

∂m1,t

∂t
)(v2,t − v1,t)ds =

∫

s

(m2,t
∂

∂u′
H̃(s(t),

∂v2,t

∂E
,m2,t))(

∂v2,t

∂E
−

∂v1,t

∂E
)ds

−

∫

s

(m1,t
∂

∂u′
H̃(s(t),

∂v1,t

∂E
,m1,t))(

∂v2,t

∂E
−

∂v1,t

∂E
)ds

+

∫

s

η2

2

∂2m2,t

∂h2
(v2,t − v1,t)ds−

∫

s

η2

2

∂2m1,t

∂h2
(v2,t − v1,t)ds

+
1

2

∫

s

m2,t〈µ − h(t),∇h(v2,t − v1,t)〉R2ds−
1

2

∫

s

m1,t〈µ − h(t),∇h(v2,t − v1,t)〉R2ds.

(62)
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The full derivative writes

St =

∫

s

H̃(s(t),
∂v1,t

∂E
,m1,t)(m2,t −m1,t)ds−

∫

s

H̃(s(t),
∂v2,t

∂E
,m2,t)(m2,t −m1,t)ds

−

∫

s

m1,t
∂

∂u′
H̃(s(t),

∂v1,t

∂E
,m1,t)(

∂v2,t

∂E
−

∂v1,t

∂E
)ds

+

∫

s

m2,t
∂

∂u′
H̃(s(t),

∂v2,t

∂E
,m2,t)(

∂v2,t

∂E
−

∂v1,t

∂E
)ds.

(63)
We now introduce

mλ,t = (1 − λ)m1,t + λm2,t = m1,t + λ(m2,t −m1,t), (64)

and in the same way

vλ,t = (1 − λ)v1,t + λv2,t. (65)

We study the auxiliary integral

Cλ =

∫

s

H̃(s(t),
∂v1,t

∂E
,m1,t)(mλ,t −m1,t)ds−

∫

s

H̃(s(t),
∂vλ,t

∂E
,mλ,t)(mλ,t −m1,t)ds

−

∫

s

m1,t
∂

∂u′
H̃(s(t),

∂v1,t

∂E
,m1,t)(

∂vλ,t

∂E
−

∂v1,t

∂E
)ds

+

∫

s

mλ,t

∂

∂u′
H̃(s(t),

∂vλ,t

∂E
,mλ,t)(

∂vλ,t

∂E
−

∂v1,t

∂E
)ds,

(66)
which derivative is:

d

dλ

(

Cλ

λ

)

= −

∫

s

∂

∂m
H̃(s(t),

∂vλ,t

∂E
,mλ,t)(m2,t −m1,t)

2ds

+

∫

s

mλ,t

∂2

∂u′2
H̃(s(t),

∂vλ,t

∂E
,mλ,t)(

∂v2,t

∂E
−

∂v1,t

∂E
)2ds

+

∫

s

mλ,t

∂2

∂m∂u′
H̃(s(t),

∂vλ,t

∂E
,mλ,t)(m2,t −m1,t)(

∂v2,t

∂E
−

∂v1,t

∂E
)ds.

(67)

Note that ∂
∂m

H̃(.) and ∂2

∂m∂u′
H̃(.) are functional derivatives. They are defined such that

for all m′ ∈ P(R3)

〈
∂

∂m
H̃(s(t),

∂vλ,t

∂E
,mλ,t), m

′ −mλ,t〉P(R3) =

lim
t→0

H̃(s(t),
∂vλ,t

∂E
,mλ,t + t(m′ −mλ,t)) − H̃(s(t),

∂vλ,t

∂E
,mλ,t)

t
,

(68)

and

〈
∂2

∂m∂u′
H̃(s(t),

∂vλ,t

∂E
,mλ,t), m

′ −mλ,t〉P(R3) =

lim
t→0

∂H̃
∂u′

(s(t),
∂vλ,t

∂E
,mλ,t + t(m′ −mλ,t)) −

∂H̃
∂u′

(s(t),
∂vλ,t

∂E
,mλ,t)

t
.

(69)

A sufficient condition for the uniqueness of the solution to the mean-field response problem
is the monotonicity of the operator associated to

(

A11 A12

A21 a22

)
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with

A11 =−
1

m

∂

∂m
H̃,

A12 =A21 =
1

2

∂2

∂m∂u′
H̃,

a22 =
∂2

∂u′2
H̃.

(70)

This is true if
A11 ≻ 0, a22 > 0,

A12 −
A2

12

a22
≻ 0.

(71)

�
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