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Abstract We study a mean-field approximation of the M/M/∞ queueing system. The prob-
lem we deal is quite different from standard games of congestion as we consider the case
in which higher congestion results in smaller costs per user. This is motivated by a situa-
tion in which some TV show is broadcast so that the same cost is needed no matter how
many users follow the show. Using a mean-field approximation, we show that this results
in multiple equilibria of threshold type which we explicitly compute. We further derive the
social optimal policy and compute the price of anarchy. We then study the game with partial
information and show that by appropriate limitation of the queue-state information obtained
by the players, we can obtain the same performance as when all the information is available
to the players. We show that the mean-field approximation becomes tight as the workload
increases, thus the results obtained for the mean-field model well approximate the discrete
one.
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1 Introduction

This paper is devoted to the problem of whether an arrival should queue or not in an M/M/∞
queue. It is assumed that the cost per customer decreases with the number of customers.

In a wireless context, the M/M/∞ queue may model the number of calls in a cell with a
large capacity. The assumption that the cost per call decreases with the number of calls is
typical for a multicast in which the same content is broadcast to all mobiles, so that the cost
of the transmission can be shared among the number of calls present (see also [14]).

Our first objective in this paper is to study the structure of both individually and globally
optimal policies. Our analysis reveals that there exist threshold type of policies in which an
individual is admitted if the number of ongoing calls exceeds some threshold (whose value
depends on whether globally or individually optimal policies are considered).

The assumption that the cost decreaseswith the number of customers distinguish ourmodel
from the standard congestion control problems which consider that cost increases with the
number of customers. The structure of both globally and individually optimal policies can
thus be expected to be quite different than those standard congestion control problems which
have been studied for over half a century starting with the seminal paper of Naor [13]. Naor
had considered an M/M/1 queue, in which a controller has to decide whether arrivals should
enter a queue or not. The objective of his paper was to minimize a weighted difference
between the average expected waiting time of those that enter, and the acceptance rate of
customers. Naor then considered the individually optimal policy (which can be viewed as a
Nash equilibrium in a non-cooperative game among the players) and showed that it is also of a
threshold typewith a threshold bigger than that of a centralizedmodel. His result revealed that
arrivals that join the queue under individual optimal policy wait longer in average compared
to the global optimal policy. Finally, he showed that there exists some toll such that if it is
imposed on arrivals for joining the queue, then the threshold value of the individually optimal
policy can be made to agree with the socially optimal one. Since this seminal work of Naor
there has been a huge amount of research that extend the model: more general inter-arrival
and service times have been considered, more general networks, other objective functions
and other queuing disciplines have also been considered, see e.g., [2,4,8–10,16–18,21] and
references therein.

The importance of the fact that a threshold policy is optimal is that in order to control
arrivalsweonly needpartial information—in factweonly need a signal to indicatewhether the
queue length exceeds or not the threshold valueΨ . The fact that thismuch simpler information
structure is sufficient for obtaining the same performance as in the full information case
motivates us to study the performance of threshold policy and related optimization issues for
a non-cooperative game with partial information setting. We first study the full information
setting where each individual is only optimizing its own cost and explicitly obtain that there
exists a plethora of threshold type of symmetric Nash equilibrium (NE) strategy profiles.
Subsequently, we compare the social cost under NE strategy profile with the globally optimal
social cost. Then, we consider the individual optimization problem with partial information,
where we send a green signal if the queue length exceeds the value Ψ and a red signal
otherwise and each individual player will select strategy in order to optimize its own social
cost.We note that by using this signaling approach instead of providing full state information,
users cannot choose any threshold policy with parameter different than Ψ , and so in the
individual optimization case, one could hope that by determining the signaling according to
the valueΨ thatminimizes the social cost, onewould obtain the socially optimal performance,
i.e., the global optimal cost will be achieved.We show that this is not the case here; in fact, we
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observe that as in [3], where similar approach was proposed for an M/M/1 queuing system,
the performance obtained under the best possible signaling policy (in the partial information
case) achieves the same performance as equilibrium under the full information.

We study here a simplified mean-field limit of the M/M/∞ queuing system rather than
the actual discrete model since on one hand it is much simpler to handle and solve than the
original discrete problem (we obtain closed-form formulas for all the equilibria) and on the
other hand the approximation becomes tight as the workload increases. To show that, in this
paper we establish the convergence of the game to its mean-field limit under appropriate
conditions.

The model and some results from Sects. 4, 8 and 9 appeared in conference proceedings
as [20].

The organization of the paper is as follows: We introduce the discrete model in Sect. 2 and
its mean-field approximation in Sect. 3. In Sect. 4, we find equilibria of the mean-field model,
while in Sect. 5 its social optimum. In Sect. 6 we study the version of the game with partial
information. In Sect. 7, we show that the information can be limited without affecting the
performance. In Sect. 8, we establish the convergence of discrete models to the mean-field
one as the workload increases. We numerically evaluate the threshold policies in Sect. 9.
Finally, we conclude the paper with some remarks in Sect. 10.

2 The Model

2.1 Discrete Model

We consider a service facility in which an arriving customer can observe the length of the
queue (Xt ) upon arrival.We interchangeably denote Xt as system state. The value of service is
γ , and the cost of spending time in service can be computed as an integral of the cost function
c(·) over the service time with c(·)—a continuous decreasing function of the number of users
in the queue.An arriving customer can either join the queue or leavewithout being served. The
decision is made upon arrival. The situation is modeled as a M/M/∞ system with incoming
rate λ and service rate μ.

A customer k arriving at time tk chooses whether to enter the queue (E) or not (N ). It
follows that the set of pure actions for any customer is V = {E, N }. Since the decision that
he makes is based on the length of the queue, a policy (or a strategy) of any customer will be
a mapping1 πk : S → Δ(V ) (since the set V is only a two-point set, we will identify πk with
a function from N to [0, 1], describing the probability it assigns to action E), where S ⊂ R

denotes the set of possible system states (in the discrete model S = N). In what will follow,
we will assume that the users limit their policies to the sets of so-called impulse or threshold
policies, defined below.

Definition 1 A policy πk of a user is called an impulse policy if there are finitely many points
x1, . . . , xn ∈ S, with x0 := inf S, xn+1 := sup S, such that πk is constant on any interval
(xk, xk+1), k = 0, . . . , n.

A subclass of the set of impulse policies with very simple structure are threshold policies.

1 For any finite set A, Δ(A) denotes the set of all probability measures on A.
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Definition 2 A policy πk of a user is called an [Θ, q]-threshold policy if

πk(x) =

⎧
⎪⎨

⎪⎩

0 if x < Θ

q if x = Θ

1 if x > Θ

(1)

At time t , an incoming client who employs this policy joins the system if the queue length,
Xt , is bigger than Θ , while if Xt = Θ he does so with probability q . Otherwise he never
joins the queue.

The cost of a user k arriving at time tk is defined as follows:

Ck
(
Xtk

) =
∫ tk+σk

tk
c (Xt ) dt − γ,

where σk is user k’s service time.
For each multi-policy π = (π1, π2, . . .), let [π ′

k,π
−k] be the policy which replaces πk by

π ′
k in π . Now we are ready to define the solution we will be looking for:

Definition 3 A policy πk is an optimal response for user k against a multi-policy π if

E

[
Ck

(
Xt

(
[πk,π

−k]
))]

≤ E

[
Ck

(
Xt

(
[π ′

k,π
−k]

))]
(2)

for every policy π ′
k of player k.

Definition 4 A multi-policy π∗ = (π∗
1 , π∗

2 , . . .) is a Nash equilibrium (NE) if policy of
every user k is an optimal response for user k against π∗, for every k. If inequalities (2) are
true up to some ε > 0, we say that π∗ is an ε-NE.

3 Fluid Model

In what follows, we will mostly analyze the fluid approximation, which can be viewed as the
weak limit of the system (scaled in a proper way) as the arrival rate of players goes to infinity
(see e.g., [19]). Now, we describe the fluid model.

The system state (the length of the queue) Xt ∈ R
+. Consequently, the policies of the

players are defined on R
+. The customers arrive at the queue according to a fluid process

with rate λ. As each of them uses some policy πk , the real incoming rate at time t is π(Xt )λ

where π(Xt ) is the average strategy of the arriving users. Each of them stays in the queue an
exponentially distributed time with parameter μ, and so the outflow is according to a fluid
process with rate μXt . This can be described as the following ODE:

{ .

Xt (π) = π(Xt )λ − μXt (π), ∀t ≥ 0

X0 = x0
(3)

Since there are infinitely many players in the game now, we encounter problems with
defining the multi-policies. For that reason, we assume that in multi-policy π all the players
use the same policy π . If we want to write that only one player, say player k changes his
policy to some π ′

k , we write that players apply policy [π−k, π ′
k], meaning that each player

uses policy π except player k. Also note that the game is symmetric since each player has
the same payoff function and strategy space, and thus, it is very difficult to implement an
asymmetric NE—we elucidate the inherent complications considering only two players: If
in an NE π∗

1 �= π∗
2 , then, by the symmetric nature of the game, (π∗

2 , π∗
1 ) is also an NE.
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If player 2 knows that player 1 selects π∗ (π∗
2 , respectively), then the optimal response for

player 2 is to select π∗
2 (π∗

1 , respectively), but player 2 cannot know the selection of player 1
due to the non-cooperation between them. Under symmetric NE, all players select the same
strategy and thus the above complication is somewhat alleviated. Moreover, π is not always
well defined, but in such a case π(Xt ) ≡ π(Xt ). Also with these assumptions, both the cost
and the equilibrium can be defined as in the discrete model.

4 Equilibria of the Fluid Model

In this section,we characterize the equilibriumpoints of our game.Webegin by characterizing
the evolution of the system state in case all the users apply the same impulse policy.

Lemma 1 Suppose all the players (except maybe one) apply the same impulse policy π .
Then if the initial state of the system is x0, then Xt is continuous in t for any x0 and is
non-decreasing in x0.

Proof It is clear that for π ≡ π having finitely many discontinuity points, the (non-classical)
solution to the equation (3) is well defined a.e. and continuous in t .

Next, suppose that x0 < x ′
0 and there exists a s such that2 Xs[x0] > Xs[x ′

0]. Xt is
continuous in t , thus by the intermediate value property there exists a t∗ < s such that
Xt∗ [x0] = Xt∗ [x ′

0]. But in both cases and at each time all users apply the same policy π ,
depending only on the current state of the system, thus for any t > t∗ Xt [x0] = Xt [x ′

0],
which is a contradiction, as we assumed that Xs[x0] > Xs[x ′

0]. �
We have one immediate corollary of the above lemma.

Corollary 1 The expected cost of a player joining the queue at time tk , when all the other
players apply policy π

E

[∫ tk+σk

tk
c(Xt (π))dt

]

− γ (4)

when σk ∼ Exp (μ), is decreasing in Xtk .
3

Note that in the above corollary we have replaced x0 with Xtk . This is justified, as the
coefficients of (3) depend on t only through Xt . Corollary 1 has an important consequence
which is stated in the lemma below:

Lemma 2 Any best response to a symmetric impulse multi-strategy π is a threshold strategy.
Moreover, the best response is unique up to the value of q [see (1)].

Proof A player k arriving at time tk has only two pure actions: to enter the queue (E) or not
to enter the queue (N ). When he uses the former, his cost is

E

[∫ tk+σk

tk
c(Xt (π))dt

]

− γ,

with σk ∼ Exp (μ), which is by Corollary 1 decreasing in Xtk . On the other hand, when k
uses action N , his cost is 0. Thus, if k prefers to use action E for Xtk = x1, he will also prefer

2 We shall write Xt [x0] for the value at t of the solution to (3) when X0 = x0.
3 The fact that we have strong monotonicity here, even though we had weak monotonicity in Lemma 1, is a
consequence of the continuity of Xt , which implies that a trajectory starting at time tk in a bigger Xtk stays
above the one starting in a smaller X ′

tk
on some interval, which affects the integral in (4).
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it for Xtk = x2 > x1. Similarly, if he prefers to use N for Xtk = x2, he will also prefer it for
Xtk = x1 < x2. Finally, as the cost of using E is strictly decreasing in Xtk , there may only
exist one point where k is indifferent between E and N and so he may choose to randomize.
Moreover, in any other point, the best response is uniquely determined. �

An immediate, but very important consequence of Lemma 2 is the following:

Corollary 2 In any symmetric4 equilibrium to our queuing game, any player uses a threshold
policy.

Remark 1 Note that the equilibrium specifies the action to take at any state, including states
that are in practice never reached. If a state x is never visited, then any variation of the
equilibrium at states larger than x will not change the performance of any player. Yet since
we allow for any initial state, theremay be customers that will find the system at states that are
transient and will not be visited again. Therefore, specifying the equilibrium in such states is
considered to be important in game theory. Equilibria that are specified in all states including
transient ones are known as perfect equilibria. It can also be shown that such equilibria are
good approximations of those that we obtain in case that there is some sufficiently small
constant uncontrolled inflow. This follows from [6].

Assuming that all (except maybe one) users apply the same [Θ, q]-threshold strategy, we
may write explicitly the evolution of the system state Xt :

Lemma 3 Suppose the initial state of the system is x0 and that all the users (except maybe
one) apply the [Θ, q]-threshold policy. Then the system state at time t can be explicitly written
as:

(a) If x0 > Θ and Θ ≤ λ
μ
or x0 = Θ <

qλ
μ

then

Xt = λ

μ
+

(

x0 − λ

μ

)

e−μt .

(b) If x0 > Θ > λ
μ
then

Xt =

⎧
⎪⎨

⎪⎩

λ
μ

+
(

x0 − λ

μ

)

e−μt ift ∈ [0, t (x0,μ)]

Θeμ
(
t (x0,Θ)−t

)

ift ≥ t (x0,Θ),

where t (x0,Θ) = 1
μ
log

x0− λ
μ

Θ− λ
μ

.

(c) If x0 = Θ = qλ
μ

then

Xt = qλ

μ

(d) If x0 < Θ or x0 = Θ >
qλ
μ

then

Xt = x0e
−μt .

4 The result can be generalized to the asymmetric case, but it would require some technical assumptions to
make sure π is well defined.
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Proof We know that when p is a constant, the solution of the equation
{ .

Xt = pλ − μXt , ∀t ≥ 0

X0 = x0

is

Xt = pλ
μ

+
(

x0 − pλ
μ

)

e−μt . (5)

Note that, when p = 1, this means that Xt → λ
μ
monotonically when t → ∞. Thus, if

x0 > Θ and λ
μ

> Θ , Xt never leaves the region where policy π prescribes to use action E ,
and so

Xt = λ

μ
+

(

x0 − λ

μ

)

e−μt .

Similarly, note that for p = 0, Xt decreases monotonically to 0, thus when x0 < Θ , Xt never
leaves the region where policy π prescribes to use action N , and so (5) reduces to

Xt = x0e
−μt .

Now suppose that x0 > Θ > λ
μ
. Then Xt starts in the region where π prescribes to use

action E with probability one, which implies that its trajectory decreases toward λ
μ
until time

t (x0,Θ) when it reaches the threshold Θ . From then on π prescribes to use action N with
probability 1. It is easy to compute that for t ≤ t (x0,Θ),

Xt = λ

μ
+

(

x0 − λ

μ

)

e−μt .

Since by definition t (x0,Θ) is such that Xt (x0,Θ)
= Θ , we easily obtain that t (x0,Θ) =

1
μ
log

x0− λ
μ

Θ− λ
μ

. Then, for t ≥ t (x0,Θ), Xt has to satisfy (5) with p = 0 and t0 = t (x0,Θ)

instead of 0, which gives

Xt = Θeμ
(
t (x0,Θ)−t

)

.

Finally, when x0 = Θ , Xt satisfies at t = 0 (5) with p = q . If x0 = qλ
μ
, by (5) Xt ≡ qλ

μ
.

Otherwise if x0 <
qλ
μ
, Xt moves upwards and for t > 0 behaves like when x0 > Θ , while

if x0 >
qλ
μ
, Xt moves downwards and for t > 0 behaves like when x0 < Θ . �

Now, to simplify the notation, wewill make use of the fact that all the players use threshold
policies. Let us define

Ĉk (x, (Θ−k, q−k))

to be the expected service cost for player k if he enters the queue when its state is x and all
the players except k apply a [Θ−k, q−k]-threshold policy. Ĉk can be written as

Ĉk (x, (Θ−k, q−k)) = E
σk ∼ Exp (μ), X0 = x

[∫ tk+σk

tk
c(Xt (π))

]

=
∫ ∞

0

∫ τ

0
c(Xt )μe

−μτdtdτ.

The following lemma gives exact ways to compute Ĉk in each of the cases of Lemma 3.
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Lemma 4 Ĉk can be computed using following formulas:

(a) If x > Θ−k and Θ−k ≤ λ
μ
or x = Θ−k <

q−kλ
μ

then5

Ĉk (x, (Θ−k, q−k)) = 1

λ − xμ

∫ λ
μ

x
c(u) du.

(b) If x > Θ−k > λ
μ
then

Ĉk (x, (Θ−k, q−k)) = 1

xμ − λ

∫ x

Θ−k

c(u) du + Θ−kμ − λ

Θ−kμ(xμ − λ)

∫ Θ−k

0
c(u) du.

(c) If x = Θ−k = q−kλ
μ

then

Ĉk (x, (Θ−k, q−k)) = 1

μ
c

(
q−kλ

μ

)

= 1

μ
c(Θ−k).

(d) If x < Θ−k or x = Θ−k >
q−kλ

μ
then

Ĉk (x, (Θ−k, q−k)) = 1

xμ

∫ x

0
c(u)du.

Proof Suppose x > Θ−k and Θ−k ≤ λ
μ
or x = Θ−k <

q−kλ
μ

. Then by (a) of Lemma 3

Ĉk (x, (Θ−k, q−k)) =
∫ ∞

0

∫ τ

0
c

(
λ

μ
+

(

x − λ

μ

)

e−μt
)

μe−μτdtdτ

which can be further written as

∫ ∞

0

∫ ∞

t
c

(
λ

μ
+

(

x − λ

μ

)

e−μt
)

μe−μτdτdt

=
∫ ∞

0
c

(
λ

μ
+

(

x − λ

μ

)

e−μt
)

e−μtdt = 1

λ − xμ

∫ λ
μ

x
c(u)du.

Next, suppose that x > Θ−k > λ
μ
. Then, by (b) of Lemma 3 Ĉk (x, (Θ−k, q−k)) equals

∫ ∞

0

[∫ min{τ,t (x,Θ−k)}

0
c

(
λ

μ
+

(

x − λ

μ

)

e−μt
)

dt+
∫ τ

min{τ,t (x,Θ−k)}
c
(
Θ−ke

μ(t (x,Θ−k )−t)
)
dt

]

μe−μτdτ

5 In the degenerate case when x = λ
μ , Ĉk

(
x,

(
Θ−k , q−k

)) = 1
μ c

(
λ
μ

)
, which is the limit of the expression

in (a) when x → λ
μ . We will use similiar convention throughout the paper, putting 1

a−a
∫ a
a f (u)du = f (a),

if needed. This will reduce the number of cases considered in subsequent results, without affecting the validity
of any of them.
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which can be further written as
∫ t (x,Θ−k)

0

∫ ∞

0
c

(
λ

μ
+

(

x − λ

μ

)

e−μt
)

μe−μτ dτdt

+
∫ ∞

t (x,Θ−k)

∫ ∞

t
c

(

Θ−ke
μ

(
t (x,Θ−k )−t

))

μe−μτ dτdt

=
∫ t (x,Θ−k)

0
c

(
λ

μ
+

(

x − λ

μ

)

e−μt
)

e−μtdt +
∫ ∞

t (x,Θ−k)

c

(

Θ−ke
μ

(
t (x,Θ−k )−t

))

e−μtdt

= 1

xμ − λ

∫ x

Θ−k

c(u)du + 1

Θ−ke
μt (x,Θ−k )μ

∫ Θ−k

0
c(u)du

= 1

xμ − λ

∫ x

Θ−k

c(u) du + Θ−kμ − λ

Θ−kμ(xμ − λ)

∫ Θ−k

0
c(u) du.

Now, if x0 = Θ−k = q−kλ
μ

, then by (c) of Lemma 3

Ĉk (x, (Θ−k, q−k)) =
∫ ∞

0

∫ τ

0
c

(
q−kλ

μ

)

μe−μτdtdτ

=
∫ ∞

0
c

(
q−kλ

μ

)

τμe−μτdτ = 1

μ
c

(
q−kλ

μ

)

.

Finally, when x0 < Θ or x0 = Θ >
q−kλ

μ
, we can apply part (d) of Lemma 3, obtaining

Ĉk (x, (Θ−k, q−k)) =
∫ ∞

0

∫ τ

0
c(xe−μt )μe−μτdtdτ

which can be further written as
∫ ∞

0

∫ ∞

t
c(xe−μt )μe−μτdτdt =

∫ ∞

0
c(xe−μt )e−μtdt = 1

xμ

∫ x

0
c(u)du.

�
In next two lemmas, we characterize the best responses to any given threshold strategies.

Lemma 5 [Θk, qk]-threshold policy is a best response of player k to a [Θ−k, q−k]-threshold
policy used by all the others if Θk is obtained by finding the unique solution to the equation

Ĉk (Θk, (Θ−k, q−k)) = γ. (6)

and taking any qk. If Eq. (6) has no solutions, then Θk is taken as the only value such that

Ĉk (x, (Θ−k, q−k)) < γ forx > Θk and Ĉk (x, (Θ−k, q−k)) > γ forx < Θk (7)

and qk = 1 if the first inequality is satisfied for x = Θk , while qk = 0 if the second one is
satisfied for x = Θk .

Proof First note that Ĉk (x, (Θ−k, q−k)) − γ is exactly the expected cost of player k if he
joins the queue when its state is x , while his cost when he does not join is 0. Moreover, the
expected cost of player joining the queue is by Corollary 1 monotone decreasing function of
x . Thus, Eq. (6) may have at most one solution, and the cost of joining the queue for x > Θk

is negative, that for x < Θk is positive, while that for x = Θk is 0, regardless of qk . Thus
[Θk, qk]-threshold policy always gives player k the smallest cost available.
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Similarly, when (6) has no solutions, from themonotonicity of the cost Ĉk (x, (Θ−k, q−k))

− γ , there must exist exactly one Θk such that Ĉk (x, (Θ−k, q−k)) − γ > 0 for x < Θk and
Ĉk (x, (Θ−k, q−k)) − γ < 0 for x > Θk . Now we can repeat the arguments from the proof
of the first part of the lemma, to show that [Θk, 1]- or [Θk, 0]-threshold policy is the best
response to [Θ−k, q−k]-threshold policy of the others in this case. �
Lemma 6 Let [Θk, qk]-threshold policy be a best response of player k to a [Θ−k, q−k]-
threshold policy used by all the others and define Θ and Θ as the unique solutions to the
following equations6:

1

λ − Θμ

∫ λ
μ

Θ

c(u) du = γ,
1

Θμ

∫ Θ

0
c(u) du = γ. (8)

Then Θk and qk satisfy the following:

(a) If γ ∈
(
0, 1

μ
limu→∞ c(u)

]
then Θk = ∞ and qk is arbitrary (which means that the

best response is a policy never prescribing to enter the queue).

(b) If γ ∈
(

1
μ
limu→∞ c(u), 1

λ

∫ λ
μ

0 c(u)du

)

then

Θk(Θ−k) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Θ, forΘ−k < min
{
Θ, λ

μ

}

Θ−k, for min
{
Θ, λ

μ

}
≤ Θ−k ≤ λ

μ

Θ̃(Θ−k), for λ
μ

< Θ−k < Θ

Θ, forΘ−k ≥ Θ

where Θ̃ is some uniquely defined function on
(

λ
μ
,Θ

)
satisfying Θ̃(x) > x. qk is

arbitrary for Θ−k /∈
[
min

{
Θ, λ

μ

}
, λ

μ

]
, while for Θ−k ∈

[
min

{
Θ, λ

μ

}
, λ

μ

]

qk (Θ−k, q−k) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, if Θ−k >
q−kλ

μ
orΘ−k = q−kλ

μ
and c

(
q−kλ

μ

)
> μγ

arbitrary, if Θ−k = q−kλ
μ

and c
(
q−kλ

μ

)
= μγ orΘ−k = Θ <

q−kλ
μ

1, if Θ−k <
q−kλ

μ
orΘ−k = q−kλ

μ
and c

(
q−kλ

μ

)
< μγ.

(c) If γ ∈
[
1
λ

∫ λ
μ

0 c(u)du, 1
μ
c(0)

)

then

Θk(Θ−k) =
{

Θ−k, forΘ−k ≤ Θ

Θ, forΘ−k ≥ Θ.

qk is arbitrary for Θ−k > Θ , while for Θ−k ≤ Θ ,

qk(Θ−k, q−k) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, if Θ−k >
q−kλ

μ
orΘ−k = q−kλ

μ
and c

(
q−kλ

μ

)
> μγ

arbitrary, if Θ−k = q−kλ
μ

and c
(
q−kλ

μ

)
= μγ

1, if Θ−k <
q−kλ

μ
orΘ−k = q−kλ

μ
and c

(
q−kλ

μ

)
< μγ.

6 If there are any solutions.
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(d) If γ ≥ 1
μ
c(0) then Θk = 0 and qk = 1 (which means that the best response is a policy

always prescribing to enter the queue).

Proof To show (a) first note that any form of Ĉk described in Lemma 4 is bounded below
by 1

μ
infu≥0 c(u), which equals 1

μ
limu→∞ c(u), as c is a strictly decreasing function. Thus,

in case γ ≤ 1
μ
limu→∞ c(u), also γ < Ĉk (x, (Θ−k, q−k)) for any value of x , thus (7) is

satisfied for Θk = ∞. This means that the strategy never prescribing player k to enter the
queue is his best response to the [Θ−k, q−k]-threshold policy used by all the others.

Now suppose the assumptions of part (b) of the lemma are satisfied. Note that the function

C(x) := 1

λ − xμ

∫ λ
μ

x
c(u)du

is continuous on R
+ and satisfies limx→0+ C(x) = 1

λ

∫ λ
μ

0 c(u)du and limx→∞ C(x) =
1
μ
limu→∞ c(u). Thus, by the intermediate value property, and since

γ ∈
(
1

μ
lim
u→∞ c(u),

1

λ

∫ λ
μ

0
c(u)du

)

,

there exists an x such that C(x) = γ , but this is exactly how Θ is defined.
Similarly, the function

C(x) := 1

xμ

∫ x

0
c(u)du

is continuous on R
+ and satisfies C

(
λ
μ

)
= 1

λ

∫ λ
μ

0 c(u) du and limx→∞ C(x) =
limu→∞ c(u). Thus, again by the intermediate valueproperty, and sinceγ ∈

(
1
μ
limu→∞ c(u),

1
λ

∫ λ
μ

0 c(u) du
)
, there exists an x such that C(x) = γ , which is how Θ is defined. Moreover,

Θ is always bigger than λ
μ
.

Next note that by Lemma 4, Ĉk (x, (Θ−k, q−k)) equals C(x) if x > Θ−k and Θ−k ≤ λ
μ

or x = Θ−k <
q−kλ

μ
, and C(x) if x < Θ−k or x = Θ−k >

q−kλ
μ

. Thus by Lemma 5,

Θk = Θ for Θ−k ≤ min
{
Θ, λ

μ

}
, Θk = Θ−k for min

{
Θ, λ

μ

}
≤ Θ−k ≤ λ

μ
, Θk ≥ Θ−k

for λ
μ

< Θ−k ≤ Θ and Θk = Θ for Θ−k ≥ Θ . The values of qk for Θ−k ≤ λ
μ
depend on

the relation between Θ−k and q−kλ
μ

: If the former is smaller, for Θk = Θ−k we are in the

set where Ĉk (Θk, (Θ−k, q−k)) = C(Θk) < γ , and so qk = 1. If Θ−k = q−kλ
μ

, we are in

the set where Ĉk (Θk, (Θ−k, q−k)) = 1
μ
c(Θ−k), thus according to Lemma 5 the value of qk

depends on the relation between 1
μ
c(Θ−k) and γ , exactly as it is written in Lemma 6. Finally

if Θ−k >
q−kλ

μ
, Ĉk (Θk, (Θ−k, q−k)) = C(Θk) > γ , and so qk = 0.

Tofinish the proof of part (b) of theLemma,weneed to show that forΘ−k ∈
(

λ
μ
,Θ

)
,Θk >

Θ−k . To do that, it is enough to prove that for any fixed Θ−k ∈
(

λ
μ
,Θ

)
, Ĉk (x, (Θ−k, q−k))

is continuous at x = Θ−k as a function of x . If it is, then from the fact that for x = Θ−k ,
Ĉk (x, (Θ−k, q−k)) = C(x) > γ , also Ĉk (x + ε, (Θ−k , q−k)) > γ for some ε > 0, and

thus Θk defined by Lemma 5 is not smaller than Θ−k + ε. Thus fix Θ−k ∈
(

λ
μ
,Θ

)
and take

xn → Θ+
−k . For such xn ,
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Ĉk (xn, (Θ−k, q−k)) = 1

xnμ − λ

∫ xn

Θ−k

c(u)du + Θ−kμ − λ

Θ−kμ(xnμ − λ)

∫ Θ−k

0
c(u)du

→ 1

Θ−kμ − λ
0 + 1

Θ−kμ

∫ Θ−k

0
c(u)du = C(Θ−k) = Ĉk (Θ−k, (Θ−k, q−k)) ,

which proves the desired property.

To prove part (c) of the lemma note that since now γ ∈
[
1
λ

∫ λ
μ

0 c(u) du, 1
μ
c(0)

)

, the

equation C(x) = γ has no solutions. Moreover, its LHS is always smaller than its RHS.

On the other hand, since limx→0+ C(x) = 1
μ
c(0) and C

(
λ
μ

)
= 1

λ

∫ λ
μ

0 c(u) du, by the

intermediate value property the equation C(x) = γ has a unique solution Θ ∈
(
0, λ

γ

)
.

Next, again by Lemma 4, Ĉk (x, (Θ−k, q−k)) equals C(x) if x > Θ−k and Θ−k ≤ λ
μ
or

x = Θ−k <
q−kλ

μ
, and C(x) if x < Θ−k or x = Θ−k >

q−kλ
μ

, and thus by Lemma 5,
Θk = Θ−k for Θ−k ≤ Θ and Θk = Θ for Θ−k > Θ . The choice of qk is made exactly as
in part (b) of the lemma.

Finally, suppose that γ ≥ 1
μ
c(0). Then for any value of x , Ĉ (x, (Θ−k, q−k)) < γ , and

thus the optimal response of player k to the [Θ−k, q−k]-threshold strategy of all the others is
always to join the queue. �

Now we are ready to state the main result of this section.

Theorem 1 The game under consideration always has a symmetric equilibrium where each
of the players uses the same [Θ, q]-threshold strategy. Moreover:

(a) If γ ∈
(
0, 1

μ
limu→∞ c(u)

]
then the equilibrium is unique, with Θ = ∞, which means

that the equilibrium policies prescribe every user never to enter the queue.

(b) If γ ∈
(

1
μ
limu→∞ c(u), 1

λ

∫ λ
μ

0 c(u)du

)

then there are infinitely many equilibria, whose

forms depend on the relation between Θ and λ
μ
:

(b1) If Θ < λ
μ
then there are equilibria of five types: Θ = Θ and any q >

Θμ

λ
; Θ = Θ∗,

with Θ∗ satisfying c(Θ∗) = μγ and q = Θ∗μ
λ

; Θ = Θ and any q ∈ [0, 1]; any
Θ ∈

[
Θ, λ

μ

]
and q = 0; any Θ ∈

[
Θ, λ

μ

]
and q = 1.

(b2) If Θ = λ
μ
then either Θ = Θ and q ∈ {0, 1} or Θ = Θ and q is any number from

[0, 1].
(b3) If Θ > λ

μ
then either Θ = Θ and q is an arbitrary number from [0, 1] or Θ = λ

μ

and q = 0.

(c) If γ ∈
[
1
λ

∫ λ
μ

0 c(u)du, 1
μ
c(0)

)

then there are infinitely many equilibria of three types:

with Θ ∈ [0,Θ] and q = 0; with Θ ∈ [0,Θ] and q = 1; with Θ = Θ∗ satisfying
c(Θ∗) = μγ and q = Θ∗μ

λ
.

(d) If γ ≥ 1
μ
c(0) then the equilibrium is unique, with Θ = 0 and q = 1, which means that

the equilibrium policies prescribe every user to always enter the queue.

Proof A strategy for any player k will induce a symmetric equilibrium if it is a best response
to itself. Below we analyze which strategies may satisfy this condition.
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In case (a) it is obvious by (a) of Lemma 6 that the policy prescribing never to join the
queue is always the best response to itself, and since this is the only best response to any
policy, this is the only possible equilibrium.

In case (b) Θ has to be either in interval
[
min{Θ, λ

μ
}, λ

μ

]
or equal to Θ . In the latter case,

it is clear that for any q the [Θ, q]-threshold policy will be the best response to itself. In the
former one, q and Θ must satisfy one of the following conditions:

q = 0 and Θ >
qλ
μ

= 0, which is always true for Θ ≥ min
{
Θ, λ

μ

}
, so [Θ, 0]-threshold

policies form equilibria in this case.
q = 1 and Θ <

qλ
μ

= λ
μ
, and so [Θ, 1]-threshold policies form equilibria for any

Θ ∈
[
min

{
Θ, λ

μ

}
, λ

μ

)
.

q = 1 and Θ = qλ
μ

= λ
μ
with c

(
λ
μ

)
< γμ, which is always true as long as Θ < λ

μ
.

Θ = Θ <
qλ
μ
, which implies that q >

Θμ

λ
. It can always be satisfied when Θ is as

assumed, so [Θ, q]-threshold policies form an equilibrium in this case.

Θ = qλ
μ

∈
[
Θ, λ

μ

]
and c(Θ) = μγ . Note, however, that by the definition of Θ and

continuity of c, ifΘ < λ
μ
then there must exist a solutionΘ∗ to the equation c(Θ) = μγ

in
[
Θ, λ

μ

]
, so Θ∗ and q = Θ∗μ

λ
is an equilibrium. In particular, if Θ = λ

μ
, then also

Θ∗ = λ
μ
and q = 1 is one.

In case (c)Θ has to be in interval [0,Θ] and needs to be related to q in one of the following
ways:

q = 0 and Θ >
qλ
μ

= 0 or Θ = 0 with c(0) > μγ , which is always true in case (c).

q = 1 and Θ <
qλ
μ

= λ
μ
, which is always true, as Θ ≤ Θ < λ

μ
in this case, which was

shown in the proof of Lemma 6.
Θ = qλ

μ
≤ Θ and c(Θ) = μγ . Note, however, that by the definition ofΘ and continuity

of c, there must exist some Θ∗ in the interval (0,Θ) such that c(Θ∗) = μγ , so Θ∗ and
q = Θ∗μ

λ
is the only equilibrium in this case.

Finally, in case (d) by (d) of Lemma 6 it is obvious that the policy always prescribing to
join the queue is the best response to itself. Since this is the only best response to any policy
in this case, this is the only possible equilibrium. This ends the proof of the theorem. �
Remark 2 It should be noted here that there are multiple equilibria in certain situations. In
that case, it is normally not clear which one would prevail. Nevertheless, as the cost of being
served is a decreasing function of Θ and of q for a fixed value of Θ , we may assume that the
customers will naturally choose the equilibrium strategies with the biggest values of Θ and
q . In Sect. 5 we will, nevertheless, analyze the social outcome of all the possible equilibria,
comparing them to the social optimum.

Remark 3 The number of equilibria can be downsized by considering a stronger equilibrium
concept. While there are many NE refinements available, the one best suited to a symmetric
population game like the one considered here seems to be that of Evolutionary Stable Strategy
(ESS) [12]. Roughly speaking, it is a strategy which not only gives a player the highest payoff
when everyone else uses the same strategy, but guarantees that a small fraction of players
using different strategy receive lower payoff than themajority sticking to theESS. Technically
this means that π is an Evolutionary Stable Strategy if it satisfies (2) and additionally

E

[
Ck

(
Xt

(
[π,π ′−k]

))]
≤ E

[
Ck

(
Xt

(
[π ′,π ′−k]

))]
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whenever π ′ also satisfies (2).
It turns out that our game always has an ESS but not all the Nash equilibrium strategies

are ESS. More precisely, the equilibrium policies of cases (a) and (d) of Theorem 1 are also
ESS, while in cases (b) and (c) we have:

(b) If γ ∈
(

1
μ
limu→∞ c(u), 1

λ

∫ λ
μ

0 c(u)du

)

then:

(b1) If Θ < λ
μ
then there are infinitely many ESS with Θ ∈

[
Θ, λ

μ

]
and q ∈ {0, 1}.

(b2) If Θ > λ
μ
then

[
λ
μ
, 0

]
-threshold policy is the unique ESS.

(c) If γ ∈
[
1
λ

∫ λ
μ

0 c(u)du, 1
μ
c(0)

)

then there are infinitely many ESS with Θ ∈ [0,Θ] and
q ∈ {0, 1}.

5 Social Optimum

The social cost associated with some symmetric strategy profile π can be computed using
equality

C(x0,π) = π∞(x0)E [Ck(x∞(π , x0))] ,

where x∞(π , x0) denotes the stationary state of the queuewhen the players applymulti-policy
π and initial state of the queue is x0, while π∞(x0) is the limit value of strategy π when time
goes to infinity (note that it may have three values, depending on whether the trajectory of
X approaches x∞(π , x0) from above, from below, or is from some point constant).

If we assume that π is a [Θ, q]-threshold policy, C(x0,π) equals:

Ĉ(x0, (Θ, q)) :=
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ĉk(x∞(π , x0), (Θ, q)) − γ,

when x∞(π , x0) > Θ or x∞(π , x0) = Θ and π∞(x0) > π(x∞(π , x0))

q[Ĉk(x∞(π , x0), (Θ, q)) − γ ],
when x∞(π , x0) = Θ and π∞(x0) = π(x∞(π , x0))

0, when x∞(π , x0) < Θ or x∞(π , x0) = Θ and π∞(x0) < π(x∞(π , x0)).

Note however that, as it can be clearly seen from Lemma 3, when everyone uses the same
threshold policy, the only stationary states possible in the game are 0, λ

μ
and qλ

μ
. Moreover,

they can by easily deduced from the values of Θ , q and x0, and thus the following lemma is
true.

Lemma 7 Suppose all the players in the game apply the same [Θ, q]-threshold policy π .
Then social cost function in the game can be computed as follows:

(a) If x0 > Θ and Θ ≤ λ
μ
or x0 = Θ <

qλ
μ

then

Ĉ(x0, (Θ, q)) = 1

μ

(

c

(
λ

μ

)

− γμ

)

.

(b) If x0 = Θ = qλ
μ

then

Ĉ(x0, (Θ, q)) = q

μ

(

c

(
qλ

μ

)

− γμ

)

.
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(c) In any other case Ĉ(x0, (Θ, q)) = 0.

Proof If x0 > Θ and Θ ≤ λ
μ
or x0 = Θ <

qλ
μ

then by parts (a) of Lemmas 3 and 4, Xt =
λ

μ
+

(

x0 − λ

μ

)

e−μt →t→∞
λ

μ
= x∞(π , x0) and Ĉk(x∞(π , x0), (Θ, q)) = 1

μ
c
(

λ
μ

)
.

Finally π∞(x0) = 1, as either Θ < λ
μ
, and so π = 1 in some neighborhood of λ

μ
, or

Θ = λ
μ

< x0, and then the trajectory of X approaches λ
μ
from above, where π prescribes

to take action E with probability 1. Putting all this together, we get that Ĉ(x0, (Θ, q)) =
1
μ
c
(

λ
μ

)
− γ = 1

μ

(
c
(

λ
μ

)
− γμ

)
.

Next, suppose that x0 = Θ = qλ
μ
. Then by parts (c) of Lemmas 3 and 4, Xt ≡ qλ

μ
, so this is

also its stationary state, with Ĉk

(
qλ
μ

, (Θ, q)
)

= 1
μ
c
(
qλ
μ

)
andπ∞

(
qλ
μ

)
= q . Putting all this

in the definition of Ĉ , we obtain Ĉ(x0, (Θ, q)) = q
(
1
μ
c
(
qλ
μ

)
− γ

)
= q

μ

(
c
(
qλ
μ

)
− γμ

)
.

If x0 > Θ > λ
μ
, by (b) of Lemma 3 for t large enough, Xt = Θeμ(t (x0,Θ)−t) →t→∞ 0.

Similarly, if x0 < Θ or x0 = Θ >
qλ
μ
then by (d) of the same lemma, Xt = x0e−μt →t→∞ 0,

and so in both cases x∞(π , x0) = 0 < Θ . This implies either x∞(π, x0) < Θ if Θ > 0 or
x∞(π, x0) = Θ and 0 = π∞(x0) ≤ π(x∞(π, x0)), and therefore Ĉ(x0, (Θ, q)) = 0. �

Using this lemma, we can easily find strategies minimizing the social cost for any x0.

Theorem 2 (a) If c
(

λ
μ

)
< γμ then the social optimum equals 1

μ

(
c
(

λ
μ

)
− γμ

)
and is

attained for the strategy profile consisting of [0, 1]-threshold strategies of all the players,
prescribing to always join the queue.

(b) If c
(

λ
μ

)
= γμ then the social optimum equals 0 and is attained for any symmetric

strategy profile consisting of [Θ, q]-threshold strategies such that Θ �= qλ
μ
.

(c) If c
(

λ
μ

)
> γμ then the social optimum equals 0 and is attained for the strategy profile

consisting of [∞, 0]-threshold strategies of all the players, prescribing never to join the
queue.

Proof Suppose c
(

λ
μ

)
< γμ. Then 1

μ

(
c
(

λ
μ

)
− γμ

)
< 0 and so it is alwaysmore profitable

to be in case (a) of Lemma 7 than in case (c). As c is a strictly decreasing function, also
q
μ

(
c
(
qλ
μ

)
− γμ

)
< 1

μ

(
c
(

λ
μ

)
− γμ

)
. Thus a strategy profile such that the assumptions

of case (a) of Lemma 7 are satisfied for any x0 minimizes the social cost function then. It is
straightforward to see that when all the players use [0, 1]-threshold strategies this is the case.

Next assume that c
(

λ
μ

)
= γμ. Then 1

μ

(
c
(

λ
μ

)
− γμ

)
= 0 <

q
μ

(
c
(
qλ
μ

)
− γμ

)
, so

the social cost is minimized in cases (a) and (c) of Lemma 7. Thus any profile of policies
guaranteing that case (b) is never possible, which is equivalent to Θ �= qλ

μ
, is optimal in this

case.
Finally let c

(
λ
μ

)
> γμ. Then 1

μ

(
c
(

λ
μ

)
− γμ

)
> 0 and q

μ

(
c
(
qλ
μ

)
− γμ

)
> 0, so case

(c) of Lemma 7 is better than cases (a) and (b). Using [∞, 1]-threshold policies guarantees
satisfying the assumptions of case (c) for any x0. �
5.1 Price of Anarchy and Price of Stability

A commonly used concept for evaluating the equilibria in any given game is that of Price of
Anarchy, introduced by Koustoupias and Papadimitrou [11], which is the ratio between the
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cost of an equilibriumand that of the optimal solution.As in our game theremay existmultiple
equilibria, each with a different social cost, we would like to adapt here the concept of two
quantities describing quality of equilibria [5]: Price of Anarchy, being the ratio between a
worst (in terms of its social cost) equilibrium’s cost and the optimal social cost, and Price of
Stability, defined as the ratio between the cost of a best equilibrium and that of the optimal
solution. The problem in using these quantities in our model could be that here, unlike in
network congestion games, the social cost may be both negative and positive (and in fact it
often equals zero). Note, however, that in any situation a player can guarantee himself zero
cost, so both in social optimum and in equilibrium it is never positive. This suggests defining
Price of Anarchy and Price of Stability in the following manner:

PoA(x0) = max
π∈NE

C(x0, πOpt)

C(x0, π)
, PoS(x0) = min

π∈NE
C(x0, πOpt)

C(x0, π)
.

Here NE denotes the set of Nash equilibria in the game, while πOpt is an optimal policy
profile in the game. Also it is important to note that in both definitions we use conventions
that 0

0 = 1 and c
0 = +∞ for a negative value of c, so we treat 0 as 0−.

The following theorems characterize PoA and PoS in our model. They are direct conse-
quences of Theorems 1 and 2, and Lemma 7, and thus we state them without proofs.

Theorem 3 The Price of Anarchy:

(a) is infinite if γ ∈
(

1
μ
c
(

λ
μ

)
, 1

λ

∫ λ
μ

0 c(u)du

)

or if γ ∈
[
1
λ

∫ λ
μ

0 c(u)du, 1
μ
c(0)

)

and x0 ≤
Θ;

(b) equals 1 otherwise.

Theorem 4 The Price of Stability:

(a) is infinite if γ ∈
(

1
μ
c
(

λ
μ

)
, 1

λ

∫ λ
μ

0 c(u)du

)

and x0 < Θ;

(b) equals 1 otherwise.

As we can see, both PoA and PoS take only two values, 1 and∞. This is a consequence of
the fact that the social cost of equilibrium happens to be greater than that of optimal solution
only if the former equals zero while the latter is negative.

6 Fluid Model with Partial Information

In this section, we assume that the knowledge of each user when he decides on entering the
queue is limited to the information whether the state of the queue is above some threshold Ψ

or not. Thus instead of Xt ∈ R
+, the system state perceived by the players will be Xt ∈ {0, 1},

with Xt = 0 denoting Xt < Ψ and Xt = 1 denoting Xt ≥ Ψ . Consequently, the strategies
of the players will be of one of the forms EE, EN, NE or NN, where the first letter stands
for the strategy in state 0, while the second one for the strategy in state 1. Using arguments
from Sect. 4, we can argue that strategy EN will be never used, so for the ease of analysis
we will only consider the three remaining ones. It is also important to note that these three
strategies can also be interpreted as threshold strategies in the original game, only with the
set of thresholds available limited to {0, Ψ,∞} (for policies EE, NE and NN, respectively).

We assume that the knowledge of each of the players is limited to the value of the threshold
Ψ and the partial information about the state Xt .We do not assume they have any information
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about the distribution of the state, and thus the appropriate solution concept herewill be that of
robust Nash equilibrium [1,7]. We define it formally below. Let U0 = {x ∈ S : 0 ≤ x < Ψ }
and U1 = {x ∈ S : Ψ ≤ x}.
Definition 5 A policy πk is a best robust response for user k against a multi-policy π in the
game with partial information if πk is constant on each of the sets U0 and U1 and

inf
x∈Us

E

[
Ck

(
Xt

(
[πk,π

−k]
))

| Xtk = x
]

≤ inf
x∈Us

E

[
Ck

(
Xt

(
[π ′

k,π
−k]

))
| Xtk = x

]

(9)
for s = 0, 1 and every policy π ′

k of player k.

Definition 6 Amulti-policyπ∗ = (π∗
1 , π∗

2 , . . .) is a robust Nash equilibrium (RNE) if policy
of every user k is a robust best response for user k against π∗, for every k. If inequalities (9)
are true up to some ε > 0, we say that π∗ is an ε-RNE.

In other words, the users will minimize their costs assuming that the actual state of the
queue at the time they decide on entering the queue is the one for which the cost of joining
the queue is the highest. By Corollary 1 this cost is decreasing in Xt , thus the players will
assume Xt = 0 if Xt = 0 and Xt = Ψ if Xt = 1. In the remainder of this section, we will
enumerate all the robust Nash equilibria in the partial information model and show how they
depend on the value of Ψ . Then, in the next section, we will show how appropriate choice
of Ψ can maximize the social welfare.

We will need some additional notation to formulate our main results. Let LEE, LNE and
LNN denote the worst-case service cost for a player i entering the queue with Xt = 0, when
all the other players apply strategy EE, NE or NN, respectively. Similarly, let HEE, HNE

and HNN denote the worst-case service cost for a player i entering the queue with Xt = 1,
when all the other users play EE, NE or NN, respectively. We can use the interpretation of
the policies in our new model as threshold strategies in the original game and Lemma 4 to
obtain:

LEE(Ψ ) = Ĉk(0, (0, 1)) = 1

λ

∫ λ
μ

0
c(u)du,

LNE(Ψ ) = Ĉk(0, (Ψ, 1)) = 1

μ
c(0),

LNN(Ψ ) = Ĉk(0, (∞, 1)) = 1

μ
c(0),

HEE(Ψ ) = Ĉk(Ψ, (0, 1)) = 1

λ − Ψ μ

∫ λ
μ

Ψ

c(u)du,

HNE(Ψ ) = Ĉk(Ψ, (Ψ, 1)) =
⎧
⎨

⎩

1
Ψ μ

∫ Ψ

0 c(u)du, whenΨ > λ
μ

1
λ−Ψ μ

∫ λ
μ

Ψ c(u)du, whenΨ ≤ λ
μ

,

HNN(Ψ ) = Ĉk(Ψ, (∞, 1)) = 1

Ψ μ

∫ Ψ

0
c(u)du.

All the main properties of functions Ls and Hs , s = EE,NE,NN, are summarized in the
following lemma.

Lemma 8 For any Ψ > 0

(a) LNN(Ψ ) = LNE(Ψ ) > LEE(Ψ ).
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(b) HNN(Ψ ) ≥ HNE(Ψ ) ≥ HEE(Ψ ),

(i) HNN(Ψ ) = HNE(Ψ ) > HEE(Ψ ) when Ψ > λ
μ

(ii) HNN(Ψ ) > HNE(Ψ ) = HEE(Ψ ) when Ψ < λ
μ

(c) LNN(Ψ ) > HNN(Ψ ) and LEE(Ψ ) > HEE(Ψ ).

Proof By the monotonicity of c, we can write:

LNN = 1

μ
c(0) >

1

μ

1

λ/μ − 0

∫ λ
μ

0
c(u) du = LEE

Thus, the part (a) follows.
On the other hand:

HNN = 1

μ

1

Ψ − 0

∫ Ψ

0
c(u) du >

1

μ

1

λ/μ − Ψ

∫ λ
μ

Ψ

c(u) du = HEE.

Since the inequality is true both in case 0 < Ψ < λ
μ
and when Ψ > λ

μ
; in the degenerate

case whenΨ = λ
μ
the RHS reduces to 1

μ
c(Ψ ), which is obviously also smaller than the LHS.

The equalities in part (i) and part (ii) are direct consequences of the formulas for HNN, HNE

and HEE written before the lemma. Thus, the part (b) also follows.
Part (c) of the lemma also follows from the monotonicity of c, as:

LNN = 1

μ
c(0) >

1

μ

1

Ψ − 0

∫ Ψ

0
c(u)du = HNN

for Ψ > 0 and

LEE = 1

μ

1

λ/μ − 0

∫ λ
μ

0
c(u)du >

1

μ

1

λ/μ − Ψ

∫ λ
μ

Ψ

c(u)du = HEE.

�
Now we are ready to formulate the main result.

Theorem 5 For any Ψ ≥ 0 the game with partial information has a pure-strategy RNE.
Moreover:

(a) When γ > LNN(Ψ ) then all the players use policy EE in equilibrium;
(b) When LNN(Ψ ) ≥ γ ≥ LEE(Ψ ) and γ > HNN(Ψ ) then strategy profiles where all the

players use policy EE and where all the players use policy NE are equilibria;
(c) When HNN(Ψ ) ≥ γ ≥ max{LEE(Ψ ), HNE(Ψ )} then any strategy profile where all the

players use the same policy is an equilibrium;
(d) When HNE(Ψ ) > γ ≥ LEE(Ψ ) then strategy profiles where all the players use policy

EE and where all the players use policy NN are equilibria;
(e) When LEE(Ψ ) > γ > HNN(Ψ ) then all the players use policy NE in equilibrium;
(f) When min{LEE(Ψ ), HNN(Ψ )} ≥ γ ≥ HNE(Ψ ) then strategy profiles where all the

players use policy NE and where all the players use policy NN are equilibria;
(g) When min{LEE(Ψ ), HNE(Ψ )} > γ then all the players use policy NN in equilibrium.

Proof By Lemma 8 cases (a)–(f) cover all the possible situations in the game. Then each of
the cases follows directly from the definition of pure-strategy NE. �

The following information about how the functions Ls and Hs behave when Ψ changes
can be immediately derived from their definitions and the monotonicity of c.
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Lemma 9 For any s ∈ {EE,NE,NN}, Ls(Ψ ) is constant, while Hs(Ψ ) is non-increasing
in Ψ . Moreover:

(a) limΨ →0 HNN(Ψ ) = 1
μ
c(0),

(b) limΨ →0 HNE(Ψ ) = limΨ →0 HEE(Ψ ) = 1
λ

∫ λ
μ

0 c(u)du,

(c) limΨ →∞ HNN(Ψ ) = limΨ →∞ HNE(Ψ ) = limΨ →∞ HEE(Ψ ) = 1
μ
limu→∞ c(u).

Using this lemma, we can prove how the robust Nash equilibria depend on the value of
the threshold Ψ .

Theorem 6 Robust Nash equilibria in the game with partial information depend on Ψ in
the following way:

(a) If γ ≤ 1
μ
limu→∞ c(u) then all the players use strategy NN in the equilibrium, regardless

of Ψ .

(b) If γ ∈
(

1
μ
limu→∞ c(u), 1

λ

∫ λ
μ

0 c(u)du

)

then for Ψ small enough all the players use

policy NN in the equilibrium, while for Ψ approaching infinity all the players use policy
NE in the equilibrium.

(c) If γ ∈
[
1
λ

∫ λ
μ

0 c(u)du, 1
μ
c(0)

)

then for Ψ small enough there are three equilibria, in

which all the players use the same policy, which is any of EE, NE or NN policies, while
for Ψ approaching infinity either all the players use policy NE or all the players use
policy EE in equilibrium.

(d) If γ = 1
μ
c(0) then there are two equilibria regardless of Ψ , where all the players use

the same policy, which is either EE or NE.
(e) If γ > 1

μ
c(0) then all the players use strategy EE in the equilibrium, regardless of Ψ .

Proof (a) If γ ≤ 1
μ
limu→∞ c(u) then by Lemma 9 HEE is always bigger than γ . Conse-

quently, by Lemma 8 also HNE > γ and LEE > γ and thus by Theorem 5 all the players
use policy NN in the RNE.

(b) If γ ∈
(

1
μ
limu→∞ c(u), 1

λ

∫ λ
μ

0 c(u)du

)

then by Lemma 9 for Ψ small enough also

HNE(Ψ ) > γ . LEE(Ψ ) is independent of Ψ and always bigger than γ , then by Theorem
5 all the players apply policy NN in the RNE for such Ψ . On the other hand, if Ψ is big
enough, HNN(Ψ ) < γ . Since, as already mentioned, also LEE(Ψ ) > γ , by Theorem 5
the strategy profile where everybody plays NE is the only RNE for such Ψ .

(c) If γ ∈
[
1
λ

∫ λ
μ

0 c(u)du, 1
μ
c(0)

)

then HNE(0) ≤ γ and HNE(Ψ ) < γ for any bigger Ψ .

LEE is independent of Ψ and by assumption smaller than or equal to γ . So, as long as Ψ

satisfies HNN(Ψ ) > γ , Theorem 5 implies that profiles where everybody uses the same
strategy, which is any of EE, NE or NN are equilibria. But for Ψ close to 0, HNN(Ψ ) is
close to 1

μ
c(0) > γ . Next, if Ψ approaches infinity, LEE(Ψ ) ≤ γ < 1

μ
c(0) = LNN(Ψ )

and HNN(Ψ ) goes to 1
μ
limu→∞ c(u) < γ , thus for Ψ big enough we have two robust

Nash equilibria, where either all the players use policy NE or all use policy EE.
(d) If γ = 1

μ
c(0) then for any value ofΨ , both HNN and LEE are smaller than γ . On the other

hand, LNN ≡ γ and so by Theorem 5 for any Ψ there are two robust Nash equilibria,
where either all the players use policy NE or all use policy EE.

(e) If γ > 1
μ
c(0) then LNN is always smaller than γ , and thus the only RNE for any value

of Ψ is when everyone applies policy EE.
�
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Remark 4 Note that the limitswhenΨ is taken to infinity and zeromake the signal completely
uninformative on the state of the system. Thus, we can easily derive from Theorem 6 the
equilibria in our game when the queue is completely unobservable. It is enough to look at
the action prescribed to be taken above the threshold when Ψ → 0 or the one below the
threshold when Ψ → ∞. It turns out that in cases (a) and (b) uninformed players should not
enter the queue, in cases (d) and (e) they should enter the queue, while in case (e) there are
two equilibria where players either enter or do not enter the queue.

Roughly speaking, Theorem 6 suggests that by increasing Ψ we can increase the set of
global states for which the players would enter the queue. Since this will also affect the
stationary state of the queue, which, as we can see from Sect. 5, is crucial for the social
welfare, it seems that by a proper choice of Ψ we can make the social welfare very close to
its optimal value. We study the above idea in the perspective of social cost in Sect. 7 where
a hierarchy will be introduced in the game with the social planner choosing Ψ at the first
stage, and then the users playing the partial information game from the present section at the
second one.

7 Introducing Hierarchy to Boost the Performance of Equilibria

In this section, we assume that the game is played in two stages. In the first stage, the social
planner, having all the information about the game, including the actual value of x0, chooses
Ψ and announces it to the players. His goal is to minimize the social cost C(x0,π) by
appropriately limiting the data available to the players. On the second stage, the users play
the game considered in Sect. 6 using all the information they have, which only consists of the
announced value of Ψ , assuming that the state of the queue when they decide about entering
is the worst possible. We will analyze what are the equilibria of this game and further show
that the Price of Anarchy and the Price of Stability in this model are the same as in the full
information case.

We first study how equilibria in the hierarchical model will look like. Toward this end, we
consider the pessimistic and the optimistic case. In the pessimistic setting, the social planner
choosesΨ in order tominimizemaxπ∈NE C(x0,π), so he assumes that whenever the players
choose their strategies, they choose the equilibrium which yields the highest social cost. In
the optimistic case, the social planner chooses Ψ minimizing minπ∈NE C(x0,π), assuming
that the players choose the equilibriumwhich yields the lowest social cost.NE above denotes
the set of Nash equilibria of the game of the second stage. The result is summarized in the
following theorem:

Theorem 7 In the hierarchical model:

(a) If γ ≤ 1
μ
limu→∞ c(u) then the social planer chooses any Ψ , with all the players using

strategy NN in the equilibrium.

(b) If γ ∈
(
1
μ
limu→∞ c(u), 1

μ
c
(

λ
μ

))
then the social planner chooses any Ψ < Θ and all

the players use policy NN in the equilibrium.

(c) If γ ∈
(

1
μ
c
(

λ
μ

)
, 1

λ

∫ λ
μ

0 c(u)du

)

then the social planner chooses Ψ = Θ with all the

players using policy NE in the equilibrium.
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(d) If γ ∈
[
1
λ

∫ λ
μ

0 c(u)du, 1
μ
c(0)

)

then in pessimistic case the social planner chooses Ψ =
Θ and all the players use policy NE in equilibrium; in the optimistic case, the social
planner chooses any Ψ and all the players use policy EE in equilibrium.

(e) If γ = 1
μ
c(0) then in the optimistic case the social planner chooses any Ψ , while all the

players use strategy EE in equilibrium; in pessimistic case, the social planner chooses
Ψ = 0 and all the players use strategy7 EE or NE in the equilibrium.

(f) If γ > 1
μ
c(0) then the social planner chooses any Ψ with all the players using strategy

EE in the equilibrium.

Proof In cases (a) and (b) the social plannerwants the players never to enter the queue. In case
(a) never entering the queue is the equilibrium, regardless of Ψ . In case (b) forcing players
to use NN policies requires choosing threshold Ψ such that HNE(Ψ ) > γ . If we compare the

definition of HNE with (8), we obtain that Ψ < Θ , as for γ < 1
μ
c
(

λ
μ

)
, HNE(Ψ ) can only

obtain the γ value for Ψ > λ
μ
.

In cases (c)–(f) the social optimum is achieved if players always enter the queue. Thus
the social planner forces the players to use EE policies if possible ((f), optimistic scenarios
in (d) and (e)). In all of these cases, this means choosing any value of threshold Ψ , as EE
policies are in equilibrium then regardless of Ψ . If forcing the players to use EE policies is
impossible, the social planner chooses the lowest possible Ψ such that the players would use
NE, and not NN policies in equilibrium. In pessimistic scenario of case (e), players do not
use policy NN for any value of Ψ , so this means choosing Ψ = 0. In case (c) this means the

smallest Ψ such that HNE(Ψ ) = γ , which for γ ∈
(

1
μ
c
(

λ
μ

)
, 1

λ

∫ λ
μ

0 c(u) du

)

equals Θ (in

such a case HNE(Ψ ) obtains the γ value both for Ψ < λ
μ
and Ψ > λ

μ
). In the pessimistic

variant of case (d), this means choosing Ψ such that HNN(Ψ ) = γ , which, by the definition
of HNN and (8) is equivalent to Ψ = Θ . �
Remark 5 Note that in Theorem 7 we did not consider the case of γ = 1

μ
c
(

λ
μ

)
. This is

because in this case the social cost of any policy (used by all the players) equals 0. Thus the
social planner may choose any value of Ψ . This, however, may result in different equilibria
in the game of the second stage.

We further analyze how this result affects Price of Anarchy and Price of Stability in our
model. Both these quantities are computed ex post, that is, we assume that all the users have
their knowledge about the state of the queue limited when they make their decisions, but
PoA and PoS are computed when all the state information is revealed. This allows us to
compare the results obtained in the hierarchical model with the ones obtained for the full
information case. The result presented below is an immediate consequence of Theorem 7
and thus presented without proof.

Theorem 8 In hierarchical model:

1. The Price of Stability is infinite if γ ∈
(

1
μ
c
(

λ
μ

)
, 1

λ

∫ λ
μ

0 c(u)du

)

and x0 < Θ . Otherwise

it equals 1.

2. The Price of Anarchy is infinite if γ ∈
(

1
μ
c
(

λ
μ

)
, 1

λ

∫ λ
μ

0 c(u)du

)

or if γ ∈
[
1
λ

∫ λ
μ

0 c(u)du, 1
μ
c(0)

)

and x0 < Θ . Otherwise it equals 1.

7 For Ψ = 0 they are equivalent.
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As we can see from Theorem 8, when only information available for the players is an
indicator of state being above or below Ψ , then both PoA and PoS stay the same as in the
model with full information. Thus we can claim that we can reduce the information given to
the players without degrading the performance. On the other hand, we cannot improve it by
choosing only an appropriate signal to send.

8 Approximation of the Discrete Model

In the section below, we present a result which joins the equilibria of the fluid model with
ε-equilibria of the discrete model when the incoming rate is sufficiently high. To formulate
it, we need to introduce some additional notation, differentiating between the discrete and
the fluid model. Let us start with fixing that the function c and parameters λ and μ define
the fluid model, whose state will be denoted by Xt . Then let Mn be a discrete model with
service cost cn(x) = c

( x
n

)
, incoming rate λn = nλ and service rate μ. The state in model

Mn will be denoted by Xn
t , while

X̃n
t := 1

n
Xn
t

will be its normalized state. Using this notation, we can formulate the main result of this
section and its proof.

Theorem 9 Suppose that the initial (normalized) state of the queue x0 ∈ [0, xmax] for some
fixed xmax and that the user k plays against [Θ, q]-threshold policies of all the others (denoted
shortly as π policies) in the fluid model with service cost c, incoming rate λ and service rate
μ. Then for any ε > 0 there exists an N such that for any n ≥ N his expected cost from
entering the queue in the discrete model Mn,

E
[
Cn
k (Xn

t (π
n))

] = E

[∫ tk+σk

tk
cn(Xn

t (π
n))dt

]

− γ,

where πn denotes a [nΘ, q]-threshold policy (which is a proper rescaling of policy π to fit
Mn), differs from the expected cost E [Ck(Xt (π))] in the fluid model by at most ε.

Proof Let us consider two policies for the discrete model Mn :

πβ,n(x) =

⎧
⎪⎨

⎪⎩

0, when x < n(Θ − β)

x−n(Θ−β)
nβ , when x ∈ [n(Θ − β), nΘ]

1, when x > nΘ

and

πβ,n(x) =

⎧
⎪⎨

⎪⎩

0, when x < nΘ

x−nΘ
nβ , when x ∈ [nΘ, n(Θ + β)]

1, when x > n(Θ + β)

.

They are rescalings of the following policies for the fluid model:

πβ(x) =

⎧
⎪⎨

⎪⎩

0, when x < Θ − β

x−Θ+β
β

, when x ∈ [Θ − β,Θ]
1, when x > Θ

.
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and

πβ(x) =

⎧
⎪⎨

⎪⎩

0, when x < Θ

x−Θ
β

, when x ∈ [Θ,Θ + β]
1, when x > Θ + β

.

These policies differ from [Θ, q]-threshold policy π only on sets (Θ −β,Θ) or (Θ,Θ +β),
respectively. Next, consider Eq. (3) when all the players apply policy πβ . It can be directly
computed that the solution Xt (π

β) has the following properties:

1. Xt (π
β) → Xt (π) pointwise as β → 0.

2. Whenever Xt (π
β) /∈ (Θ − β,Θ), it is of the form Xt (π

β) = D1e−μt + D2 for some

constants D1, D2 with |D1| ≤ max
{
x0, λ

μ

}
≤ max

{
xmax,

λ
μ

}
.

3. When Xt (π
β) ∈ (Θ − β,Θ), it satisfies equation

.

Xt (π
β) =

(
Xt (π

β) − Θ + β

β

)

λ − μXt (π
β),∀t ≥ 0

and consequently
∣
∣
∣

.

Xt (π
β)

∣
∣
∣ ≤ max

x∈(Θ−β,Θ)

∣
∣
∣
∣
x − Θ + β

β
λ − μx

∣
∣
∣
∣ ≤ λ + μΘ.

Properties (ii) and (iii) clearly imply that Xt (π
β) is Lipschitz-continuous with constant

max
{
xmax,

λ
μ
,λ + μΘ

}
, independent of β. Thus all the functions Xt (π

β) are equicontinu-

ous (as functions of t).
Next, we can find Tε such that

E [σk | σk > Tε]P[σk > Tε] <
ε

8c(0)
. (10)

Clearly, as Xt (π
β) are equicontinuous and converging to Xt (π), by the Arzelà-Ascoli the-

orem Xt (π
β) converges to Xt (π) uniformly on interval [0, Tε]. On the other hand, c is

continuous, decreasing and bounded, and thus it is uniformly continuous, which means that
there exists a δ > 0 such that for any x, y such that |x − y| < δ we have |c(x)− c(y)| < ε

8Tε
.

Using uniform convergence of Xt (π
β), we can further conclude that there exists a β > 0

such that
sup

t∈[0,Tε]
∣
∣c(Xt (π

β)) − c(Xt (π))
∣
∣ <

ε

8Tε

. (11)

Now note that by the Kurtz theorem (see Theorem 5.3 in [15]),

P[ sup
0≤t≤Tε

|X̃n
t (π

β,n) − Xt (π
β)| ≥ δ] ≤ De−nF(δ)

for some positive constant D and a function F satisfying limη↘0
F(η)

η2
∈ (0,∞). By this last

property, the probability bounded above converges to zero as n goes to infinity at rate of e−n ,
so for n large enough this probability is not bigger than ε

8Tεc(0)
.

Next, using uniform continuity of c we can write:

|X̃n
t (π

β,n) − Xt (π
β)| < δ �⇒ |c(X̃n

t (π
β,n)) − c(Xt (π

β))| <
ε

8Tε

�⇒ |cn(Xn
t (π

β,n
k )) − c(Xt (π

β
k ))| <

ε

8Tε

. (12)
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Finally, we can write
∣
∣E

[
Cn
k (Xn

t (π
β,n))

] − E [Ck(Xt (π))]
∣
∣ (13)

≤ E

[∫ Tε

0

∣
∣cn(Xn

t (π
β,n)) − c(Xt (π))

∣
∣ dt

]

+ c(0)E [σk | σk > Tε]P[σk > Tε]

≤
∫ Tε

0

∣
∣c(Xt (π

β)) − c(Xt (π))
∣
∣ dt + E

[∫ Tε

0

∣
∣cn(Xn

t (π
β,n)) − c(Xt (π

β))
∣
∣ dt

]

+ c(0)E [σk | σk > Tε]P[σk > Tε] (14)

≤ Tε sup
t≤Tε

∣
∣c(Xt (π

β)) − c(Xt (π))
∣
∣ + Tε sup

t :|X̃n
t (πβ,n)−Xt (π

β)|<δ

∣
∣cn(Xn

t (π
β,n)) − c(Xt (π

β))
∣
∣

+ c(0)TεP[ sup
0≤t≤Tε

|X̃n
t (π

β,n) − Xt (π
β)| ≥ δ] + c(0)E [σk | σk > Tε]P[σk > Tε]

< Tε

ε

8Tε

+ ε

8Tε

+ c(0)Tε

ε

8Tεc(0)
+ c(0)

ε

8c(0)
= ε

2
, (15)

where the last inequality is a consequence of (10), (11), (12) and the bound on the probability
that X̃n

t (π
β,n) and Xt (π

β) differ by more than δ (recall that c(0) is the biggest value of c)
Nowwe can repeat all the above considerations for policiesπβ andπβ,n , obtaining similiar

inequality
∣
∣E

[
Cn
k (Xn

t (π
β,n))

] − E [Ck(Xt (π))]
∣
∣ <

ε

2
. (16)

To complete the proof, note that Xn
t (π

β,n), Xn
t (π) and Xn

t (π
β,n) are birth–death processes

starting at the same x0, with the same death rate, but with increasing birth rates. As a con-
sequence Xn

t (π
β,n) is for any t ≥ 0 stochastically dominated by Xn

t (π), which in turn is
stochastically dominated by Xn

t (π
β,n). This, however, implies that

E

[∫ tk+σk

tk
cn(Xn

t (π
β,n))dt

]

≥ E

[∫ tk+σk

tk
cn(Xn

t (π
n))dt

]

≥ E

[∫ tk+σk

tk
cn(Xn

t (π
β,n))dt

]

,

which is equivalent to

E
[
Cn
k (Xn

t (π
β,n))

] ≥ E
[
Cn
k (Xn

t (π
n))

] ≥ E
[
Cn
k (Xn

t (π
β,n))

]
.

But this, together with (15) and (16), implies the thesis of the theorem. �
Using Theorem 9, we can immediately show that all the results proved for the mean-field

model can be viewed as good approximations of what happens in the discrete case when
service rates go to infinity. This is formulated in three corollaries below.

Corollary 3 Suppose that the initial (normalized) state of the queue x0 ∈ [0, xmax] for some
fixed xmax and that [Θ, q]-threshold policies of all the players form an equilibrium in the
fluid model with service cost c, incoming rate λ and service rateμ. Than for any ε > 0, there
exists an N such that for any n ≥ N [nΘ, q]-threshold policies form ε-equilibria in discrete
models Mn.

Corollary 4 Suppose that for someΨ ≥ 0, f policies of all the players (where f is of one of
three types: EE, NE, NN) form a RNE in the partial information fluid model with service cost
c, incoming rate λ and service rate μ. Than for any ε > 0, there exists an N such that for
any n ≥ N f policies form ε-robust Nash equilibria in the partial information counterparts
of discrete models Mn.
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Corollary 5 Suppose that Ψ and f policies of all the players (where f is of one of three
types: EE, NE, NN) form an equilibrium in the hierarchical partial information fluid model
with service cost c, incoming rate λ and service rate μ. Than for any ε > 0, there exists
an N such that for any n ≥ N nΨ and f policies for all the players form ε-equilibria in
hierarchical partial information counterparts of discrete models Mn.

9 Numerical Analysis

Here, we numerically evaluate NE strategy profile in complete and partial information setting
for some special class of cost functions c(·). We consider the following cost function

c(u) = 1

a + u
(17)

where a > 0. It is easy to discern that c(·) is strictly decreasing with u.

To avoid cumbersomeness, henceforth we denote
λ

μ
as ρ.

From (8), Θ̄ is the solution of the following equation

1

λ − Θ̄μ

∫ ρ

Θ̄

c(u)du = γ

1

λ − Θ̄μ
log

(
a + ρ

a + Θ̄

)

= γ

a + ρ = (a + Θ̄) exp(γμ(ρ − Θ̄))

which gives

Θ̄ = −LambertW(−γμ(a + ρ)e−γμ(a+ρ)) + γμa

γμ
(18)

Since from (18), the minimum value of the argument of LambertW function can be −e−1,
Θ̄ is always real valued.

Again from (8) Θ is the solution of the following equation

1

Θ

∫ Θ

0
c(u)du = γ

1

Θμ
log

(
a + Θ

a

)

= γ

In order to solve the above equation, we use the Matlab function fsolve.
Throughout this section we consider a = 0.2, λ = 5, μ = 10 for all simulations. Thus,

ρ = 0.5. Also, note that

1

λ

∫ ρ

0
c(u)du = 1

λ
log

(
a + ρ

a

)

= 0.2503 (19)

9.1 Complete Information Game

In this section, we numerically analyze the setting when each player has complete informa-
tion of the game. First, we numerically evaluate all the possible NE strategy profiles using
Theorem 1
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Fig. 1 Variation of Θ and lower threshold value with γ

1. γ ≥ 1

aμ
= 0.5, then Θ = 0 and q = 1. Thus, players will always enter the queue.

2. γ ∈ [0.2503, 0.5), then there are infinitely many equilibria which are of the following
types:

(a) Θ ∈ [0,Θ], q = 0.
(b) Θ ∈ [0,Θ], q = 1.

(c) Θ = 1 − aμγ

μγ
, q = 1 − aμγ

λγ
.

3. γ ∈ (0, 0.2503), then there are infinitely many equilibria, which are of the following
types:

(a) If Θ̄ < ρ (which occurs when γ >
1

7
) then there are five types of equilibria:

– Θ = Θ̄, q >
Θ̄

ρ

– Θ = 1 − aμγ

μγ
, q = 1 − aμγ

λγ
– Θ, q ∈ [0, 1]
– Θ ∈ [Θ̄, ρ], q = 0.
– Θ ∈ [Θ̄, ρ], q = 1.

(b) If Θ̄ = ρ (which occurs when γ = 1

7
), then either Θ = Θ̄ and q ∈ {0, 1} or Θ and

q ∈ [0, 1]8
(c) If Θ̄ > ρ (which occurs when γ <

1

7
), then either Θ = Θ, q ∈ [0, 1] or Θ = ρ and

q = 0.

Figure 1 shows the variation of Θ and the lowest possible threshold value of NE strategy
profile with γ . From the above characterization of NE, it is easy to discern that the lower
threshold value is max{min{Θ̄, ρ}, 0}, i.e., there is no NE with the threshold value lower
than the above value. The upper threshold is always given by Θ , i.e., there is no NE with the

8 In this case Θ = 1.4966



564 Dyn Games Appl (2016) 6:538–566

Fig. 2 Variation of optimal social cost and the best-case social cost with γ for complete information game

Fig. 3 Variation of optimal social cost and the worst possible social cost at equilibrium with γ for complete
information game

threshold value higher than Θ . Note that lower threshold value goes to 0 at γ = 0.2503 and
the upper threshold value goes to 0 at γ = 0.5.

For the rest of simulation results, we consider x0 = 0.2. First, it is important to note that
under our setting, if a user incurs a positive cost when entering the queue, then it does not
enter the queue in any equilibrium. Thus, the social optimal cost as well as the equilibrium
cost can never be positive.

Note that c(ρ) = γμ when γ = 1

7
. Figure 2 shows the variation of optimal social

cost and the highest possible social cost at an equilibrium with γ . Optimal social cost is

zero when γ ≤ 1

7
. But when γ >

1

7
the optimal cost increases linearly as it is evident by

Theorem 2. From (18)we obtain that when γ ≤ 0.1865, then Θ̄ ≥ 0.2 andwhen γ > 0.1865,
then Θ̄ < 0.2. Thus, when γ < 0.1865 social cost under the best equilibrium is zero by
Theorem 4. But when γ ≥ 0.1865 the social cost under the best equilibrium is exactly the
same as optimal social cost.
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Figure 3 shows the variation of optimal social cost and worst-case social cost with γ .
Note that when γ ≥ 0.3466, then Θ ≥ 0.2 and when γ < 0.3466, then Θ < 0.2. Thus,
when γ ≤ 0.3466 the worst-case social cost is 0 by Theorem 3. On the other hand when
γ > 0.3466 the worst-case social cost is exactly the same as optimal social cost.

9.2 Partial Information Game

Note from Theorems 4, 3 and 8 that the performance in the best- and worst-case scenario
for the partial information case is the same as the full information case. Thus, the numerical
results for the full information case will go through this setting.

10 Conclusions

We studied in this paper a congestion game in a fluid queueing network in which customers
benefit from congestion, i.e., the cost per customer decreases with the congestion.We showed
that this could lead to a large number of symmetric equilibria, all of which with a reverse
threshold behavior: Customers get in if and only if the number of queued customers exceeds
the threshold. We computed perfect equilibria to this game and the social optimum. Further,
we considered a model where the information provided to the players is limited to an indi-
cation of whether the state of the queue is above or below some threshold. It turned out that
appropriate limitation of the information obtained by the players can draw the outcome of
the game toward the social optimum. Finally, we showed that one can use the equilibria poli-
cies in the fluid queue to approximate equilibria for discrete queues and provided numerical
examples.
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