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Abstract
We study subgame φ-maxmin strategies in two-player zero-sum stochastic games with a
countable state space, finite action spaces, and a bounded and universally measurable payoff
function. Here, φ denotes the tolerance function that assigns a nonnegative tolerated error
level to every subgame. Subgameφ-maxmin strategies are strategies of themaximizing player
that guarantee the lower value in every subgame within the subgame-dependent tolerance
level as given by φ. First, we provide necessary and sufficient conditions for a strategy to be
a subgame φ-maxmin strategy. As a special case, we obtain a characterization for subgame
maxmin strategies, i.e., strategies that exactly guarantee the lower value at every subgame.
Secondly, we present sufficient conditions for the existence of a subgame φ-maxmin strategy.
Finally, we show the possibly surprising result that each game admits a strictly positive
tolerance function φ∗ with the following property: if a player has a subgame φ∗-maxmin
strategy, then he has a subgame maxmin strategy too. As a consequence, the existence of
a subgame φ-maxmin strategy for every positive tolerance function φ is equivalent to the
existence of a subgame maxmin strategy.
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1 Introduction

We consider two-player zero-sum stochastic games with a countable state space, finite action
spaces, and a bounded and universally measurable payoff function. Such a game models a
repeated interaction between two players with opposite objectives. The environment in which
the interaction takes place is fully characterized by the state variable. The transition from one
state variable to the next one is influenced by both players as well as an element of chance.
Throughout the paper, we take the perspective of the maximizing player. We are interested in
strategies of the maximizing player that guarantee the lower value at every subgame and call
such strategies subgame maxmin strategies. Under the assumptions as made in the paper, the
value may not exist, which explains why we consider the lower value instead.

As the name subgame maxmin strategy suggests, this concept is closely related to the
concept of a subgame perfect equilibrium as defined in Selten ([19]). In two-player zero-
sum games where the value exists, for conditions see Maitra and Sudderth ([13]) and Martin
([14]), the notions of a subgame maxmin strategy and a subgame minmax strategy coincide
with the notion of a subgame optimal strategy. Moreover, in such games a strategy profile is a
subgame perfect equilibrium if and only if it consists of a pair of subgame optimal strategies.

As illustrated by the Big Match, a game introduced in Gillette ([9]) and analyzed in
Blackwell and Ferguson ([2]), even if the value exists, it is not guaranteed that optimal
strategies exist, so a fortiori, subgame optimal strategies and subgame perfect equilibria may
not exist. A large part of the literature therefore focuses on so-called subgame perfect ε-
equilibria as defined in Radner ([17]). This equilibrium concept is more permissive than a
subgame perfect equilibrium and consists of a strategy pair such that every player obtains
the value at each history up to a fixed error term of ε/2.

Instead of having a fixed error term at each subgame, we allow the error term to vary
across different subgames. This error term is expressed as a function φ of the histories and
is called the tolerance function. The central topic of this paper is the concept of a subgame
φ-maxmin strategy. This is a strategy of the maximizing player that guarantees the lower
value at every subgame within the allowed tolerance level. Intuitively, a subgame φ-maxmin
strategy performs sufficiently well across all subgames. This type of strategy is related to the
concept of φ-tolerance equilibrium as defined in Flesch and Predtetchinski ([6]). Indeed, if
the value exists, then a strategy profile in which both players use a subgame (φ/2)-optimal
strategy is a φ-tolerance equilibrium.

One motivation for letting the tolerance level vary across subgames is given by Mailath,
Postlewaite, and Samuelson ([11]) when introducing the concept of a contemporaneous per-
fect ε-equilibrium. The authors focus on games in which the payoff function of the players
is given by the discounted sum of periodic rewards. Due to this discounting, there exists
a period after which the maximal total discounted reward a player can receive is smaller
than ε. If the allowed tolerance level ε is fixed across all subgames, any strategy will be
an ε-maxmin strategy of a subgame in such a period. Therefore, the concept of subgame
ε-maxmin strategy does not impose any restrictions on the actions chosen at a very distant
future. The issue here is that it would be more intuitive to discount not only the reward but
also the allowed tolerance level.

Additional motivation for letting the tolerance level vary across subgames stems from the
fact that the notion of what is considered sufficiently good might be relative. For instance,
Tversky andKahneman [21] observe that people evaluate decisionswith respect to a reference
level. They find that significantly more people were willing to exert extra effort to save $5 on
a $15 purchase than to save $5 on a $125 purchase. To apply this to the context of zero-sum
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games, consider the following game to which we will refer as the high stakes-low stakes
game. In the first stage of the game, a chance move determines whether the player will
engage in the high stakes or the low stakes variant of this game. The high stakes and the
low stakes games are identical in terms of possible strategies. The only difference is that
the payoffs in the high stakes game are a thousand fold the payoffs in the low stakes game.
Furthermore, assume that in the high stakes subgame, the payoff of player 1 ranges between
0 and 2000 and the value is 1000, while in the low stakes subgame the payoff of player 1
ranges between 0 and 2 and the value is 1. Players that evaluate decisions with respect to a
reference level may label a strategy which guarantees a payoff of 999 in the high stakes game
as sufficiently good. However, in the low stakes game, 0 corresponds to the minimum payoff.
Allowing the tolerance level to vary across subgames can therefore be used to accommodate
such behavioral effects into the model of zero-sum stochastic games.

Another case where history-dependent tolerance levels are natural is the following. In
situations that commonly occur, a player may use a familiar strategy irrespective of the scale
of the payoffs. To understand this better, imagine a player who is highly experienced in
playing a certain zero-sum game. He has a trusted strategy which guarantees him the value
of this game within some error. Now, consider the high stakes–low stakes game again. The
player might well use the trusted strategy in both the low stakes and the high stakes subgame.
Therefore, the error related to this strategy will be relative with respect to the value of the
respective subgame.

Finally, in the class of stochastic games as identified inFlesch, Thuijsman, andVrieze ([8]),
the only way to obtain ε-optimality is to use strategies that are called improving. Improving
strategies are closely related to subgame φ-maxmin strategies such that the tolerance level
in some subgames is smaller than the tolerance level at the root.

With respect to the concept of subgameφ-maxmin strategies, this paper attempts to provide
answers to the following two fundamental questions:

1. For positive tolerance functions φ, when does a subgame φ-maxmin strategy exist?
2. How is the existence of a subgameφ-maxmin strategy related to the existence of a subgame

maxmin strategy?

To answer these questionswewill first derive necessary and sufficient conditions for a strategy
to be a subgameφ-maxmin strategy.This is done inSect. 4.As a special case of these necessary
and sufficient conditions, we obtain a characterization of subgamemaxmin strategies. For the
special class of positive and negative stochastic games, a related characterization of subgame
maxmin strategies was obtained by Flesch, Predtetchinski, and Sudderth ([7]).

The necessary and sufficient conditions for strategies to be subgame φ-maxmin can be
split into a local condition and an equalizing condition. Informally, the local condition states
that the lower value one expects to get in the next subgame should always be at least the lower
value of the current subgame. The equalizing condition requires that for every strategy of the
other player, a subgame φ-maxmin strategy almost surely results in a play with an eventually
good enough payoff, where eventually good enough means being at least the lower value in
very deep subgames up to the allowed tolerance level.

In Sect. 5, we consider the question of existence of subgame φ-maxmin strategies for
positive tolerance functions φ. We prove that for a positive tolerance function φ, a subgame
φ-maxmin strategy exists if every play is either a point of upper semicontinuity of the payoff
function or if the sequence of tolerance levels which occur along the play has a positive lower
bound. The novel aspect of the theorem is the way in which it encompasses a number of
important special cases, some of which have been studied extensively in the literature. One
special case of interest is when the payoff function is upper semicontinuous everywhere.
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In this case, the existence of subgame maxmin strategies follows by a result of Laraki,
Maitra, and Sudderth ([10]). Another is the case when along each play tolerance levels remain
bounded away from zero. This latter case subsumes the familiar class of all positive constant
tolerance functions.When the tolerance level is equal to a constant ε at each history, subgame
φ-maxmin strategies are exactly the so-called subgame ε-optimal strategies. Existence of
subgame ε-optimal strategies for each ε > 0 is established in Mashiah–Yaakovi ([15]).

Our technique relies on switching between strategies: one starts by following a φ(x0)
2 -

optimal strategy until a history (say h) is reached where it ceases to be φ(h)-optimal. At that
moment, one discards the original strategy and switches instead to a φ(h)

2 -optimal strategy, and
so on. This technique is well-attested in the literature, and in particular is used in Mashiah–
Yaakovi ([15]). We refine the method to accommodate both types of plays: those where the
tolerance levels remain bounded away from zero, and those where they converge to zero (the
latter are, by assumption, the plays where the payoff function is upper semicontinuous).

In Sect. 6, we study the relation between the existence of subgame φ-maxmin strategies
and subgame maxmin strategies. Our main result states that the existence of a particular
subgame φ∗-maxmin strategy, with φ∗ > 0, is equivalent to the existence of a subgame
maxmin strategy.Consequently, the existence of subgameφ-maxmin strategies for all positive
tolerance functions φ is equivalent to the existence of a subgame maxmin strategy. In the
special case of an upper semi-continuous payoff function, the results of Sects. 5 and 6 imply
the existence of a subgame maxmin strategy. As noted above, this result is not new, and is a
consequence of Laraki, Maitra, and Sudderth ([10]).

The connection between existence of subgame φ-maxmin strategies for every positive
tolerance function φ and the existence of subgame maxmin strategies is not only useful
to further understand the results obtained by Laraki, Maitra, and Sudderth ([10]) but also
highlights an important and surprising difference between subgame φ-maxmin strategies
and the closely related concept of subgame ε-maxmin strategies. Indeed, the existence of
a subgame ε-maxmin strategy for every ε > 0 does not imply the existence of a subgame
maxmin strategy.

The rest of the paper is structured as follows. In Sect. 2, we formulate the model setup,
and in Sect. 3, we formally define the main concepts. Then in Sect. 4, we discuss the neces-
sary and sufficient conditions for a strategy to be a subgame φ-maxmin strategy and give a
characterization for subgame maxmin strategies. We continue in Sect. 5 by providing suffi-
cient conditions to guarantee the existence of a subgame φ-maxmin strategy. Then in Sect. 6,
we explain why the existence of subgame φ-maxmin strategies for every positive tolerance
function φ is equivalent to existence of a subgame maxmin strategy. Finally, in Sect. 7, we
discuss the importance of the assumptions we made and whether they might be relaxed.

2 Two-Player Zero-Sum Stochastic Games

We consider a two-player zero-sum stochastic gamewith finitely many actions and countably
many states. The payoff function is required to be bounded and universally measurable. The
model encompasses all two-player zero-sum games with perfect information and stochastic
moves.
Actions, states, and histories The action sets of players 1 and 2 are given by the finite sets
A and B, respectively. The state space is given by the countable set X . Let x0 denote the
initial state and define the set Z = A × B × X . The game consists of an infinite sequence
of one-shot games. At the initial state x0, the one-shot game G(x0) is played as follows:
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Players 1 and 2 simultaneously select an action from their respective action sets, denoted
by a1 and b1, respectively. Then, the next state x1 is selected according to the transition
probability q(·|x0, a1, b1). At the new state x1, this process repeats itself and both players
play the one-shot gameG(x1) by selecting actions a2 and b2 from their respective action sets.
The next state x2 is selected according to the transition probability q(·|x0, a1, b1, x1, a2, b2).
This goes on indefinitely and creates a play p = (x0, a1, b1, x1, a2, b2, . . .). Note that the
transition probability can depend on the entire history.

For every t ∈ N = {0, 1, 2, . . .}, letHt = {x0} ×Z t denote the set of all histories that are
generated after t one-shot games. The set H0 consists of the single element x0. For t ≥ 1,
elements ofHt are of the form (x0, a1, b1, . . . , at , bt , xt ). LetH = ∪t∈NHt denote the set of
all histories. For all h ∈ H, let ‖h‖ = ‖(x0, a1, b1, . . . , at , bt , xt )‖ = t denote the number
of one-shot games that occurred during the history h. We refer to ‖h‖ as the length of the
history h. For all t ≤ ‖h‖, the restriction of the history h to the first t one-shot games is
denoted by h|t = (x0, a1, b1, . . . , at , bt , xt ). We write h′ 	 h if there exists t ≤ ‖h‖ such
that h|t = h′, so if the history h extends the history h′.
The space of plays Define P = {x0} × ZN to be the set of plays. Elements of P are of the
form p = (x0, a1, b1, x1, a2, b2, . . .). For t ∈ N, let p|t denote the prefix of p of length t :
that is p|0 = x0 and p|t = (x0, a1, b1, . . . , at , bt , xt ) for t ≥ 1. We write h ≺ p if a history
h is a prefix of p. For every h ∈ H, let P(h) = {p ∈ P|h ≺ p} denote the cylinder set
consisting of all plays which extend history h.

We endow Z with the discrete topology and P with the product topology. The collection
of all cylinder sets is a basis for the product topology on P .

For t ∈ N, let F t be the sigma-algebra generated by the collection of cylinder sets
{P(h) | h ∈ Ht }. Each set in F t can be written as the union of sets in {P(h) | h ∈ Ht }.
Let F∞ be the sigma-algebra generated by ∪t∈NF t . This is exactly the Borel sigma-algebra
generated by the product topology onP . The sigma-algebra of universallymeasurable subsets
of P is denoted by F . Elements of F are sets that belong to the completion of each Borel
probability measure on P . For details of the definition of the sigma-algebra F, the reader
is referred to Appendix A. It holds that F t ⊆ F t+1 ⊆ · · · ⊆ F∞ ⊆ F . The set of plays
P together with the universally measurable sigma-algebra F determines a measurable space
(P,F). A stochastic variable is a universally measurable function from P to R.
Strategies Let�(A) denote the set of probability measures over the action set of player 1 and
�(B) the set of probability measures over the action set of player 2. A behavioral strategy
for player 1 is a function σ : H → �(A). Hence, at each history player 1 chooses a mixed
action. A pure strategy for player 1 is a function that assigns to every history an action, with
a minor abuse of notation, σ : H → A. Similarly, one can define a behavioral and a pure
strategy τ for player 2. Let S1 and S2 denote the sets of behavioral strategies of players 1
and 2, respectively.

It follows from the IonescuTulcea extension theorem that every history h ∈ H and strategy
profile (σ, τ ) ∈ S1 × S2 determine a probability measure Ph,σ,τ on the measurable space
(P(h),F∞

P(h)), where F∞
P(h) denotes the Borel sigma-algebra over the set of plays extending

the history h. The measure Ph,σ,τ can be extended to the measurable space (P,F∞) in
the obvious way. Taking the completion of the probability space (P,F∞,Ph,σ,τ ) yields the
probability space (P,F,Pc

h,σ,τ ). With a minor abuse of notation, we will omit the superscript
c and write Ph,σ,τ in the remainder of this paper.
Payoff functionWe assume that the payoff function u : P → R of player 1 is bounded, where
we define M = supp∈P |u(p)|, and universally measurable. We also assume the game to be
zero-sum. The payoff function of player 2 is therefore given by −u. We denote the game as
described above by �x0(u). Throughout the paper, we take the point of view of player 1. This
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is without loss of generality, since the situation of player 2 in the game �x0(u) is identical to
that of player 1 in the game �x0(−u).

The expected payoff of player 1 corresponding to strategy profile (σ, τ ) ∈ S1 × S2 at
history h ∈ H is given by Eh,σ,τ [u] , where the expectation is taken with respect to the
probability measure Ph,σ,τ . The expected payoff of player 1 at the history x0 is denoted by
Eσ,τ [u].

We imposed the condition above that the payoff function u is universally measurable. As
Borel measurable functions are also universally measurable, this condition is weaker than
requiring that u be Borel measurable. The main difference between these two conditions is
the following. When the payoff function u is Borel measurable, the game is known to admit
a value (cf. Sect. 3 for the formal definition). However, it is not provable from the standard
ZFC axioms of set theory1 that our games with a universally measurable payoff function
also admit a value. Therefore, instead of the value, in the remaining part of the paper we will
use the lower value (cf. Sect. 3 for the formal definition). We would like to emphasize that
except for the difference between the concepts of the value and the lower value, assuming
Borel measurable payoffs would not lead to any simplification in the proofs. So the reader
unfamiliar with universally measurable functions can read the entire paper imagining Borel
measurable payoffs.

3 Subgame �-Maxmin Strategies

We start this section by defining subgame φ-maxmin strategies. Then, we discuss an illus-
trative example. Finally, we define and examine guarantee levels of strategies.

3.1 Definition of Subgame�-Maxmin Strategies

For every game �x0(u), for every history h ∈ H, we define the lower value v(h) and the
upper value v(h) by

v(h) = sup
σ∈S1

inf
τ∈S2

Eh,σ,τ [u] , (3.1)

v(h) = inf
τ∈S2

sup
σ∈S1

Eh,σ,τ [u] . (3.2)

Because the payoff function u is assumed to be bounded, we have that v(h), v(h) ∈ R.
Therefore, the lower and upper value exist in every subgame of �x0(u). Furthermore, we
have that v(h) ≤ v(h). Whenever v(h) = v(h) we say that the subgame at history h has a
value and we denote it by v(h). The lower value, the upper value, and the value at the initial
state x0 are denoted by v, v, and v, respectively. If u is Borel measurable, then the value
exists byMaitra and Sudderth ([13]) andMartin ([14]). Since we do not assume u to be Borel
measurable, we present our results in terms of the lower value.

Even if the value exists, player 1 may not have a strategy that guarantees the value in
each subgame and the literature has therefore studied subgame ε-optimal strategies. These
are strategies which guarantee the value in each subgame up to an allowed error term of ε.
If the payoff function is bounded and Borel measurable, it has been shown by Mashiah–
Yaakovi ([15]) that for each ε > 0 player 1 has a subgame ε-optimal strategy. The concept

1 See the discussion on page 1566 inMartin ([14]), for the specific case of perfect information games in which
the payoff function is the characteristic function of an analytic set.
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Fig. 1 Characterization of φ such that pure subgame φ-maxmin strategies exist

of a subgame ε-optimal strategy has a constant error term ε across all subgames. However,
as argued in the introduction, there are instances in which it is more natural to consider a
variable error term. Therefore, instead of considering a constant error term, we follow Flesch
and Predtetchinski ([6]), who allow the error term to vary across histories in their investigation
of the φ-tolerance equilibrium. This leads us to the study of subgame φ-maxmin strategies,
where φ : H → [0,∞) is a tolerance function assigning an allowed tolerance level to each
history.

Definition 3.1 Let φ : H → [0,∞) be a tolerance function. A strategy σ ∈ S1 is a subgame
φ-maxmin strategy in the game �x0(u) if for every history h ∈ H it holds that

∀τ ∈ S2, Eh,σ,τ [u] ≥ v(h) − φ(h). (3.3)

In case φ is identically equal to zero, we omit it from the notation, and simply refer to a
subgame maxmin strategy.

A subgame φ-maxmin strategy guarantees at each history h of the game the lower value
up to the tolerance level φ(h). If the tolerance function is such that for some ε ≥ 0, for every
h ∈ H, φ(h) = ε, then we refer to the strategy as a subgame ε-maxmin strategy. If the value
exists, then the notion of subgame ε-maxmin strategy coincides with the notion of subgame
ε-optimal strategy.

The following example illustrates that even for a strictly positive tolerance function φ

player 1 may not have subgame φ-maxmin strategies. Interestingly, however, player 1 has a
subgame ε-maxmin strategy for every positive ε > 0, which in fact is pure. We also give an
example of a tolerance function φ for which player 1 has a subgame φ-maxmin strategy, but
not a pure such strategy.

Example 3.2 The decision problem depicted in Fig. 1 corresponds to a two-player zero-sum
stochastic game in which the state space is trivial and the second player is a dummy player.
Whenever the state space or action sets are degenerate, the corresponding states and actions
are omitted from the notation in examples. The set of actions of player 1 isA = {c, q}, where
c stands for continue and q for quit. The game stops as soon as player 1 chooses to quit. If
player 1 decides to quit at period t , then his payoff is t/(t + 1). If player 1 never quits, his
payoff is 0.

In this game, player 1 has a subgame ε-maxmin strategy for every positive ε > 0. For
example, the strategy which quits whenever quitting leads to a payoff of at least 1 − ε.

We now turn to the existence of a subgame φ-maxmin strategy. Clearly, there exist no
subgame maxmin strategy. As we will see later, Theorem 6.1 then implies that there is some
strictly positive tolerance function φ for which there does not exist a subgame φ-maxmin
strategy. Intuitively, such a tolerance function forces player 1 to continue with such a large
probability that the total probability of never quitting becomes nearly one.
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Interestingly, there is a tolerance function φ for which player 1 has a subgame φ-maxmin
strategy, but for which he has no pure strategy that is subgame φ-maxmin. To see this, define
the tolerance function φ by φ(ct ) = 1− 1

2 · t
t+1 − 1

2 · t+1
t+2 for each t ∈ N. Now consider the

strategy σ which always chooses action c with probability 1/2 and action q with probability
1/2. In the subgame at any history ct , it quits immediately with probability 1/2 and quits at a
later period with probability 1/2. In the former case, it gives payoff t

t+1 , whereas in the latter

case, it gives an expected payoff of at least t+1
t+2 . Hence, the strategy σ is a subgame φ-maxmin

strategy. Yet, there is no pure strategy that is subgame φ-maxmin. Indeed, the tolerance func-
tion does not allow a pure strategy to quit at any period, whereas a pure strategy that always
continues is not subgame φ-maxmin either. As we show in the working paper version of our
paper, Flesch, Herings, Maes, and Predtetchinski ([5]), a pure subgame φ-maxmin strategy
exists if and only if the following two conditions hold: (1) for every t ∈ N, φ(ct ) > 0, and

(2) for infinitely many t ∈ N, φ′(ct )=min
n≤t

φ(cn) ≥ 1

t + 1
. ��

3.2 Guarantee Levels

To identify subgame φ-maxmin strategies, it is useful to define the function u : S1 ×H → R

by
u(σ, h) = inf

τ∈S2
Eh,σ,τ [u] . (3.4)

The payoff u(σ, h) corresponds to the guarantee level that player 1 is expected to receive at
history h when playing the strategy σ . A strategy σ ∈ S1 is called a φ(h)-maxmin strategy
for the subgame at history h if u(σ, h) ≥ v(h) − φ(h).

For every strategy profile (σ, τ ) ∈ S1×S2, for every t ∈ N, define the stochastic variables
Ut

σ,τ ,U
t
σ , and V

t by lettingUt
σ,τ (p) = Ep|t ,σ,τ [u],Ut

σ (p) = u(σ, p|t ), and V t (p) = v(p|t ),
respectively, for each play p ∈ P . All three stochastic variables are F t -measurable. We have
Ut

σ ≤ Ut
σ,τ and Ut

σ ≤ V t everywhere on P .
The next lemma states the submartingale property of guarantee levels. It says that the

guarantee level that player 1 can expect to receive increases over time.

Lemma 3.3 (Submartingale property of guarantee levels) Let a strategy profile (σ, τ ) ∈
S1 × S2, t ∈ N, and a history h ∈ Ht of length t be given. The process (Ut+n

σ )n∈N is a
Ph,σ,τ -submartingale. In particular, it holds that u(σ, h) ≤ Eh,σ,τ [Ut+1

σ ].
Proof We first prove the second claim. Take δ > 0. Let τ ′ ∈ S2 be such that τ ′(h) = τ(h)

and for each (a, b, x) ∈ Z it holds that

E(h,a,b,x),σ,τ ′ [u] ≤ u(σ, (h, a, b, x)) + δ.

We have that

u(σ, h) ≤ Eh,σ,τ ′ [u]
=

∑

(a,b,x)∈Z
σ(h)(a) · τ(h)(b) · q(x |h, a, b) · E(h,a,b,x),σ,τ ′ [u]

≤
∑

(a,b,x)∈Z
σ(h)(a) · τ(h)(b) · q(x |h, a, b) · (u(σ, (h, a, b, x)) + δ)

= Eh,σ,τ [Ut+1
σ ] + δ.

It follows that u(σ, h) ≤ Eh,σ,τ [Ut+1
σ ] since δ > 0 is arbitrary.
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To prove that the process (Ut+n
σ )n∈N is a Ph,σ,τ -submartingale, note that the con-

ditional expectation Eh,σ,τ (Ut+n+1
σ | F t+n), when evaluated at a play p ∈ P(h),

equals Ep|t+n ,σ,τ (Ut+n+1
σ ), which, by the claim already proven, is at least u(σ, p|t+n) =

Ut+n(σ )(p). ��

4 Conditions for Strategies to be Subgame �-Maxmin

4.1 n-DayMaxmin Strategies and Equalizing Strategies

The goal of this section is to provide necessary and sufficient conditions for a strategy to be
subgame φ-maxmin and to provide a characterization of subgame maxmin strategies.

Definition 4.1 A strategy σ ∈ S1 is an n-day φ-maxmin strategy in the game �x0(u) if for
every t ∈ N, for every history h ∈ Ht of length t , and for every strategy τ ∈ S2,

Eh,σ,τ [V t+n] ≥ v(h) − φ(h). (4.1)

Definition 4.2 A strategy σ ∈ S1 is φ-equalizing in the game �x0(u) if for every t ∈ N, for
every history h ∈ Ht of length t , and for every strategy τ ∈ S2,

u ≥ lim sup
t→∞

V t − φ(h), Ph,σ,τ -almost surely. (4.2)

When φ = 0, we use the terms n-day maxmin and equalizing to mean n-day 0-maxmin
and 0-equalizing, respectively.

The first definition is very intuitive. It says that player 1 should play in such a way that,
on average, the lower value increases over time. The notion of 1-day maxmin strategies is
particularlywell-known in dynamic programming and stochastic games, see Puterman ([16]).
A simple characterization of 1-day maxmin strategies is provided in following theorem.

Theorem 4.3 Consider a strategy σ ∈ S1 in the game �x0(u). The following three conditions
are equivalent:

1. For each n ∈ N, σ is an n-day maxmin strategy.
2. σ is a 1-day maxmin strategy.
3. For each history h ∈ Ht of length t and each strategy τ ∈ S2, the process (V t+n)n∈N is

a Ph,σ,τ -submartingale.

Proof That condition 1 implies condition 2 is obvious. That condition 2 implies condition
3 follows by the law of iterated expectations. Finally, that condition 3 implies condition 1
follows from the properties of a submartingale. ��

Note that the equivalence in Theorem 4.3 is no longer true for nonzero tolerance functions.
For example, if φ > 0, then a 1-day φ-maxmin strategy is generally not 2-day φ-maxmin.

A strategy is φ-equalizing if, roughly speaking, it almost surely results in a play with an
eventually good enough payoff, where eventually good enough means being about as large
as the lower value in very deep subgames.

The following example illustrates both the notion of a 1-day maxmin strategy and an
equalizing strategy.

Example 4.4 Consider the centipede game shown in Fig. 2. At every history, the active player
can choose to continue (c) or to quit (q). As soon as a player decides to quit the game ends
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Fig. 2 Strategies that are n-day maxmin may not be subgame maxmin

and in that case the payoff is as given in Fig. 2. If the game continues indefinitely then the
payoff is 0. It is easily verified that for every t ∈ N, v(c2t ) = v(c2t+1) = (t + 1)/(t + 2).
A pure strategy σ ∈ S1 is then easily seen to be a 1-day maxmin strategy if and only if
σ(c2t ) = c for every t ∈ N.

On the other hand, a pure strategy σ ∈ S1 is equalizing if and only if for infinitely many
t ∈ N it holds that σ(c2t ) = q. Indeed, for a strategy σ such that q is chosen for infinitely
many t ∈ N the generated play ends with q after each history h ∈ H irrespective of τ ∈ S2,
which shows that σ is equalizing. On the other hand, if σ is such that q is chosen for finitely
many t ∈ N, then there is a history h ∈ H such that player 1 always plays continue after
this history. If τ ∈ S2 is such that player 2 always chooses continue, then the play c∞ with
u(c∞) = 0 results, which is strictly less than lim supt→∞ v(ct ) = 1, so such a σ is not
equalizing.

It follows that player 1 does not have a pure strategy which is both 1-day maxmin and
equalizing. ��

The following theorem states sufficient conditions under which a strategy σ of player 1
is a subgame φ-maxmin strategy.

Theorem 4.5 (Sufficient condition)Letφ : H → [0,∞)be a tolerance function. The strategy
σ ∈ S1 is a subgame φ-maxmin strategy in the game �x0(u) if there exist tolerance functions
φ1 : H → [0,∞) and φ2 : H → [0,∞) such that φ1 + φ2 ≤ φ and

1. for every n ∈ N, σ is n-day φ1-maxmin,
2. σ is φ2-equalizing.

Proof Let φ1, φ2, and σ be such that the conditions in the theorem are satisfied. We show
that σ is a subgame φ-maxmin strategy.

Fix a history h ∈ Ht and a strategy τ ∈ S2. Then, we have that
v(h) − φ(h) ≤ v(h) − φ1(h) − φ2(h)

≤ lim sup
n→∞

Eh,σ,τ [V t+n] − φ2(h)

≤ Eh,σ,τ [lim sup
n→∞

V t+n] − φ2(h)

≤ Eh,σ,τ [u],
where the second inequality holds sinceσ is an n-dayφ1-maxmin strategy, the third inequality
is by Fatou lemma, and the last inequality holds since σ is φ2-equalizing. ��

According to Theorem 4.5, to conclude that σ is a subgame φ-maxmin strategy, it is
enough to find tolerance functions φ1 and φ2 such that at each history their sum does not
exceed φ and the strategy σ is both n-day φ1-maxmin and φ2-equalizing.
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Particularly natural are situations where the tolerance level does not increase as time
progresses. More formally, the tolerance function φ is said to be non-increasing if φ(h) ≥
φ(h′) whenever h ≺ h′. The following result states necessary conditions for a strategy to be
subgame φ-maxmin.

Theorem 4.6 (Necessary condition) Let σ ∈ S1 be a subgame φ-maxmin strategy in the
game �x0(u). Then, it holds that:

1. For every n ∈ N, σ is an n-day φ-maxmin strategy.
2. If the tolerance function φ is non-increasing, then σ is φ-equalizing.

Proof Let σ ∈ S1 be a subgame φ-maxmin strategy in the game �x0(u). Take a history
h ∈ Ht of length t and a strategy τ ∈ S2.

We prove condition 1. We have

Eh,σ,τ [V t+n] ≥ Eh,σ,τ [Ut+n
σ ] ≥ Eh,σ,τ [Ut

σ ] = u(σ, h) ≥ v(h) − φ(h),

where the first inequality holds since for each play p ∈ P(h)we have V t+n(p) = v(p|t+n) ≥
u(σ, p|t+n) = Ut+n

σ (p). The second inequality holds by Lemma 3.3. The next equation holds
since t is the length of history h, and the final inequality holds since σ is a subgameφ-maxmin
strategy.

We prove condition 2. We have, Ph,σ,τ -almost surely,

u(p) = lim
t→∞Ep|t ,σ,τ [u] ≥ lim sup

t→∞
(v(p|t ) − φ(p|t )) ≥ lim sup

t→∞
V t (p) − φ(h),

where the equality is by Levy’s zero-one law (LemmaA.1 in Appendix A), the first inequality
follows since σ is a subgame φ-maxmin strategy, and the second inequality holds since φ is
non-increasing. ��

Notice that in the case of a nonzero tolerance function, the necessary and sufficient con-
ditions do not coincide, and we do not obtain a characterization of subgame φ-maxmin
strategies. We now turn to the case where the tolerance function φ is identically equal to 0.

Corollary 4.7 A strategy σ ∈ S1 is a subgame maxmin strategy in the game �x0(u) if and
only if it is 1-day maxmin and equalizing.

When we compare the sufficient conditions of Theorem 4.5 to the sufficient conditions
of Corollary 4.7, we notice that in the case of a non-zero tolerance function we require the
strategy to be n-day φ-maxmin. In the case of a zero tolerance function, the corresponding
sufficient conditions only require the strategy to be 1-day maxmin. The reason for this differ-
ence is that we should avoid that strategies accumulate the allowed tolerance levels, causing
them to become too permissive over time. The following example illustrates this issue.

Example 4.8 Consider the decision problem depicted in Fig. 3. Each period the decision
maker can choose to continue (c) or to quit (q). Notice that v(ct ) = 1/(t + 1) and hence
lim
t→∞ v(ct ) = 0. Any strategy of player 1 is therefore equalizing. Furthermore, it is clear that

in this decision problem the subgame maxmin strategy is unique and requires the decision
maker to quit at each time. Now suppose the decision maker has the following tolerance
function:

φ(ct ) = v(ct ) − v(ct+1) = 1

t + 1
− 1

t + 2
, t ∈ N.

Consider the strategy σ where the decision maker always chooses to continue. From
the definition of the tolerance function, it follows that the strategy σ is a 1-day φ-maxmin
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Fig. 3 A 1-day φ-maxmin strategy may not be n-day φ-maxmin

strategy. Indeed, it holds that v(ct+1) ≥ v(ct ) − φ(ct ). It is also easily seen that the strategy
σ is equalizing. Nevertheless, it is clear that σ is not a subgame φ-maxmin strategy.

The underlying problem with the strategy σ is that every time the decision maker chooses
to continue this causes an acceptable loss in the value, but over time these losses add up to
an unacceptable loss. The requirement that for every n ∈ N a strategy is n-day φ-maxmin
guarantees that the accumulated losses over any finite period of time remain acceptable.

If we require a strategy to be subgame maxmin, then we do not tolerate any losses. There-
fore, the accumulation problem mentioned above will never occur, and it will be sufficient
to only require that the strategy is 1-day maxmin. ♦

Example 4.9 is such that player 1 has a maxmin strategy in every subgame, but has no
subgame maxmin strategy. From Corollary 4.7, it follows that any subgame maxmin strategy
needs to be both 1-day maxmin and equalizing. The example presents a game where all the
strategies are 1-day maxmin but none of them is equalizing and therefore subgame maxmin
strategies do not exist.

Example 4.9 Consider the followingperfect informationgame.Both players have twoactions,
left (L) and right (R), so A = B = {L, R}. The players take turns playing an action,
which generates a play p ∈ {L, R}N. Let r1(p) and r2(p) denote the number of times that
player 1 and player 2, respectively, play action R during the play p and define r(p) =
min{r1(p), r2(p)}. Player 1 obtains a payoff of 0 if both players choose R infinitely often.
When at least one of them chooses R only a finite number of times, then player 1 receives
a payoff of r(p)/(r(p) + 1). The payoff function u is therefore obtained by defining, for
p ∈ {L, R}N ,

u(p) =
{

r(p)
r(p)+1 , if r1(p) �= ∞ or r2(p) �= ∞,

0, if r1(p) = r2(p) = ∞.
(4.3)

At each history h ∈ H, the value of the game exists and is given by v(h) = r2(h)/(r2(h)+
1), where r2(h) denotes the number of times player 2 has chosen R in the history h. Indeed,
player 1 can guarantee this payoff by choosing the action R max{r2(h) − r1(h), 0} times
after history h. Player 2 can guarantee to lose at most this amount by playing only left after
history h. Hence at every history h ∈ H, player 1 has a maxmin strategy.

For every history h ∈ H where player 1 takes an action and for every action a ∈ A, we
have that r2(ha) = r2(h) and v(ha) = v(h). Therefore, all strategies of player 1 are 1-day
maxmin.

On the other hand, no equalizing strategy exists for player 1. To see this, take any strategy
σ ∈ S1 for player 1 and consider the strategy τ ∈ S2 in which player 2 always chooses R.

Let p be the play generated by the strategy profile (σ, τ ). Then, we have that u(p) < 1 and
lim
t→∞ v(p|t ) = 1. It follows that σ is not equalizing. Using Corollary 4.7, we conclude that

player 1 does not have a subgame maxmin strategy. ��
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4.2 The case of an upper semi-continuous payoff function

The remainder of this section is devoted to the case where the payoff function is upper semi-
continuous. We argue that in this case, any strategy of player 1 is equalizing. Because all
upper semi-continuous functions are Borel measurable and because we assumed finite action
sets and a countable state space, the value exists, see Maitra and Sudderth ([13]) and Martin
([14]), and the lower value equals the value.

The function u is upper semi-continuous at a play p ∈ P if for every sequence {pt }t∈N of
plays converging to p it holds that

lim sup
t→∞

u(pt ) ≤ u(p).

Lemma 4.10 Let the payoff function u be upper semi-continuous at the play p. Then, we
have that

u(p) ≥ lim sup
t→∞

v(p|t ). (4.4)

Proof Fix ε > 0. For every t ∈ N, define ht = p|t and let pt ∈ P(ht ) be such that
u(pt ) ≥ v(ht ) − ε. Such a play pt exists as player 1 can guarantee a payoff of at least
v(ht ) − ε at history ht . Since the sequence {pt }t∈N converges to p, we have

u(p) ≥ lim sup
t→∞

u(pt ) ≥ lim sup
t→∞

v(ht ) − ε.

Since this holds for every ε > 0, the lemma follows. ��
In view of Lemma 4.10, we obtain the following corollary to Theorems 4.5, 4.6, and 4.7.

Corollary 4.11 Let �x0(u) be such that u is upper semi-continuous. Then, each strategy of
player 1 is equalizing. The strategy σ ∈ S1 is a subgame φ-maxmin strategy if and only if
for every n ∈ N it is an n-day φ-maxmin strategy. The strategy σ ∈ S1 is a subgame maxmin
strategy if and only if it is a 1-day maxmin strategy.

Example 4.12 (Staying in the set game) Let some subset X ∗ of X be given. For a play
p = (x0, a1, b1, x1, a2, b2 . . . ), we define u(p) to be 1 if xt ∈ X ∗ for every t ∈ N and to
be 0 otherwise. Maitra and Sudderth ([12]) refer to such a payoff function as “staying in a
set” and in the computer science literature it goes under the name of “safety objective,” see
Bruyaère ([4]). Since u is upper semi-continuous, any strategy σ ∈ S1 is equalizing. ��
Example 4.13 Consider again the centipede game shown in Figure 2, but with one slight
modification. If the game continues indefinitely, then player 1 receives a payoff of 2 instead of
0. The payoff function is now upper semi-continuous. As argued in Example 4.4, the strategy
σ in which player 1 continues at each history is 1-day maxmin. Because of Corollary 4.11,
we can conclude that the strategy σ is a subgame maxmin strategy. ��

Note that the limit average payoff is generally not upper semi-continuous. Hence, in games
where the payoff function is given by the limit average payoff, there may exist strategies of
the maximizing player which are not equalizing.

5 Existence of subgame �-maxmin strategies

The goal of this section is to give sufficient conditions for the existence of a subgame φ-
maxmin strategy if the tolerance function φ is positive. We will prove the following theorem.
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Theorem Let a game �x0(u) and a tolerance function φ > 0 be given such that for every
p ∈ P at least one of the following two conditions holds:

1. (point of upper semicontinuity) The function u is upper semi-continuous at p.
2. (positive limit inferior) lim inf t→∞ φ(p|t ) > 0.

Then, there exists a subgame φ-maxmin strategy in the game �x0(u).

Two special cases of the above theoremareworth noting.One iswhen the payoff function is
everywhere upper semicontinuous. In this special case, the existence of a φ-maxmin strategy
(in fact, of a maxmin strategy) follows by a result of Laraki, Maitra, and Sudderth ([10]). We
note that the latter result is not entirely subsumed by the theorem above, since the authors
allow for a general Borel state space. Another special case of interest is when along each play,
the tolerance remains bounded away from zero (i.e., if each play satisfies condition 2 of the
theorem). This special case, to the best of our knowledge, has not been explicitly considered
in the literature. However, it does encompass the familiar situation of a constant tolerance
function: φ(h) ≡ ε > 0. For such tolerance functions, φ-maxmin strategies are exactly
subgame ε-optimal strategies, and existence follows by Proposition 11 in Mashiah–Yaakovi
([15]). Note that the case when all plays satisfy condition 2 of the theorem is more general
than the case of a constant tolerance function, since no uniform lower bound on the tolerance
is imposed. A novel feature of the above theorem is the way it combines these various special
cases. We note that the theorem remains original even if we restrict our attention to Borel
measurable payoff functions.

The main technique used in the proof of this theorem are switching strategies. The idea
of switching between progressively “more optimal” strategies is certainly not new. A similar
construction is used for example in Rosenberg, Solan, and Vieille ([18]), Solan and Vieille
([20]), and Mashiah–Yaakovi ([15]). However, the method needs to be fine-tuned, in order
for it to accommodate both the plays where the tolerance remains bounded away from zero
(condition 2), as well as those where the payoff function is upper semicontinuous (condition
1). It is not straightforward to use this proof technique when we have a general Borel measur-
able state space as the selection of switching strategies would need to satisfy measurability
conditions. It is therefore an interesting open question whether the result can be extended to
that case.

The switching strategy σφ is formally defined in Sect. 5.1. To analyze its properties, we
define in Sect. 5.2, for every k ∈ N, a strategy σ k that coincides with σφ as long as at most
k switches have been made and it stops switching thereafter. We also present three technical
lemmas for finite switching strategies in this subsection, the most important one showing that
the guaranteed expected payoff of a strategy σ k is increasing in k. Sect. 5.3 uses the lemmas
of Sect. 5.2 to show the desired existence result in Theorem 5.7.

5.1 Definition of the Switching Strategy ��

Fix a tolerance function φ > 0. For every history h ∈ H, player 1 has a (φ(h)/2)-maxmin
strategy for the subgame at history h, denoted by σ h . The function ψ : H → H maps
histories into histories and is such that player 1 is going to use strategy σψ(h) at subgame
h ∈ H.The functionψ is used to describewhen player 1 switches strategies and is recursively
defined by setting ψ(x0) = x0 and, for every h ∈ H, for every z ∈ Z,

ψ(hz) =
{

ψ(h), if u(σψ(h), hz) ≥ v(hz) − φ(hz),
hz, otherwise.
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The condition u(σψ(h), hz) ≥ v(hz)−φ(hz) verifies whether the strategy to which player
1 switched last, σψ(h), is a φ(hz)-maxmin strategy for the subgame at history hz. If this is
the case, then there is no need to switch and ψ(hz) = ψ(h). Otherwise, player 1 switches to
σ hz, which is achieved by setting ψ(hz) = hz. Formally, we define the switching strategy
σφ : H → �(A) by

σφ(h) = σψ(h)(h), h ∈ H. (5.1)

The following example illustrates the switching strategy σφ and shows that it may not be
subgame φ-maxmin.

Example 5.1 Consider again the centipede game depicted in Fig. 2. We recall that, for every
t ∈ N, v(c2t ) = v(c2t+1) = (t + 1)/(t + 2). Take a tolerance function φ with the property
that, for every t ∈ N, φ(c2t ) < 1/((t + 1)(t + 2)).

Let h ∈ H be the active history and let k ∈ N be such that h = c2k or h = c2k+1. The
strategy σ h in which player 1 chooses continue at periods 0, 2, . . . , 2k and chooses quit at
every later period, i.e.,

σ h(c2t ) =
{
c, if 2t ≤ 2k,
q, otherwise,

is a maxmin strategy at subgame h.

We now consider the switching strategy σφ. We show by induction that for every h ∈ H ,

for every z ∈ Z , it holds thatψ(hz) = hz if hz is an active history of player 1 andψ(hz) = h
if hz is an active history of player 2. The statement trivially holds for the initial history. Let
h be an active history of player 2 and let t ∈ N be such that h = c2t+1. Since σ h = σ c2t is
a maxmin strategy at subgame h, it holds that ψ(c2t+1) = c2t . Let h be an active history of
player 1 and let t ∈ N \ {0} be such that h = c2t . We have that

u(σψ(c2t−1), c2t ) = u(σ c2t−2
, c2t ) = t

t+1 = v(c2t ) − 1
(t+1)(t+2) < v(c2t ) − φ(c2t ),

so ψ(c2t ) = c2t . Since the tolerance function φ is so stringent, it forces player 1 to switch
at each of his active histories. For every t ∈ N, it holds that σφ(c2t ) = σ c2t (c2t ) = c, so
under σφ player 1 chooses c at each of his active histories. The strategy σφ is not a subgame
φ-maxmin strategy as it fails to be φ-equalizing, see Example 4.4. ��

5.2 Definition and Analysis of Finite Switching Strategies

Given the switching strategy σφ, for every k ∈ N, we define the strategy σ k : H → �(A)

such that it coincides with σφ as long as at most k switches have been made and it stops
switching thereafter. Formally, we recursively define the function κ : H → N which counts
the number of switches along a history h by setting κ(x0) = 0 and, for all histories h, hz ∈ H,

κ(hz) =
{

κ(h), if u(σψ(h), hz) ≥ v(hz) − φ(hz),
κ(h) + 1, otherwise.

For every k ∈ N, we define the stopping time Tk : P → N ∪ {∞} by
Tk(p) = inf{t ∈ N|κ(p|t ) = k}, p ∈ P. (5.2)

The stopping time Tk indicates the time at which switch k occurred. Since, for t < ∞,

the expression Tk(p) ≤ t only depends on the history up to period t, it holds that the set
{p ∈ P|Tk(p) ≤ t} is F t -measurable and Tk is a stopping time indeed.
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We now formally define σ k : H → �(A). Take any p ∈ P(h) and let

σ k(h) =
{

σφ(h), if κ(h) ≤ k,
σ h|Tk (p) (h), otherwise.

(5.3)

If κ(h) > k, then the time at which switch k has occurred is the same for every p ∈ P(h),

so it holds that σ k is well-defined.
For every k ∈ N, let Rk ⊆ P be the set of plays along which at least k switches occur,

Rk = {p ∈ P|Tk(p) < ∞}, (5.4)

so R1 ⊇ R2 ⊇ R3 ⊇ · · · . Furthermore, let R∞ ⊆ P denote the set of plays along which
infinitely many switches occur,

R∞ = ∩∞
k=1Rk . (5.5)

The remainder of the section is devoted to the proof of three technical lemmas concerning
the finite switching strategies. These lemmas are needed in the analysis of σφ.

Consider the strategies σ k, σ k+1, . . . . All these strategies agree with σφ for as long as
σφ does not require more than k switches. Consequently, the measures that these strategies
induce onP assign the same probability to any event that is “determined” before switch k+1
occurs, i.e., to any event in the sigma-algebra FTk+1 .

Lemma 5.2 Let a strategy τ ∈ S2, a history h ∈ H, and some k ∈ N be given. For σ =
σ k, σ k+1, . . . , σ φ, the probability measures Ph,σ,τ all coincide on the sigma-algebra FTk+1 .
Furthermore, these probability measures all agree on each universally measurable subset of
P \ Rk+1.

Proof A set A of the universally measurable sigma-algebra F is called agreeable if for
σ = σ k, σ k+1, . . . , σ φ the measures Ph,σ,τ all assign the same probability to A.

We argue first that each cylinder set in FTk+1 is agreeable. A cylinder set P(h) is a
member of FTk+1 if and only if κ(h) ≤ k + 1. Let a cylinder set P(h′) in FTk+1 be given.
Since κ(h′) ≤ k + 1, we know that κ(h′′) ≤ k for each history h′′ preceding h′. It follows
that σ k(h′′) = σ k+1(h′′) = · · · = σφ(h′′). Since this applies to each history h′′ that precedes
h′, the set P(h′) is agreeable.

Now take any E ∈ FTk+1 . For t ∈ N, let Et = E ∩ {p ∈ P | Tk+1(p) = t} and let
E∞ = E ∩ {p ∈ P | Tk+1(p) = ∞}. To show that E is agreeable, it suffices to show that
the sets Et and E∞ are.

Let some t ∈ N be given. We know that Et is a member of F t . Consequently, Et can be
written as a disjoint union of cylinder sets in F t , say Et = ∪{Cn | n ∈ N}, with each Cn a
member of F t . Since each Cn is a subset of the set {p ∈ P | Tk+1(p) = t}, it is a member
of FTk+1 , so is agreeable by the result of the second paragraph in the proof. It now follows
that Et is agreeable.

To show that E∞ is agreeable, we make use of the fact that E∞ is a Borel set and of the
regularity of σ on the Borel sigma-algebra. Let O be any open subset of P containing E∞.
The set O can be written as a disjoint union of cylinder sets, say O = ∪{P(hn) | n ∈ N}.
Without loss of generality it holds that for every n ∈ N the set P(hn) has a point in common
with E∞. Thus in particular, there is p ∈ P(hn) with Tk+1(p) = ∞. This implies that
κ(hn) ≤ k and hence that P(hn) is a member of FTk+1 . We conclude that each P(hn) is
agreeable by the result of the second paragraph in the proof. It follows that O is an agreeable
set.

To prove the second claim, we notice that all Borel subsets of P \ Rk+1 = {p ∈ P |
Tk+1(p) = ∞} aremembers ofFTk+1 , so are agreeable. The result for universallymeasurable
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subsets of {p ∈ P | Tk+1(p) = ∞} follows since each such set differs from a Borel set by a
negligible set. ��

Let T be a stopping time. We define the stochastic variable UT
σ by letting it agree with

Ut
σ on the set {p ∈ P : T (p) = t} for each t ∈ N and by letting it agree with U∞

σ on the
set {p ∈ P : T (p) = ∞}, where U∞

σ is some suitably chosen F∞-measurable stochastic
variable. The next lemma relates the guaranteed expected payoffs of strategies σ k and σ k+1

at the moment of switch k + 1. We write �t to denote the F t -measurable stochastic variable
given by �t (p) = φ(p|t ).
Lemma 5.3 Let k ∈ N and F∞-measurable stochastic variables U∞

σ k ,U
∞
σ k+1 such that

U∞
σ k = U∞

σ k+1 be given. Then, it holds that

UTk+1

σ k ≤ UTk+1

σ k+1 − 1
2�

Tk+1 · I (Tk+1 < ∞). (5.6)

Proof Let some p ∈ P be given. We distinguish the following two cases.
Case 1: Tk+1(p) < ∞. In this case at least k + 1 switches occur along the play p. For
h = p|Tk+1(p), we have the following inequalities

u(σ k, h) < v(h) − φ(h) = v(h) − 1
2φ(h) − 1

2φ(h) ≤ u(σ k+1, h) − 1
2φ(h),

where the first inequality holds since σ k is not a φ(h)-maxmin strategy for the subgame at
history h and the second inequality holds because the strategy σ k+1 is a (φ(h)/2)-maxmin
strategy for the subgame at history h. Since I (Tk+1(p) < ∞) = 1, (5.6) holds.
Case 2: Tk+1(p) = ∞. In this case, we have

UTk+1

σ k (p) = U∞
σ k (p) = U∞

σ k+1(p) = UTk+1

σ k+1(p).

Thus, (5.6) holds as an equality. ��
The following lemma states the intuitive property that for histories with less than k + 1

switches or histories at which switch k+1 occurs, strategy σ k+1 guarantees at least the same
payoff to player 1 than strategy σ k .

Lemma 5.4 Let t ∈ N and a history h ∈ Ht of length t be given. Let k ∈ N be such that
Tk+1(p) ≥ t for every p ∈ P(h). Then, it holds that u(σ k, h) ≤ u(σ k+1, h).

Proof Fix strategy τ ∈ S2 of player 2.
We first defineU∞

σ k . Consider the probability measureQ on the measurable space (P,F)

given by Q(A) = ∑
k∈N 2−k−1

Ph,σ k ,τ (A) for each A ∈ F . Let ū be an F∞-measurable
stochastic variable with the property that ū = u,Q-almost surely. Since Ph,σ k ,τ is absolutely
continuous with respect toQ, it holds that ū = u, Ph,σ k ,τ -almost surely, for every k ∈ N. We
define U∞

σ k to be equal to ū, for every k ∈ N.
We now obtain the following inequalities. First, by Lemma 3.3 and the optional sampling

theorem with unbounded stopping times as presented in Theorem 8.16 of Yeh ([22], p. 139),
we have2

u(σ k, h) ≤ Eh,σ k ,τ [UTk+1

σ k ].
2 Weverify that the conditions ofTheorem8.16 inYeh ([22]) applied to the process (Un

σ )n≥t on themeasurable
space (P,F ,Ph,σ,τ ) with filtration (Fn)n≥t are satisfied. The process (Un

σ )n≥t is a Ph,σ,τ -submartingale
with respect to the filtration (Fn)n≥t by Lemma 3.3. Take ξ of Theorem 8.16 in Yeh ([22]) equal to u. Since
U∞

σ is an F∞-measurable stochastic variable that Ph,σ,τ -almost surely coincides with u, it is a version of
Eh,σ,τ [u|F∞], as is required by the theorem. To verify condition (1) of Theorem 8.16 in Yeh ([22]), notice
that, for every n ≥ t, for every play p ∈ P, we have Un

σ (p) = u(σ, p|n) ≤ Ep|n ,σ,τ [u]. The right-hand
side of this inequality is a version of Eh,σ,τ [u|Fn ]. Consequently, Un

σ ≤ Eh,σ,τ [u|Fn ] holds Ph,σ,τ -almost
surely, as desired.
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Secondly, from the fact that UTk+1

σ k is an FTk+1 -measurable stochastic variable, we obtain by
Lemma 5.2 that

Eh,σ k ,τ [UTk+1

σ k ] = Eh,σ k+1,τ [UTk+1

σ k ].
Thirdly, we know that

UTk+1

σ k ≤ UTk+1

σ k+1 ≤ Eh,σ k+1,τ [u|FTk+1 ], Ph,σ k+1,τ -almost surely,

where the first of these inequalities follows from Lemma 5.3 and the second one follows by
Lemma 3.3 and the optional sampling theorem with unbounded stopping times as presented
in Theorem 8.16 of Yeh ([22], p. 139). Taking the expectation of the last array of inequalities
with respect to Ph,σ k+1,τ and making use of the law of iterated expectation yields

Eh,σ k+1,τ [UTk+1

σ k ] ≤ Eh,σ k+1,τ [u].
Combining these facts yields u(σ k, h) ≤ Eh,σ k+1,τ [u]. Taking the infimum over all strate-

gies τ of player 2 completes the proof. ��

5.3 Properties of the Switching Strategy��

We show first that the switching strategy σφ is always n-day φ-maxmin for every n ∈ N.

Lemma 5.5 Let a game �x0(u) and a tolerance function φ > 0 be given. For every n ∈ N,

the switching strategy σφ is n-day φ-maxmin.

Proof Let a history h ∈ H with length t be given. Let k = κ(h) denote the number of
switches that have occurred along the history h. For every τ ∈ S2, we obtain the chain of
inequalities

v(h) − φ(h) ≤ u(σ k, h) ≤ u(σ t+n, h) ≤ Eh,σ t+n ,τ [Ut+n
σ t+n ] ≤Eh,σ t+n ,τ [V t+n]

=Eh,σφ,τ [V t+n],
where the first inequality holds since σ k is a φ(h)-maxmin strategy for the subgame at history
h, the second inequality holds by Lemma 5.4 since k ≤ t ≤ t+n, the third inequality holds by
Lemma 3.3, and the fourth one follows sinceUt+n

σ t+n ≤ V t+n . The final equality follows from
the fact that the stochastic variable V t+n is F t+n-measurable and the fact that the strategy
σ t+n coincides with σφ at least until time t + n. ��

The next lemma says that along almost any play p ∈ P only finitely many switches occur
or the tolerance level goes to zero. This lemma is crucial to show the equalizing property of
switching strategies.

Lemma 5.6 For every history h ∈ H, for every strategy τ ∈ S2 of player 2, it holds that
lim
k→∞ �Tk · I (Tk < ∞) = 0, Ph,σφ,τ -almost surely.

Proof Although it is possible that player 1 switches infinitely many times along a play p,
and therefore incurs infinitely many increases in his guarantee level along this play, we show
first that the total overall increase in his guarantee level is bounded, since the payoff function
itself is a bounded function. More formally, let t ∈ N, a history h ∈ Ht of length t, and
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a strategy τ ∈ S2 of player 2 be given. Let κ(h) denote the number of switches that have
occurred along the history h. We show that

∞∑

k=κ(h)+1

Eh,σφ,τ

[
1
2�

Tk · I (Tk < ∞)
]

≤ 2M, (5.7)

where we recall that M = supp∈P |u(p)|.
As in the proof of Lemma 5.4, let ū be any F∞-measurable stochastic variable with the

property that, for every k ∈ N, ū = u, Ph,σ k ,τ -almost surely. For every k ∈ N, we define
U∞

σ k = ū.
Let some k > κ(h) be given. For every p ∈ P(h), it holds that t ≤ Tk(p) ≤ Tk+1(p), so

Lemma 3.3 and the optional sampling theorem with unbounded stopping times as presented
in Theorem 8.16 of Yeh ([22], p. 139) implies

UTk
σ k ≤ Eh,σ k ,τ [UTk+1

σ k |FTk ], Ph,σ k ,τ -almost surely. (5.8)

We now have

Eh,σφ,τ [UTk
σ k ] = Eh,σ k ,τ [UTk

σ k ] ≤ Eh,σ k ,τ [UTk+1

σ k ] = Eh,σφ,τ [UTk+1

σ k ],

where the two equalities follow from Lemma 5.2 and the fact that both UTk
σ k and UTk+1

σ k are

FTk+1 -measurable stochastic variables, and the inequality follows by taking the expectation
on both sides of inequality (5.8) and the law of iterated expectation.

Using Lemma 5.3, we can conclude that

Eh,σφ,τ

[
1
2�

Tk+1 · I (Tk+1 < ∞)
]

≤ Eh,σφ,τ

[
UTk+1

σ k+1

]
− Eh,σφ,τ

[
UTk+1

σ k

]

≤ Eh,σφ,τ

[
UTk+1

σ k+1

]
− Eh,σφ,τ

[
UTk

σ k

]
.

Summing the preceding inequality over k = κ(h) + 1, . . . , K , we obtain

K∑

k=κ(h)+1

Eh,σφ,τ

[
1
2�

Tk · I (Tk < ∞)
]

≤ Eh,σφ,τ

[
UTK

σ K

]
− Eh,σφ,τ

[
U

Tκ(h)+1

σκ(h)+1

]
≤ 2M .

The result follows by taking the limit as K → ∞.
Let us write Xk = �Tk · I (Tk < ∞) and k′ = κ(h) + 1. Since Xk ≥ 0, the mono-

tone convergence theorem implies that Eh,σφ,τ [
∑∞

k=k′ Xk] = ∑∞
k=k′ Eh,σφ,τ [Xk]. The latter

expression is finite by (5.7). Thus
∑∞

k=k′ Xk has a finite mean with respect to the probabil-
ity measure Ph,σφ,τ . Hence

∑∞
k=k′ Xk < ∞ holds Ph,σφ,τ -almost surely. This implies that

Xk → 0 holds Ph,σφ,τ -almost surely. ��
We are now in a position to state the main result of this section, which gives sufficient

conditions for the existence of subgame φ-maxmin strategies.

Theorem 5.7 Let a game �x0(u) and a tolerance function φ > 0 be given such that for every
p ∈ P at least one of the following two conditions holds:

1. (point of upper semicontinuity) The function u is upper semi-continuous at p.
2. (positive limit inferior) lim inf t→∞ φ(p|t ) > 0.

Then, there exists a subgame φ-maxmin strategy in the game �x0(u).
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Proof We define the tolerance function φ′ by

φ′(h) = 1
2 min{φ(h′)|h′ 	 h}, h ∈ H.

Thus, φ′ is a non-increasing tolerance function with φ′ ≤ 1
2φ.

We show that σφ′
is φ′-equalizing. Since 2φ′ ≤ φ and σφ′

is an n-day φ′-maxmin strategy
for every n ∈ N by Lemma 5.5, it then follows from Theorem 4.5 that σφ′

is a subgame
φ-maxmin strategy.

Let U denote the set of plays p ∈ P at which u is upper semi-continuous and let I denote
the set of plays p ∈ P such that lim inf t→∞ φ(p|t ) > 0. By the assumption of the theorem
it holds that P = U ∪ I. By the definition of φ′, we have lim inf t→∞ φ′(p|t ) > 0 for each
p ∈ I.

Let some t ∈ N, a history h ∈ Ht , and a strategy τ ∈ S2 be given.
Step 1 For every p ∈ U, u(p) ≥ lim supn→∞ V n(p) − φ′.
This follows directly from Lemma 4.10.
For every k ∈ N, we define Jk = {p ∈ I ∩ (Rk \ Rk+1) | limn→∞ Un

σ k ,τ
(p) = u(p)}

and J = ⋃
k∈N Jk, where we remind the reader that Rk contains the plays along which at

least k switches occur.
Step 2 For every p ∈ J , u(p) ≥ lim supn→∞ V n(p) − φ′.
Let k ∈ N and p ∈ Jk be given. Exactly k switches occur along the play p and the

last switch occurs at time Tk(p). By our construction of σφ′
, this means that for each time

n > Tk(p), the strategy σ k is a φ′(p|n)-maxmin strategy for the subgame at history p|n , so
u(σ k, p|n) ≥ v(p|n) − φ′(p|n). Since Un

σ k ,τ
(p) ≥ u(σ k, p|n) and since for n ≥ t we have

φ′(p|n) ≤ φ′(h), we conclude that for n ≥ t

Un
σ k ,τ

(p) ≥ V n(p) − φ′(h).

Taking the limit as n goes to infinity, and making use of the fact that p ∈ Jk , we obtain

u(p) = lim
n→∞Un

σ k ,τ
(p) ≥ lim sup

n→∞
V n(p) − φ′(h).

Step 3: Ph,σφ′
,τ

(I ∩ R∞) = 0.

Recall that by Lemma 5.6, �Tk · I (Tk < ∞) converges to 0 as k goes to infinity, Ph,σφ′
,τ
-

almost surely. Also recall that R∞ is the set of plays where infinitely many switches occur.
Thus I (Tk < ∞) is identically equal to 1 on R∞. Furthermore, lim infk→∞ �Tk > 0
everywhere on I. We conclude that �Tk · I (Tk < ∞) does not converge to zero on I ∩ R∞
and the result follows.

Step 4: Ph,σφ′
,τ

(U ∪ J ) = 1.
For every k ∈ N, it holds by Levy’s zero-one law (Lemma A.1 in Appendix A) that

Ph,σ k ,τ (Jk) = Ph,σ k ,τ (I ∩ (Rk \ Rk+1)).

Using Lemma 5.2 twice yields

Ph,σφ′
,τ

(Jk) = Ph,σ k ,τ (Jk) = Ph,σ k ,τ (I ∩ (Rk \ Rk+1)) = Ph,σφ′
,τ

(I ∩ (Rk \ Rk+1)).

We now have

Ph,σφ′
,τ

(J ) = Ph,σφ′
,τ

(I \ R∞) = Ph,σφ′
,τ

(I),

where the last equality follows from Step 3. Finally, we obtain

Ph,σφ′
,τ

(U ∪ J ) ≥ Ph,σφ′
,τ

(U \ I) + Ph,σφ′
,τ

(J ) = Ph,σφ′
,τ

(U \ I) + Ph,σφ′
,τ

(I) = 1,
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where the last equality follows from the fact that the sets U and I cover P(h). ��
Theorem 5.7 generalizes Proposition 11 in Mashiah–Yaakovi ([15]), where the existence

of a subgame ε-optimal strategy in a two-player zero-sum stochastic game with Borel mea-
surable payoff functions is shown. The tolerance function φ there is given by φ(h) = ε for
every h ∈ H, so for every play the tolerance function has a positive limit inferior. Theorem5.7
yields the existence of a subgame ε-maxmin strategy. Because the Borel measurability of the
payoff function guarantees the existence of the value (Maitra and Sudderth, [13], andMartin,
[14]), this is equivalent to proving the existence of a subgame ε-optimal strategy.

In Sect. 6, we argue that Theorem 5.7 also provides further insight into the main result of
Laraki, Maitra, and Sudderth ([10]). There the authors prove among other things that if the
payoff function is bounded and upper semi-continuous, then the first player has a subgame
optimal strategy.

6 Subgamemaxmin strategies

The goal of this section is to explore the relationship between the concept of a subgame
maxmin strategy and that of a subgame φ-maxmin strategy for φ > 0. The main result of
this section is the following theorem.

Theorem 6.1 For every game �x0(u), there exists a tolerance function φ∗ > 0 such that the
following statements are equivalent:

1. The game �x0(u) has a subgame maxmin strategy.
2. The game �x0(u) has a subgame φ∗-maxmin strategy.

Because every subgame maxmin strategy is a subgame φ-maxmin strategy, statement 1
clearly implies statement 2. To prove the converse, we define a tolerance function φ∗ > 0; the
precise definition is given in Subsection 6.3. Intuitively, we fix a positive sequence (δt )t∈N
with the property that

∑∞
t=0 δt < ∞. Then, we choose φ∗ such that (1) φ∗(p|t ) < δt for

very play p ∈ P and every t ∈ N and (2) every one-day φ∗-maxmin action is δt -close to the
region of optimalmixed actions in the one-day game. Thefirst condition implies that tolerance
function φ∗ decreases rapidly to zero, i.e.,

∑∞
t=0 φ∗(p|t ) < ∞. By assumption, player 1 has

a subgame φ∗-maxmin strategy. We obtain a subgame maxmin strategy as follows: at every
history ht we pick a mixed action which guarantees the lower value v(ht ) in the one-day
game and is δt -close to the mixed action chosen by the subgame φ∗-maxmin strategy. This
method creates a strategy which is clearly one-day maxmin. The condition that the tolerance
function φ∗ fastly decreases to 0 is then used to show that expected payoffs from a history
ht with length t obtained by the subgame φ∗-maxmin strategy and the constructed strategy
are within a distance of M · ∑∞

n=t δn , where M = supp∈P |u(p)|. From this, the equalizing
property of the constructed strategy follows. Then, Corollary 4.7 fromSect. 4 lets us conclude
that the constructed strategy is indeed a subgame maxmin strategy.

Theorem 6.1 has the following corollary.

Corollary 6.2 The following statements are equivalent:

1. The game �x0(u) has a subgame maxmin strategy.
2. For every φ > 0, the game �x0(u) has a subgame φ-maxmin strategy.

Wewould like tomake two remarks. First, as the payoff function u need not be continuous,
one cannot simply use a continuity argument to prove that statement 2 ofCorollary 6.2 implies
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statement 1. Second, note that the existence of a subgame ε-maxmin strategy for every ε > 0
is a weaker requirement than statements 1 and 2 of Corollary 6.2. Indeed, as Example 3.2
already illustrated, there exist games which admit a subgame ε-maxmin strategy for every
ε > 0 but do not admit a subgame maxmin strategy.

The special case where the payoff-function is upper semi-continuous deserves some addi-
tional attention. From Maitra and Sudderth ([13]) and Martin ([14]), it follows that every
two-player zero-sum stochastic game with a countable state space, finite action sets, and a
Borel measurable payoff function admits a value. Because every upper semi-continuous pay-
off function is Borel measurable, the existence of the value is guaranteed. From Theorem 5.7,
we obtain the existence of a subgame φ-optimal strategy for every φ > 0. Combining this
with Corollary 6.2 shows that player 1 has a subgame optimal strategy. Hereby, we obtain a
special case of the result by Laraki, Maitra, and Sudderth ([10]), where the authors allow the
state space to be a Borel subset of a Polish space and transition probabilities to be determined
by a Borel transition function.

When we are interested in pure strategies that guarantee the maxmin levels, we can
strengthen the result of Theorem 6.1. In the context of simultaneous move games, pure
strategies are of course rather restrictive. Still, there are important classes of games, such as
perfect information games, in which they are natural and play a prominent role.

Theorem 6.3 For every game �x0(u), there exists a tolerance function φ∗ > 0 such that the
following statements are equivalent:

1. The pure strategy σ ∈ S1 is a subgame maxmin strategy.
2. The pure strategy σ ∈ S1 is a subgame φ∗-maxmin strategy.

The tolerance function φ∗ in Theorem 6.3 will be defined based on the data of the game
and the lower values in the subgames.

This section is structured as follows. We start by proving Theorem 6.3, which is easier
than Theorem 6.1 and helps us explain the main ideas. Then, we turn to the proof of Theorem
6.1.

6.1 The proof of Theorem 6.3

In this subsection, we prove Theorem 6.3. Since the statement of this theorem is about pure
strategies, the proof is less technical and the intuition is more transparent.

We only need to prove that there is φ∗ > 0 such that statement 2 of Theorem 6.3 implies
statement 1 of Theorem 6.3. From now on, for any t ∈ N, history h ∈ Ht with some final
state x , and mixed actions m1 ∈ �(A) and m2 ∈ �(B), we denote the expectation of the
lower value at the next stage by

Eh,m1,m2

[
V t+1] =

∑

a∈A

∑

b∈B

∑

x ′∈X
q(x ′|h, a, b) · v(h, a, b, x ′). (6.1)

The proof consists of two steps.
Step 1. Definition of φ∗ > 0.

For every t ∈ N, for every history h ∈ Ht , there exists a number d(h) > 0 such that for
every action a ∈ A of player 1 either one of the following holds:

• Action a guarantees that the lower value does not drop in expectation: for every m2 ∈
�(B), Eh,a,m2

[
V t+1

] ≥ v(h).
• There exists a mixed action m2 ∈ �(B) for player 2 such that, if player 1 uses action a,

the lower value drops in expectation by more than d(h): Eh,a,m2

[
V t+1

]
< v(h) − d(h).
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This statement is true because the action set A of player 1 is finite. We define φ∗ > 0 as
follows. For every t ∈ N, for every history h ∈ Ht , let φ∗(h) = min{d(h), 2−t }. The term
2−t is included so that the tolerance levels tend to 0 along each play. For every p ∈ P , it
holds that lim

t→∞ φ∗(p|t ) = 0.

Step 2. If the pure strategy σ ∈ S1 is a subgame φ∗-maxmin strategy, then σ is a subgame
maxmin strategy.

Let the pure strategy σ ∈ S1 be subgame φ∗-maxmin. We verify that σ satisfies the
conditions of Corollary 4.7.

First, we show that σ is 1-day maxmin. Fix t ∈ N and h ∈ Ht . Let a = σ(h) denote
the action that σ recommends at h. Then, for every mixed action m2 ∈ �(B) and strategy
τ ∈ S2 with m2 = τ(h), we have

Eh,a,m2

[
V t+1] = Eh,σ,τ

[
V t+1] ≥ v(h) − φ∗(h) ≥ v(h) − d(h),

where the first inequality follows from the fact that σ is subgame φ∗-maxmin and by con-
dition 1 of Theorem 4.6, and the second inequality follows from the definition of φ∗(h).

Therefore, by the choice of d(h) in Step 1, for every m2 ∈ �(B), it holds that

Eh,a,m2

[
V t+1] ≥ v(h).

Hence, for every strategy τ ∈ S2, it holds that
Eh,σ,τ

[
V t+1] = Eh,a,τ (h)

[
V t+1] ≥ v(h).

Thus, σ is 1-day maxmin.
We show that σ is equalizing. Take some τ ∈ S2. Because σ is subgame φ∗-maxmin, for

every p ∈ P(h), for every n ≥ t, we have

Un
σ,τ (p) = Ep|n ,σ,τ [u] ≥ v(p|n) − φ∗(p|n) = V n(p) − �∗n(p),

where �∗n(p) = φ∗(p|n). We conclude that

lim
n→∞Un

σ,τ ≥ lim sup
n→∞

(
V n − �∗n) = lim sup

n→∞
V n − lim

n→∞ �∗n = lim sup
n→∞

V n,

where the last equality from the fact that for all p ∈ P we have lim
n→∞ φ∗(p|n) = 0, so

u = lim
n→∞Un

σ,τ ≥ lim sup
n→∞

V n, Ph,σ,τ -almost surely,

where the equality follows from Lemma A.1 in Appendix A. We have shown that σ is
equalizing.

6.2 The One-Shot Game7h

To prove Theorem 6.1, we first analyze a one-shot zero-sum game in this subsection. For
each history, the one-shot game is such that the payoff is given by the lower value at the next
stage. In the next subsection, we use these one-shot games to construct the tolerance function
φ∗ > 0.

For some t ∈ N, let h ∈ Ht be a history in the game �x0(u). The one-shot zero-sum
game ϒh is played as follows. Player 1 chooses an action a ∈ A and player 2 simultaneously
chooses an action b ∈ B. Then, player 1 receives from player 2 the amount Eh,a,b

[
V t+1

]
.

As the action sets A and B are finite, the game ϒh has a value, which we denote by w(h).
Furthermore, both players have optimal mixed actions in the game ϒh .
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The following lemma states that the valuew(h) of the one-shot gameϒh equals the lower
value v(h) at the history h in the original game �x0(u). In case the value exists, this is a
classic result of dynamic programming.

Lemma 6.4 For every history h ∈ H, we have w(h) = v(h).

Proof The proof is by contradiction. Fix t ∈ N and a history h ∈ Ht . Now suppose that
w(h) �= v(h). Then, we have either w(h) > v(h) or w(h) < v(h).
Case 1: w(h) > v(h).
Let δ = w(h) − v(h). We derive a contradiction by showing that, in the subgame of �x0(u)

at history h, player 1 can guarantee an expected payoff of at least v(h) + δ/2.
Let m1 ∈ �(A) be an optimal mixed action for player 1 in the one-shot game ϒh . Let

σ ∈ S1 be such that σ(h) = m1 and such that it induces a (δ/2)-maxmin strategy for the
subgame at each history in period t + 1, i.e., for every h′ ∈ Ht+1, for every τ ∈ S2,

Eh′,σ,τ [u] ≥ v(h′) − δ
2 . (6.2)

Then, for every τ ∈ S2, it holds that
Eh,σ,τ [u] = Eh,σ,τ

[
Ut

σ,τ

] = Eh,σ,τ

[
Ut+1

σ,τ

]

≥ Eh,σ,τ

[
V t+1] − δ

2 = Eh,m1,τ (h)

[
V t+1] − δ

2 ≥ w(h) − δ
2 = v(h) + δ

2 ,

where the second equality follows from the fact that (Un
σ,τ )n≥t is a Ph,σ,τ -martingale, the

first inequality follows from (6.2), and the second inequality follows from the choice of m1.
Case 2: w(h) < v(h).3

Let δ = v(h)−w(h). We derive a contradiction by showing that, for every strategy of player
1, there is a strategy for player 2 such that the expected payoff is at most v(h) − δ/2 in the
subgame of �x0(u) at history h.

Fix σ ∈ S1 and let m1 = σ(h). Let m2 ∈ �(B) be an optimal mixed action for player 2
in the one-shot game ϒh . Let τ ∈ S2 be such that τ(h) = m2 and the expected payoff under
(σ, τ ) in the subgame at each history h′ at period t +1 is at most the lower value v(h′)+ δ/2,
i.e., for every h′ ∈ Ht+1,

Eh′,σ,τ [u] ≤ v(h′) + δ
2 . (6.3)

We have that

v(h) − δ
2 = w(h) + δ

2 ≥ Eh,m1,m2

[
V t+1] + δ

2

≥ Eh,m1,m2

[
Ut+1

σ,τ

] = Eh,σ,τ

[
Ut+1

σ,τ

] = Eh,σ,τ

[
Ut

σ,τ

] = Eh,σ,τ [u] ,

where the first inequality follows from the choice of m2, the second inequality follows from
(6.3), and the penultimate equality follows from the fact that (Un

σ,τ )n≥t is aPh,σ,τ -martingale.
Because σ is chosen arbitrarily, we have derived a contradiction with the definition of the
lower value v(h). ��

The total variation distance between two mixed actions m1, n1 ∈ �(A) of player 1 is
defined as

‖m1 − n1‖TV =
∑

a∈A
|m1(a) − n1(a)|.

3 The proof of this case in not symmetric to the proof of Case 1, because we consider the lower value. Imitating
the proof of Case 1 for player 2 would yield results in terms of the upper value.
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The total variation distance between two probability measures P and P′ on (P,F) is defined
as

‖P − P
′‖TV = sup{

n∑

i=1

|P(Fi ) − P
′(Fi )| : F1, . . . , Fn ∈ F and {F1, . . . , Fn} is a partition of P}.

Let t ∈ N and a history h ∈ Ht be given. Let Oh ⊆ �(A) denote the set of optimal mixed
actions of player 1 in the one-shot game ϒh . By Lemma 6.4 it holds that

Oh = {
m1 ∈ �(A) | for every m2 ∈ �(B), Eh,m1,m2

[
V t+1] ≥ v(h)

}
.

Note that Oh is a compact subset of �(A). For every m1 ∈ �(A), the distance of m1 to Oh

is defined by

‖m1 − Oh‖TV = min
n1∈Oh

‖m1 − n1‖TV.

Due to the compactness of Oh, the minimum is attained. For δ > 0, let Dδ
h be the set of

mixed actions of player 1 which have a distance of at least δ to the set Oh, so

Dδ
h = {m1 ∈ �(A) | ‖m1 − Oh‖TV ≥ δ} . (6.4)

The mixed actions in Dδ
h are not optimal in the one-shot game ϒh . The following lemma

says that the loss in utility caused by these mixed actions has a positive lower bound.

Lemma 6.5 Let h ∈ H and δ > 0 be given. If Dδ
h is non-empty, then there is ε > 0 such that

for every m1 ∈ Dδ
h there exists b ∈ B such that

Eh,m1,b
[
V t+1] ≤ v(h) − ε.

Proof Assume Dδ
h is non-empty. Consider the function eδ

h : Dδ
h → R defined by

eδ
h(m1) = v(h) − min

b∈B Eh,m1,b
[
V t+1] , m1 ∈ Dδ

h . (6.5)

Since B is finite, the minimum exists. For every m1 ∈ Dδ
h , we have m1 /∈ Oh , and therefore

there exists m2 ∈ �(B) such that Eh,m1,m2

[
V t+1

]
< v(h). The function eδ

h is therefore a
positive and continuous function on a compact set, so has a positive minimum. ��

6.3 Definition of the Tolerance Function�∗

In this subsection, we define a positive tolerance function φ∗. Fix a positive and decreasing
sequence (δt )t∈N such that

∑∞
t=0 δt < ∞. For example, δt = 2−t for every t ∈ N. Note that

limt→∞ δt = 0.
For every t ∈ N, for every history h ∈ Ht , we define the constant c(h) as follows. If the

set Dδt
h is non-empty, then c(h) is equal to the positive number ε of Lemma 6.5 and c(h) = δt

otherwise. We define
φ∗(h) = min{c(h),δt }

2 . (6.6)

Notice that 0 < φ∗(h) < δt .
We summarize the properties of the tolerance function φ∗:

1. For every history h ∈ H, we have φ∗(h) > 0.
2. For every play p ∈ P , we have

∑∞
t=0 φ∗(p|t ) ≤ ∑∞

t=0 δt < ∞.
3. For every play p ∈ P , lim

t→∞ φ∗(p|t ) = 0.
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4. If the set Dδt
h is non-empty, then by the choice of c(h), for every m1 ∈ Dδt

h there exists
b ∈ B such that

Eh,m1,b
[
V t+1] ≤ v(h) − c(h) < v(h) − φ∗(h).

The importance of
∑∞

t=0 δt < ∞ is underlined by the following lemma. Recall that
M = supp∈P |u(p)|.
Lemma 6.6 Let the strategies σ, σ ′ ∈ S1 be such that, for every t ∈ N, for every history
h ∈ Ht , ‖σ(h) − σ ′(h)‖TV ≤ δt . Then, for every strategy τ ∈ S2, for every t ∈ N, and for
every history h ∈ Ht ,

∣∣Eh,σ,τ [u] − Eh,σ ′,τ [u]∣∣ ≤ M ·
∞∑

n=t

δn .

Proof Let τ ∈ S2 be given. It follows from a more general result in Abate, Redig, and
Tkachev ([1], theorem 1) that, for every t ∈ N, for every history h ∈ Ht ,

‖Ph,σ,τ − Ph,σ ′,τ‖TV ≤
∞∑

n=t

δn . (6.7)

For completeness, we provide a direct proof of this inequality in Lemma B.1 in Appendix B.
The claim of Lemma 6.6 follows directly. ��

Lemma 6.6 says the following. Consider two arbitrary strategies σ, σ ′ ∈ S1 such that the
total variation distance between the mixed actions at every history in period t is at most δt .
Now consider t ∈ N, a history h ∈ Ht , and a strategy τ ∈ S2 of player 2. Then, the expected
payoffs under (σ, τ ) and (σ ′, τ ) in the subgame at h differ at most the constant M times∑∞

n=t δn . Note that this bound does not depend on the strategy τ and it only depends on the
history h through its period t . Moreover, these bounds tend to 0 as t goes to infinity.

The importance of property 4 of the tolerance function is shown by the following lemma.
It says that if σ ∈ S1 is a subgame φ∗-maxmin strategy, then for every h ∈ H the mixed
action σ(h) is close to the set of optimal mixed actions Oh in the one-shot game ϒh .

Lemma 6.7 Let σ ∈ S1 be a subgame φ∗-maxmin strategy. Then, for every t ∈ N, for every
history h ∈ Ht , we have σ(h) /∈ Dδt

h , so ‖σ(h) − Oh‖TV < δt .

Proof Because σ is a subgame φ∗-maxmin strategy, it follows from condition 1 of Theorem
4.6 that for every mixed action m2 ∈ �(B) of player 2

Eh,σ (h),m2

[
V t+1] ≥ v(h) − φ∗(h).

If Dδt
h is empty, then there is nothing to prove. If Dδt

h is non-empty, then property 4 of φ∗

shows that σ(h) /∈ Dδt
h . ��

6.4 The proof of Theorem 6.1

Proof Let �x0(u) be a game and take the tolerance function φ∗ as defined in Subsection 6.3.
We only need to show that statement 2 implies statement 1. Let σ ∈ S1 be a subgame
φ∗-maxmin strategy of �x0(u).
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With the help of σ, we define a strategy σ ∗ ∈ S1 in Step 1 of the proof. Then, it is shown
that σ ∗ is a subgame maxmin strategy of �x0(u) in Steps 2 and 3 of the proof by verifying
that σ ∗ satisfies the conditions of Corollary 4.7.
Step 1: Definition of σ ∗ ∈ S1.
Take t ∈ N and a history h ∈ Ht . In view of Lemma 6.7, it holds that ‖σ(h) − Oh‖TV < δt .
Therefore, there exists m∗(h) ∈ Oh such that

‖σ(h) − m∗(h)‖TV < δt . (6.8)

Now define σ ∗(h) = m∗(h).
Step 2: σ ∗ is 1-day maxmin.
Consider some τ ∈ S2. For every t ∈ N, for every h ∈ Ht , since σ ∗(h) ∈ Oh we have that

Eh,σ ∗,τ
[
V t+1] ≥ v(h).

Step 3: σ ∗ is equalizing.
Consider some τ ∈ S2. In view of (6.8), we can apply Lemma 6.6 to conclude that, for every
t ∈ N, for every h ∈ Ht ,

∣∣Eh,σ,τ [u] − Eh,σ ∗,τ [u]∣∣ ≤ M ·
∞∑

n=t

δn .

Hence, for every t ∈ N, for every history h ∈ Ht , and for every n ≥ t,

∣∣Un
σ,τ [u] −Un

σ ∗,τ [u]∣∣ ≤ M ·
∞∑

i=n

δi , Ph,σ ∗,τ -almost surely. (6.9)

Because σ is subgame φ∗-maxmin, for every history h ∈ H, we have

Eh,σ,τ [u] ≥ v(h) − φ∗(h). (6.10)

Thus, for every history h ∈ H it holds that

u = lim
t→∞Ut

σ ∗,τ = lim
t→∞Ut

σ,τ ≥ lim sup
t→∞

(
V t − �∗t ) = lim sup

t→∞
V t , Ph,σ ∗,τ -almost surely,

where the first equality is due to Lemma A.1 in Appendix A, the second equality follows
from (6.9), the inequality is by (6.10), and the last equality is a consequence of property 3 of
φ∗ from Subsection 6.3. ��

Note that it is not necessary that the initial δt are small, or that for initial histories
the tolerance level φ∗(h) is small. The conditions put on the sequence (δt )t∈N are there
to ensure that the equalizing condition for subgame maxmin strategies is satisfied. The
equalizing condition essentially only cares about what happens to the payoff at deep sub-
games. The requirement that the sequence (δt )t∈N decreases to zero very fast guarantees that
limt→∞ ‖Pp|t ,σ,τ − Pp|t ,σ,τ‖TV = 0. This allows us to use the φ∗-equalizing property of the
subgame φ∗-maxmin strategy to show that the strategy σ ∗ satisfies the equalizing condition.

7 Discussion

Countable action sets.We have assumed throughout the paper that the action sets are finite.
If one player has countably many actions, several of our arguments and results are no longer
valid. For example, consider the following game. In the initial state, player 1’s action set is
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N, player 2 has only one action, and if player 1 chooses action n ∈ N then regardless how
the play continues, the payoff is 1 − 1

n+1 . This is essentially a one-shot game. Clearly, for
every tolerance function φ > 0 player 1 has a pure subgame φ-maxmin strategy, i.e. he can
play action n with n sufficiently large. Yet, player 1 has no subgame maxmin strategy. So the
statements of Theorems 6.1 and 6.3 and Corollary 6.2 are not valid for this game.
One-player games. Suppose that player 2 has a trivial action set, i.e. B is a singleton. Even
though this is essentially a game with only one player, as shown in Example 3.2, it may
happen that player 1 has a subgame φ-maxmin strategy for a certain tolerance function φ,
but he has no pure strategy that is subgame φ-maxmin. Nevertheless, if B is a singleton and
the conditions of Theorem 5.7 are satisfied, then player 1 has a pure subgame φ-maxmin
strategy. Indeed, player 1 has a pure δ-maxmin strategy for each δ > 0. Hence, the switching
strategy used in the proof of Theorem 5.7 will also be pure.
Discounted games. Our model encompasses discounted stochastic games with finite action
and countable state spaces, provided that the immediate payoffs are bounded. Since these
games admit a value and the discounted payoffs are continuous, it follows by Theorem 5.7
that player 1 has a subgame φ-optimal strategy for every tolerance function φ > 0. Therefore,
Corollary 6.2 implies the well-known fact that player 1 has a subgame 0-optimal strategy.
Our proof does not directly imply that this strategy can be chosen to be stationary.
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Appendix A: Universal Measurability

This appendix contains a review of the definitions of universally measurable sets, integrals
of universally measurable functions, stopping times, and conditional expectations, as well as
a technical lemma that is used in the paper.
Universally measurable sets Let (P,F∞) be a measurable space, where F∞ denotes the
Borel sigma-algebra and let M denote the collection of all probability measures over this
measurable space. For each probability measure P ∈ M,we can extend the probability space
(P,F∞,P) to a complete probability space (P,FP,Pc) by including all P-negligible sets.
To be more precise, let

F0
P

= {Q ⊂ P | ∃Q′ ∈ F∞ such that P(Q′) = 0 and Q ⊆ Q′}

be the set of all subsets of P-negligible sets of F∞. We define

FP = {Q ∪ Q0 ⊆ P|Q ∈ F∞ and Q0 ∈ F0
P
}

and we define Pc : FP → [0, 1] by

P
c(Q ∪ Q0) = P(Q), Q ∈ F∞, Q0 ∈ F0

P
.

http://creativecommons.org/licenses/by/4.0/
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It can be shown that (P,FP,Pc) is a probability space. Now define

F =
⋂

P∈M
FP.

It can be shown that F is a sigma-algebra that contains the Borel sigma-algebra F∞ as a
proper subset. The collectionF is the universally measurable sigma-algebra and the elements
of F are called universally measurable sets.
Integrals of universally measurable functions A function u : P → R is called universally
measurable if u−1[a, b] ∈ F for every [a, b] ⊆ R. The class of universally measurable
functions contains the class ofBorelmeasurable functions. Furthermore, for every universally
measurable function there exists a Borel measurable function that coincides with it almost
everywhere.

A function g : P → R is called a simple universally measurable function if it is of the
form g(p) = ∑n

i=1 ci I (p ∈ Zi ), where {Z1, . . . , Zn} is a partition of P with Zi ∈ F for all
i = 1, . . . , n. The expected value of a simple universally measurable payoff with respect to
a probability measure P is defined as

∫

p∈P
g(p)P(dp) =

n∑

i=1

ciP
c(Zi ). (A.1)

Let G denote the set of simple universally measurable functions. The expected value of a
bounded universally measurable function u : P → R is then given by

∫

p∈P
u(p)P(dp) = sup

g∈G
g≤u

∫

p∈P
g(p)P(dp) = inf

g∈G
g≥u

∫

p∈P
g(p)P(dp). (A.2)

Stopping times A stopping time is a function T : P → N ∪ {∞} such that for each t ∈ N

the set {p ∈ P | T (p) = t} is an element of F t . Given a stopping time T , let FT denote the
sigma-algebra of sets A ∈ F∞ such that A ∩ {p ∈ P | T (p) = t} ∈ F t for each t ∈ N.

For every t ∈ N, let Xt be an F t measurable stochastic variable, and let X∞ be an F∞
measurable stochastic variable. The stochastic variable XT is defined by letting it coincide
with Xt on {p ∈ P | T (p) = t} for each t ∈ N and with X∞ on {p ∈ P | T (p) = ∞}.
Following Yeh ([22], Theorem 3.28), it holds that XT is FT measurable.
Conditional expectations Consider a bounded stochastic variable F : P → R, a strategy
profile (σ, τ ) ∈ S1 × S2, and a history h ∈ H� of length �. Let some t ≥ � be given. The
conditional expectation of F with respect to the sigma-algebra F t and the measurable space
(P,F,Ph,σ,τ ) is denoted by Eh,σ,τ [F |F t ]. The conditional expectation Eh,σ,τ [F |F t ] can be
identified with the stochastic variable p �→ Ep|t ,σ,τ [F].4

Lemma A.1 states a version of Levy’s zero-one law for universally measurable functions.
It relies on the fact that a universally measurable function can be approximated by a Borel
measurable function.

Lemma A.1 (Levy’s zero-one law for universally measurable functions) For every strategy
profile (σ, τ ) ∈ S1 × S2, for every history h ∈ H, we have

lim
t→∞Ut

σ,τ = u, Ph,σ,τ -almost surely. (A.3)

4 As usual, a conditional expectation is not defined uniquely, since some histories might not be reached with
positive probability under the strategy profile (σ, τ ). Our particular choice is both convenient and inconse-
quential, since any two conditional probability systems coincide Ph,σ,τ -almost surely. We refer to Bogachev
([3], p. 350) for a careful discussion of conditional expectations.
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Proof Fix a strategy profile (σ, τ ) ∈ S1 × S2 and a history h ∈ H. Since u is universally
measurable, there exists a Borel measurable function ū such that u = ū, Ph,σ,τ -almost surely.
Then,

lim
t→∞Ut

σ,τ = lim
t→∞Eh,σ,τ

[
u|F t ] = lim

t→∞Eh,σ,τ

[
ū|F t ] = Eh,σ,τ

[
ū|F∞] = ū,

Ph,σ,τ -almost surely. In the first equality, we use the definition of the stochastic variable
Ut

σ,τ . The second equality follows from the fact that u = ū Ph,σ,τ -almost surely. The third
equality follows from Levy’s zero-one law (see e.g., Bogachev, [3], Example 10.3.15). The
last equality follows from the fact that ū is F∞ measurable. This is because ū is Borel
measurable and F∞ is the Borel sigma-algebra on P. The fact that u = ū Ph,σ,τ -almost
surely concludes the proof. ��

Appendix B: The Proof of Inequality (6.7)

The following statement follows from the more general result of Theorem 1 in Abate, Redig,
and Tkachev ([1]). For completeness, we provide a direct proof in this section.

Lemma B.1 Let σ, σ ′ ∈ S1 be such that, for every t ∈ N, for every h ∈ Ht , ‖σ(h) −
σ ′(h)‖TV ≤ δt . Then, for every strategy τ ∈ S2, for every t ∈ N, and for every history
h ∈ Ht ,

‖Ph,σ,τ − Ph,σ ′,τ‖TV ≤
∞∑

i=t

δi .

The class V ⊆ F is called an inner (outer) approximating class for the class W ⊆ F if
V is closed under unions (intersections) and if for every ε > 0, and for every probability
measure P ∈ M and every set W ∈ W there exists a set V ∈ V such that V ⊆ W (V ⊇ W )

and |P(W ) − P(V )| ≤ ε.

Lemma B.2 If V is an inner (outer) approximating class for the class W and V ⊆ W, then
it holds for every two probability measures P ∈ M and P′ ∈ M that

sup
W∈W

|P(W ) − P
′(W )| = sup

V∈V
|P(V ) − P

′(V )|.

Proof Fix ε > 0. Assume that the class V is an inner approximating class for W . The proof
for an outer approximating class is similar. Fix two probability measures P and P

′ and a
set W ∈ W . Then there exist sets V ∈ V and V ′ ∈ V such that V ⊆ W , V ′ ⊆ W ,

|P(W )−P(V )| ≤ ε, and |P′(W )−P
′(V ′)| ≤ ε. Let Ṽ = V ∪V ′. Because V is closed under

unionswehave that Ṽ ∈ V . Furthermore, it follows trivially that Ṽ ⊆ W , |P(W )−P(Ṽ )| ≤ ε,

and |P′(W ) − P
′(Ṽ )| ≤ ε. We find that

|P(W ) − P
′(W )| = |P(W ) − P(Ṽ ) + P(Ṽ ) − P

′(Ṽ ) + P
′(Ṽ ) − P

′(W )|
≤ |P(W ) − P(Ṽ )| + |P(Ṽ ) − P

′(Ṽ )| + |P′(Ṽ ) − P
′(W )|

≤ |P(Ṽ ) − P
′(Ṽ )| + 2ε.

Because this holds for any ε > 0 and any set W ∈ W, we can conclude that

sup
W∈W

|P(W ) − P
′(W )| ≤ sup

V∈V
|P(V ) − P

′(V )|.
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Because V ⊆ W , it is clear that:

sup
W∈W

|P(W ) − P
′(W )| ≥ sup

V∈V
|P(V ) − P

′(V )|.

��
In the following lemma, we use Lemma B.2 to simplify the computation of the total

variation norm. Instead of having to compute the supremum over all sets of the universally
measurable sigma-algebra, it will be sufficient to compute the supremum over the subclass
of open sets Ot , t ∈ N, defined by

Ot = {∪h∈HP(h)|H ⊆ Ht } (B.4)

The set Ot is the class of open sets such that all the plays sharing a common history at
time t are such that either all or none of them are contained in a specific open set.

Lemma B.3 For every h ∈ H, it holds that

‖Ph,σ,τ − Ph,σ ′,τ‖TV = sup
t∈N,O∈Ot

|Ph,σ,τ (O) − Ph,σ ′,τ (O)|.

Proof We defineO = ∪t∈NOt . Since any set inO is a union of open sets, it holds thatO is a
subset of the class of all open sets,O∗. We now show thatO is an inner approximating class
for O∗. Fix an open set O∗ ∈ O∗. For every t ∈ N, we define Ot = {p ∈ P|P(p|t ) ⊆ O∗}.
It is clear that for every t ∈ N, we have Ot ∈ O and Ot ⊆ O∗. Furthermore, we have that
O1 ⊆ O2 ⊆ . . . and O∗ = ∪t∈NOt . For every probability measure P it therefore holds
that lim

t→∞P(Ot ) = P(O∗), so for every ε > 0 there exists t ∈ N and Ot ∈ Ot such that

|P(O∗) − P(Ot )| < ε. Hence, O is an inner approximating class of O∗.
Because of the outer regularity of Borel measures on metric spaces, we have that the

class of open sets is an outer approximating class for the class of Borel sets. In addition, we
have that the class of Borel sets is an inner approximating class for the class of universally
measurable sets. Indeed, for any probability measure and any universally measurable set,
there exists a Borel set which is contained in the universally measurable set and has the same
probability. Repeated application of Lemma B.2 concludes the proof. ��
Proof of Lemma B.1 Fix t ∈ N and a history ht ∈ Ht . We prove by induction that for every
n ≥ t, for every O ∈ On+1,

∣∣Pht ,σ,τ (O) − Pht ,σ ′,τ (O)
∣∣ ≤

n∑

i=t

δi . (B.5)

Induction basis (n = t).
We prove that for every O ∈ Ot+1,

∣∣Pht ,σ,τ (O) − Pht ,σ ′,τ (O)
∣∣ ≤ δt . Fix a set O ∈ Ot+1.

We define

Zht = {(a, b, x) ∈ A × B × X |P(htabx) ⊆ O}.
LetAht = {a ∈ A|∃(b, x) ∈ B×X : (a, b, x) ∈ Zht } be the projection of the set Zht on the
set A. Let xt denote the state at the history ht . We have that

Pht ,σ,τ (O) =
∑

(a,b,x)∈Zht

σ(ht )(a) · τ(ht )(b) · q(x |a, b, xt ),
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Pht ,σ ′,τ (O) =
∑

(a,b,x)∈Zht

σ ′(ht )(a) · τ(ht )(b) · q(x |a, b, xt ).

We find that

∣∣Pht ,σ,τ (O) − Pht ,σ ′,τ (O)
∣∣ =

∣∣∣∣∣∣

∑

(a,b,x)∈Zht

(
σ(ht )(a) − σ ′(ht )(a)

) · τ(ht )(b) · q(x |a, b, xt )

∣∣∣∣∣∣

≤
∑

(a,b,x)∈Zht

∣∣σ(ht )(a) − σ ′(ht )(a)
∣∣ · τ(ht )(b) · q(x |a, b, xt )

≤
∑

(a,b,x)∈Aht ×B×X

∣∣σ(ht )(a) − σ ′(ht )(a)
∣∣ · τ(ht )(b) · q(x |a, b, xt )

=
⎡

⎣
∑

a∈Aht

∣∣σ(ht )(a) − σ ′(ht )(a)
∣∣

⎤

⎦ ·
⎡

⎣
∑

(b,x)∈B×X
τ(ht )(b) · q(x |a, b, xt )

⎤

⎦

≤
∑

a∈A

∣∣σ(ht )(a) − σ ′(ht )(a)
∣∣ = ‖σ(ht ) − σ ′(ht )‖TV ≤ δt .

Induction step.
From the induction hypotheses, it follows that for every open n-level set On ∈ On with
n − 1 ≥ t,

|Pht ,σ,τ (O
n) − Pht ,σ ′,τ (O

n)| ≤
n−1∑

i=t

δi . (B.6)

Fix a setO ∈ On+1.We can assumewithout loss of generality thatPht ,σ,τ (O)−Pht ,σ ′,τ (O) ≥
0. Define

Hn+ = {hn ∈ Hn |Pht ,σ,τ (P(hn)) − Pht ,σ ′,τ (P(hn)) ≥ 0}. (B.7)

We have that

Pht ,σ,τ (O) − Pht ,σ ′,τ (O)

=
∑

hn∈Hn

Pht ,σ,τ (O|P(hn))Pht ,σ,τ (P(hn)) −
∑

hn∈Hn

Pht ,σ ′,τ (O|P(hn))Pht ,σ ′,τ (P(hn))

=
∑

hn∈Hn

Pht ,σ,τ (O|P(hn))Pht ,σ,τ (P(hn)) −
∑

hn∈Hn

Pht ,σ,τ (O|P(hn))Pht ,σ ′,τ (P(hn))

+
∑

hn∈Hn

Pht ,σ,τ (O|P(hn))Pht ,σ ′,τ (P(hn)) −
∑

hn∈Hn

Pht ,σ ′,τ (O|P(hn))Pht ,σ ′,τ (P(hn))

=
∑

hn∈Hn

Pht ,σ,τ (O|P(hn)) · (
Pht ,σ,τ (P(hn)) − Pht ,σ ′,τ (P(hn))

)

+
∑

hn∈Hn

Pht ,σ ′,τ (P(hn)) · (
Pht ,σ,τ (O|P(hn)) − Pht ,σ ′,τ (O|P(hn))

)

≤
∑

hn∈Hn+

Pht ,σ,τ (O|P(hn)) · (
Pht ,σ,τ (P(hn)) − Pht ,σ ′,τ (P(hn))

)

+
∑

hn∈Hn

Pht ,σ ′,τ (P(hn)) · ∣∣(Pht ,σ,τ (O|P(hn)) − Pht ,σ ′,τ (O|P(hn))
)∣∣
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≤
∑

hn∈Hn+

(
Pht ,σ,τ (P(hn)) − Pht ,σ ′,τ (P(hn))

) +
∑

hn∈Hn

Pht ,σ ′,τ (P(hn)) · δn

≤ |Pht ,σ,τ (∪hn∈Hn+P(hn)) − Pht ,σ ′,τ (∪hn∈Hn+P(hn))| + δn

≤
n−1∑

i=t

δi + δn =
n∑

i=t

δi ,

where the fact that
∣∣(Pht ,σ,τ (O|P(hn)) − Pht ,σ ′,τ (O|P(hn))

)∣∣ ≤ δn follows by assumption.
Using Lemma B.3, we can conclude that

‖Pht ,σ,τ − Pht ,σ ′,τ‖TV = sup
n∈N,O∈On

|Pht ,σ,τ (O) − Pht ,σ ′,τ (O)|
= sup

n≥t,O∈On+1
|Pht ,σ,τ (O) − Pht ,σ ′,τ (O)|

≤ sup
n≥t

n∑

i=t

δi =
∞∑

i=t

δi .

��
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