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STABILITY OF EVOLUTIONARY DYNAMICS ON
TIME SCALES

MARC HARPER AND DASHIELL FRYER

ABSTRACT. We combine incentive, adaptive, and time-scale dy-
namics to study multipopulation dynamics on the simplex equipped
with a large class of Riemmanian metrics, simultaneously general-
izing and extending many dynamics commonly studied in dynamic
game theory and evolutionary dynamics. Each population has its
own geometry, method of adaptation (incentive), and time-scale
(discrete, continuous, and others). Using an information-theoretic
measure of distance we give a widely-applicable Lyapunov result
for the dynamic. We include a wealth of examples leading up to
and beyond the main results.

1. INTRODUCTION

Evolutionary dynamics now includes the study of many discrete
and continuous dynamical systems such as the replicator , best re-
ply , projection , and logit dynamics , to name a few.
Modified population growth dynamics incorporating a scale-invariant
power law parameter, commonly used in generalized statistical physics
[33], have recently been applied to human populations and are
closely related to the dynamical systems described in . We explore
the unification of all these dynamics with the game-theoretically moti-
vated incentive dynamic introduced in [11], in discrete and continuous
forms using time-scale calculus [4], with Riemannian geometries on the
simplex, specified by a geometrically motivated functional parameter
called an escort that allows some dynamics to be realized in multi-
ple ways and by a more arbitrary Riemannian metric in general. More-
over, we show that the incentive dynamic and the replicator dynamic
are equivalent, through a mapping that yields insight into the stability
of the aforementioned dynamics, and explains clearly how to separate
the selection action from the underlying geometry, allowing for e.g.
best-reply projection dynamics. Ultimately we define the time-scale
escort incentive dynamic and time-scale metric dynamics (which in the
continuous case correspond to a special case of the adaptive dynamics
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of |18]), building up through a series of examples, and prove a general
stability theorem for a large class of discrete and continuous dynamics.
For general introductions to evolutionary dynamics see [20] 7] [19].

In this paper we show that the Kullback-Leibler information diver-
gence and natural generalizations serve as Lyapunov functions in a vari-
ety of contexts. The use of the KL-divergence and similar information-
theoretic quantities in evolutionary dynamics goes back at least to [5]
and is developed further in [34]. A geometrically-motivated general-
ization from information geometry [1] was introduced in [15]. To the
reader familiar with information geometry, this should come as lit-
tle surprise since the Shahshahani metric of evolutionary game theory
can be identified with the Fisher information metric, which is in some
sense a local variant of the KL-divergence. The projection dynamic
can similarly be described in terms of the Euclidean geometry [22] and
stability in terms of the Euclidean distance |25] which can be realized
as a generalized information geometry [15] through the introduction
of a functional parameter called an escort. We show in this work that
the geometry can simplify the stability theory of some evolutionary dy-
namics in addition to defining new dynamics, and is compatible with
the formulation of the incentive dynamic and the time scale calculus.
Finally, we introduce an information divergence for a general Riemann-
ian metric satisfying some mild assumptions, extending the adaptive
dynamics of [18] to discrete time scales. Together, these ingredients
yield a very general stability result.

2. INCENTIVE DYNAMICS

Let us first introduce the incentive dynamics of Fryer [11]. Moti-
vated by game-theoretic considerations, the incentive dynamics takes
the form

0 b= pla) = 3 i(a).

Table [1] lists incentive functions for many common dynamics. Fryer
shows in [11] that any game dynamic can be written as an incentive
dynamic and gives a stability theorem as follows. Define an incentive
stable state (ISS) to be a state Z such that in a neighborhood of & the
following inequality holds
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It is then shown that given an internal ISS, the Kullback-Liebler infor-
mation divergence is a local Lyapunov function for the incentive dy-
namic (Equation[l] The incentive ¢;(x) = z; f;(x) captures the known
result for the replicator dynamics [5] [19], with the definition of ISS
being exactly ESS: - f(x) > x - f(x). Moreover, a short proof shows
that for the best reply incentive, ISS is again ESS [12].

Dynamics Name Incentive
Replicator pi(x) = (fz(if) - J?(»’U))
Best Reply vi(r) = BRi(x) — x;
Lot PR ORI6)

. > exp(n~tf(x))

fil®) = o
Projection | p;(x) = [S(f (), 2)] JES(f(z),x)

0 else

S @) ifie S(f(a),)

FiGURE 1. Incentives for some common dynamics,
where BR;(z) is the best reply to state x, S(f(z),x)
is the set of all strategies in the support of x as well
as any collection of pure strategies in the complement
of the support that maximize the average. Note that
on the interior of the simplex the projection incentive is
just @i(z) = fi(z) —1/n3_; fj(x). For more examples
see Table 1 in [11].

2.1. The Incentive Dynamic is the Replicator Dynamic. Ob-
serve that we can transform any incentive dynamic into a replicator
dynamic on the interior of the simplex (the behavior of incentives
near the boundary of the simplex is another matter altogether and
we will not consider it here). We simply solve for g; in the equation
i(x) = z;f;(x) so that to every incentive p; we define an effective
fitness landscape @ = fi(x), which is well-defined at least on in-
terior trajectories and possibly on the boundary simplices, such as is
the case for forward-invariant dynamics. (Note that some incentives
take particular care on the boundary, such as the projection incentive
in [30].) The summation term » . ¢;(z) in equation (1)) is the mean of
the effective fitness landscape.
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The ISS condition for an incentive is the same as the ESS condition
for the effective fitness landscape, and this shows that the ISS stabil-
ity theorem is equivalent to the analogous theorem for ESS and the
replicator dynamic. This does not of course imply ESS for any fitness
landscape used in the definition of an incentive (such as a best reply
incentive using a landscape f). Typical fitness landscapes in evolution-
ary dynamics are linear and given by f(z) = Az where A is a game
matrix. In this formulation, one will encounter a much larger class
of landscapes. For the best reply dynamic, the effective landscape is
filz) = BR;(x)/x; — 1, and while it is clear that such a function may
not be well-defined on the boundary simplex, since the dynamic is
forward-invariant we will not concern ourselves at this time.

2.2. Example: qg-Replicator Incentive. From the preceeding sec-
tion it is tempting to suspect that the concepts of ISS and ESS are
equivalent, but this is not the case. Consider the g-replicator incentive
i(x) = zl f;(x) for a fitness landscape f. Further, assume that the
fitness function is of the form f(z) = Az where A is the rock-scissors-
paper matrix:

Several curves for various values of ¢ are plotted in Figure 2] For the
replicator incentive (¢ = 1) the trajectory converges to an interior ESS;
for other values of ¢, the trajectories may either converge or diverge.
This shows that an ESS for the fitness landscape need not be an ISS for
the incentive. Note also that whether a curve converges or not depends
on the initial point. While for ¢ = 1 the Lyapunov function is global,
this is not the case for other values of ¢q. See Figure [3| Figure [4] shows
that an ISS need not be an ESS, and Figure [6 shows that an ESS need
not be an ISS.

3. TIME SCALE INCENTIVE DYNAMICS

3.1. Time-Scale Definitions. To study dynamics at different time
scales, a key ingredient is the time scale derivative, also known as the
delta derivative. General references for time scale dynamics include [3],
[4]. For time scales T = hZ, the time scale derivative is given by:

flz+h) - f(x)
h )

7o =
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(A) Initial point: (1/10,1/10,8/10) (B) Initial point: (1/83,2/83,80/83)

FIGURE 2. Phase portraits for g-Replicator incentive for
the powers ¢ € {0.5,1,1.5,2,2.5,4} with colors blue,
green, red, cyan, magenta, and yellow, respectively. The
game matrix is the the RSP matrix with a=-1, b=-2. An
ESS need not be an ISS since some of these trajectories
converge and some do not, depending on the incentive.

which is better known as the difference quotient. For the time scale
T = R, the time scale derivative is the standard derivative. While there
are other common time scales, this paper restricts attention to R and
hZ for 0 < h <1 for the most part.

3.2. Time Scale Replicator Equation. Before we proceed, let us
consider an illustrative example. Define the time scale replicator equa-

tion as: -
s nl) - F@)
' f(@)
Note that ), 22 = 0. For h = 1, this is the discrete replicator dynamic,
where

A x(t+h)— ()

/
x5 = =, — X,
(] h K2
which can be easily seen to be equivalent to the usual discrete dynamic
f(x)

For the case h — 0, we have the following:
(i) - J@)
Z (@)
This equation is trajectory equivalent to the replicator equation (up to
a change in velocity and transformation of f(x) so that f(x) > 0 [19]
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Ficure 3. ISS: LHS - RHS. Stability need not be global
for an ISS. Note that for ¢ = 2.5, the quantity changes
sign depending on point. This is true for all ¢ > 1.

[7]). The definitions of the time-scale calculus can unify the description
of continuous and discrete dynamics in evolutionary dynamics, as well
as setting the stage for dynamics on other time scales, through the
delta derivative.

3.3. Time Scale Best Reply and Fictitious Play Dynamic. In
[11], a best reply dynamic is shown to result from the incentive ¢;(z) =
BR;(z) — z;, and the ISS condition is shown to reduce to the ESS
condition. Now consider the case of T = hZ for h € (0,1). This time
scale yields a discrete best reply that is algebraically equivalent to

z; = (1 — h)z; + hBR;(z).
Here we see that the time-scale appears as a weighting between the best

reply and the current state of the dynamic. In other words, h is the
proportion of the population that adopts the best reply. If h = 1, then
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FIGURE 4. Phase portraits for g-Replicator incentive for
the powers ¢ € {0.5,1,1.5,2,2.5,4} with colors blue,
green, red, cyan, magenta, and yellow, respectively. The
game matrix is the the RSP matrix with a=1, b=2. Ini-
tial point: (1/8,1/8,6/8). The standard replicator dy-
namic diverges for this landscape, so an ISS need not be
an ESS.

entire population switches to the best reply, and the dynamic cycles
through the corner points of the simplex for the landscape defined by
an RSP matrix as above.

The center of the simplex is not an equilibrium point for the time-
scale T = hZ. 'To see this, suppose the fitness landscape f has an
interior ESS at the barycenter (say for an RSP matrix). On the interior
of the simplex, the dynamic is stationary if and only if z;,; = z; for
some k, which implies that either h = 0 or x; € {0, 1} for all 4, which is
impossible for an interior ESS. However, if the time-step h is not fixed,
this may not be the case (see . On a variable time scale the dynamic
is (in vector form)

Tp+1 = (1 — hk).’lik + thR(l?k),

which is similar to the fictitious play dynamic in the case that the
time-scale weights decrease over time. Eventually such a time scale
has hp — 0, so the above discussion does not apply, and this dynamic
can converge.

3.4. Time Scale Lyapunov Function. Lyapunov stability is a frequently-
used technique in evolutionary dynamics. These techniques have been
ported to the time scale calculus [2] [8] [9]. To the reader familiar with
the traditional theory, the methods will be very familiar. A time scale
Lyapunov function is a positive definite function defined on the trajec-
tories of a dynamic with negative-semi-definite (negative-definite) time
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FIGURE 5. Best reply for h = 1/3 (blue) and a variable
time scale with hy = 1/(k + 1) (green). Only the latter
converges to the interior ESS.

scale derivative which then implies stability (asymptotic stability). The
interested reader should see [2] for a presentation that mirrors the tra-
ditional approach with the appropriate changes necessary to extend the
stability theory to arbitrary time scales. In particular, we will use The-
orems 5.1 and 5.4 in 2], which have two technical conditions that will
be familiar to the reader aware of the details of the continuous-time
Lyapunov stability theorems. Here we give the necessary time-scale
definitions and discuss the technical conditions; for more detail, see |2].
Define Ky (z) = {x € R" : ||z — Z|| < h}. A function ¢ : [0, h] — [0, 00)
belongs to class K if it is continuous and increasing, and if ¢(0) = 0.
A function v : K3, x T — R is called decrescent if there exists a func-
tion ¢ of class K and ty € T such that for all ¢t > ¢ty and x € K,
v(z,t) < ¢z — 2|). Under the same conditions, if there exists ¢ such
that v(x,t) > ¢(|x — 2|), v is called positive definite. We will take the
definition of time scale Lyapunov function to include both conditions
on the appropriate time scale; all such Lyapunov functions in this paper
satisfy both conditions.

We now define a time scale generalization of the incentive dynamics
and generalize the Lyapunov results of [11] and [15] to cover more
general time scale dynamics.

Theorem 1. For 0 < h < 1, D(x) = D(Z,z) is a “time-scale Lya-
punov function” for the time scale incentive dynamic iff & is an ISS.

This theorem is a special case of Theorem [3| and so the proof is de-
ferred. A direct proof for the replicator equation is an straightforward
exercise.
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4. ISS AND ESS

A natural question is: for which incentives, ¢(z), are the stability
concepts ISS and ESS equivalent? Since an interior ISS is unique and
asymptotically stable for the incentive dynamics and an ESS is unique
and asymptotically stable for many known special cases (e.g. the repli-
cator dynamic), either the concepts must coincide in these cases or only
one of the two criterion can hold.

Without loss of generality, we assume ) . ¢;(x) = 0 for every x € A.
The ESS condition x - f(x) < 2 - f(z) for all  in a neighborhood of
Z can be rewritten as & - [f(z) — (x - f(z))1] > 0, where 1 is a vector
of all ones. Thus at a pure ESS, the payoff positivity requirement,
vi(x)/x; > 0 & fi(x) > x - f(x), preserves not only the asymptotic
stability but also the exact basin of attraction as well. Furthermore,
the set U = {fi(x) > = - f(2)};u{fi(x) < x- f(z)} is open and
non-empty for a continuous fitness near a pure ESS. Thus weak payoff
positivity [34], where at least one above average fitness must have a
positive incentive growth rate, preserves the asymptotic stability of a
pure ESS, albeit for a smaller basin of attraction.

Samuelson and Zhang [28] introduced a class of games called aggre-
gate monotone, which trivially preserve ESS and the basin of attrac-
tion. However, they prove in the single population case all aggregate
monotone dynamics are dynamically equivalent to the replicator equa-
tion. In the multi-population case the dynamics for each population
is a positive function multiplied by the replicator equation. In either
case it does not lead to interesting further discussion.

Definition 1 (Aggregate Monotone). An incentive is aggregate mono-
tone if Vy,z € A,

y-f(x)>z-f(g;)@y.@>z_soix)

Attention may be restricted to single population games with mixed
ESS, as Selten [31] established that an ESS in an asymmetric gamd]
must be pure. This result assumes linear fitness which is more restric-
tive than necessary for the arguments above. However, the following
results do all assume linear fitness.

First introduced by Nachbar 23], the concept of payoff monotone
dynamics is a reasonable starting point for investigation.

IThe asymmetric condition includes all multi-population formulations.
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Definition 2 (Payoff Monotone). An incentive is payoff monotone if
Vi, j,

f@) > fila) & 2 5 D

Unfortunately, Friedman [10], via a verbal description, shows that
payoff monotone dynamics need not be asymptotically stable at an
internal ESS.

Fortunately, Cressman [6] shows that for smooth incentives the con-
dition of payoff positivity will preserve the asymptotic stability of an
ESS as long as the linearization is not trivial. His results are para-
phrased in this theorem for completeness.

Theorem 2. An interior ESS, Z, is asymptotically stable for any
smooth payoff positive dynamic which has a nontrivial linearization
about .

5. ESCORTS

The stability theorem for the incentive dynamic reduces the prob-
lem of finding a Lyapunov function to the problem of proving the ISS
condition valid for a candidate equilibrium. Consider the projection dy-
namic, with incentive p;(z) = fi(z) — %Z] fj(x). From [22] and [30],
we know that ||Z —z||? is a Lyapunov function if Z is ESS, so one would
hope that ISS reduces to ESS in this case as well. The ISS condition
(z/x)- f(x) > 1- f(x), however, is not obviously the same as the ESS
condition. If we assume a two-type linear fitness landscape

it is a straightforward derivation to show that the ISS condition leads
to

[(a —c)xy + (b — d)xs] (221 — 2122) > 0,
which along with the constraint that z; + o = 1 is the well-known
condition for the existence of an internal ESS (and more generally,
a Nash equilibrium). Similarly, we can give a family of examples that

includes the projection dynamic. Consider the escort dynamics defined
in [15], where ¢ is a positive non-decreasing function:

2 95(@) fi(=)
>0 )

(3) T = ¢i(x) (fz(if)
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For these dynamics, an incentive is given by the right-hand-side of
Equation [3| and the ISS condition is

Z Ti¢i(2) fi(2) < Z xi@(ﬂ?)fi(l')’
which only clearly reduces to ESS for the replicator dynamic (¢(z) =
x). Nevertheless, it was shown in [15] that an ESS, if it exists, is
asymptotically stable for these dynamics, so it is desirable to have a
generalization of Theorem [2 that captures this family as well.

To this end we introduce a functional parameter ¢ called an es-
cort and related quantities. An escort is a function ¢ that is non-
decreasing and strictly positive on (0,1]. A vector-valued function
o(z) = (¢1(x), ..., Pn(x)) is called an escort if each component is an es-
cort. We denote the normalized escort vector by 923, i.e. normalized such
that QAS(:):) is in the simplex. Generalized information divergences are
defined by generalizing the natural logarithm using an escort function.
See [15] and [26] for more details.

Definition 3 (Escort Logarithm). Deﬁne the escort logarithm

logy(w) ¢

The escort logarithm shares several propertles with the natural log-
arithm: it is negative and increasing on (0, 1] and concave on (0, 1] if
¢ is strictly increasing.

Definition 4 (Escort Divergence). Define the escort divergence

Do) = / log,, (u) — log, (4:) du.
i=1 v ¥i

Since the logarithms are increasing on (0, 1), this divergence satis-
fies the usual properties of an information divergence on the simplex:
D(z,y) > 0if x # y and D(x,z) = 0.

6. THE TIME SCALE ESCORT INCENTIVE DYNAMIC

Now we are able to define the time scale escort incentive dynamic
and give the main theorems.

Definition 5. Deﬁne the time scale escort incentive dynamic to be

= pi(w Z%OJ
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We also need a definition of ISS that incorporates the escort param-
eter.

Definition 6. Define & to be an escort ISS (or EISS) for an incentive
@ and an escort ¢ if for all x in some neighborhood of & the following

inequality holds:
2% WZ e W

Remark: This definition can be understood in terms inner products
of a Riemannian metric g;;(x) = d;;/¢:(x).

For one example of a choice of escorts leading to interesting dynam-
ics, consider the escort ¢(z) = Pfx. This introduces an intensity of
selection parameter that alters the velocities of the dynamic (but not
the stable point, if any). In fact, each type can have its own intensity
of selection, and its own geometry. A popular choice of escort in in-
formation geometry is ¢(x) = x?, which gives g-analogs of logarithms,
exponentials, and divergences [26]. See [15] for more examples. The
corresponding g-divergence is given by:

( .
Dir(z]ly) ifg=1
R A e
2—q m2 '
\11Tq ZZ |:_yz = qz_ yz q(yz — $Z)] if q>0,q 7£ 1,2

As in the case of the incentive dynamic, the continuous-time escort
incentive dynamic is a special case of the escort replicator dynamic.
Consider the escort exponential exp,, which is the functional inverse
of the escort logarithm. It has the following crucial property:

d
%exp(ﬁ T = ¢(exp¢ x)

Now let z; = expy, (v;—G) and consider the derivative #; = ¢(exp,, (vi—

G (t; — G) = ¢i(x)(9; — G). Then if we can solve the following two
auxillary equations we can also solve the escort incentive dynamic:

b — ei(z)
L il

Q

Q
/\A v

8

~—

Sy
C= S0

<.
M
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FIGURE 6. g-Escorts for various ¢, with replicator incen-
tive given by a linear fitness landscape with RSP game
matrix (a=1, b=2). Left: ¢ € {0.2,0.8,1.0,2.0} with col-
ors blue, green, red, and cyan respectively; Right: ¢ = 4.
The standard replicator equation diverges for ¢ = 1 but
this is not always the case for the g-escort.

This also shows how we can translate the escort incentive into the
escort replicator equation. Given the escort incentive

b= i@) = hi(0) 3 (),

define a fitness landscape

@i()
fi(z) =
¢i(x)
Then the escort incentive equation is an escort replicator equation, and
the ESS condition z - f(z) > x - f(x) is the EISS condition

Tipi() T ()
255w T2 ey

That an z is ESS iff the escort divergence is a Lyapunov function
was shown in [15] for the continuous escort replicator dynamic. What
remains to be shown now is the extension of this result to time scales
T = hZ for 0 < h < 1, and the relationship between the concepts of
escort ISS and ESS. Before doing so, consider the following examples.
In Figure [6] replicator incentives for RSP matrices are plotted with
various g¢-incentives. Notice that the equilibrium is not an ESS for
the fitness landscape f yet the dynamic converges to the center of the
simplex for some choices of the escort. In Figure [7] we have phase
plots for dynamics with the same landscape but with both g-replicator
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incentives and g-escorts. In this case the conditions for E-ISS and ESS
are the same, so all the dynamics converge. The KL-divergences are
not monotonically decreasing in all cases, but the corresponding escort-
divergences are in fact Lyapunov functions, as shown in Figure 8] The
dynamic in this case is given by:

(4) T =z fi(z) — W Zx]f](x)

J

Ficure 7. Plots of Equation 4| for various q. Left:
0.5,1.0,1.5,2.0 blue, green, red, cyan, magenta, repsec-
tively; Right: ¢ = 4.

0.18 3.0

25

0.12 2.0

0.06 1.0

05

1000 2000 3000 4000 5000 6000 7000 8000 - 1000 2000 3000 4000 5000 6000 7000 8000

Ficure 8. Plots of candidate Lyapunov functions for
g-escort and g-incentive. Left: KL-divergence for all dy-
namics; Right: g-divergences for the corresponding ¢ for
each dynamic. Colors correspond to the dynamics in

Figure [7]
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Now we state and prove the main theorem of this section.

Theorem 3. Let ¢ be an incentive function and let ¢ be an escort. If
& is an escort ISS then D(x) = D?(&,z) is a local time scale Lyapunov
function for the time scale escort incentive dynamics.

The proof follows easily from the established facts and the following
lemma.

Lemma 1.

Equality holds in the limit that h — 0, i.e. for T =R.

Proof. Since escort functions are nondecreasing and positive on (0, 1],
we have the following two facts:

bd_u< b—a
o O(u) = é(a)

b
/ logy(u) du < (b — a)log,(b)

Now we have
hD?(z Z/ log,,(u) du — Z [(:1:’1 log,, s — &;logy, x’i) — (ml log,, ¥; — ;log,, xl)]
< Z log¢ Z:v log,,. 2 — log,, 2 — log,, xi + &; log,,, @;

= Z (& — x;) (logy, «} — log,, x;)

¢iu

- Z (iv)

IN

Bringing h to the right hand side completes the lemma for A > 0.
Equality for h =0 (i.e. T = R) can be directly verified with differenti-
ation (and is given in [15]). O

To complete the proof of Theorem [3| we need only apply the lemma
to the respective dynamics, use the definition of EISS, and verify the
two technical conditions of the time scale Lyapunov theorem.
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Proof of theorem[3. Using the lemma and substituting the right-hand
side of equation [5] gives:

A Ti — T A
PO -2 Sy

> (wim -0 2 <x>)

= (z;i — @) (filz) = f(z)) =2 fz) — 2+ f(z)

where f is the effective landscape. If z is an EISS, then the right-hand
side is negative. U

Throughout this paper, it may appear that all the examples we have
given are for continuous dynamics. In fact, every phase plot in this
paper is for a discrete time-scale with A =~ 1/100 — 1/1000 unless
otherwise indicated, and in all previously known cases, the results have
coincided with the expectation for the continuous dynamics. Hence
all the examples in this paper illustrate the main theorem for these
particular time-scales.

Let us return to the example of the projection dynamic. Previously
we saw that the orthogonal projection dynamic was obtainable from the
incentive ¢;(z) = fi(z)—(1/n) 3, f;(z) and the escort ¢(z) = x on in-
terior trajectories, but the ISS condition did not appear to be the same
as ESS (though we were able to argue for two-player linear landscapes
that they are equivalent). With the generalized theorem, we can also
obtain the dynamic from the incentive ¢;(z) = fi(z) and ¢(z) = 1,
and now the EISS condition reduces immediately to ESS. Moreover,
the Lyapunov function given by the escort information divergence is,
remarkably, one-half the Euclidean distance: D(z) = (1/2)||# — z|[?,
capturing the known result up to a constant factor of one-half [25] [22].

From the these results it should be clear that if the incentive factors
as p;(r) = ¢i(x)g;(z) then the condition for EISS will be the con-
dition for ESS for the landscape g. So in particular if the function
g is payoff monotonic, these dynamics have similar interior dynamics
(though with different Lyapunov functions). If the incentive factorizes
as p;(z) = z;¢;(x;)gi(x), then the ESS criterion is the ISS criterion
for the incentive g. So while the theorem covers all combinations of
valid incentives and escorts, it is clear that careful choices may lead
to simplifications in the stability criterion. The projection dynamic
is somewhat special in that it can be described equivalently by mul-
tiple choices of escort and incentive. It is also clear that while there
exist known Lyapunov functions for some dynamics that are not the
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KL-divergence (or a generalization) such as the best reply dynamic, the
incentive dynamics approach yields a commonly-derived and motivated
Lyapunov function.

6.1. A Variation of the Replicator equation. We can also define
novel dynamics by combing escorts and incentives. Consider the fol-
lowing dynamic, using the replicator incentive p;(x) = z; f;(z) and the
escort ¢;(x) = 1: Equation (5] gives the dynamic as

& = ;i fi(v) — %f(l’)

In this case the EISS criterion is ), @z, fi(x) > >, z;x; fi(x), which is
the same for the dynamic obtained with o;(x) = z2f;(x) and ¢;(z;) =
x;. These two dynamics differ qualitatively, however, as we can see for
a constant fitness landscape f;(x) = 1 for all i. While both dynamics
have the barycenter of the simplex of rest points, the former is not
forward-invariant on the interior and has no other rest points, while
the latter has rest points on the boundary and the barycenters of the
boundary simplices. Moreover for an RSP matrix, while the replicator
equation converges to an interior ESS, the projection variant does not.
In general, this dynamic may not be forward invariant on the simplex
since while the sum ) . 2; = 0, the individual components can become
negative for certain states and fitness landscapes.

6.2. Best Reply Variants. Similarly, we can define a projection best-
reply dynamic using p-escorts. See Figure 9] Note that for p = 0.5,
the dynamic is not forward-invariant on the interior. Starting near
the barycenter yields “Shapley-like-triangles”. These can be extended
cycles that jump on and off the boundary if the best reply incentive is
combined with the projection incentive (cyan curves in Figure@. Using
just the projection escort (i.e. ¢ = 0) would not yield this behavior
(trajectories remain on the boundary once they reach it).

6.3. Incentive-Escort Dynamic is just the Incentive Dynamic;
Zero-Sum Incentives. We have seen that the incentive-escort dy-
namic can be rewritten as the escort dynamic; it can also be rewritten
as the incentive dynamic by simply taking the right-hand side as the
incentive. As we have seen, however, one may miss the stability of an in-
ternal equilibrium by trying to apply the KL-divergence as a Lyapunov
function since it is not necessarily monotonic. So while the decompo-
sition of an incentive dynamic into an incentive-escort dynamic does



18 MARC HARPER AND DASHIELL FRYER

FiGURE 9. Left: Best reply incentives with ¢ = 0.6,1,3
and combined with projection incentive at initial point
(1/10,1/10,8/10) blue, green, red, respectively; Right:
Same with initial point (1/3.1,1/3.1,1.1/3.1).

not yield a larger class of dynamics, it does yield stability theorems for
more members of the class.

Zero-sum incentives, when » . ¢;(z) = 0 are informative here. First,
notice that in this case the escort-incentive dynamic reduces to just
the incentive dynamic, producing the exact same trajectory for any
escort. One such example is the replicator incentive for a RSP matrix
with @ =1 = b. On the other hand, any incentive can be made into a
zero sum incentive by subtracting y (3, ¢i(x)) from the incentive for
any value of y in the simplex, and the choice of y can vary at each
point in the simplex. In other words, it requires a choice of escort, or
more generally, a choice of Riemannian metric. In this case, there is a
preferred choice of incentive, and so a natural candidate for a Lyapunov
function.

7. TIME-SCALE LYAPUNOV FUNCTIONS FOR ADAPTIVE DYNAMICS

As suggested in the last section, we now consider the adaptive dy-
namics for a Riemannian metric G' on the simplex, defined in [18]. Let
g=G " and C = G — (¢7)'g¢”. Then the time-scale adaptive
dynamics for the metric G and a fitness landscape f is 22 = Zj Cijf;-
The adaptive dynamics includes the escort dynamics as a special case.
A geodesic approximation is shown to be a local Lyapunov function
in [18] for the continuous dynamic; to obtain a time-scale Lyapunov
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function we use a global divergence, which we now give define. Let
De(a) = Dialls) =3 [ (o5 ), (v) = (log G),, (@)
i,j YT

where
(056, (0) = [ Gustw) v

Theorem 4. Let G be a Riemannian metric and assume that the re-
ciprocal of each component G;; is an escort function. Then

(1) Dg is an information divergence; that is Dg(2) = 0 and Dg(z) >
0 forx #

(2) D is a local time scale Lyapunov function for the adaptive dy-
namics if T is an ESS.

The proof is almost identical to the proof of theorem (3, and so is
omitted. Note that Dg(x) < (z — 2)TG(x)(z — 2). One can now
play the same game as before, identifying the incentive in terms of the
fitness landscape, and forming best reply, logit, projection, or any other
incentive dynamics with respect to particular Riemannian geometries.
Indeed, we have that ¢;(z) = _; G;' f;(x) and the adaptive dynamics
can be written as

(5) w2 = gia) - G ST Y

Call this the metric-incentive dynamic. As before, we can identify
the idea of an ESS with that of a G-ISS, i.e. a state = is a G-ISS if
for all x in a neighborhood of Z, the inequality ¢(z) - G(z)(z — ) > 0.
Then we these definitions, we can restate Theorem 4] (2) as follows.

Theorem 5. Let G be a Riemannian metric and assume that the re-
ciprocal of each component G;; is an escort function. Then

D¢ is a local time scale Lyapunov function for the metric-incentive
dynamaics if © 1s a G-158.

8. MULTIPLE POPULATIONS

Following equation [3, we can formulate a multiple population dy-
namic in which each population operates on its own incentive, time-

scale, and geometry. Let G(z) = Z(C(JT be the vector of coefficients

in equation[5] Then the multiple populatlon time-scale metric incentive
dynamic is (populations indexed by «):
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(6) 22 = pia(ta) = Gialta) Z Pjo(T)

8.1. Examples. We give two examples before discussing stability in
Figures and [I1] The only difference between the two examples is
the incentive for the second population: in the first case, the incentive
is logit, and in the second, g-replicator with ¢ = 2. Nevertheless, the
resulting dynamics are very different.

FIGURE 10. Two population dynamic with h = 1/10
for both populations, with fitness landscape given by
a = —1, b = —2. Both populations converge to the
center (500 iterations shown). Left: Replicator incen-
tive, Shahshahani geometry, initial point (1/5,1/5,3/5);
Right: Logit incentive, n = 0.4, Euclidean geometry, ini-
tial point (3/5,1/5,1/5)

In the spirit of [11] and [6], if there is a multiple-population G-ISS
where the time-scales do not differ for each population then we can
find a time-scale Lyapunov function for the system by summing D¢ for
each population. The proof is again analogous to [3, and can easily be
verified with differentiation for the continuous case.

Theorem 6. Suppose each population in system[0] is of the same time
scale (T = hZ or T = R). Let L = > D¢ (Za||Ta). L is a local
time-scale Lyapunov function for the system [d] iff

Z@a(xa) “Go(Ta)(Ta — Ta) >0
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FIGURE 11. Two population dynamic with h = 1/10
for both populations, with fitness landscape given by
a = —1, b = —2. Neither population converges after
10,000 iterations. Left: Replicator incentive, Shahsha-
hani geometry, initial point (1/5,1/5,3/5); Right: q-
Replicator incentive with ¢ = 2, FEuclidean geometry,
initial point (3/5,1/5,1/5)

for some neighborhood of Z.,.

8.2. Variable Time-Scales. A suitable generalization of the time-
scale Lyapunov theorem that would apply to a system on multiple
time-scales does not seem to exist in the literature. Rather than prove
such a result in this paper, we will just give an example relevant to the
time-scales under discussion, and conjecture further results.

First consider two populations, on time scales Ty = hZ and Ty =
h/27 respectively. We must decide how to compute the derivative of
the (candidate) Lyapunov function. In this simple case, simply taking
the intersection of the time scales (resulting in just the the time scale
T, and computing the derivative at these points produces a positive
definite and decreasing quantity, albeit on a subsequence of the origi-
nal dynamical system. See Figure 12| for an example. The sum of the
appropriate divergences is monotonically decreasing to zero as the pop-
ulations converge. In this example, if h = 1/10 for both populations,
the Lyapunov quantity is not monotonic (it has one local maximum)
globally, just locally.

In more general cases, depending on the time-scales involved, it may
not be so obvious to determine what the minimal or intersection time-
scale should be (since it could be the case that the intersection is empty,
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0.4

0.3

0.2

0.1

0.0,

FIGURE 12. Two population dynamic with ~ = 1/10 for
first population, h = 1/20 for the second. Left (a): a =
—1, b = —2, replicator incentive, Shahshahani geometry,
initial point (1/5,1/5,3/5); Right (b): a = —1, b = —4,
replicator incentive, ¢ = 2 escort geometry, initial point
(3/5,1/5,1/5); Bottom (c): KL-divergence from center
of first population plus ¢ = 2 divergence from the center
of second population.

especially if there is an interaction between time scales of the form
T = hZ and say quantum time-scales of the form T = ¢%). Similarly,
it may be the case that some type of dot product of time-scale deriva-
tives with the respective Lyapunov functions for each population is the
appropriate operation, but this is beyond the scope of this paper, and
will undoubtedly be discussed in future work.
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9. MUTATION

The replicator-mutator equation is an evolutionary dynamic that
takes the following form [17] [27]:

T = Zl’jujz’fj(l’) —z;f(z),
J

where p;; is the mutation transition probability of type j mutating
into type i at reproduction. Using the relationship ¢;(x) = x;f;, we
can translate this equation to incorporate incentives:

Bi= Y wi(@— 2 ) (@)
J J
In vector form, we have that

i=p@) -} pi@) = p@) - 2(e(@))

Finally, we can incorporate time scales and geometric structure into
a dynamic we call the time-scale metric incentive-mutator dynamic:

2% = p(2) = G2)(p(2)"1)
A common form of the discrete replicator mutator equation [27] can
be obtained using A = 1 and the incentive

_ (file) — F)
J@)

pi(T)

This gives:

o = Z xjfj;(x):uji
' ()

A common choice for mutation matrix is p. = (1 — €)I, —¢/(n —
1)(1,, — I,,), i.e. from the identity matrix, subtract € from the diagonal
and split uniformally over the other n — 1 elements of the row. We
end with a final example of a best reply dynamic with mutation in
Figure . See [29] for another approach to a best reply dynamic with
mutation.

10. DISCUSSION

In this paper we have shown that a vast array of evolutionary dy-
namics can be analyzed in terms of incentives, Riemannian metrics, and
divergence functions, the last of which allows the stability analysis of
many discrete dynamics associated to the same geometric and game-
theoretic constructions. In particular, we have shown that choice of
incentive and Riemannian metric can affect the presence of equilibria,
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FiGURE 13. Best reply dynamic with uniform mutation
matrix, starting at (1/10,1/10,8/10) with fitness given
by the RSP matrix with a = 1 and b = 2. Blue: ¢ = 0.1,
Green: € = 0.4, Red: € = 0.8. The addition of mutation
changes the size of the Shapley triangle depending on the
value of e.

and that decomposition of dynamics into incentives, escorts, and Rie-
mannian metrics can lead directly to Lyapunov functions for particular
dynamics. In the process, we introduced a new information divergence
defined in terms of a Riemannian metric rather than the typical dy-
namics formed only from metrics with diagonal matrix representations.

In our approach to evolutionary dynamics we focused attention on
a few special cases that yield a particularly nice set of examples. It is
possible to define these dynamics on arbitrary time scales and achieve
some analogous results. It may be possible to formulate multipopula-
tion dynamics where each population evolves according to a different
time scale, which would require a substantial expansion of the current
state of stability theorems on time scales. We have also shown that the
time scale calculus and its stability theory can be a useful and unifying
addition to the study of evolutionary dynamics.
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