Skip to main content
Log in

Costly Participation and The Evolution of Cooperation in the Repeated Public Goods Game

  • Published:
Dynamic Games and Applications Aims and scope Submit manuscript

Abstract

In real life, individuals often need to pay some costs to build and maintain long-termed relationships as well as interactions among them. However, previous studies of the repeated public goods game have focused almost exclusively on the cost-free participation. Here we introduce costly participation to the repeated public goods game in a conditional manner, and study the evolution of cooperation in both deterministic and stochastic dynamics for well-mixed populations. In the limit of an infinite population size, the deterministic dynamics can lead to either a stable coexistence between cooperators and defectors or even a complete dominance of cooperators over defectors if the initial frequency of cooperators is larger than some invasion barrier. In general, defectors are always able to resist invasion by cooperators. However, in finite populations, we show that natural selection can favor the emergence of cooperation in the stochastic dynamics. In the limit of weak selection and large populations, we derive a critical condition required for a cooperator to replace a population of defectors with a selective advantage by using several approximation techniques. Theoretical analysis of the critical condition reveals that participation cost determines the impacts of the number of game round in the emergence of cooperation. Interestingly, there exists an intermediate value of the participation threshold of cooperators leading to the optimal condition for a cooperator to invade and fixate in a population of defectors if the participation cost is smaller than a critical value. Numerical calculations confirm that the validity of the analytical approximations extends to much wider ranges of the selection strength as well as of the population size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Allen JM, Skeldon AC, Hoyle RB (2018) Social influence preserves cooperative strategies in the conditional cooperator public goods game on a multiplex network. Phys Rev E 98:062305

    Google Scholar 

  2. Altrock PM, Traulsen A (2009) Deterministic evolutionary game dynamics in finite populations. Phys Rev E 80:011909

    MathSciNet  Google Scholar 

  3. Axelrod R (1984) The evolution of cooperation. Basic Books, New York

    MATH  Google Scholar 

  4. Battu B, Pammi VSC, Srinivasan N (2018) Evolution of cooperation with heterogeneous conditional cooperators. Sci Rep 8:4524

    Google Scholar 

  5. Ezaki T, Horita Y, Takezawa M, Masuda N (2016) Reinforcement learning explains conditional cooperation and its moody cousin. PLoS Comput Biol 12:e1005034

    Google Scholar 

  6. Ginsberg AG, Fu F (2018) Evolution of cooperation in public goods games with stochastic opting-out. Games 10(1):1–27

    MathSciNet  MATH  Google Scholar 

  7. Grujić J, Cuesta JA, Sánchez A (2012) On the coexistence of cooperators, defectors and conditional cooperators in the multiplayer iterated prisoner’s dilemma. J Theor Biol 300:299–308

    MathSciNet  MATH  Google Scholar 

  8. Hardin G (1968) The tragedy of the commons. Science 162:1243–1248

    Google Scholar 

  9. Hauert C, De Monte S, Hofbauer J, Sigmund K (2002) Volunteering as Red Queen mechanism for cooperation in public goods game. Science 296:1129–1132

    Google Scholar 

  10. Hilbe C, Wu B, Traulsen A, Nowak MA (2014) Cooperation and control in multiplayer social dilemmas. Proc Natl Acad Sci USA 111:16425–16430

    Google Scholar 

  11. Hilbe C, Wu B, Traulsen A, Nowak MA (2015) Evolutionary performance of zero-determinant strategies in multiplayer games. J Theor Biol 374:115–124

    MathSciNet  MATH  Google Scholar 

  12. Hilbe C, Chatterjee K, Nowak MA (2018) Partners and rivals in direct reciprocity. Nat Hum Behav 2:469–477

    Google Scholar 

  13. Hofbauer J, Sigmund K (1998) Evolutionary games and population dynamics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  14. Karlin S, Taylor HMA (1975) A first course in stochastic processes, 2nd edn. Academic, London

    MATH  Google Scholar 

  15. Kurokawa S, Ihara Y (2009) Emergence of cooperation in public goods game. Proc R Soc Lond B 276:1379–1384

    Google Scholar 

  16. Li A, Broom M, Du J, Wang L (2016) Evolutionary dynamics of general group interactions in structured populations. Phys Rev E 93:022407

    MathSciNet  Google Scholar 

  17. Liu L, Chen X, Perc M (2019) Evolutionary dynamics of cooperation in the public goods game with pool exclusion strategies. Nonlinear Dyn 97:749–766

    MATH  Google Scholar 

  18. Masuda N (2007) Participation costs dismiss the advantage of heterogeneous networks in evolution of cooperation. Proc R Soc B 274:1815–1821

    Google Scholar 

  19. Maynard Smith J (1982) Evolution and the theory of games. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  20. Milinski M, Semmann D, Krambeck HJ (2002) Reputation helps to solve the ’tragedy of the commons’. Nature 415:424–426

    Google Scholar 

  21. Nowak MA (2006a) Evolutionary dynamics: exploring the equation of life. Harvard University Press, Cambridge, MA

    MATH  Google Scholar 

  22. Nowak MA (2006b) Five rules for the evolution of cooperation. Science 314:1560–1563

    Google Scholar 

  23. Nowak MA, Highfield R (2011) Supercooperators: altruism, evolution, and why we need each other to succeed. Free Press, New York

    Google Scholar 

  24. Nowak MA, Sigmund K (1992) Tit for tat in heterogeneous population. Nature 355:250–253

    Google Scholar 

  25. Nowak MA, Sasaki A, Taylor C, Fudenberg D (2004) Emergence of cooperation and evolutionary stability in finite populations. Nature 428:646–650

    Google Scholar 

  26. Pan L, Hao D, Rong Z, Zhou T (2015) Zero-determinant strategies in iterated public goods game. Sci Rep 5:13096

    Google Scholar 

  27. Peña J, Pestelacci E, Berchtold A, Tomassini M (2010) Participation costs can suppress the evolution of upstream reciprocity. J Theor Biol 273:197–206

    MathSciNet  MATH  Google Scholar 

  28. Perc M (2011) Success-driven distribution of public goods promotes cooperation but preserves defection. Phys Rev E 84:037102

    Google Scholar 

  29. Pinheiro FL, Vasconcelos VV, Santos FC, Pacheco JM (2014) Evolution of all-or-none strategies in repeated public goods dilemmas. PLoS Comput Biol 10:1–5

    Google Scholar 

  30. Rand DG, Dreber A, Ellingsen T, Fudenberg D, Nowak MA (2009) Positive interactions promote public cooperation. Science 325:1272–1275

    MathSciNet  MATH  Google Scholar 

  31. Sandholm WH (2010) Population games and evolutionary dynamics. MIT University Press, Cambridge, MA

    MATH  Google Scholar 

  32. Santos FC, Santos MD, Pacheco JM (2008) Social diversity promotes the emergence of cooperation in public goods games. Nature 454:213–216

    Google Scholar 

  33. Sasaki T, Uchida S (2013) The evolution of cooperation by social exclusion. Proc R Soc B 280:20122498

    Google Scholar 

  34. Sigmund K, Hauert C, Nowak MA (2001) Reward and punishment. Proc Natl Acad Sci USA 98:10757–10762

    Google Scholar 

  35. Szabó G, Tőke C (1998) Evolutionary prisoner’s dilemma game on a square lattice. Phys Rev E 58:69–73

    Google Scholar 

  36. Szolnoki A, Perc M, Szabó G (2009) Topology-independent impact of noise on cooperation in spatial public goods games. Phys Rev E 80:056109

    Google Scholar 

  37. Tanimoto J, Yamauchi A (2010) Does game participation cost affect the advantage of heterogeneous networks for evolving cooperation? Phys A 389:2284–2289

    Google Scholar 

  38. Traulsen A, Hauert C (2009) Stochastic evolutionary game dynamics. In: Schuster HG (ed) Reviews of nonlinear dynamics and complexity. Wiley-VCH, Berlin, pp 25–62

    MATH  Google Scholar 

  39. Traulsen A, Claussen JC, Hauert C (2005) Coevolutionary dynamics: from finite to infinite populations. Phys Rev Lett 95:0238701

    Google Scholar 

  40. Traulsen A, Nowak MA, Pacheco JM (2006) Stochastic dynamics of invasion and fixation. Phys Rev E 74:011909

    Google Scholar 

  41. Trivers RL (1971) The evolution of reciprocal altruism. Q Rev Biol 46:35–57

    Google Scholar 

  42. van Kampen NG (1992) Stochastic processes in physics and chemistry. Elsevier, Amsterdam

    MATH  Google Scholar 

  43. Van Segbroeck S, Pacheco JM, Lenaerts T, Santos FC (2012) Emergence of fairness in repeated group interactions. Phys Rev Lett 108:158104

    Google Scholar 

  44. Wang J, Fu F, Wu T, Wang L (2009) Emergence of social cooperation in threshold public good games with collective risk. Phys Rev E 80:016101

    Google Scholar 

Download references

Acknowledgements

We thank the editor and two anonymous reviewers for constructive comments, which helped us to improve this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

X.F.W acknowledges gratefully financial support from the NSFC (Grants No. 61903077), the Shanghai Sailing Program (Grants No. 19YF1402500) as well as the Fundamental Research Funds for the Central Universities (Grants Nos. 2232019D3-56 and 2232018G-09).

Appendices

A Detailed Analysis of Payoff Difference

In “Appendix A”, we study in detail the direction of the deterministic dynamics by analyzing the payoff difference \({f_{{C_{T_C}}}}\left( x \right) - {f_{{D_{T_D}}}}\left( x \right) \). In particular, we analyze the shape of \({f_{{C_{T_C}}}}\left( x \right) - {f_{{D_{T_D}}}}\left( x \right) \), assuming \({\bar{T}} \in \left\{ {2, \cdots ,N - 1} \right\} \), and later on followed by the analysis for the degenerate cases \({\bar{T}} = N\) and \({\bar{T}} = 1\).

Analysis for \({\bar{T}} \in \left\{ {2, \cdots ,N - 1} \right\} \). Let the polynomial \({G_1}\left( x \right) \) be

$$\begin{aligned} \begin{aligned} {G_1}\left( x \right)&= \left( {\delta {\bar{T}} - c - 1} \right) \left( {\begin{array}{*{20}{c}} {N - 1} \\ {{\bar{T}} - 1} \\ \end{array}} \right) {x^{{\bar{T}} - 1}}{\left( {1 - x} \right) ^{N - {\bar{T}}}} \\&\quad + \left( {\delta - 1} \right) \sum \limits _{j = {\bar{T}}}^{N - 1} {\left( {\begin{array}{*{20}{c}} {N - 1} \\ j \\ \end{array}} \right) {x^j}{{\left( {1 - x} \right) }^{N - 1 - j}}} . \\ \end{aligned} \end{aligned}$$
(20)

Note that \({G_1}\left( x \right) \) has the same shapes of function with the payoff difference in Eq. (13), and thus determines the non-trivial equilibria of the deterministic dynamics described by Eq. (10). Before presenting formally Proposition 2, we first introduce a necessary Lemma 1.

Lemma 1

Let \({\bar{T}} \in \left\{ {2, \cdots ,N - 1} \right\} \). The polynomial \({G_1}\left( x \right) \) satisfies following properties:

  1. 1.1

    \({G_1}\left( 0 \right) = 0\);

  2. 1.2

    \({G_1}\left( 1 \right) = \delta - 1\);

  3. 1.3

    If \(c = \bar{c} = \frac{{\left( {{\bar{T}} - 1} \right) \left( {N\delta - 1} \right) }}{{N - 1}}\), \({G_1}\left( x \right) \) decreases monotonically in \(x \in \left( { - \infty , + \infty } \right) \); Else if \(0 \le c < \bar{c}\), \({G_1}\left( x \right) \) attains a maximum at \({\bar{x}} = \frac{{\left( {{\bar{T}} - 1} \right) \left( {\delta {\bar{T}} - c - 1} \right) }}{{\left( {{\bar{T}} - 1} \right) \left( {\delta N - 1} \right) - c\left( {N - 1} \right) }}\). Moreover, \({G_1}'\left( x \right) = 0\) at \(x = {\bar{x}}\), \({G_1}'\left( x \right) > 0\) for \(x \in \left( { - \infty ,{\bar{x}}} \right) \) and \({G_1}'\left( x \right) < 0\) for \(x \in \left( {{\bar{x}}, + \infty } \right) \); Else if \(c > \bar{c}\), \({G_1}\left( x \right) \) attains a minimum at \({\bar{x}} = \frac{{\left( {{\bar{T}} - 1} \right) \left( {\delta {\bar{T}} - c - 1} \right) }}{{\left( {{\bar{T}} - 1} \right) \left( {\delta N - 1} \right) - c\left( {N - 1} \right) }}\). Moreover, \({G_1}'\left( x \right) = 0\) at \(x = {\bar{x}}\), \({G_1}'\left( x \right) < 0\) for \(x \in \left( { - \infty ,{\bar{x}}} \right) \) and \({G_1}'\left( x \right) > 0\) for \(x \in \left( {{\bar{x}}, + \infty } \right) \).

Proof

The first two properties follow immediately from Eq. (20). We prove the third property now. From Eq. (20), we obtain the following expression for the first order derivative \({G_1}'\left( x \right) \):

$$\begin{aligned} \begin{aligned} {G_1}'\left( x \right)&= \left[ {\delta \left( {{\bar{T}} - 1} \right) - c} \right] \left( {{\bar{T}} - 1} \right) \left( {\begin{array}{l} {N - 1} \\ {{\bar{T}} - 1} \\ \end{array}} \right) {x^{{\bar{T}} - 2}}{\left( {1 - x} \right) ^{N - {\bar{T}}}} \\&\quad - \left[ {\delta \left( {{\bar{T}} - 1} \right) - c} \right] \left( {N - {\bar{T}}} \right) \left( {\begin{array}{c} {N - 1} \\ {{\bar{T}} - 1} \\ \end{array}} \right) {x^{{\bar{T}} - 1}}{\left( {1 - x} \right) ^{N - {\bar{T}} - 1}} \\&\quad + \left( {\delta - 1} \right) \sum \limits _{j = {\bar{T}} - 1}^{N - 1} {j\left( {\begin{array}{c} {N - 1} \\ j \\ \end{array}} \right) } {x^{j - 1}}{\left( {1 - x} \right) ^{N - 1 - j}} \\&\quad - \left( {\delta - 1} \right) \sum \limits _{j = {\bar{T}} - 1}^{N - 1} {\left( {N - 1 - j} \right) \left( {\begin{array}{*{20}{c}} {N - 1} \\ j \\ \end{array}} \right) } {x^j}{\left( {1 - x} \right) ^{N - 2 - j}}. \\ \end{aligned} \end{aligned}$$
(21)

For \(j \in \left\{ {0, \cdots ,N - 2} \right\} \), the following recurrence relation is satisfied, i.e.,

$$\begin{aligned} \left( {N - 1 - j} \right) \left( {\begin{array}{c} {N - 1} \\ j \\ \end{array}} \right) = \left( {j + 1} \right) \left( {\begin{array}{c} {N - 1} \\ {j + 1} \\ \end{array}} \right) , \end{aligned}$$
(22)

so that

$$\begin{aligned} \begin{aligned} {G_1}'\left( x \right)&= \left( {\begin{array}{c} {N - 1} \\ {{\bar{T}} - 1} \\ \end{array}} \right) {x^{{\bar{T}} - 2}}{\left( {1 - x} \right) ^{N - {\bar{T}} - 1}} \\&\quad \times \left\{ \begin{array}{l} \left[ {\left( {{\bar{T}} - 1} \right) \left( {1 - \delta N} \right) + c\left( {N - 1} \right) } \right] x + \left( {{\bar{T}} - 1} \right) \left( {\delta {\bar{T}} - c - 1} \right) \\ \end{array} \right\} . \\ \end{aligned} \end{aligned}$$
(23)

Following Eq. (23), we prove the third property of Lemma 1. \(\square \)

Based on Lemma 1, we are able to prove the following Proposition 2:

Proposition 2

Let \({\bar{T}} \in \left\{ {2, \cdots ,N - 1} \right\} \). The function of the payoff difference \({f_{{C_{T_C}}}}\left( x \right) - {f_{{D_{T_D}}}}\left( x \right) \) satisfies the following properties:

  1. 2.1

    If \({{\left( {c + 1} \right) } /{{\bar{T}}}}< \delta < 1\) and \(0 \le c < \bar{c}\), there exists a critical number of rounds \(\bar{R} = 1 + {{\left( {1 - \delta } \right) } /{{G_1} (\bar{x})}}\), which determines the behavior of \({f_{{C_{T_C}}}}\left( x \right) - {f_{{D_{T_D}}}}\left( x \right) \):

    1. 2.1.1

      If \(1 \le R < \bar{R}\), \({f_{{C_{T_C}}}}\left( x \right) - {f_{{D_{T_D}}}}\left( x \right) < 0\) for \(x \in \left[ {0,1} \right] \).

    2. 2.1.2

      If \(R = \bar{R}\), \({f_{{C_{T_C}}}}\left( x \right) - {f_{{D_{T_D}}}}\left( x \right) \) has a double real root at \({x^*} = \bar{x} \in \left( {0,1} \right) \). \({f_{{C_{T_C}}}}\left( x \right) - {f_{{D_{T_D}}}}\left( x \right) < 0\) for \(x \in [0,{x^*})\) and \(x \in ({x^*},1]\).

    3. 2.1.3

      If \(R > \bar{R}\), \({f_{{C_{T_C}}}}\left( x \right) - {f_{{D_{T_D}}}}\left( x \right) \) has two real roots, \(x_L^*\) and \(x_R^*\), with \(x_L^* \in \left( {0,\bar{x}} \right) \) and \(x_R^* \in \left( {\bar{x},1} \right) \). \({f_{{C_{T_C}}}}\left( x \right) - {f_{{D_{T_D}}}}\left( x \right) < 0\) for \(x \in [0,{x_L^*})\) and \(x \in ({x_R^*},1]\), whereas \({f_{{C_{T_C}}}}\left( x \right) - {f_{{D_{T_D}}}}\left( x \right) > 0\) for \(x \in ({x_L^*},{x_R^*})\).

  2. 2.2

    If \({1 /N} < \delta \le {{\left( {c + 1} \right) } /{{\bar{T}}}}\) and \(0 \le c < \bar{c}\), \({f_{{C_{T_C}}}}\left( x \right) - {f_{{D_{T_D}}}}\left( x \right) < 0\) for \(x \in \left[ {0,1} \right] \).

  3. 2.3

    If \(c \ge \bar{c}\), \({f_{{C_{T_C}}}}\left( x \right) - {f_{{D_{T_D}}}}\left( x \right) < 0\) for \(x \in \left[ {0,1} \right] \).

Proof

2.1 If \({{\left( {c + 1} \right) } /{{\bar{T}}}}< \delta < 1\) and \(0 \le c < \bar{c}\), Lemma 1 states that \({G_1}\left( x \right) \) attains a maximum at \(\bar{x} \in \left( {0,1} \right) \).

2.1.1 Let \(1 \le R < \bar{R}\). We obtain the following inequality by applying Lemma 1:

$$\begin{aligned} \begin{aligned} {f_{{C_{T_C}}}}\left( x \right) - {f_{{D_{T_D}}}}\left( x \right)&= \delta - 1 + \left( {R - 1} \right) {G_1}\left( x \right) \\&< \delta - 1 + \left( {\bar{R} - 1} \right) {G_1}\left( {\bar{x}} \right) = 0, \\ \end{aligned} \end{aligned}$$
(24)

for \(x \in \left[ {0,1} \right] \).

2.1.2 For \(R = \bar{R}\), we have

$$\begin{aligned} {f_{{C_{T_C}}}}\left( {\bar{x}} \right) - {f_{{D_{T_D}}}}\left( {\bar{x}} \right) = \delta - 1 + \left( {\bar{R} - 1} \right) {G_1}\left( {\bar{x}} \right) = 0. \end{aligned}$$
(25)

To prove that \(\bar{x}\) is a double root, we show that \({\left[ {{f_{{C_{T_C}}}}\left( {\bar{x}} \right) - {f_{{D_{T_D}}}}\left( {\bar{x}} \right) } \right] ^\prime } = 0\) and \({\left[ {{f_{{C_{T_C}}}}\left( {\bar{x}} \right) - {f_{{D_{T_D}}}}\left( {\bar{x}} \right) } \right] ^{\prime \prime }} \ne 0\). From Eq. (23), we obtain \({\left[ {{f_{{C_{T_C}}}}\left( {\bar{x}} \right) - {f_{{D_{T_D}}}}\left( {\bar{x}} \right) } \right] ^\prime } = \left( {R - 1} \right) {G_1}'\left( {\bar{x}} \right) = 0\). Besides, the second order derivative \({\left[ {{f_{{C_{T_C}}}}\left( {\bar{x}} \right) - {f_{{D_{T_D}}}}\left( {\bar{x}} \right) } \right] ^{\prime \prime }}\) at \(x = \bar{x}\) is given by

$$\begin{aligned} \begin{aligned} {\left[ {{f_{{C_{T_C}}}}\left( {\bar{x}} \right) - {f_{{D_{T_D}}}}\left( {\bar{x}} \right) } \right] ^{\prime \prime }} =&\, \left( {R - 1} \right) \left( {\begin{array}{c} {N - 1} \\ {{\bar{T}} - 1} \\ \end{array}} \right) {{\bar{x}}^{{\bar{T}} - 2}}{\left( {1 - \bar{x}} \right) ^{N - {\bar{T}} - 1}} \\&\times \left\{ \begin{array}{l} {\left( {N - {\bar{T}}} \right) ^2}\left[ {c - \delta \left( {{\bar{T}} - 1} \right) } \right] + \left( {{\bar{T}} - 1} \right) \left( {c + 1 - \delta {\bar{T}}} \right) \\ \end{array} \right\} . \\ \end{aligned} \end{aligned}$$
(26)

As \(\delta > {{\left( {c + 1} \right) } /{{\bar{T}}}}\), we have \(c + 1 - \delta {\bar{T}} < 0\) and \(c - \delta \left( {{\bar{T}} - 1} \right)< {{\left( {c + 1} \right) } / {{\bar{T}}}} - 1 < {{\left( {\bar{c} + 1} \right) } /{{\bar{T}}}} - 1\). Since \(\bar{c} = {{\left( {{\bar{T}} - 1} \right) \left( {N\delta - 1} \right) } /{\left( {N - 1} \right) }} < {\bar{T}} - 1\), we further obtain \(c - \delta \left( {{\bar{T}} - 1} \right)< {{\left( {\bar{c} + 1} \right) } /{{\bar{T}}}} - 1 < 0\). Together with \(c + 1 - \delta {\bar{T}} < 0\), we conclude that \({\left[ {{f_{{C_{T_C}}}}\left( {\bar{x}} \right) - {f_{{D_{T_D}}}}\left( {\bar{x}} \right) } \right] ^{\prime \prime }} < 0\). Thus \(\bar{x}\) is a double root for \(x \in \left( { - \infty , + \infty } \right) \).

From Lemma 1, we know that \({G_1}^\prime \left( x \right) > 0\) for \(x \in \left( { - \infty ,\bar{x}} \right] \) and \({G_1}^\prime \left( x \right) < 0\) for \(x \in \left[ {\bar{x}, + \infty } \right) \) when \(0 \le c < \bar{c}\), and thus \({\left[ {{f_{{C_{T_C}}}}\left( x \right) - {f_{{D_{T_D}}}}\left( x \right) } \right] ^\prime } > 0\) for \(x \in \left( { - \infty ,\bar{x}} \right] \) and \({\left[ {{f_{{C_{T_C}}}}\left( x \right) - {f_{{D_{T_D}}}}\left( x \right) } \right] ^\prime } < 0\) for \(x \in \left[ {\bar{x}, + \infty } \right) \) when \(0 \le c < \bar{c}\). Hence, \({{f_{{C_{T_C}}}}\left( x \right) - {f_{{D_{T_D}}}}\left( x \right) }\) increases monotonically in \(\left( { - \infty ,\bar{x}} \right] \) and decreases monotonically in \(\left[ {\bar{x}, + \infty } \right) \). As a result, together with the condition that \(\delta > {{\left( {c + 1} \right) } / {{\bar{T}}}}\) and \({f_{{C_{T_C}}}}\left( 1 \right) - {f_{{D_{T_D}}}}\left( 1 \right) = R\left( {\delta - 1} \right) \le {f_{{C_{T_C}}}}\left( 0 \right) - {f_{{D_{T_D}}}}\left( 0 \right) = \delta - 1 < 0\), we can conclude that \(\bar{x} \in \left( {0,1} \right) \).

2.1.3 For \(R > \bar{R}\), we have

$$\begin{aligned} \begin{aligned} {f_{{C_{T_C}}}}\left( {\bar{x}} \right) - {f_{{D_{T_D}}}}\left( {\bar{x}} \right)&= \delta - 1 + \left( {R - 1} \right) {G_1}\left( {\bar{x}} \right) \\&> \delta - 1 + \left( {\bar{R} - 1} \right) {G_1}\left( {\bar{x}} \right) = 0. \\ \end{aligned} \end{aligned}$$
(27)

As shown in 2.1.2, if \(\delta > {{\left( {c + 1} \right) } /{{\bar{T}}}}\) and \({f_{{C_{T_C}}}}\left( 1 \right) - {f_{{D_{T_D}}}}\left( 1 \right) = R\left( {\delta - 1} \right) \le {f_{{C_{T_C}}}}\left( 0 \right) - {f_{{D_{T_D}}}}\left( 0 \right) = \delta - 1 < 0\), we can obtain that \(\bar{x} \in \left( {0,1} \right) \). On the other hand, since \({f_{{C_{T_C}}}}\left( 0 \right) - {f_{{D_{T_D}}}}\left( 0 \right) = \delta - 1 < 0\) and \({f_{{C_{T_C}}}}\left( {\bar{x}} \right) - {f_{{D_{T_D}}}}\left( {\bar{x}} \right) > 0\), the Intermediate Value Theorem predicts that \({{f_{{C_{T_C}}}}\left( x \right) - {f_{{D_{T_D}}}}\left( x \right) }\) has a root \(x_L^*\) in \(\left( {0,\bar{x}} \right) \). Similarly, since \({f_{{C_{T_C}}}}\left( {\bar{x}} \right) - {f_{{D_{T_D}}}}\left( {\bar{x}} \right) > 0\) and \({f_{{C_{T_C}}}}\left( 1 \right) - {f_{{D_{T_D}}}}\left( 1 \right) = R\left( {\delta - 1} \right) < 0\), the Intermediate Value Theorem predicts that \({{f_{{C_{T_C}}}}\left( x \right) - {f_{{D_{T_D}}}}\left( x \right) }\) has a root \(x_R^*\) in \(\left( {\bar{x},1} \right) \).

2.2 If \(0 \le c < \bar{c}\), \({{f_{{C_{T_C}}}}\left( x \right) - {f_{{D_{T_D}}}}\left( x \right) }\) increases monotonically in \(\left( { - \infty ,\bar{x}} \right] \) and decreases monotonically in \(\left[ {\bar{x}, + \infty } \right) \). On the other hand, for \({1 / N} < \delta \le {{\left( {c + 1} \right) } /{{\bar{T}}}}\), \(\bar{x} \le 0\). Therefore, \({{f_{{C_{T_C}}}}\left( x \right) - {f_{{D_{T_D}}}}\left( x \right) }\) decreases monotonically for \(x \in \left[ {0,1} \right] \). As a result, together with the condition that \({f_{{C_{T_C}}}}\left( 0 \right) - {f_{{D_{T_D}}}}\left( 0 \right) = \delta - 1 < 0\), \({f_{{C_{T_C}}}}\left( x \right) - {f_{{D_{T_D}}}}\left( x \right) < 0\) for \(x \in \left[ {0,1} \right] \).

2.3 Lemma 1 states that \({G_1}^\prime \left( x \right) < 0\) for \(x \in \left( { - \infty , + \infty } \right) \) when \(c = \bar{c}\), and thus \({\left[ {{f_{{C_{T_C}}}}\left( x \right) - {f_{{D_{T_D}}}}\left( x \right) } \right] ^\prime } < 0\) for \(x \in \left[ {0,1} \right] \). Hence, \({{f_{{C_{T_C}}}}\left( x \right) - {f_{{D_{T_D}}}}\left( x \right) }\) decreases monotonically in \(\left[ {0,1} \right] \). As \({f_{{C_{T_C}}}}\left( 0 \right) - {f_{{D_{T_D}}}}\left( 0 \right) = \delta - 1 < 0\), \({f_{{C_{T_C}}}}\left( x \right) - {f_{{D_{T_D}}}}\left( x \right) < 0\) for \(x \in \left[ {0,1} \right] \).

From Lemma 1, we know that \({G_1}^\prime \left( x \right) < 0\) for \(x \in \left( { - \infty ,\bar{x}} \right] \) and \({G_1}^\prime \left( x \right) > 0\) for \(x \in \left[ {\bar{x}, + \infty } \right) \) when \(c > \bar{c}\). This means that \({f_{{C_{T_C}}}}\left( x \right) - {f_{{D_{T_D}}}}\left( x \right) \) attains a maximum either at \(x = 0\) or \(x = 1\) for \(x \in \left[ {0,1} \right] \). As \({f_{{C_{T_C}}}}\left( 0 \right) - {f_{{D_{T_D}}}}\left( 0 \right) = \delta - 1 < 0\) and \({f_{{C_{T_C}}}}\left( 1 \right) - {f_{{D_{T_D}}}}\left( 1 \right) = R\left( {\delta - 1} \right) < 0\), \({f_{{C_{T_C}}}}\left( x \right) - {f_{{D_{T_D}}}}\left( x \right) < 0\) for \(x \in \left[ {0,1} \right] \). This completes the proof. \(\square \)

Analysis for \({\bar{T}} = N\). When \({\bar{T}} = N\), we obtain the following expression for \({f_{{C_{T_C}}}}\left( x \right) - {f_{{D_{T_D}}}}\left( x \right) \):

$$\begin{aligned} {f_{{C_{T_C}}}}\left( x \right) - {f_{{D_{T_D}}}}\left( x \right) = \delta - 1 + \left( {R - 1} \right) \left( {\delta N - c - 1} \right) {x^{N - 1}}. \end{aligned}$$
(28)

From Eq. (28), we can obtain the following Proposition 3 for \({\bar{T}} = N\).

Proposition 3

Let \({\bar{T}} = N\). \({f_{{C_{T_C}}}}\left( x \right) - {f_{{D_{T_D}}}}\left( x \right) \) satisfies the following properties:

  1. 3.1

    If \(0 \le c < {\bar{c}} = \delta N - 1\), there exists a critical number of rounds \({\bar{R}}_1 = 1 + {{\left( {1 - \delta } \right) } /{\left( {\delta N - c - 1} \right) }}\), which determines the behavior of \({f_{{C_{T_C}}}}\left( x \right) - {f_{{D_{T_D}}}}\left( x \right) \):

    1. 3.1.1

      If \(1 \le R < {\bar{R}}_1\), \({f_{{C_{T_C}}}}\left( x \right) - {f_{{D_{T_D}}}}\left( x \right) < 0\) for \(x \in \left[ {0,1} \right] \).

    2. 3.1.2

      If \(R \ge {\bar{R}}_1\), \({f_{{C_{T_C}}}}\left( x \right) - {f_{{D_{T_D}}}}\left( x \right) \) has one simple root \({{x_1}^*}\) in \(\left[ {0,1} \right] \). \({f_{{C_{T_C}}}}\left( x \right) - {f_{{D_{T_D}}}}\left( x \right) < 0\) for \(x \in [0,{{x_1}^*})\) and \({f_{{C_{T_C}}}}\left( x \right) - {f_{{D_{T_D}}}}\left( x \right) > 0\) for \(x \in ({{x_1}^*},1]\).

  2. 3.2

    If \(c \ge {\bar{c}} = \delta N - 1\), \({f_{{C_{T_C}}}}\left( x \right) - {f_{{D_{T_D}}}}\left( x \right) < 0\) for \(x \in \left[ {0,1} \right] \).

Proof

3.1 When \(0 \le c < {\bar{c}} = \delta N - 1\), \({f_{{C_{T_C}}}}\left( x \right) - {f_{{D_{T_D}}}}\left( x \right) \) increases monotonously with x. The Intermediate Value Theorem tells us that \({f_{{C_{T_C}}}}\left( x \right) - {f_{{D_{T_D}}}}\left( x \right) \) has one single root if and only if \({f_{{C_{T_C}}}}\left( 0 \right) - {f_{{D_{T_D}}}}\left( 0 \right) < 0\) and \({f_{{C_{T_C}}}}\left( 1 \right) - {f_{{D_{T_D}}}}\left( 1 \right) \ge 0\). Because the condition \({f_{{C_{T_C}}}}\left( 0 \right) - {f_{{D_{T_D}}}}\left( 0 \right) = \delta - 1 < 0\) always holds for \(\delta < 1\), the sign of \({f_{{C_{T_C}}}}\left( 1 \right) - {f_{{D_{T_D}}}}\left( 1 \right) \) determines the existence of the root for \(x \in \left[ {0,1} \right] \).

3.1.1 If \(1 \le R < {\bar{R}}_1\), \({f_{{C_{T_C}}}}\left( 1 \right) - {f_{{D_{T_D}}}}\left( 1 \right) < 0\). Therefore, \({f_{{C_{T_C}}}}\left( x \right) - {f_{{D_{T_D}}}}\left( x \right) < 0\) for \(x \in \left[ {0,1} \right] \).

3.1.2 If \(R \ge {\bar{R}}_1\), \({f_{{C_{T_C}}}}\left( 1 \right) - {f_{{D_{T_D}}}}\left( 1 \right) \ge 0\). Thus \({f_{{C_{T_C}}}}\left( x \right) - {f_{{D_{T_D}}}}\left( x \right) \) has one simple root \({{x_1}^*}\) in \(\left[ {0,1} \right] \). \({f_{{C_{T_C}}}}\left( x \right) - {f_{{D_{T_D}}}}\left( x \right) < 0\) for \(x \in [0,{{x_1}^*})\) and \({f_{{C_{T_C}}}}\left( x \right) - {f_{{D_{T_D}}}}\left( x \right) > 0\) for \(x \in ({{x_1}^*},1]\).

3.2 If \(c \ge {\bar{c}} = \delta N - 1\), \({f_{{C_{T_C}}}}\left( x \right) - {f_{{D_{T_D}}}}\left( x \right) \) non-increases monotonously with x for \(x \in \left[ {0,1} \right] \). Hence we have \({f_{{C_{T_C}}}}\left( x \right) - {f_{{D_{T_D}}}}\left( x \right) \le {f_{{C_{T_C}}}}\left( 0 \right) - {f_{{D_{T_D}}}}\left( 0 \right) = \delta - 1 < 0\) for \(x \in \left[ {0,1} \right] \). \(\square \)

Analysis for \({\bar{T}} = 1\). For \({\bar{T}} = 1\), \({f_{{C_{T_C}}}}\left( x \right) - {f_{{D_{T_D}}}}\left( x \right) \) is given by

$$\begin{aligned} {f_{{C_{T_C}}}}\left( x \right) - {f_{{D_{T_D}}}}\left( x \right) = R\left( {\delta - 1} \right) - c\left( {R - 1} \right) {\left( {1 - x} \right) ^{N - 1}}. \end{aligned}$$
(29)

Eq. (29) proves the below Proposition 4 for \({\bar{T}} = 1\).

Proposition 4

Let \({\bar{T}} = 1\). \({f_{{C_{T_C}}}}\left( x \right) - {f_{{D_{T_D}}}}\left( x \right) < 0\) for \(x \in \left[ {0,1} \right] \).

B Analytical Approximation for Accumulated Difference of Payoff

In “Appendix B”, we provide technical details of analytical approximation for the accumulated difference of payoff \({\sum \nolimits _{i = 1}^{M - 1} {\sum \nolimits _{k = 1}^i {\left[ {{f_{{C_{{T_C}}}}}\left( k \right) - {f_{{D_{{T_D}}}}}\left( k \right) } \right] } } }\) in the limit of a large but finite population size \(M \gg N\). When \(M \gg N\), the hypergeometric probabilities in Eq. (15) can be approximated by binomial probabilities:

$$\begin{aligned} \frac{{\left( {\begin{array}{c} {k - 1} \\ j \\ \end{array}} \right) \left( {\begin{array}{c} {M - k} \\ {N - 1 - j} \\ \end{array}} \right) }}{{\left( {\begin{array}{c} {M - 1} \\ {N - 1} \\ \end{array}} \right) }} \approx \left( {\begin{array}{c} {N - 1} \\ j \\ \end{array}} \right) {\left( {\frac{{k - 1}}{{M - 1}}} \right) ^j}{\left( {\frac{{M - k}}{{M - 1}}} \right) ^{N - 1 - j}} \end{aligned}$$
(30)

and

$$\begin{aligned} \frac{{\left( {\begin{array}{c} k \\ j \\ \end{array}} \right) \left( {\begin{array}{c} {M - 1 - k} \\ {N - 1 - j} \\ \end{array}} \right) }}{{\left( {\begin{array}{c} {M - 1} \\ {N - 1} \\ \end{array}} \right) }} \approx \left( {\begin{array}{c} {N - 1} \\ j \\ \end{array}} \right) {\left( {\frac{k}{{M - 1}}} \right) ^j}{\left( {\frac{{M - 1 - k}}{{M - 1}}} \right) ^{N - 1 - j}}. \end{aligned}$$
(31)

Introducing the notation \(x = {i / M}\) and \({p_{{C_{{T_C}}}}} = {k / M}\) in the continuum, one can find that the sums in Eq. (14), \(\sum \nolimits _{i = 1}^{M - 1} {\sum \nolimits _{k = 1}^i {\left( \bullet \right) } }\), can be estimated as the the integral, \(\int _0^1 {dx\int _0^x {d{p_{{C_{{T_C}}}}}\left( \bullet \right) } }\). Using Eqs. (15), (30) and (31), the accumulated difference of payoff in Eq. (14) can be approximated as

$$\begin{aligned} \begin{aligned}&\sum \nolimits _{i = 1}^{M - 1} {\sum \nolimits _{k = 1}^i {\left[ {{f_{{C_{{T_C}}}}}\left( k \right) - {f_{{D_{{T_D}}}}}\left( k \right) } \right] } } \\&\quad \approx \frac{{M\left( {M + 1} \right) }}{6}\left[ {\delta \left( {M - N} \right) - \left( {M - 1} \right) } \right] \\&\qquad + {\left. {\left( {R - 1} \right) \left( {\begin{array}{c} {N - 1} \\ j \\ \end{array}} \right) \left[ {\delta \left( {j + 1} \right) - c - 1} \right] \int _0^1 {{p_{{C_{{T_C}}}}}^j{{\left( {1 - {p_{{C_{{T_C}}}}}} \right) }^{N - j}}d{p_{{C_{{T_C}}}}}} } \right| _{j = {\bar{T}} - 1}}\\&\qquad - \left( {R - 1} \right) \left( {1 - \delta } \right) \sum \limits _{j = {\bar{T}}}^{N - 1} {\left( {\begin{array}{c} {N - 1} \\ j \\ \end{array}} \right) \int _0^1 {{p_{{C_{{T_C}}}}}^j{{\left( {1 - {p_{{C_{{T_C}}}}}} \right) }^{N - j}}d{p_{{C_{{T_C}}}}}} } . \\ \end{aligned} \end{aligned}$$
(32)

Let \(B\left( {j,N - j} \right) = \int _0^1 {{p_{{C_{{T_C}}}}}^j{{\left( {1 - {p_{{C_{{T_C}}}}}} \right) }^{N - j}}d{p_{{C_{{T_C}}}}}}\), we have

$$\begin{aligned} B\left( {j,N - j} \right)= & {} \int _0^1 {{p_{{C_{{T_C}}}}}^j{{\left( {1 - {p_{{C_{{T_C}}}}}} \right) }^{N - j}}d{p_{{C_{{T_C}}}}}} \nonumber \\= & {} \frac{1}{{j + 1}}\int _0^1 {{{\left( {1 - {p_{{C_{{T_C}}}}}} \right) }^{N - j}}d{p_{{C_{{T_C}}}}}^{j + 1}} \nonumber \\= & {} \frac{1}{{j + 1}}\left[ {\left. {{{\left( {1 - {p_{{C_{{T_C}}}}}} \right) }^{N - j}}{p_{{C_{{T_C}}}}}^{j + 1}} \right| _0^1 - \int _0^1 {{p_{{C_{{T_C}}}}}^{j + 1}d{{\left( {1 - {p_{{C_{{T_C}}}}}} \right) }^{N - j}}} } \right] \nonumber \\= & {} \frac{{N - j}}{{j + 1}}\left[ {\int _0^1 {{p_{{C_T}}}^{j + 1}{{\left( {1 - {p_{{C_T}}}} \right) }^{N - j - 1}}d{p_{{C_T}}}} } \right] \nonumber \\= & {} \frac{{N - j}}{{j + 1}}B\left( {j + 1,N - j - 1} \right) . \end{aligned}$$
(33)

From above recursive equation, one can obtain

$$\begin{aligned} B\left( {j,N - j} \right) = \frac{1}{{\left( {N + 1} \right) \left( {\begin{array}{*{20}{c}} N \\ j \\ \end{array}} \right) }}. \end{aligned}$$
(34)

Substituting Eq. (34) into Eq. (32) leads to the analytical approximation of the accumulated payoff difference in the limit of \(M \gg N\):

$$\begin{aligned}&\sum \nolimits _{i = 1}^{M - 1} {\sum \nolimits _{k = 1}^i {\left[ {{f_{{C_{{T_C}}}}}\left( k \right) - {f_{{D_{{T_D}}}}}\left( k \right) } \right] } } \nonumber \\&\quad \approx \left[ {\frac{{M\left( {M + 1} \right) \left( {M - N} \right) }}{6} + \frac{{\left( {R - 1} \right) \left( {N - {\bar{T}} + 1} \right) \left( {N + {\bar{T}}} \right) }}{{2N\left( {N + 1} \right) }}} \right] \delta \nonumber \\&\qquad - \frac{{M\left( {M + 1} \right) \left( {M - 1} \right) }}{6} - \frac{{\left( {R - 1} \right) \left( {N - {\bar{T}} + 1} \right) \left( {N - {\bar{T}} + 2c + 2} \right) }}{{2N\left( {N + 1} \right) }}. \end{aligned}$$
(35)

C Proof of Proposition 1

In “Appendix C”, we prove formally Proposition 1.

Proof

1.1 :

Following Eq. (17), we directly prove the first property of Proposition 1.

1.2 :

By simplifying Eq. (17), we have

$$\begin{aligned} \begin{array}{l} {\delta _{th}} = \frac{{M\left( {M + 1} \right) \left( {M - N} \right) N}}{{3\left( {N - {\bar{T}} + 1} \right) \left( {N + {\bar{T}}} \right) }} \times \frac{{\frac{{M - 1}}{{M - N}} - \frac{{N - {\bar{T}} + 2c + 2}}{{N + {\bar{T}}}}}}{{\frac{{M\left( {M + 1} \right) \left( {M - N} \right) N}}{{3\left( {N - {\bar{T}} + 1} \right) \left( {N + {\bar{T}}} \right) }} + \frac{{R - 1}}{{N + 1}}}} + \frac{{N - {\bar{T}} + 2c + 2}}{{N + {\bar{T}}}}. \\ \end{array} \end{aligned}$$
(36)

From Eq. (36), one can obtain that

1.2.1:

\({\delta _{th}}\) is decreased with \(R \in \left\{ {1, \cdots , + \infty } \right\} \) if \(c \in \left[ {0,{{\bar{c}}_1}} \right) \);

1.2.2:

\({\delta _{th}}\) is increased with \(R \in \left\{ {1, \cdots , + \infty } \right\} \) if \(c \in \left( {{{\bar{c}}_1}, + \infty } \right) \);

1.2.3:

\({\delta _{th}}\) is invariant with \(R \in \left\{ {1, \cdots , + \infty } \right\} \) if \(c = {{\bar{c}}_1}\), where the critical value \({{\bar{c}}_1}\) is given by Eq. (18). This proves the second property of Proposition 1.

1.3:

If replacing the discrete variable \({\bar{T}} \in \left\{ {1, \cdots ,N} \right\} \) with a continuous variable \(z \in \left[ {1,N} \right] \) in Eq. (17), we obtain the following expression for the first order partial derivative of \({\delta _{th}}\) with respect to z:

$$\begin{aligned} \frac{{\partial {\delta _{th}}}}{{\partial z}} = \frac{{\frac{{{{\left( {R - 1} \right) }^2}\left( {N + c + 1} \right) }}{{2{N^2}{{\left( {N + 1} \right) }^2}}}{G_2}\left( z \right) }}{{{{\left[ {\frac{{M\left( {M + 1} \right) \left( {M - N} \right) }}{6} + \frac{{\left( {R - 1} \right) \left( {N - z + 1} \right) \left( {N + z} \right) }}{{2N\left( {N + 1} \right) }}} \right] }^2}}}, \end{aligned}$$
(37)

where the polynomial \({{G_2}\left( z \right) }\) is given by

$$\begin{aligned} {G_2}\left( z \right)= & {} - {z^2} + \left[ {\frac{{M\left( {M + 1} \right) N\left( {N + 1} \right) \left( {2M - N - 1} \right) }}{{3\left( {R - 1} \right) \left( {N + c + 1} \right) }} + 2\left( {N + 1} \right) } \right] z \nonumber \\&- {\left( {N + 1} \right) ^2} - \frac{{M\left( {M + 1} \right) N\left( {N + 1} \right) \left[ {2\left( {M - N} \right) \left( {N + c + 1} \right) + 2M - N - 1} \right] }}{{6\left( {R - 1} \right) \left( {N + c + 1} \right) }}.\nonumber \\ \end{aligned}$$
(38)

From Eq. (38), one can observe that \({G_2}\left( z \right) \) increases with z in the interval \(\left[ {1,N} \right] \). Furthermore,

$$\begin{aligned} {G_2}\left( 1 \right) = - \frac{{M\left( {M + 1} \right) N\left( {N + 1} \right) \left[ {2\left( {M - N - 1} \right) \left( {c + N} \right) + N + 2c + 1} \right] }}{{6\left( {R - 1} \right) \left( {c + N + 1} \right) }} - {N^2} < 0.\nonumber \\ \end{aligned}$$
(39)

The Intermediate Value Theorem predicts that \({G_2}\left( z \right) \) has one single root in the interval \(\left( {1,N} \right] \) if and only if

$$\begin{aligned} {G_2}\left( N \right)= & {} \frac{{M\left( {M + 1} \right) N\left( {N + 1} \right) }}{{6\left( {R - 1} \right) \left( {c + N + 1} \right) }}\nonumber \\&\times \left[ { - 2\left( {M - N} \right) c + 2MN - 4M + N + 1} \right] - 1 \ge 0, \end{aligned}$$
(40)

which leads to the critical value \({{\bar{c}}_2}\) given by Eq. (19). Otherwise, there is no root for \({G_2}\left( z \right) \) in the interval \(\left( {1,N} \right] \). Furthermore, one can observe from Eq. (37) that \({G_2}\left( z \right) \) has the same sign and root with \({{\partial {\delta _{th}}} /{\partial z}}\). Therefore, the optimal discrete solution \({\bar{T}}^* \in \left\{ {1, \cdots ,N} \right\} \) resulting in the minimum \({{\delta _{th}}}\) is given by

$$\begin{aligned} \begin{array}{l} {\bar{T}}^* = \left\{ \begin{array}{l} \left\lfloor {z'} \right\rfloor \; {\mathrm{if}}\; {\delta _{th}}\left( {\left\lfloor {z'} \right\rfloor \; } \right) \le {\delta _{th}}\left( {\left\lceil {z'} \right\rceil \; } \right) \; {\mathrm{and}}\; c \le {{\bar{c}}_2}, \\ \left\lceil {z'} \right\rceil \; {\mathrm{if}}\; {\delta _{th}}\left( {\left\lfloor {z'} \right\rfloor \; } \right) > {\delta _{th}}\left( {\left\lceil {z'} \right\rceil \; } \right) \; {\mathrm{and}}\; c \le {{\bar{c}}_2}, \\ N\; \; {\mathrm{otherwise,}} \\ \end{array} \right. \\ \end{array} \end{aligned}$$
(41)

where \(z'\) corresponding to the left root of \({G_2}\left( z \right) = 0\) is given by

$$\begin{aligned} z'= & {} \frac{{M\left( {M + 1} \right) \left( {2M - N - 1} \right) N\left( {N + 1} \right) }}{{6\left( {R - 1} \right) \left( {c + N + 1} \right) }} + N + 1 \nonumber \\&- \sqrt{\frac{{M\left( {M + 1} \right) \left( {2M - N - 1} \right) N\left( {N + 1} \right) }}{{6\left( {R - 1} \right) \left( {c + N + 1} \right) }}\left[ {\frac{{M\left( {M + 1} \right) \left( {2M - N - 1} \right) N\left( {N + 1} \right) }}{{6\left( {R - 1} \right) \left( {c + N + 1} \right) }} - \frac{{2\left( {M - N} \right) \left( {c + N + 1} \right) }}{{2M - N - 1}} + 2N + 1} \right] }.\nonumber \\ \end{aligned}$$
(42)

If \(c \le {{\bar{c}}_2}\), \({\delta _{th}}\) is decreased with \({\bar{T}}\) in the set \(\left\{ {1, \cdots ,{{\bar{T}}^*}} \right\} \) and is increased with \({\bar{T}}\) in the set \(\left\{ {{{\bar{T}}^*}, \cdots ,N} \right\} \) since \({{\partial {\delta _{th}}} /{\partial z}} < 0\) for \(\left[ {1,z'} \right) \) and \({{\partial {\delta _{th}}} /{\partial z}} > 0\) for \(\left( {z',N} \right] \). If \(c > {{\bar{c}}_2}\), \({\delta _{th}}\) is decreased with \({\bar{T}}\) in the set \(\left\{ {1, \cdots ,N} \right\} \) since \({{\partial {\delta _{th}}} /{\partial z}} < 0\) for \(\left[ {1,N} \right] \). Therefore, for any given \({{T_D}}\), one can obtain that the optimal solution \({{T_C}^*}\) leading to the minimum \({\delta _{th}}\) satisfies

1.3.1:

\({T_C}^* = {\bar{T}}^*\) if \(c \le {{\bar{c}}_2}\);

1.3.2:

\({T_C}^* = N\) if \(c > {{\bar{c}}_2}\), which proves the third property of Proposition 1. \(\square \)

D Summary of Critical Parameters: Notations and Mathematical Expressions

In “Appendix D”, we describe the critical parameters used in this study for the purpose of clarifying their definitions and mathematical expressions (see Table 3).

Table 3 Summary of critical parameters: notations and mathematical expressions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X. Costly Participation and The Evolution of Cooperation in the Repeated Public Goods Game. Dyn Games Appl 11, 161–183 (2021). https://doi.org/10.1007/s13235-020-00352-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13235-020-00352-1

Keywords

Navigation