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Abstract

We propose a signed network formation game, in which pairs of individuals strategically
change the signs of the edges in a complete network. These individuals are members of a
social network who strategically reduce cognitive dissonances by changing their interpersonal
appraisals. We characterize the best-response dynamics for this game and prove that its imple-
mentation can dynamically drive the network to a sociologically meaningful sign configuration
called clustering balance. In this configuration, agents in the social network form one or more
clusters that have positive relationships among their members but negative relationships among
members of other clusters. In the past, various researchers in the fields of psycho-sociology,
political science, and physics have looked at models that explain the generation of up to two
clusters. Our work contributes to these fields by proposing a simple model that generates a
broader class of signed networks.

1 Introduction

1.1 Problem description

Signed graphs or networks offer a natural representation of social systems involving friendly and
antagonistic relationships between their members. These relationships can be interpreted as inter-
personal appraisals. In the social sciences literature, there have been several specific sign configura-
tions that have been deemed important in a social network, including for example structural balance,
clustering balance, ranked clusters of M-cliques model and transitivity model (Johnsen, 1989). Any
of these configurations represents a particular notion of a social balance structure. Whenever the
social network is undirected, i.e., the positive or negative relationships among individuals are re-
ciprocal, all notions of social balance reduce to structural balance or clustering balance. Consider a
complete social network, i.e., one in which all individuals know each other. Historically, structural
balance is the first notion that has been formulated in the seminal work by Heider (Heider, 1944,
1946). It characterizes the stable configurations of signs in a social network according to four rules
known as “Heider’s rules” that eradicate cognitive dissonances among the appraisals of its mem-
bers. As a result, in the structure of the network, one or two antagonistic clusters of individuals
can appear in the social network. Each member of a cluster has positive ties with every other
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member of the same cluster and negative ties to individuals outside it. After Heider’s work, Davis
introduced the concept of clustering balance in his seminal work (Davis, 1967), which admits any
arbitrary number of clusters. Obviously, the largest number of clusters a network can have is the
number of agents in the social network.

Heider’s rules provide a distinction between these two notions of social balance. Structural
balance satisfies all four rules: 1)“the friend of my friend is my friend”, 2)“the enemy of my friend
is my enemy”, 3)“the friend of my enemy is my enemy”, 4)“the enemy of my enemy is my friend”.
As a consequence, all triads in the network (a triad is a cycle of three nodes) are positive, i.e., the
product of their edges are positive. In contrast, clustering balance satisfies all rules but the fourth
one. As a consequence, the network admits positive triads and triads with three negative edges.

Since the last decade, researchers have started to incorporate dynamic models into the struc-
tural balance theory (Zheng et al., 2015), aiming to explain how a network can change its sign
configuration so that the network eventually satisfies structural balance. For the interested reader,
we refer to the works (Ku lakowski et al., 2005; Marvel et al., 2011; Traag et al., 2013; Jia et al.,
2016; Mei et al., 2017; Cisneros-Velarde et al., 2019) for models based on both discrete and continu-
ous time (deterministic) dynamical systems with real-valued appraisals, to the works (Antal et al.,
2005, 2006; Radicchi et al., 2007) for stochastic or physics related updating models, and to the
works (van de Rijt, 2011; Malekzadeh et al., 2011) for models based on a game theoretical updating
of the appraisals. However, despite this growing body of works, to the best of our knowledge, there
has been little attention to dynamic models addressing clustering balance in the literature. In fact,
only the work (van de Rijt, 2011) has addressed the question of clustering balance, but, as we will
see, in a different setting from ours. The work (Jia et al., 2016) has addressed the problem of
dynamic models for other notions of social balance, but it does not particularly address the case of
clustering balance nor has a game theoretical formulation. In this paper, we propose to fill a gap in
the literature of dynamic balance theory by providing a new model of dynamic clustering balance
under a game theoretical framework that has a psycho-sociological motivation in its formulation.

1.2 Statement of contribution

Our first contribution is the proposal of a novel game-theoretical model for dynamic clustering
balance with sociologically meaningful interpretations and analyze the properties of its dynamics.
An important characteristic of our game, is that its players are formed by couples of agents in the
network, i.e., pair of agents take a joint action. Our model is shown to be explainable as best-
response dynamics of myopic players, and the eradication of cognitive dissonances of the agents in
the network. Our key theoretical result is to prove finite time convergence of our model under best-
response dynamics to signed network structures that are related to a notion of Nash equilibrium
in which clustering balance is possible to be achieved. In particular, convergence to a network
satisfying clustering balance is guaranteed whenever the network has up to five agents, and, for
larger networks, we present compelling numerical evidence that suggests that this also happens
under generic initial conditions.

We now place our dynamic model in the context of other game theoretical signed network
formation games. To the best of our knowledge, a game-theoretical interpretation to dynamic
social balance was first introduced in the seminal work by van de Rijt (2011). He proposed that
if a single agent in the social network can alter multiple relationships at the same time according
to some strategy and randomly act “irrationally” (i.e., change her relationships against optimizing
her utility function), then convergence towards structural and clustering balance can be achieved.
One example of proposed strategy followed by any agent i is a “copying mechanism”: i will choose
another agent j, and copy all the relationships j has over other agents k (e.g., if j is friend with
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k, then i will become a friend of k too). However, i may not alter its relationship with j. In
contrast, our model only assumes that i and j jointly alter their mutual relationship, and that this
change depends on the appraisals that any other agent k has over both of them. Thus, our work
does not use a copying mechanism. The issue with having an agent continuously changing multiple
relationships simultaneously (and repetitively) is that it implies a greater cognitive burden on the
agent herself. Moreover, as pointed out by van de Rijt, multiple updating of relationships requires
multiple consents from the other agents, e.g., making a positive relationship required both parties
to consent to be in peace, so that in reality, we can think the updating of relationships as if there
are multiple pairs of agents changing their relationships simultaneously. Another difference from
our model is that we assume rational or utility-maximizing players and thus we do not introduce
stochasticity as van de Rijt’s work does. As we will see later, numerical evidence suggests that our
model predicts good convergence properties to clustering balance under generic initial conditions.
Therefore, adding stochasticity to avoid the convergence to networks with no clustering balance is
not necessary in our model.

A second relevant work is the one by Malekzadeh et al. (2011), which only deals with the case
of structural balance. In their game setting, the network topology is not fixed: agents update their
relationships by establishing positive or negative links, as well as deleting links. In contrast to
traditional network formation games, they assume that agents can unilaterally create new links (no
need for bilateral consensus). In the vein of van de Rijt’s model, any selected agent needs to update
her relationships with all other agents in the network simultaneously. This work introduces a utility
function that each agent tries to maximize in order to reduce cognitive dissonances by enforcing
the four Heider’s rules, and from which our work takes inspiration with the crucial difference that
we only enforce three Heider’s rules. Although their model does not need a complete graph at
the beginning, it is shown that after O(n) steps of playing best-response dynamics (where n is the
number of agents in the network), the network becomes complete and satisfy structural balance.
Given this precedence, we decided in our model to simply assume the network is complete and
fixed from the beginning. In fact, Malekzadeh et al. show that the incorporation of both creating
and deleting edges in their game made the computation of best-response policies NP-hard for any
selected agent, something which is avoided in our model.

Finally, we mention the work by Hiller (2017). This work proposes a signed network formation
game in the context of complete networks (agents cannot delete links), motivated by observations
of how groups of people display bullying behavior and the interplay between dominance and status
in conflict networks. This work does an exhaustive analysis of networks that correspond to the
game’s concept of Nash equilibrium, and found that their signed structures can correspond either to
networks with only positive relationships, or to a network that belongs to the notion of social balance
of the transitivity model. In particular, they found that negative edges cannot be reciprocated
among agents, which implies that clustering balance is not part of their analysis. They assume
that agents optimize different utility functions and that any agent can alter all of its relationships.
These utility functions are, as explained by Hiller, “based on agent’s incentives to bully and gang up
on each other”; whereas our work is related to the eradication of cognitive dissonances. Finally, in
contrast to our work and the ones mentioned above, the work by Hiller does not provide dynamics
or time evolution rules that provide convergence results to a Nash equilibrium.

As mentioned before, we focus on the study of complete graphs, which has the highest density
of triads. Complete graphs are important to study as a first understanding towards empirical data,
besides being traditionally important as a theoretical setting for the social sciences. Triads have
been playing an important role in social network analysis since many decades, and empirical evi-
dence over datasets of users of different social media have remarked the abundance and protagonist
role of triad structures in the understanding of online social networks (Leskovec et al., 2010; Huang
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et al., 2015), even though these real-world networks are not complete. Moreover, many empirical
studies have indicated the persistence and abundance of triads with all negative edges, a clear
violation of the classical balance in favor of the clustering one (Davis, 1967; Leskovec et al., 2010).
Therefore, the importance of a dynamic clustering balance model is that it allows for a theoretical
explanation of such phenomena. We also remark that the study of undirected graphs, as pointed
out by (Malekzadeh et al., 2011), is very important since triads with reciprocated edges with the
same sign are highly abundant in the three datasets studied by (Leskovec et al., 2010), whereas
triads with reciprocated edges with different signs have a presence of much less than 1%.

Finally, our work is also relevant for the economics and political sciences literature since signed
network formation games can model the generation of networks of conflict among different parties.
Examples of recent studies are networks of military alliances (Konig et al., 2017), and networks of
trade and international relationships among states (Jackson and Nei, 2015).

2 Preliminary modeling

Let N = {1, . . . , n} be the set of nodes, assume n ≥ 3, and let G = (N,E)be an undirected
complete graph composed by n nodes and an edge set E such that {i, j} ∈ E is the undirected edge
between nodes i and j. Then, G defines the structure or topology of a social network composed
by n agents. For any {i, j} ∈ E, let xij ∈ {−1,+1} denote the negative or positive interpersonal
appraisal or relationship between i and j. The appraisal network is a signed undirected graph
defined as GX = (N, {xij}ni,j=1 ,i 6=j) with xij = xji for any {i, j} ∈ E. We assume that both G and
GX have no self-loops. We will use the terms network and graph interchangeably.

Definition 2.1 (Balanced, unbalanced and neutral triads). A triad is balanced whenever it is
a positive cycle, i.e., the appraisals associated with its edges have a positive product, and it is
unbalanced whenever it is a negative cycle. A triad is neutral whenever it is unbalanced and all of
its edges have associated negative appraisals.

Given a set A, we denote the indicator function by 1A(x), so that 1A(x) = 1 if x ∈ A, or
1A(x) = 0 if x /∈ A. We omit the argument in the indicator function whenever it is clear form the
context. In what follows, let sign(u) ∈ {−1, 0,+1} denote the sign of u ∈ R (with sign(0) = 0).

Definition 2.2 (Cognitive dissonance function). The cognitive dissonance function defined on the
appraisal network GX is given by

C(GX) =
∑

{i,j,k}∈T

1{xij=−xjkxki AND (xij=+1 OR xjk=+1 OR xki=+1)}, (1)

where T is the set of all triples of nodes that form a triad in the network, i.e., |T | =
(
n
3

)
.

The cognitive dissonance function is equal to the total number of unbalanced triads in the
network that are not neutral.

Definition 2.3 (Clustering balance (Davis, 1967)). Consider an appraisal network GX . We say
GX has clustering balance if there exists a partition of the n agents into k sets called clusters
or factions, with k ∈ {1, . . . , n}, such that all appraisals between members of the same faction are
positive and all appraisals between members of different factions are negative. Whenever k ∈ {1, 2},
the network also satisfies structural balance.

The following lemma follows from a characterization given in (Davis, 1967) and from the pre-
vious definition of the cognitive dissonance function.
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Lemma 2.1. Consider an appraisal network GX . The following statements are equivalent:
(i) GX has clustering balance;

(ii) The number of balanced triads plus the number of neutral triads is equal to |T |, i.e., C(GX)
is equal to zero.

Moreover, GX has structural balance when the number of balanced triads is |T |.

Remark 2.1 (Cognitive dissonances). Given an appraisal network GX that has clustering bal-
ance, Davis (1967) shows that this is equivalent to enforce the satisfaction of the first, second and
third Heider’s rules. The fourth rule is not enforced: this assumption translates into the accep-
tance of triads that have three negative appraisals. Violations of any of these three rules generate
incoherence in the agent’s cognitive system and in her social environment, also known as cognitive
dissonances, that she strives to resolve (Ric, 2015; Festinger, 1957). For example, an individual
whose relationships violate the second Heider’s rule might ask herself: “how is it possible that I like
the enemy of my friends?” In order to resolve such dissonances, individuals seek to transform the
interpersonal appraisals in the triad so that it becomes a balanced triad or a neutral one. Then,
we can interpret the cognitive dissonance function as a measure of the total level of eradication
of cognitive dissonances in the appraisal network: the more balanced and neutral triads, the less
cognitive dissonances we expect among members of the social network.

3 Game theoretical formulation and static analysis

Definition 3.1 (Signed network formation game). We define the following signed network forma-
tion game.
• The normal form of the game is composed of the set of players E, where any player {i, j} ∈ E

has
(i) an action space Aij = {−1,+1} such that, for any action aij ∈ A performed by the

player: aij = −1 means setting the appraisal xij = −1 and aij = +1 means setting the
appraisal xij = +1,

(ii) a payoff or utility function which is defined, given the action profile a = (aij), by

uij(a) = ∆b
ij −∆u

ij − λijxij1{∆u
ij>0}, (2)

where ∆b
ij and ∆u

ij are the number of balanced and unbalanced triads the agents i and j
are part of, and λij is the number of other agents that are enemies of both i and j, i.e.,
that have negative relationships with both i and j.

• In the game’s dynamic setting, consider that any time step t belongs to the countable infinite
set {0, 1, · · · }, and:

(i) At any time t, a player {i, j} ∈ E is randomly and independently picked for its updating,
with all possible pair of nodes having a positive probability of being picked according to
some fixed time-invariant distribution.

(ii) The player {i, j} selected at time t chooses an action aij(t+ 1) to maximize its current
utility uij(t) ≡ uij(a(t)) in the next time step. The player does not change its action if
such change does not strictly improve its utility.

Remark 3.1. In the formal definition of the game, the player of the game is a pair of agents
{i, j} ∈ E. Then, we will use the terms player and pair or couple of agents indistinctly, with
the term agent continuing to refer to any member of the social network. Having pairs of agents
taking a “joint action” as a single player is motivated from the fact that many social interactions
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and relationships (e.g., friendships and enmity), usually require some level of consent and/or are
naturally bilateral.

In the definition of our game, it is assumed that players are myopic because they only want
to maximize their current utility. Intuitively, when any couple of agents update their appraisals,
they ignore how their actions can affect future decisions of other couples in the network, i.e.,
they ignore the global effect of their actions in the future evolution of the appraisal network. We
point out that the assumption of selecting only one pair of agents per time step in our game’s
dynamic setting is a common assumption found in the literature of dynamic network formation
games (e.g., see (Jackson and Watts, 2002)). The payoff (2) associated with the edge {i, j} can
be interpreted as the total cognitive dissonance load for i and j resulting from the relationships
with the other agents in the network. The maximization of this utility results in the reduction
of cognitive dissonances (see Remark 2.1). We remark that, in the field of social-psychology, the
eradication of cognitive dissonances has been considered a fundamental model for driving human
decision processes (Festinger, 1957). Notice that for the computation of uij , both agents i and j
effectively count the number of balanced and unbalanced triads they belong to, without considering
the triads that contain an agent who has negative relationships with both of them (i.e., an agent
who is a common enemy), and compute their difference. If uij ≥ 0, then both agents see that
their current interpersonal appraisal or relationship is appropriate to relieve most of the cognitive
dissonances since the number of balanced triads is enough to counteract the number of unbalanced
ones. On the other hand, if uij < 0, then both agents have a cognitive discomfort due to the
majority of unbalanced triads they are part of. For example, consider a game with only one triad
formed by the agents i, j and k such that xij = xik = +1 and xkj = −1. In the perspective of i,
this triad violates the Heider’s rule “the enemy of my friend is my enemy”, since the enemy of k,
which is j, has a positive relationship with i. Similarly, in the perspective of j, this triad violates
the rule “the friend of my enemy is my enemy”. According to our game, i and j can switch their
interpersonal appraisal to being negative and thus satisfy the appropriate Heider’s rules and reduce
cognitive dissonances for both of them.

We consider that players can only play pure strategies, then, we can also refer to any action
profile as a pure strategy profile indistinctly. As a solution concept for our proposed signed net-
work formation game, we adopt a notion of pure Nash equilibrium network (see, for example, the
work (Calvó-Armengol and İlkılıç, 2009)).

Definition 3.2 (Nash equilibrium network). A Nash equilibrium is a pure strategy profile a∗ = (a∗ij)

such that, for any player {i, j} ∈ E, we have uij(a
∗) ≥ uij(aij , a∗−ij)1 for any aij ∈ Aij. An appraisal

network GX is a Nash equilibrium network if there exists a Nash equilibrium a∗ that induces the
formation of GX .

Intuitively, a Nash equilibrium network is a network such that no pair of agents have an incentive
to unilaterally change the sign of their interpersonal appraisals.

Definition 3.3 (Efficient networks). An efficient network is any appraisal network GX induced by
some action profile a such that the social welfare quantity v(GX) =

∑
{i,j}∈E uij(a) is maximized.

The study of efficient networks has a long-standing history in the literature on network formation
games (e.g., (Jackson and Watts, 2002; Jackson, 2005)). In our case, we are interested in knowing
what are the distribution of interpersonal appraisals that can lead to the maximization of the social
welfare.

1Given the action profile a = (aij), we use the notation (a′ij , a−ij) to denote a new action profile resulting from
only changing the action of player {i, j} by a′ij in a.
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Lemma 3.1 (Characterization of Nash equilibrium networks). The set of Nash equilibrium net-
works is the set of appraisal networks such that uij ≥ 0 for any {i, j} ∈ E.

Proof. Consider an appraisal network induced by some underlying pure strategy profile a∗ = (a∗ij)
such that uij(a

∗) ≥ 0 for any {i, j} ∈ E. Now, let any {m,n} ∈ E choose amn ∈ Amn with
amn 6= a∗mn and define the new pure strategy a = (amn, a

∗
−mn). Then, umn(a∗) ≥ 0 and umn(a) ≤ 0,

so that umn(a∗) ≥ umn(a). Then, by Definition 3.2 this appraisal network is a Nash equilibrium
network.

To prove the converse, consider a Nash equilibrium network. Since no pair of agents wants
to deviate their pure strategy, it follows that they have some strategy profile a∗ = (a∗) such that
uij(a

∗) ≥ uij(a) for any {i, j} ∈ E and a = (aij , a
∗
−ij) with aij ∈ Aij . We claim that uij(a

∗) ≥ 0
for any {i, j} ∈ E. Otherwise, assume that there exists some {m,n} ∈ E such that umn(a∗) < 0,
then we observe that a = (−a∗mn, a

∗
−mn) gives umn(a) > uij(a

∗), thus leading to a contradiction.

Theorem 3.2 (Nash equilibrium networks and clustering balance). All appraisal networks that
have clustering balance are Nash equilibrium networks. Moreover, for n ≤ 5, the set of Nash
equilibrium networks is the set of networks that have clustering balance; and, for n > 5, there exist
Nash equilibrium networks that do not have clustering balance.

Proof. We first prove the first statement of the lemma. Let ∆n
ij be the number of neutral triads in

which agents i and j are part of. From Lemma 2.1, an appraisal network GX that has clustering
balance is such that, for any {i, j} ∈ E, ∆u

ij = ∆n
ij . Now, if xij = −1 then λij = ∆n

ij ≥ 0;

and, additionally, if {i, j} belongs only to triads with all negative edges, then ∆b
ij = 0, otherwise,

∆b
ij > 0. From this, it follows that uij = ∆b

ij ≥ 0 for any {i, j} ∈ E. Now, if xij = +1 then

∆u
ij = ∆n

ij = 0 and clearly ∆b
ij > 0, so that uij = ∆b

ij > 0. From these two cases, it follows from
Lemma 3.1 that GX is a Nash equilibrium network. This finishes the proof for the first statement
of the lemma.

We proceed to prove that, for n ≤ 5, the set of Nash equilibrium networks is the set of networks
that have clustering balance. The case n = 3 is immediate. Consider n = 4. Let us arbitrarily
label the vertices by elements of the set {1, 2, 3, 4}. By contradiction, assume there exists at least
one unbalanced triad which is not neutral, i.e., a non-neutral unbalanced triad. We will attempt
to construct a Nash equilibrium network containing at least this non-neutral unbalanced triad by
continuously verifying if any possible constructed appraisal network satisfies the characterization
given in Lemma 3.1. Without loss of generality, let {1, 2, 3} be a non-neutral unbalanced triad and
let x12 = −1, so that x23 = x31 = +1. Then, it follows that

(−1)x24x14 = ρ1,

(+1)x14x34 = ρ2,

(+1)x24x34 = ρ3;

with the only possible consistent cases

(ρ1, ρ2, ρ3) ∈ {(−1,−1,−1), (−1,+1,+1), (+1,−1,+1), (+1,+1,−1)}.

Assume (ρ1, ρ2, ρ3) = (−1,−1,−1). For any x24 ∈ {−1,+1}, it follows that uij < 0 for any
{i, j} ∈ E, from which we conclude that the constructed network cannot be a Nash equilibrium
one. Assume (ρ1, ρ2, ρ3) = (−1,+1,+1). For any x24 ∈ {−1,+1}, it follows that u12 < 0 and
the network cannot be a Nash equilibrium one. Assume (ρ1, ρ2, ρ3) = (+1,−1,+1). For any
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Figure 1: The left image shows all seven possible configurations for the (complete) appraisal net-
work with five agents that has clustering balance. The right image shows an example of a Nash
equilibrium network for six agents that does not have clustering balance. Whenever an edge is
present, it corresponds to a positive appraisal; otherwise, we assume there is a negative appraisal.

x24 ∈ {−1,+1}, it follows that u13 < 0 and the network cannot be a Nash equilibrium one. Finally,
assume (ρ1, ρ2, ρ3) = (+1,+1,−1). For any x24 ∈ {−1,+1}, it follows that u23 < 0 and the network
cannot be a Nash equilibrium one. Therefore, we conclude that it is not possible to construct a
Nash equilibrium network that contains at least one non-neutral unbalanced triad. We conclude
by contradiction, that all Nash equilibrium networks have clustering balance.

From the previous analysis we make the following observation: if a complete graph of four
vertices contains an unbalanced and a balanced triad, then it must contain one more additional
balanced triad. With this observation, we can also prove the nonexistence of Nash equilibrium
networks that do not satisfy clustering balance for the case n = 5 after some careful algebraic
and combinatorial analysis. See Figure 1 for all the possible cases of appraisal networks that have
clustering balance.

Finally, assume n = 6. We now construct a Nash equilibrium network that does not have
clustering balance. Assume the appraisal network has all its initial appraisals positive. Then,
set the following: x12 = x23 = x35 = x51 = −1. It is easy to check that this network is a Nash
equilibrium network that does not have clustering balance (e.g., observe that u12 > 0 with the triad
formed by nodes {1, 2, 4} being unbalanced with two positive appraisals and a negative one). See
Figure 1 for an illustration of this appraisal network. Now, for any n > 6, set again all appraisals in
the appraisal network to be negative and then choose six of its nodes. For these nodes, construct a
subgraph exactly as the example we just did for n = 6, and we immediately see that this appraisal
network is a Nash equilibrium network.

Lemma 3.2 (Efficient networks). All efficient networks are Nash equilibrium networks and they
have structural balance.

Proof. For any {i, j} ∈ E, we observe that this edge belongs to n− 2 triads in the network, and so
uij ≤ n− 2 under any action profile. Then, uij = n− 2 if and only if ∆b

ij = n− 2, ∆u
ij = 0. Since

this must hold for all edges in the appraisal network in order to maximize the social welfare v(GX)
(which reaches the value

(
n
2

)
(n − 2)), it follows that such network is a Nash equilibrium network.

Finally, since all triads in GX are positive, then, from Lemma 2.1, it immediately follows that this
network has structural balance.

An interesting result from Lemma 3.2 is that a network in which all agents have positive
relationships with each other, i.e., all interpersonal appraisals are positive, is efficient and socially
optimal because it maximizes the social welfare. Recall that the cognitive dissonance function
is also minimized. As an additional observation, if, on the other hand, we only have negative
appraisals, then the appraisal network has clustering balance and both the social welfare and
cognitive dissonance function take value zero.
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4 Dynamic analysis

Definition 4.1 (Influence dynamics). Consider GX(0) = (N, {xij(0)}ni,j=1 ,i 6=j) an initial appraisal
network and that at each time t ∈ {0, 1, . . . }, only one edge in E is selected. For any selected
{i, j} ∈ E, the influence dynamics is defined by

xij(t+ 1) =

{
sign(fI({i, j}, GX(t))), if fI({i, j}, GX(t)) 6= 0,

xij(t), otherwise,
(3)

where fI({i, j}, GX(t)) = sign

(∑n
k=1
k 6=i,j

xik(t)xkj(t)1{xik(t)=+1 OR xjk(t)=+1}

)
. The appraisals asso-

ciated to the rest of the unselected edges are left unchanged.

Notice that the dynamics (3) is well defined because xij(t) = ±1 for any {i, j} ∈ E and any
t > 0.

The term “influence dynamics” comes from a sociological interpretation of the fact that the
updating of xij depends on xikxkj with k 6= i, j. For example, in the perspective of agent i, the
updating of the interpersonal appraisal or relationship she has with j (i.e., the term xij) considers
the influence that k has over i subject to what k thinks of j (i.e., the product term xikxkj). Notice
that whenever both i and j are enemies of k, the influences that k has over i and j are not considered
(i.e., k cannot be trusted, since she is a common enemy). Intuitively, this implies that the fourth
Heider’s rule “the enemy of my enemy is my friend” is not enforced by the agents if they change
their interpersonal appraisals according to the influence dynamics.

Now, from the assumptions of utility-maximizing and myopic players in Definition 3.1, couples
should play the game according to some policy such that they choose actions in the current time
step that will maximize the payoffs associated to their interpersonal appraisals in the next time
step, i.e., they should play best-response dynamics. Every pair of agents want to optimally change
their current relationship in order to reduce cognitive dissonance. Recall that whenever uij = 0,
{i, j} has no incentive to flip the sign of its appraisal since this will not increase its utility. Then,
the following theorem provides a characterization of best-response dynamics taken by the agents.

Theorem 4.1 (Best-response dynamics). For any {i, j} ∈ E chosen at any time step t ≥ 0, let
its action by updated by aij(t+ 1) = xij(t+ 1), where the appraisal xij(t+ 1) is updated according
to the influence dynamics (3). Then, the strategy a(t), t > 0, is a best-response dynamics for the
proposed signed network formation game.

Proof. Let us first note that, from the fact that players are utility-maximizing and the definition
of the game, for any chosen {i, j} ∈ E, the following is the best-response by player {i, j} in order
to maximize its utility (2):

aij(t+ 1) =

 arg max
aij(t)∈{+1,−1}

uij(t), if uij(t) 6= 0,

aij(t), otherwise,
(4)

Now, assume some fixed action profile a(t). Let Pij(t) = {k ∈ N | xik(t)xkj(t) > 0 with xik(t) =
xkj(t) = +1} and Nij(t) = {k ∈ N | xik(t)xkj(t) < 0}. Then, from the fact that balanced triads
are ones such that the product of two of its appraisals are equal in sign to the remaining appraisal,
it follows the best-response for player {i, j} in (4) satisfies the following rule:
• If |Pij(t)| > |Nij(t)|, then choosing aij(t + 1) = +1 leads to uij(t + 1) > 0 (otherwise, we

would have uij(t+ 1) < 0).
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• If |Pij(t)| < |Nij(t)|, then choosing aij(t + 1) = −1 leads to uij(t + 1) > 0 (otherwise, we
would have uij(t+ 1) < 0).
• If |Pij(t)| = |Nij(t)|, then the player keeps the same action, i.e., aij(t+ 1) = aij(t).

Then, it follows from the mathematical expression of the influence dynamics in (3) that fI({i, j}, GX(t)) =
sign(|Pij(t)| − |Nij(t)|) and then by setting aij(t + 1) = xij(t + 1), t ≥ 0, the player {i, j} ∈ E is
implementing best-response dynamics.

Theorem 4.1 states that, if pairs of agents update their appraisals according to the influence
dynamics, they are indeed playing best-response dynamics for the game. Then, it only remains
to study the properties of convergence to Nash equilibrium networks of the trajectories of the
dynamics (3) under the definition of our signed network formation game (which implies that these
trajectories will now have a stochastic nature).

The following theorem establishes the convergence of the best-response dynamics played in the
game, and we remark that any probability statement is respect to the induced measure by the
underlying stochastic process that selects the pair of agents in the signed network formation game
(see Definition 3.1).

Theorem 4.2 (Convergence of the influence dynamics). Consider the initial appraisal network
GX(0) = (N, {xij(0)}ni,j=1 ,i 6=j). Then, under the influence dynamics (3) with the players being
randomly selected as in Definition 3.1, GX(t) converges with probability one to a Nash equilibrium
network in finite time. Moreover, GX(t) converges to clustering balance with probability one for
n ≤ 5.

Proof. We first claim that the influence dynamics in our signed network formation game defines a
time-homogeneous finite-state Markov chain M with state space B of all appraisal networks GX ,
with the state GX(t) = (N, {xij(t)}ni,j=1 ,i 6=j) ∈ B being the current appraisal network at time t
and defined by the set {xij(t)}{i,j}∈E . To see this, we first notice that for any time step t > 0
and any given appraisal network GX(t) described by the influence dynamics, it follows from the
stochastic process of player selection in Definition 3.1 that it is completely possible to determine all
the possible outcomes for the appraisal network in the next time-step. Then, the Markov property
is satisfied since the (distribution of) possible outcomes for the appraisal matrix at t + 1 depends
only on time index t. Moreover, the appraisal network GX(t) can have up to |E| possible different
outcomes. Then, the Markov chain M is well-posed, and it is also time-homogeneous from the
time-invariance in the probability of player selection (see Definition 3.1).

If we assume there is a non-empty set of absorbing states Wa in the Markov chain M, then
to prove convergence to the absorbing states, we need to show that B \ Wa is only composed of
transient states (Grimmett and Stirzaker, 2001). Since M has finite states, the convergence will
be achieved in finite time with probability one.

Consider GX(t) ∈ B and any selected edge {i, j} ∈ E. If uij(t) ≥ 0, then GX(t + 1) = GX(t),
and so C(GX(t+ 1)) = C(GX(t)). Now, assume uij(t) < 0, which implies ∆u

ij > 0. Let ∆n
ij be the

number of neutral triads in which agents i and j are part of. Notice that the cognitive dissonance
function can be equivalently expressed as the number of unbalanced triads minus the number of
neutral triads. Then, since the change of the interpersonal appraisal between i and j can only
affect the nature (i.e., being balanced or unbalanced) of the n − 2 triads that i and j are part of,
it follows that:

(i) If xij(t) = +1, then xij(t+ 1) = −1 and ∆n
ij(t) = 0. Then, ∆b

ij(t+ 1) = ∆u
ij(t), ∆u

ij(t+ 1) =
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∆b
ij(t) and ∆n

ij(t+ 1) = λij(t). Then, we have that

C(GX(t+ 1))− C(GX(t)) = (∆u
ij(t+ 1)−∆n

ij(t+ 1))− (∆u
ij(t)−∆n

ij(t))

= (∆b
ij(t)− λij(t))−∆u

ij(t) = uij(t) < 0.

(ii) If xij(t) = −1, then xij(t + 1) = +1 and ∆n
ij(t) = λij(t). Then, ∆b

ij(t + 1) = ∆u
ij(t),

∆u
ij(t+ 1) = ∆b

ij(t) and ∆n
ij(t+ 1) = 0. Then, we have that

C(GX(t+ 1))− C(GX(t)) = (∆u
ij(t+ 1)−∆n

ij(t+ 1))− (∆u
ij(t)−∆n

ij(t))

= ∆b
ij(t)− (∆u

ij(t)− λij(t)) = uij(t) < 0.

From this analysis, we conclude that C(GX(t+ 1)) > C(GX(t)).
Now, from the best-response dynamics, if we have uij(t) ≥ 0 for all {i, j} ∈ E, then GX(t+1) =

GX(t) with probability one. Therefore, we conclude that the set of absorbing states Wa is the set
of Nash equilibrium networks (see the characterization on Lemma 3.1). Then, we conclude that
the sequence (C(GX(t)))t is non-increasing with probability one, and that, for any GX(t) ∈ B\Wa,
there is always a positive probability of selecting an edge such that C(GX(t+ 1)) < C(GX(t)). This
let us conclude that B \Wa is composed of transient states.

Finally, the second statement of the theorem follows directly from Theorem 3.2.

5 Additional discussion and results

5.1 Connection to optimization and energy functions

We observe from our convergence theorem that the influence dynamics attempts to solve the fol-
lowing combinatorial optimization problem

minimize
{xij}∈{−1,+1}|E|

C(GX).

We know a global minimum for this function corresponds to a network that has clustering balance.
The idea of proposing discrete optimization problems that a dynamic social balance model must
solve has been previously proposed in the physics community (Marvel et al., 2009) only for the case
of dynamic structural balance with the minimization of a potential energy function associated to
generalized Ising models and complete social networks.

5.2 Numerical evidence

In this section we show some numerical results about the convergence of the influence dynamics
to clustering balance. We say that an initial condition at t = 0 is generic for the appraisal matrix
GX(0) if every initial appraisal is independently sampled with probability 0 < p < 1 of taking the
value +1 and probability 1− p of taking the value −1.

We analyze the evolution of appraisal networks for different network sizes n ∈ {3, . . . , 25}.
For each fixed n, we generate 10000 generic initial conditions in which each entry of the initial
appraisal network GX(0) takes the value +1 or −1 with equal probability 0.5. The results are
shown in Figure 2. As expected, for n ≤ 5, all appraisal networks converged to a balanced network.
Remarkably, we find that the success rate was no less than 99.98% for n ∈ {15, . . . , 25}, and no less
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than 99.72% for n ∈ {6, . . . , 14}. In Figure 3 we show the empirical frequency of the final number
of clusters for those networks that successfully converged to clustering balance for n ∈ {11, 20}, and
we remark that no convergence to efficient networks, i.e., to appraisal networks having structural
balance, has been observed in these simulations.

Observing these and other numerical simulations for other generic initial conditions and greater
values of n (not shown here), we propose the following informal conjecture for n > 5: under generic
initial conditions, there is a very high probability of convergence to clustering balance and this
probability goes to 1 as n increases. In other words, the basin of attraction of appraisal networks
that have clustering balance is much larger than the ones for other Nash equilibrium networks.

5.3 Connection to structural balance theory

We know that structural balance enforces the fourth Heider’s rule, so we can modify our model in
this paper so that this rule is enforced. This would mean changing our signed network formation
game, more specifically, the utility function for a player {i, j} simply becomes the difference be-
tween balanced and unbalanced triads. We would also need to modify our influence dynamics by
replacing any indicator function by a constant number 1, and the cognitive dissonance function so
that it simply counts unbalanced triads. As a result, the (modified) influence dynamics will seek
to minimize this (modified) cognitive dissonance function, aiming to attain the minimum value
C(GX) = 0 for some appraisal network GX .

We analyze the evolution of appraisal networks in the same settings as in the previous subsection.
The results are shown in Figure 2. We also find that for n ≤ 5, all appraisal networks converged to
a network that has structural balance. For n > 5, we found that the success rate was no less than
93.47%. It seems that the success rate stabilizes and oscillates around a value with the success rate
for an odd number of agents being slightly better than for an even number of them. We cannot
conclude if this observed behavior will be the case for much larger values of n, but we expect to.

As mentioned in the introduction of this paper, empirical evidence has suggested the strong
presence of triads with all negative edges in online social networks, which favors the presence
of the notion of clustering balance over structural balance. The contrast between the obtained
numerical convergence results for clustering balance compared to ones for structural balance may
be a theoretical predictor of the empirical observations.

6 Conclusion

We propose, to the best of our knowledge, the first model of a signed network formation game
for the notion of clustering balance, whereby agents can update only one interpersonal appraisal
at a time. We have formally shown how, in our proposed game, finding a Nash equilibrium can
provide a model for dynamic clustering balance. Moreover, our model has a psycho-sociological
interpretation in which the best-response policy results in the eradication of cognitive dissonances
among individuals in a social network. However, broader interpretations can be given using the
same underlying model; for example, the interpretation of how countries or communities change
their positive or negative diplomatic relationships in order to avoid or create conflict respectively.
This makes our work relevant to the fields of economics of conflict and political science. Finally,
our model’s relationship to potential energy functions and combinatorial optimization may make
this work relevant to the physics and mathematical communities. As future work, motivated by
the structure of real-world networks, we plan to study signed network formation games that can
consider the evolution of signed graphs that are not complete. We also consider important to
further study the structural balance dynamic model presented in subsection 5.3, and also study
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Figure 2: Success rate of convergence to (a) clustering balance (note range 99% − 100%) or (b)
structural balance (note range 99%− 100%) for appraisal networks with different number of agents
or nodes n. For each fixed size n, 10000 simulations were performed under generic initial conditions.
For clustering balance, the appraisal networks evolve according to the influence dynamics (Defini-
tion 3), and for structural balance, they evolve according to a modification on these dynamics as
stated in subsection 5.3.

the evolution of directed signed graphs that can allow the generation of dynamic models for other
notions of social balance.
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