Skip to main content
Log in

Zero-Sum Pursuit-Evasion Differential Games with Many Objects: Survey of Publications

  • Published:
Dynamic Games and Applications Aims and scope Submit manuscript

An Erratum to this article was published on 14 December 2016

This article has been updated

Abstract

If a pursuit game with many persons can be formalized in the framework of zero-sum differential games, then general methods can be applied to solve it. But difficulties arise connected with very high dimension of the phase vector when there are too many objects. Just due to this problem, special formulations and methods have been elaborated for conflict interaction of groups of objects. This paper is a survey of publications and results on group pursuit games.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 14 December 2016

    An erratum to this article has been published.

References

  1. Abramyants TG, Ivanov MN, Maslov EP, Yakhno VP (2004) A detection evasion problem. Autom Rem Control 65(10):1523–1530

    Article  MATH  Google Scholar 

  2. Abramyants TG, Maslov EP, Rubinovich EY (1980) An elementary differential game of alternative pursuit. Autom Rem Control 40(8):1043–1052

    MATH  Google Scholar 

  3. Abramyants TG, Maslov EP, Yakhno VP (2007) Evasion from detection in the three-dimensional space. J Comput Syst Sci Int 46(5):675–680

    Article  MathSciNet  MATH  Google Scholar 

  4. Bakolas E, Tsiotras P (2010) On the relay pursuit of a maneuvering target by a group of pursuers. In: 50th IEEE conference on decision and control and European control conference (CDC-ECC’2011). IEEE, pp 7431–7436

  5. Bakolas E, Tsiotras P (2011) Optimal pursuit of moving targets using dynamic Voronoi diagrams. In: 49th IEEE conference on decision and control (CDC’2010). IEEE, pp 4270–4275

  6. Bardi M, Falcone M, Soravia P (1999) Numerical methods for pursuit-evasion games via viscosity solutions. In: Bardi M, Parthasaraty T, Raghavan TES (eds) Annals of the international society of dynamic games, vol 4. Birkhauser, Boston, pp 105–175

    Google Scholar 

  7. Blagodatskih AI, Petrov NN (2009) Conflict interaction controlled objects groups. Udmurt State University, Izhevsk (in Russian)

    Google Scholar 

  8. Blagodatskikh AI (2008) Group pursuit in Pontryagin’s nonstationary example. Differ Equ 44(1):40–46

    Article  MathSciNet  MATH  Google Scholar 

  9. Botkin ND, Hoffmann KH, Turova VL (2011) Stable numerical schemes for solving Hamilton–Jacobi–Bellman–Isaacs equations. SIAM J Sci Comput 33(2):992–1007

    Article  MathSciNet  MATH  Google Scholar 

  10. Botkin ND, Ryazantseva EA (1992) Algorithm of constructing the solvability set for linear differential games of high dimension. Trudy Inst Mat i Mekh 2:128–134 (in Russian)

    MATH  Google Scholar 

  11. Breakwell JV, Hagedorn P (1979) Point capture of two evaders in succession. JOTA 27(1):89–97

    Article  MathSciNet  MATH  Google Scholar 

  12. Bryson AE, Ho YC (1975) Applied optimal control. Optimization, estimation and control. Hemisphere Publishing Corporation, Washington, DC

    Google Scholar 

  13. Chen M, Fisac J, Sastry S, Tomlin C (2015) Safe sequential path planning of multi-vehicle systems via double-obstacle Hamilton–Jacobi–Isaacs variational inequality. In: Proceedings of the 14th European control conference, pp 3304–3309

  14. Chernous’ko FL (1976) A problem of evasion from many pursuers. J Appl Math Mech 40(1):11–20

    Article  MathSciNet  MATH  Google Scholar 

  15. Chikrii AA (1978) On the evasion problem in a linear differential game. Autom Rem Control 38(9):1291–1295

    Google Scholar 

  16. Chikrii AA (1992) Conflict controlled processes. Naukova dumka, Kiev (in Russian)

    MATH  Google Scholar 

  17. Chikrii AA (1997) Conflict-controlled processes, mathematics and its applications, vol 405. Kluwer, Dordrecht

    Book  MATH  Google Scholar 

  18. Dvurechensky PE, Ivanov GE (2014) Algorithms for computing Minkowski operators and their application in differential games. Comput Math Math Phys 54(2):235–264

    Article  MathSciNet  MATH  Google Scholar 

  19. Fisac JF, Sastry S (2015) The pursuit-evasion-defense differential game in dynamic constrained environments. In: Proceedings of the IEEE 54th annual conference on decision and control (CDC), pp 4549–4556

  20. Ganebny SA, Kumkov SS, Le Ménec S, Patsko VS (2012) Model problem in a line with two pursuers and one evader. Dyn Games Appl 2:228–257

    Article  MathSciNet  MATH  Google Scholar 

  21. Grigorenko NL (1989) On a quasilinear problem of pursuit by several objects. Sov Math Dokl 20:1365–1368

    MATH  Google Scholar 

  22. Grigorenko NL (1989) The pursuit problem in \(n\)-person differential games. Math USSR-Sb 63(1):35–45

    Article  MATH  Google Scholar 

  23. Grigorenko NL (1990) Mathematical methods of control of multiple dynamic processes. Moscow State University, Moscow (in Russian)

    Google Scholar 

  24. Grigorenko NL, Kiselev YN, Lagunova NV, Silin DB, Trin’ko NG (1996) Solution methods for differential games. Comput Math Model 7(1):101–116

    Article  MathSciNet  MATH  Google Scholar 

  25. Hagedorn P, Breakwell JV (1976) A differential game with two pursuers and one evader. JOTA 18(1):15–29

    Article  MathSciNet  MATH  Google Scholar 

  26. Isaacs R (1965) Differential games. Wiley, New York

    MATH  Google Scholar 

  27. Krasovskii NN, Subbotin AI (1974) Positional differential games. Nauka, Moscow (in Russian)

    MATH  Google Scholar 

  28. Krasovskii NN, Subbotin AI (1988) Game-theoretical control problems. Springer, New York

    Book  Google Scholar 

  29. Kumkov SS, Le Ménec S, Patsko VS (2013) Model formulation of pursuit problem with two pursuers and one evader. In: Advances in aerospace guidance, navigation and control. Springer, Berlin, Heidelberg, pp 121–137

  30. Kumkov SS, Le Ménec S, Patsko VS (2014) Level sets of the value function in differential games with two pursuers and one evader. Interval analysis interpretation. Math Comput Sci 8:443–454

    Article  MathSciNet  MATH  Google Scholar 

  31. Kumkov SS, Patsko VS (2001) Construction of singular surfaces in linear differential games. In: Altman E, Pourtallier O (eds) Annals of the international society of dynamic games: advances in dynamic games and applications, vol 6. Birkhauser, Boston, pp 185–202

    Chapter  Google Scholar 

  32. Kumkov SS, Patsko VS, Shinar J (2005) On level sets with “narrow” throats in linear differential games. IGTR 7(3):285–312

    MathSciNet  MATH  Google Scholar 

  33. Kurzhanski AB (2015) On a team control problem under obstacles. Proc Steklov Inst Math 291:128–142

    Article  Google Scholar 

  34. Kurzhanski AB (2016) Problem of collision avoidance for a team motion with obstacles. Proc Steklov Inst Math 293:120–136

    Article  MATH  Google Scholar 

  35. Levchenkov AY, Pashkov AG (1990) Differential game of optimal approach of two inertial pursuers to a noninertial evader. JOTA 65(3):501–518

    Article  MathSciNet  MATH  Google Scholar 

  36. Le Ménec S (2011) Linear differential game with two pursuers and one evader. In: Breton M, Szajowski K (eds) Annals of the international society of dynamic games, vol 11. Birkhauser, Boston, pp 209–226

    Chapter  Google Scholar 

  37. Mikhalev DK, Ushakov VN (2007) Two algorithms for approximate construction of the set of positional absorption in the game problem of pursuit. Autom Rem Control 68(11):2056–2070

    Article  MATH  Google Scholar 

  38. Mishchenko EF, Nikol’skii MS, Satimov NY (1980) The problem of avoiding encounter in \(n\)-person differential games. Proc Steklov Inst Math 143:111–136

    MATH  Google Scholar 

  39. Nikol’skii MS (1983) On the alternating integral of Pontryagin. Sb Math 44(1):125–132

    Article  Google Scholar 

  40. Pashkov AG, Terekhov SD (1987) A differential game of approach with two pursuers and one evader. JOTA 55(2):303–311

    Article  MathSciNet  MATH  Google Scholar 

  41. Patsko VS, Turova VL (2001) Level sets of the value function in differential games with the homicidal chauffeur dynamics. IGTR 3(1):67–112

    MathSciNet  MATH  Google Scholar 

  42. Petrosjan LA (1965) A family of differential survival games in the space \(R^{n}\). Sov Math Dokl 6:377–380

    Google Scholar 

  43. Petrosyan LA (1966) The multi-person lifeline games of pursuit. Proc Armen Acad Sci Ser Math 1:331–340 (in Russian)

    Google Scholar 

  44. Petrosyan LA (1977) Differential games of pursuit. Leningrad State University, Leningrad (in Russian)

    MATH  Google Scholar 

  45. Petrosyan LA (1993) Differential games of pursuit. World Scientific Publisher, London

    Book  MATH  Google Scholar 

  46. Petrosyan LA, Dutkevich YG (1972) Games with a “lifeline”. The case of \(l\)-capture. SIAM J Control 10(1):40–47

    Article  MathSciNet  MATH  Google Scholar 

  47. Petrov NN (1988) A group pursuit problem with phase constraints. J Appl Math Mech 52(6):803–806

    Article  MathSciNet  MATH  Google Scholar 

  48. Petrov NN, Shuravina IN (2009) On the “soft” capture in one group pursuit problem. J Comput Syst Sci Int 48(4):521–526

    Article  MathSciNet  MATH  Google Scholar 

  49. Pittsyk MV, Chikrii AA (1982) On a group pursuit problem. J Appl Math Mech 46(5):584–589

    Article  MathSciNet  MATH  Google Scholar 

  50. Polovinkin ES, Ivanov GE, Balashov MV, Konstantiov RV, Khorev AV (2001) An algorithm for the numerical solution of linear differential games. Sb Math 192(10):1515–1542

    Article  MathSciNet  MATH  Google Scholar 

  51. Pontryagin LS (1967) Linear differential games, 1. Sov Math Dokl 8:769–771

    MATH  Google Scholar 

  52. Pontryagin LS (1967) Linear differential games, 2. Sov Math Dokl 8:910–912

    MATH  Google Scholar 

  53. Pontryagin LS (1971) A linear differential evasion game. Proc Steklov Inst Math 112:27–60

    MathSciNet  MATH  Google Scholar 

  54. Pontryagin LS (1981) An algorithm for the numerical solution of linear differential games. Math USSR-Sb 40(3):285–303

    Article  MATH  Google Scholar 

  55. Pontryagin LS, Mishchenko EF (1969) A problem on the escape of one controlled object from another. Sov Math Dokl 10:1488–1490

    MATH  Google Scholar 

  56. Pschenichnyi BN (1976) Simple pursuit by several objects. Cybern Syst Anal 12(3):484–485

    MathSciNet  Google Scholar 

  57. Pschenichnyi BN, Chikrii AA, Rappoport IS (1981) An efficient method of solving differential games with many pursuers. Sov Math Dokl 23(1):104–109

    Google Scholar 

  58. Pschenichnyi BN, Sagaidak MI (1970) Differential games of prescribed duration. Cybernetics 6(2):72–80

    Article  Google Scholar 

  59. Rappoport IS, Chikrii AA (1997) Guaranteed result in a differential game of group pursuit with terminal payoff function. J Appl Math Mech 61(4):567–576

    Article  MathSciNet  Google Scholar 

  60. Shevchenko II (1997) Successive pursuit with a bounded detection domain. JOTA 95(1):25–48

    Article  MathSciNet  MATH  Google Scholar 

  61. Shima T (2005) Capture conditions in a pursuit-evasion game between players with biproper dynamics. JOTA 126(3):503–528

    Article  MathSciNet  MATH  Google Scholar 

  62. Shima T, Shinar J (2002) Time-varying linear pursuit-evasion game models with bounded controls. J Guid Control Dyn 25(3):425–432

    Article  Google Scholar 

  63. Shinar J, Glizer VY, Turetsky V (2013) The effect of pursuer dynamics on the value of linear pursuit-evasion games with bounded controls. In: Krivan V, Zaccour G (eds) Annals of the international society of dynamic games, vol 13. Birkhauser, Boston, pp 313–350

    Chapter  Google Scholar 

  64. Shinar J, Medinah M, Biton M (1984) Singular surfaces in a linear pursuit-evasion game with elliptical vectograms. JOTA 43(3):431–456

    Article  MathSciNet  MATH  Google Scholar 

  65. Stipanović DM, Tomlin C, Leitmann G (2012) Monotone approximations of minimum and maximum functions and multi-objective problems. Appl Math Opt 66(3):455–473

    Article  MathSciNet  MATH  Google Scholar 

  66. Subbotin AI (1995) Generalized solutions of first order PDEs. The dynamical optimization perspective. Birkhäuser, Boston

    Book  MATH  Google Scholar 

  67. Subbotin AI, Patsko VS (eds) (1984) Algorithms and programs for solving linear differential games. Institute of Mathematics and Mechanics, Ural Scientific Center, Academy of Sciences of USSR, Sverdlovsk (in Russian)

  68. Taras’ev AM, Ushakov VN, Khripunov AP (1988) On a computational algorithm for solving game control problems. J Appl Math Mech 51(2):167–172

    Article  MathSciNet  MATH  Google Scholar 

  69. Ushakov VN (1981) On the problem of constructing stable bridges in a differential pursuit-evasion game. Eng Cybern 18(4):16–23

    Google Scholar 

  70. Zarkh MA, Ivanov AG (1992) Construction of the value function in the linear differential game with the fixed terminal time. Trudy Inst Mat i Mekh 2:140–155 (in Russian)

    MATH  Google Scholar 

  71. Zarkh MA, Patsko VS (1988) Numerical solution of a third-order directed game. Eng Cybern 26(4):92–99

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by Russian Foundation for Basic Research, Project No. 15-01-07909.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey S. Kumkov.

Additional information

An erratum to this article is available at https://doi.org/10.1007/s13235-016-0210-6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumkov, S.S., Le Ménec, S. & Patsko, V.S. Zero-Sum Pursuit-Evasion Differential Games with Many Objects: Survey of Publications. Dyn Games Appl 7, 609–633 (2017). https://doi.org/10.1007/s13235-016-0209-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13235-016-0209-z

Keywords

Navigation