Skip to main content
Log in

A Mean Field Capital Accumulation Game with HARA Utility

  • Published:
Dynamic Games and Applications Aims and scope Submit manuscript

Abstract

This paper introduces a mean field modeling framework for consumption-accumulation optimization. The production dynamics are generalized from stochastic growth theory by addressing the collective impact of a large population of similar agents on efficiency. This gives rise to a stochastic dynamic game with mean field coupling in the dynamics, where we adopt a hyperbolic absolute risk aversion (HARA) utility functional for the agents. A set of decentralized strategies is obtained by using the Nash certainty equivalence approach. To examine the long-term behavior we introduce a notion called the relaxed stationary mean field solution. The simple strategy computed from this solution is used to investigate the out-of-equilibrium behavior of the mean field system. Interesting nonlinear phenomena can emerge, including stable equilibria, limit cycles and chaos, which are related to the agent’s sensitivity to the mean field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Achdou Y, Capuzzo-Dolcetta I (2010) Mean field games: numerical methods. SIAM J Numer Anal 48(3):1136–1162

    Article  MathSciNet  MATH  Google Scholar 

  2. Adlakha S, Johari R, Weintraub G, Goldsmith A (2008) Oblivious equilibrium for large-scale stochastic games with unbounded costs. In: Proc 47th IEEE CDC, Cancun, Mexico, pp 5531–5538

    Google Scholar 

  3. Amir R (1996) Continuous stochastic games of capital accumulation with convex transitions. Games Econ Behav 15:111–131

    Article  MathSciNet  MATH  Google Scholar 

  4. Andersson D, Djehiche B (2011) A maximum principle for SDEs of mean-field type. Appl Math Optim 63(3):341–356

    Article  MathSciNet  MATH  Google Scholar 

  5. Arthur WB (1999) Complexity and the economy. Science 284:107–109

    Article  Google Scholar 

  6. Askenazy P, Le Van C (1999) A model of optimal growth strategy. J Econ Theory 85:24–51

    Article  MATH  Google Scholar 

  7. Balbus L, Nowak AS (2004) Construction of Nash equilibria in symmetric stochastic games of capital accumulation. Math Methods Oper Res 60:267–277

    Article  MathSciNet  MATH  Google Scholar 

  8. Bardi M (2012) Explicit solutions of some linear-quadratic mean field games. Netw Heterog Media 7(2):243–261

    Article  MathSciNet  MATH  Google Scholar 

  9. Barro RJ, Sala-I-Martin X (1992) Public finance in models of economic growth. Rev Econ Stud 59(4):645–661

    Article  MATH  Google Scholar 

  10. Benhabib J (ed) (1992) Cycles and chaos in economic equilibrium. Princeton University Press, Princeton

    Google Scholar 

  11. Bensoussan A, Frehse J, Yam P (2012) Overview on mean field games and mean field type control theory. Preprint

  12. Bensoussan A, Sung KCJ, Yam SCP, Yung SP (2011) Linear-quadratic mean-field games. Preprint

  13. Brock WA, Mirman LJ (1972) Optimal economic growth and uncertainty: the discounted case. J Econ Theory 4:479–513

    Article  MathSciNet  Google Scholar 

  14. Buckdahn R, Cardaliaguet P, Quincampoix M (2011) Some recent aspects of differential game theory. Dyn Games Appl 1(1):74–114

    Article  MathSciNet  MATH  Google Scholar 

  15. Cardaliaguet P (2012) Notes on mean field games

    Google Scholar 

  16. Carmona R, Delarue F (2012) A probabilistic analysis of mean field games. Preprint

  17. Cass D (1965) Optimum growth in an aggregative model of capital accumulation. Rev Econ Stud 32(3):233–240

    Article  Google Scholar 

  18. Chow YS, Teicher H (1997) Probability theory: independence, interchangeability, martingales, 3rd edn. Springer, New York

    Book  MATH  Google Scholar 

  19. Day RH (1982) Irregular growth cycles. Am Econ Rev 72(3):406–414

    Google Scholar 

  20. Dockner EJ, Nishimura K (2005) Capital accumulation games with a non-concave production function. J Econ Behav Organ 57:408–420

    Article  Google Scholar 

  21. Duffie D, Fleming W, Soner HM, Zariphopoulou T (1997) Hedging in incomplete markets with HARA utility. J Econ Dyn Control 21:753–782

    Article  MathSciNet  MATH  Google Scholar 

  22. Gomes DA, Mohr J, Souza RR (2010) Discrete time, finite state space mean field games. J Math Pures Appl 93:308–328

    Article  MathSciNet  MATH  Google Scholar 

  23. Gast N, Gaujal B, Le Boudec J-Y (2012) Mean field for Markov decision processes: from discrete to continuous optimization. IEEE Trans Autom Control 57(9):2266–2280

    Article  Google Scholar 

  24. Guéant O, Lasry J-M, Lions P-L (2011) Mean field games and applications. In: Carmona AR et al. (eds) Paris-Princeton lectures on mathematical finance 2010. Springer, Berlin, pp 205–266

    Chapter  Google Scholar 

  25. Hart S (1973) Values of mixed games. Int J Game Theory 2:69–86

    Article  MATH  Google Scholar 

  26. Hernández-Lerma O, Lasserre JB (1996) Discrete-time Markov control processes: basic optimality criteria. Springer, New York

    Book  Google Scholar 

  27. Huang M (2010) Large-population LQG games involving a major player: the Nash certainty equivalence principle. SIAM J Control Optim 48(5):3318–3353

    Article  MATH  Google Scholar 

  28. Huang M, Caines PE, Malhamé RP (2003) Individual and mass behaviour in large population stochastic wireless power control problems: centralized and Nash equilibrium solutions. In: Proc 42nd IEEE CDC, Maui, HI, pp 98–103

    Google Scholar 

  29. Huang M, Caines PE, Malhamé RP (2007) Large-population cost-coupled LQG problems with nonuniform agents: individual-mass behavior and decentralized ε-Nash equilibria. IEEE Trans Autom Control 52(9):1560–1571

    Article  Google Scholar 

  30. Huang M, Caines PE, Malhamé RP (2012) Social optima in mean field LQG control: centralized and decentralized strategies. IEEE Trans Autom Control 57(7):1736–1751

    Article  Google Scholar 

  31. Huang M, Malhamé RP, Caines PE (2006) Large population stochastic dynamic games: closed-loop McKean–Vlasov systems and the Nash certainty equivalence principle. Commun Inf Syst 6(3):221–251

    MathSciNet  MATH  Google Scholar 

  32. Jovanovic B, Rosenthal RW (1988) Anonymous sequential games. J Math Econ 17:77–87

    Article  MathSciNet  MATH  Google Scholar 

  33. Kizilkale AC, Caines PE (2013) Mean field stochastic adaptive control. IEEE Trans Autom Control 58(4):905–920

    Article  MathSciNet  Google Scholar 

  34. Kolokoltsov VN, Li J, Yang W (2011) Mean field games and nonlinear Markov processes. Preprint

  35. Lambson VE (1984) Self-enforcing collusion in large dynamic markets. J Econ Theory 34:282–291

    Article  MathSciNet  MATH  Google Scholar 

  36. Lasry J-M, Lions P-L (2007) Mean field games. Jpn J Math 2(1):229–260

    Article  MathSciNet  MATH  Google Scholar 

  37. Levhari D, Srinivasan TN (1969) Optimal savings under uncertainty. Rev Econ Stud 36(2):153–163

    Article  Google Scholar 

  38. Li T, Zhang J-F (2008) Asymptotically optimal decentralized control for large population stochastic multiagent systems. IEEE Trans Autom Control 53(7):1643–1660

    Article  Google Scholar 

  39. Li TY, Yorke JA (1975) Period three implies chaos. Am Math Mon 82(10):985–992

    Article  MathSciNet  MATH  Google Scholar 

  40. Liu W-F, Turnovsky SJ (2005) Consumption externalities, production externalities, and long-run macroeconomic efficiency. J Public Econ 89:1097–1129

    Article  Google Scholar 

  41. Ma Z, Callaway D, Hiskens I (2013) Decentralized charging control for large populations of plug-in electric vehicles. IEEE Trans Control Syst Technol 21(1):67–78

    Article  Google Scholar 

  42. Mendelssohn R, Sobel MJ (1980) Capital accumulation and the optimization of renewable resource models. J Econ Theory 23:243–260

    Article  MATH  Google Scholar 

  43. Merton R (1969) Lifetime portfolio selection under uncertainty: the continuous time case. Rev Econ Stat 51(3):247–257

    Article  Google Scholar 

  44. Nguyen SL, Huang M (2012) Linear-quadratic-Gaussian mixed games with continuum-parameterized minor players. SIAM J Control Optim 50(5):2907–2937

    Article  MathSciNet  MATH  Google Scholar 

  45. Nourian M, Caines PE (2012) ε-Nash mean field game theory for nonlinear stochastic dynamical systems with mixed agents. In: Proc 51st IEEE CDC, Maui, HI, pp 2090–2095

    Google Scholar 

  46. Nourian M, Caines PE, Malhamé RP, Huang M (2012) Mean field control in leader-follower stochastic multi-agent systems: likelihood ratio based adaptation. IEEE Trans Autom Control 57(11):2801–2816

    Article  Google Scholar 

  47. Olson LJ, Roy S (2006) Theory of stochastic optimal economic growth. In: Dana R-A, Le Van C, Mitra T, Nishimura K (eds) Handbook on optimal growth I. Springer, Berlin, pp 297–335

    Chapter  Google Scholar 

  48. Olson LJ, Roy S (2000) Dynamic efficiency of conservation of renewable resources under uncertainty. J Econ Theory 95:186–214

    Article  MathSciNet  MATH  Google Scholar 

  49. Ramsey FP (1928) A mathematical theory of saving. Econ J 38(152):543–559

    Article  Google Scholar 

  50. Saari D (1995) Mathematical complexity of simple economics. Not Am Math Soc 42(2):222–230

    MathSciNet  MATH  Google Scholar 

  51. Solow RM (1956) A contribution to the theory of economic growth. Q J Econ 70(1):65–94

    Article  Google Scholar 

  52. Stokey NL, Lucas RE Jr., Prescott EC (1989) Recursive methods in economic dynamics. Harvard University Press, Cambridge

    MATH  Google Scholar 

  53. Tembine H, Le Boudec J-Y, El-Azouzi R, Altman E (2009) Mean field asymptotics of Markov decision evolutionary games and teams. In: Proc GameNets, Istanbul, Turkey, pp 140–150

    Google Scholar 

  54. Tembine H, Zhu Q, Basar T (2011) Risk-sensitive mean-field stochastic differential games. In: Proc 18th IFAC world congress, Milan, Italy

    Google Scholar 

  55. Wang B-C, Zhang J-F (2012) Distributed control of multi-agent systems with random parameters and a major agent. Automatica 48(9):2093–2106

    Article  MathSciNet  MATH  Google Scholar 

  56. Weintraub GY, Benkard CL, Van Roy B (2008) Markov perfect industry dynamics with many firms. Econometrica 76(6):1375–1411

    Article  MathSciNet  MATH  Google Scholar 

  57. Yin H, Mehta PG, Meyn SP, Shanbhag UV (2012) Synchronization of coupled oscillators is a game. IEEE Trans Autom Control 57(4):920–935

    Article  MathSciNet  Google Scholar 

  58. Yong J (2011) A linear-quadratic optimal control problem with mean-field stochastic differential equations. Preprint

Download references

Acknowledgements

This work was partially supported by Natural Sciences and Engineering Research Council (NSERC) of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minyi Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, M. A Mean Field Capital Accumulation Game with HARA Utility. Dyn Games Appl 3, 446–472 (2013). https://doi.org/10.1007/s13235-013-0092-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13235-013-0092-9

Keywords

Navigation