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Abstract
We analyze different scenarios of defensive medicine in a novel framework based on game
theory and network analysis, where links in the network represent healing relationships
between a physician and a patient. The physician should choose between providing the
optimal treatment or an inferior one, which can amount to practicing defensive medicine.
The patient should choose whether to litigate or not if an adverse event occurs. Amajor result
of such analysis is that the steady state does not depend on the litigiousness of the initial
system or the initial distribution of strategies among physicians or the distribution of patients
over physicians. Moreover, reaching a virtuous steady state or an entirely defensive one
appears to be independent of the fact that patients take into account the quality of treatments
directly or they rely merely on popularity when choosing their physicians.

Keywords Defensive medicine · Game theory · Network dynamics

1 Introduction

TheOffice ofTechnologyAssessment defines defensivemedicine (DM) as follows:Defensive
medicine occurs when doctors order tests, procedures, or visits, or avoid high-risk patients
or procedures, primarily (but not necessarily solely) to reduce their exposure to malpractice
liability. When physicians do extra tests or procedures primarily to reduce malpractice lia-
bility, they are practicing positive defensive medicine. When they avoid certain patients or
procedures, they are practicing negative defensive medicine.

This practice can expose patients to the risk of harm from inappropriate procedures, and
the healthcare system to a substantial increase in costs [29, 34, 41]. Health issues include,
among others, the excessive use of Caesarean section to deliver babies and the excessive
exposure to radiation in diagnosis [19, 26]. Defensive medicine in high-risk specialities is
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a worldwide issue. In the USA, 93% of respondent physicians reported practising it, while
comparable numbers emerged in Europe, China, and Japan [25, 27, 40, 44].

Much has been written about defensive medical practice. We can try to classify the liter-
ature on defensive medicine under two lines of researches: empirical studies and theoretical
literature. The former line consists of collecting empirical data to investigate physicians’
views and experiences in relation to hedging-type defensivemedical practice. Cross-sectional
surveys are the most common method of data collection (see among the others [11, 24, 30,
40, 42]). The latter, almost exclusively through static or multi-stage models (see among the
others [1, 6, 13, 17–19, 21, 32, 33, 36, 39]).

In more recent years, some authors have tried to model the interaction between physicians
and patients using game theory and dynamical models. In [45], the authors contribute to
theorize the physician–patient relationship based on game theory and analyze the current
situation and influencing factors for medical disputes among different hospitals. The authors
observe that relationships between physicians and patients have become worse increasingly,
whereas physician–patient disputes or conflicts and their compensation have aggrandized
year by year. The game relationship of physician–patient is a noncooperation, dynamic and
incomplete information game, and the advantages of cooperation are far greater than the
competition between doctors and patients. Therefore, it is necessary to take targetedmeasures
to prevent and control the medical disputes by establishing a harmonious physician–patient
relationship in different levels of medical institutions.

The game-theoretic approach proposed by [2–5] studies the behavioral choices of physi-
cians and patients, and their dynamics in continuous time (replicator dynamics), in large
populations of agents who repeatedly engage in healing interactions. In particular, in [2] the
focus is on positive defensive medicine when additional services are offered to discourage
patients from filing malpractice claims, or to convince the legal system that the standard of
care was met. On the other hand, the authors in [3] consider negative defensive medicine,
that is the case in which physicians tend to avoid a source of legal risk, e.g., by adopting
safer but less effective treatments. In [5], the authors analyze different scenarios of defensive
medicine in a unique game theoretic framework, representing a healing relationship between
a physician and a patient. They obtain four scenarios representing the positive and negative
forms of defensive medicine, with or without physician’s moral hazard, where legal parame-
ters can have opposite effects on the probabilities that physicians practice defensive medicine
and that patients litigate, depending, respectively, on the form of defensive medicine and on
the presence of moral hazard. In [4], the authors analyze, in the context of the evolutionary
game, how physicians may prevent negligence charges by practicing defensive medicine or
by buying medical malpractice insurance. The latter choice transfers the risk of litigation
from the physician to the insurer.

In addition, there is no lack of applications of network analysis to the study of net-
works of physicians or patients. In [37], it is leveraged to reconstruct unipartite networks
of physician–physician connections based on shared patients. Their main findings are that
constructing physician networks around shared episodes of care is a clinically sound alterna-
tive to previous approaches to network construction that does not require arbitrary decisions
about thresholding. The resulting networks capture somewhat different aspects of patient–
physician encounters. The authors in [31] study how professional networks among physicians
vary across geographical regions, and which factors characterize their mutual connections.
They conclude that network characteristics vary across geographic areas and that physicians
tend to share patients with other physicians with similar physician-level and patient-panel
characteristics. In [9], the authors investigate the variation in the rate of hospital admis-
sions for ambulatory care-sensitive conditions across different physician networks and the
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underlying network characteristics. They observe that networks with a higher percentage of
primary-care physicians and networks in which patients received care from a larger number
of physicians had higher ambulatory care-sensitive rates.

It has been recognized that peer networks can influence decision-making by physicians
thorough a complex contagion mediated by social reinforcement [10], and that an association
exists between peer connectedness among physicians and the diffusion of emerging medical
technologies [43]. The effects of patient connectedness on measures of physician perfor-
mance have also been addressed in [7]. On a different level, network science tools have been
exploited to define the notion of referral paths encoding the chronological sequence of physi-
cians encountered by a patient [12]. These studies appear to focus on unipartite networks of
physicians or patients.

To complete this brief overview of the literature, it is worth mentioning that recently
some authors have related defensive medicine not only to the fear of litigation, but also to
the fear of being perceived as a low-profile physician among colleagues and/or patients [22,
23, 28]. Loss of reputation in the workplace can lead to “shame” far beyond guilt about a
specific error, potentially leading to professional burnout [14]. This can be further boosted
by a community culture oriented to individual blame, that publicly stigmatizes physicians
for medical errors through the mass media [38].

We believe that the issue of reputation is an interesting aspect to analyze in the context of
physician–patient behavior. Moving from the “positive defensive medicine game” described
in [2, 3], in this work we attempt to make a further contribution to the theoretical literature on
the behavioral aspects of patient–physician relationships. We do that by modeling their inter-
actions directly as a time-varying bipartite network of interacting agents (see Sect. 2.2). We
analyze defensive medicine behavior introducing the concept of “reputation” (see Sect. 2.1)
for physicians as an index that characterizes the physician–patient market.1 We explicitly
model the system as a bipartite network where connections form whenever a patient receives
a treatment from a physician. Reputation can be defined in various ways. We can think of it
as an objective measure of the average benefit for patients. If so, it will generally depend on
factors like the physician’s personal skills and the clinical risk of the treatment. It may also
be an index of popularity of some sort, like the physician’s degree centrality in the network or
a possibly more elaborated index of vertex centrality [8, 35]. Different definitions represent
different attitudes of patients and different levels of information. Independently of its specific
definition, we assume that “reputation” (see Sect. 2.1) is an index based on which patients
choose which physician to link with. The patient allocation dynamics is modeled jointly with
the dynamics of agents’ strategic interactions based on their payoffs. The latter dynamics
depends on the exogenous parameters that characterize the treatments and the legal system,
as well as on the network connectivity pattern.

On one hand, we aim at identifying conditions for a virtuous system in which most
physicians provide the optimal, non-defensive treatment, and to test how much a virtuous
steady state is achievable under high litigiousness conditions. We also try to find out the
parameters that are effective in steering the network’s state and that can be adjusted by
regulators, at least in principle. On the other hand, we are interested in highlighting path
dependence phenomena, if any, i.e., how the initial distribution of strategies (and clients)

1 We do not discuss here the role of price competition. We focus on the social mechanisms that mediate
allocation of patients to physicians during the game. Allocation is based on word of mouth and thus on the
reputation that physicians have within the community. Accordingly we model the institutional framework as
not market oriented, in such a way that the prices of medical services do not influence the patient’s choices. In
other words, there is no competition between physicians on the services offered or we can think that patients
are willing to spend according to the saying “being healthy comes first.”
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affects the final outcome, and in measuring the effects of patients’ preferences toward better
performing or simply more popular physicians.

An opinion of the authors is that a framework combining network dynamics with a game-
theoretic approach can be particularly helpful to model medical systems. The two approaches
are well matched because they share two common assumptions about social behavior that
make their combination intuitively appealing. The first is that participants recognize one
another as being players, or actors, in the game. Secondly, in both game theory and network
science contexts, agents often have incomplete information regarding the strategies of the
other agents and their mutual connections. This is an important trait since organizations
and individuals often display less than perfectly rational behavior, because they lack the
information to do otherwise. Therefore, game theory and network science taken together can
investigate coalition participants’ actions and strategies in a meaningful way [20].

We believe that a network dynamics model based on individual strategic interactions and
reputation-based attachment rules can provide a robust agent-based framework to investigate
emergent behaviors in medical systems. To the best of our knowledge, this study is the first
of its kind in the literature. We believe it may provide relevant information and insights for
policy makers about the effects of different reforms and enable further analysis by academics
and practitioners as well. At the same time, the theoretical model and the analyses presented
here are meant to provide generic indications and do not try to reproduce any empirical facts
by the previous literature.

The paper is organized as follows. The model and the assumptions regarding defensive
medicine are presented in Sect. 2. The simulation setup is described in Sect. 3 and discussed
in Sect. 4. Finally, in Sect. 5 we draw our conclusions.

2 TheModel

2.1 Agent Strategies

Wemodel the systemas follows.At discrete times t = 1, 2, . . . , a large number of interactions
between physicians and patients take place. Every interaction consists of a patient receiving
medical treatment from a physician. Such a treatment guarantees the patient a certain benefit
b with a probability q to also provoke a damage h. The stochastic net benefit for the patient is
then B = b− Ih h, where Ih is 0 or 1 when the treatment has a positive or negative outcome,
respectively, and h > b in order for B to be negative for a negative outcome. Physicians
can choose to provide either of two treatments: one that can determine a greater benefit
but has a higher probability to produce a negative outcome and result in a damage for the
patient, and another with a reduced benefit but also lower intrinsic risk. We indicate the latter
strategy by D, for “defensive treatment,” and the former by ND for “non-defensive.” Every
treatment supplied produces a certain benefit bph for the physician too. Damaged patients
may file a lawsuit against their physicians, which implies a cost c in terms of legal expanses.
The damaging physician is judged guilty in court with a probability p that depends on the
treatment. A guilty physician must compensate the patient for an amount k. Patients that file
a lawsuit when damaged are said to play strategy L, from “litigious,” while patients that do
not are said to play strategy NL.

Thus treatmentD has associated parameters bD, qD, hD, pD, cD, kD,while parameters bND,
qND, hND, pND, cND, kND characterize treatment ND. Two conditions qualify a treatment as
defensive. It must be qND > qD (higher clinical risk) and we also assume E[BND] > E[BD],
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meaning the non-defensive treatment has higher expected benefit. In this sense, treatment
ND is to be considered the optimal treatment in medical terms. A perfectly efficient system
should incentivize the optimal treatment and discourage defensivemedicine. In terms of legal
parameters, this would correspond to pD = 1 and pND = 0 which is clearly an abstraction.
More generally we only require the probability of being found guilty to be larger for D
physicians, pD > pND.

We use the term “agent” to refer indifferently to a patient or a physician, or when context
makes clear to which category they belong. We assume that agents decide which strategy
to play ex-ante before each treatment, and that they have no information about each other’s
strategy. We also assume that their behavior is uniform, meaning that physicians play the
same strategy in the treatment of all their patients, and that patients adopt the same strategy
independently of who is the specific physician that treat them at a given time. This is coherent
with the idea that agents choose their strategies ex-ante. Agents within the two categories are
homogeneous. At any given time, they may be distinguished only by strategy.

We assume that the initial populations feature fractions fD and fL of D-physicians and
L-patients, respectively, and fND = 1 − fD and fNL = 1 − fL of ND-physicians and NL-
patients. The conditional expectation of patient net benefits is E[B] = b − q h so that the
difference between the treatments reads

E[BND] − E[BD] = (bND − bD) − (qND hND − qD hD) (1)

As long as physicians’ strategies are uniform, the values E[BD] and E[BND] also represent
the expected “performance” of a physician who plays strategy D and ND, respectively.

We indicate by Πph and Π the (stochastic) payoff of physicians and patients. In the limit
where patients are connected to physicians randomly at the beginning of the observation
period, the conditional expectations of physicians’ payoffs are E[Πph] = bph − fL p q k and
their difference is

E[Πph
ND] − E[Πph

D ] =
(
bphND − bphD

)
− fL(wND kND − wD kD) (2)

where wD = pD qD and wND = pND qND.
Similarly, for the difference between the conditional expectations of the patients’ payoffs,

we obtain

E[ΠNL] − E[ΠL] = qD fD (cD − pD kD) + qND(1 − fD)(cND − pND kND) (3)

We notice that the previous expression contains neither the benefits bD, bND, nor the damages
hD, hND.

For the sake of clarity, in the rest of the paper we will assume that the two treatments can
procure equal damages (hND = hD = h) and have the same associated compensations and
legal costs (kND = kD = k, cND = cD = c).

2.2 Network Dynamics

Bipartite graphs represent a widely used tool to describe associations between two groups,
ranging from social networks of affiliations to networks of financial holdings [15, 16]. Game
theory allows us to model the strategic interactions between physicians and patients in terms
of their payoffs, and the network framework usefully captures the structure of the web of
interactions that form, varying with time, as a result of both the agents’ strategies and the
patients’ preferences in the physician selection process. The agent-based approach also allows
us to model the possibly different timescales that characterize the dynamics of strategy
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Fig. 1 A bipartite network of m = 3 physicians and n = 10 patients (ph, physician; pt, patient) (Color figure
online)

revision and patient–physician link formation. The agents’ strategies and behaviors reflect
the relation between positive defensive medicine and litigiousness and also account for the
interplay between strategies and the establishment of patient–physician relationships.

At the beginning of every period t , each patient is connected to exactly one physician that
provides themedical treatment by the end of the period. Letm be the number of physicians and
n the number of patients in the system, with m < n. The information about the interactions-
to-be between physicians and patients can be conveniently encoded in a bipartite graph B(t).
The graph’s incidence matrix (Bi j ) is an m × n real matrix with Bi j (t) = 1 when patient j
is treated by physician i during period t , and 0 otherwise. In Fig. 1, we picture the bipartite
graph of a very small network, together with the corresponding incidence matrix.

The graph is disconnected and the vertices of each connected component correspond to
one physician together with the patients they treat along that period of time. By the end
of the period, every patient receives exactly one treatment (one-shot game). Depending on
the outcome, or the realized ex-post benefit, patients are free to change their physicians.
As a consequence, at the beginning of the next period the graph will have changed. As a
simple rule, we assume that patients decide whether to leave or not based on the comparison
between the realized value of B and some index of average benefit Ip at the systemic level.
A reasonable choice for Ip at end-of-period is the following

Ip = nD bD + nND bND − h(nh,D + nh,ND)

n
(4)

where nD, nND, nh,D and nh,ND are the numbers of patients that have received treatment
D, treatment ND and that have been damaged by either of the two treatments, respectively.
Such definition for Ip simply corresponds to the arithmetic mean of the realized benefits.
Approximating nh,D/nD � qD and nh,ND/nND � qND for nD, nND � 1, we have

Ip � nD
n

E[BD] + nND
n

E[BND] (5)

So, for large numbers of treatments of both kinds, Ip approximates the weighted average
of expected benefits. For a given physician i , a similar index can be defined to measure its
individual performance, Ii = (ni b − nh,i h)/ni .
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In principle, a patient j is expected to change physician if Bj < Ip (inefficient treatment)
and to stay otherwise. Realistically a patient will not change immediately after receiving an
inefficient treatment because of inertia. We can expect that a patient accumulates a number
of inefficient treatments before getting over such inertia and leave. In this sense, we assume
that the conditional probability, having accumulated u consecutive inefficient treatments, of
leaving in the next time period has the form

P|u = 1 − e−αu (6)

where the parameter α quantifies inertia. We call this parameter the patient’s susceptibility.
Patients with very small susceptibility would never change their physicians even after many
inefficient treatments, while highly susceptible patients are likely to leave even after one,
possibly occasional, unsatisfying treatment. The unconditional probability of leaving after
a number of inefficient treatments less than or equal to u is P≤u = 1 − ∏u

τ=1(1 − Pτ ) =
1 − e− α

2 u(u+1) and the unconditional probability of leaving after exactly u unsuccessful
treatments reads

Pu = P≤u − P≤u−1 = e− α
2 u(u+1) (

eαu − 1
)

(7)

The previous probability is normalized and we have P0 = 0 and limu→∞ Pu = 1 as required.
From the expression of Pu , we can estimate the expected value

∑
u u Pu , namely the expected

number of consecutive unsuccessful treatments after which a patient is expected to move.
This value, call it τα after rounding to an integer, represents the time scale of the process of
patient reallocation.

The condition Bj < Ip may be realized for Bj > 0, and it holds automatically in case
of damage (Bj < 0), as long as we assume that E[BD] > 0 and E[BND] > 0. Damage
can be considered an especially unfavorable event that may well overcome inertia. It would
not seem unreasonable for a damaged patient to change regardless the past records of treat-
ments. Because of that we assume damaged patients to leave with probability equal to 1 and
undamaged patients to leave with the probability (6) if Bj < Ip. When a patient leaves, they
choose a new physician among those that have registered a good performance in the previous
period, namely those with di = Ii − Ip ≥ 0. Reallocation of the patients occurs randomly
with probability weights proportional to the (positive) difference di , so that best performing
physicians have highest probability to attract new patients.

In the updating process, a physician may lose all their patients. With a slight abuse of
terminology, we call inactive any physicianwith a number of patients below a small threshold
nmin . Otherwise we say that a physician is active. As a limit case and by definition, 0-patient
physicians register null payoff and performance, and di < 0 at the end of the one-shot
game. To avoid an unrealistic scenario where 0-patient physicians get excluded by the game
indefinitely, we allow them to acquire new patients with a minimum probability during
subsequent iterations.We also assume that physicians can not treat more than a given number
nmax of patients, either because of practical limitations or because a limit is enforced by
regulators.

2.3 Strategy Revision

Between games, agents are allowed to change their strategies. Such revision of strategies is
driven by the agents’ payoffs. Average systemic indices can be computed for physician and
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patient payoffs in the same spirit of (4):

Π
ph = nD bphD + nND bphND − nL,h k

n
(8)

Π = nD bD + nND bND − nh h − nL,h c + nL,win k

n
(9)

where nL,h is the number of damaged patients that play L and file a lawsuit, and nL,win is the
number of those that win in court.

Every time the realized payoff of the agent is lower than the corresponding systemic
average, that agent is expected to switch strategy. As for the process of reallocation, we
suppose that strategy revision is somewhat inertial. Each agent can tolerate a below-the-
threshold payoff for a number of consecutive times and the probability of switching strategy
after consecutive low payoffs has the same form of (7). We distinguish the exponent of
the probability function of strategy revision by the letter β and we will have two different
parameters, β for patients and βph for physicians. We will refer to them as the agents’
reactivity because they provide a measure of how swift an agent’s reaction is to a sequence
of poor results in terms of their payoffs, where the reaction consists in the act of switching
strategy. Correspondingly, we have two time scales for the process of strategy revision, call
them τβ and τ

ph
β , corresponding to the rounded expected values of u, for Pu given by (7) with

β and βph replacing α.

2.4 Information Set and Social Interaction

It is worth summarizing the information set available to the agents. As stated in Sect. 2.1,
strategies are chosen ex-ante with no information about each other’s strategy. In this sense,
an agent’s information is substantially incomplete. Agents also ignore each other’s reactivity
or susceptibility.

On the other hand, the network dynamics assumes that patients have access to Ip, based
on which they choose whether to leave or stay, and to Ii for i = 1, . . .m, because the
probability of a new physician to be chosen by a changer is proportional to Ii − Ip. As for the
strategy revision process at the end of each one-shot game, it is assumed that patients know

the average patient payoff Π and that physicians know Π
ph
. These assumptions regarding

the information available to agents can be justified in terms of the social connections that
always exist between patients, as well as between physicians. For instance, we can imagine
the “performance index” for physician i to result from an average of the perceived benefits
reported by that physician’s patients to each other. Indeed, each patient is likely to have
acquaintances among the patients that are treated by their very same physician. Probably
they also have acquaintances among patients of other physicians, who also report about
their degree of “satisfaction” or perceived benefit from the received treatments, resulting
in a systemic indicator like Ip. A similar interpretation can be attached to individual and
systemic payoffs and also a network of acquaintances among physicians is expected to exist
and influence their strategies. In this work we address exclusively the bipartite network
formed by the individual patient–physician treatments and we renounce to model explicitly
the social networks corresponding to the patterns of patient-patient or physician–physician
acquaintances.We tacitly assume they exist and can effectively convey ameasure of reputation
for a physician and of average benefit of provided treatments. Such indices are endogenous
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estimates, collectively formed by agents thorough their connections to one another even
though such unipartite links are not explicitly represented.2

In the model, reallocation is driven by realized benefits. However, it is known the role that
recommendations and popularity may play in determining attractiveness, and manifesting
preferential attachment phenomena and “rich get richer” effects. Besides the benefit-driven
model, we consider a network where patient reallocation is driven by physician “popularity”
as simply measured by the number of their patients ni and the probability for any physician
to be chosen by a leaving patient is given by a linear preferential attachment rule Pi =
ni/

∑
j n j . This corresponds to a system where the choice of physician is uncoupled from

the dynamics of strategy revision, which in turn is driven by payoffs. For comparison, we also
consider a mixed case where benefit-based reallocation is modulated by physician popularity.
This translates into an attachment probability Pi ∝ di × ni for a physicians that has di =
Bi − Ip ≥ 0, while below-the-threshold physicians only lose patients.

3 Simulations Setup

3.1 Scenarios

We simulate the dynamics for a network of m = 200 physicians and n = 5 × 104 patients,
with parameters as in Table 1 corresponding to three scenarios.

– Scenario A (initial populations feature fractions: fD = 0.5 and fL = 0.5; probability
of non-defensive treatment causing damage: qND = 10−1) corresponds to a balanced
network where the strategies D and ND are present in equal proportions within the
population of physicians, as are the strategies L and NLwithin the population of patients.
Treatment ND has 10% clinical risk while treatment D is considerably safer with qD =
0.001. For this case, we have E[ΠND] > E[ΠD], see Table 2, so that strategy ND
is favored by physicians. The expected payoff of litigious and non-litigious patients are
similar. This scenario is considered a benchmark case of a “virtuous system,” with respect
to which we derive the alternative cases B and C.

– Scenario B (initial populations feature fractions: fD = 0.5 and fL = 0.9; probability of
non-defensive treatment causing damage: qND = 10−1) corresponds to a highly litigious
network, where parameters bphND and pND are chosen in order to discourage non-defensive
medicine (see Table 1). Here, the expected payoff of defensive physicians is larger than
that of their non-defensive colleagues, and a litigious behavior by patients is initially
favored.

– Scenario C (initial populations feature fractions: fD = 0.5 and fL = 0.9; probability of
non-defensive treatment causing damage: qND = 0.4) is a highly litigious one where the
non-defensive treatment has a very high intrinsic risk. This is to be considered a limit
case where the expected benefit from treatment ND is similar to that from treatment
D. This time, litigiousness is discouraged by triplicating legal expanses and reducing
compensations by a factor of ten. Correspondingly, physicians favor treatment ND as
in A, while the payoff of litigious patients is roughly one half of their non-litigious
counterparts.

In all cases, it is E[BND] > E[BD] as required by the definition of non-defensive treat-
ment. The patients’ susceptibility is α = 0.01, corresponding to a time scale τα = 13 for

2 Such social networks of patients and physicians are not to be confused with the two unipartite projections
of the bipartite network of physician–patient treatments modeled here.
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Table 1 Parameters of the considered scenarios

Models Network Treatments Lawsuit

fD fL bD bND h qD qND b
ph
D b

ph
ND pD pND c k

A 0.5 0.5 1 3 5 10−3 10−1 1 2 0.5 10−2 1 30

B 0.5 0.9 1 3 5 10−3 10−1 1 1.01 0.5 0.25 1 30

C 0.5 0.9 1 3 5 10−3 0.4 1 2 0.5 10−2 3 10

It is assumed hD = hND = h, cD = cND = c and kD = kND = k

Table 2 Expected benefits and payoffs at t = 0

Models Benefits Payoffs

E[BD] E[BND] E[Πph
D ] E[Πph

ND] E[ΠL] E[ΠNL]
A 0.995 2.5 0.992 1.985 1.72 1.748

B 0.995 2.5 0.986 0.335 2.08 1.748

C 0.995 1.0 0.996 1.964 0.419 0.998

reallocation. We fix the minimum number of patients below which a physician gets clas-
sified “inactive” to nmin = 0.01 × n/m (1% the average number number of patients per
physician). As for the maximum number of patients a physician is allowed to treat, we set
nmax = 10×n/m. As for the process of strategy revision, we first assume it to have the same
scale of reallocation and accordingly we set β = βph = α. This assumption will be partly
relaxed when performing comparative statics on βph.

To study themodel’s dynamics and compare the different scenarios, we focus our attention
on some fundamental functions. At the most basic level, the dynamics leads some patients
to change physician. Depending on the parameters, some physicians may end up having
less than nmin patients, becoming “inactive.” We indicate as fin(t) the fraction of inactive
physicians. Since all agents are allowed to change their strategy, the fractions fD(t) of (active)
defensive physicians and fL(t) of litigious patients are of major interest. In a general setting,
the distribution of strategies among physicians and the distribution of patients that receive
the defensive and the non-defensive treatments are independent to some degree. Thus we
also compute the fraction f patD (t) of patients that get treatment D at a given time.

The values of all the functions are computed as Monte Carlo averages after simulating the
dynamics for nMC = 360 random replicas of the initial network. Simulations are performed
with a maximum of Tmax = 150 time steps and stop after that any of the populations of D-
or ND-physicians become extinct.

3.2 Initial Network State

We first simulate the endogenous dynamics with benefit-driven reallocation in a network
where patients are assigned to physicians at random at t = 0, independently of the agents’
respective strategies. This corresponds to a homogeneous initial network of physicians with
similar vertex degree (number of patients). The physician degree distribution is binomial and
the average number of patients per physician is n/m. In such a network, agents with the same
strategy are statistically indistinguishable.
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Then we compare this case with a network where the initial graph is obtained by a non-
linear preferential attachment rule, with attachment probabilities Pi (0) ∝ nγ

i and different
scale exponents γD, γND for D-physicians and ND-physicians respectively.3 Specifically we
consider a variation of scenarios A and C where γD = 1 and γND = 0.1, which make
D-physicians more attractive at first, and a variation of scenario B where, at the opposite,
γD = 0.1 and γND = 1.0 making ND-physicians more popular. In this way we will test
for the effects of heterogeneous popularities within the initial populations of physicians.
For these variants of the initial state, we consider the cases of both a pure popularity-driven
reallocation and amixed reallocation, corresponding to choices for the attachment probability
as explained at the end of Sect. 2.4. It is worth noting that the initial distribution of patients
over physicians corresponds to different, nonlinear scale exponents, in order to make one
population more popular than the other at starting time. However, the endogenous dynamics
proceeds through linear preferential attachment, corresponding to γ = 1 for both populations
(see Sect. 2.4). In all considered cases, strategy revision is driven by agents’ payoffs.

4 Results

4.1 Time Evolution

In a benefit-driven dynamics, patient moves are dictated by the sign of the difference of
benefits (1). This difference is positive for all the scenarios, as required by definition of the
optimal, non-defensive treatment. Accordingly, patients tend to move from D-physicians to
ND-physicians. The strategy revision process of physicians is initially governed by the payoff
difference in (2), which is positive for scenarios A and C, and negative for B.

We first analyze the time evolution of a random graph in a benefit-driven case, see Fig. 2.
For case A, the ND strategy is favored by the physicians as well as by the patients. D-
physicians turn into ND-physicians before going inactive and the D-population eventually
becomes extinct. The system converges quite rapidly to a “virtuous” statewhere all physicians
are active and provide the non-defensive treatment.

Case B provides evidence that convergence to the virtuous state cannot be guaranteed in
general. Here, patients reach for ND-physicians who, at the very same time, tend to turn
into D-physicians. The two effects act antagonistically and, on parity of α, β and βph, the
dynamics is slower and steers the system toward a state where all physicians provide the
defensive treatment. Despite being highly litigious at first, the system converges to a state
where litigious and non-litigious patients coexist in equal proportions.

For the limit case C, we observe convergence to a virtuous state despite the high intrin-
sic risk of the non-defensive treatment. However many patients get damaged from highly
risky ND treatments and immediately leave. This leads to a fraction of physicians, mostly
non-defensive, to become inactive. Given the unfavorable costs and compensations, a slight
reduction in the original litigiousness is also observed.

We now repeat previous comparison for themixed casewhen reallocation is driven by both
benefit and popularity, see Fig. 3, and for the case of a pure popularity-driven reallocation,
see Fig. 4. The network at starting time is obtained through nonlinear preferential attachment
as discussed in Sect. 3.2.

3 When generating the initial graph by a preferential attachment rule, we do not cap the number of patients.
As a consequence, at the very start of the dynamics some physicians may have more than nmax patients,
depending on the values of m, n and the scale exponents.
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Fig. 2 Time evolution (benefit-driven). Number of patients receiving the defensive treatment, of defensive
physicians, of inactive physicians and of litigious patients in a balanced random network when reallocation is
driven by an index of average benefit of treatments (Color figure online)

Fig. 3 Time evolution (mixed case). Time evolution of the system when reallocation is determined simultane-
ously by realized benefit and physician popularity. The initial network features more popular D-physicians in
cases A andC, andmore popular ND-physicians in case B, andwas obtained bymeans of nonlinear preferential
attachment (Color figure online)

We find that neither the initial, highly skewed distribution of the patient strategies nor
the popularity-driven attachment can change significantly the long-run behavior observed
in the benefit-driven case. The payoff difference between D- and ND-physicians appears
determinant for the final state. It is worth noticing that we are intentionally considering cases
where the most popular category at the start is the one that is disadvantaged in payoff terms.
Correspondingly the speed of convergence to the steady state can be altered significantly, see
particularly case B in Fig. 4. Moreover, when physician degree drives reallocation, unpopular
physicians are more likely to become inactive even when they provide the optimal treatment.
This is evident in scenario C where more than a half of physicians become inactive. We
conclude that the dynamics under the study is only slightly affected by the selection criterion
used by patients. Even when this choice is entirely determined by popularity and doesn’t
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Fig. 4 Time evolution (popularity-driven). Time evolution of the system when reallocation is driven by the
degree centrality of physicians. The initial network features more popular D-physicians in cases A and C,
and more popular ND-physicians in case B, and was obtained by means of nonlinear preferential attachment
(Color figure online)

take into account the benefit of treatments at all, the final state is not altered significantly,
as long as we assume that only the damaged patients or those that have experienced many
insufficient treatments can move.

4.2 Comparative Statics

For the benefit-driven case, we discuss a sensitivity analysis with respect to changes of
selected combinations of parameters, and fixing the others to their values in scenario C. To
reduce computational times, the analysis was performed for a smaller network of m = 40
physicians and n = 104 patients, simulating the dynamics over T = 35 time steps. The
relevant quantities have been computed as Monte Carlo averages over 120 instances.

In Fig. 5, we represent the number of active D-physicians and L-patients with respect
to selected pairs of parameters. The plots for nD highlight that a virtuous system with all
physicians providing the optimal treatment emerges for a wide range of parameter values.
This holds even though the system is highly litigious ( fL = 0.9). However, when the legal
system penalizes ND-physicians through high values of pND or kND and for given clinical
risk, we can expect a prevalence of defensive treatments. Conversely, for given probability
of being judged guilty, physicians tend to practice defensive medicine more and more as
the clinical risk of the optimal treatment increases. The behavior of nD as a function of fL
for moderate pND provides further evidence that a virtuous state can be expected, not only
when the probability of cases is small but even in the limit where all patients play a litigious
strategy.

Turning to nL, we first consider the dependence on probabilities (top right panel). In order
to be fully understood, such dependence is to be analyzed in the light of the physicians’
behavior (left panels) and of the high initial litigiousness. For low to moderate values of
qND the system features a prevalence of virtuous physicians and a reduction in litigiousness
is observed. However the system stays litigious in that nD/n > 0.5. This means that for a
not too risky optimal treatment, we cannot expect to turn the system into a “neutral” one
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after T = 35 time steps. The rest of the parameters have been fixed as in scenario C (Color figure online)
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Fig. 6 Effects of physician
reactivity on the number of active
physicians after T = 35 time
steps. Unvarying parameters
fixed as in scenario C (Color
figure online)
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with nD = 0.5, even for a favorable court. That is because there still can be a systematic
advantage (in patient payoff terms) in being litigious. For a risky treatment with qND > 0.25
and a favorable court, the system stays as nearly as litigious as it was at the beginning,
showing that for large qND the litigious behavior if favored even thought defensive medicine
is penalized in court. However, increasing pND has a slightly unintuitive effect as it reduces
nL to roughly one half of the patients (see the blue region in the upper right corner). This can
be explained by the fact that a highly unfavorable court steers the system to a state where
all physicians are defensive. Since the probability of damage from defensive treatment is
low, physicians go to court very rarely and the differential advantage in being litigious goes
to zero. This makes indifferent on average to act litigious or not. As a result, we observe
convergence to a neutral state with nL ≈ 0.5. In other words, for risky treatments we can
reduce litigiousness but at the cost of producing a defensive medical system.

The sensitivity of nL on parameters kND and cND also provides valuable insight. For
a high cost of litigiousness, increasing pND increases litigiousness. However, for low to
moderate cost, a threshold value of pND exists separating a litigious and a neutral system
neatly. Conversely, for given pND, decreasing cND doesn’t increases litigiousness as one may
expect. On the contrary, when the cost is below a threshold, the system becomes rapidly
neutral. A similar behavior is deduced from the heat map of nL as a function of pND and kND.
Convergence to a neutral system with nL ≈ 0.5 is observed for increasing values of these
parameters. Indeed this discourages physicians from providing the optimal treatment and,
in the limit of a completely defensive system, patients becomes effectively strategy-neutral.
Since neither a systematic gain nor a penalization would be produced by being litigious, in
principle patients may choose randomly which strategy to play from one game to another,
which results in equal fractions of litigious and non-litigious patients at the steady state.

In Fig. 6, we show the effect of changing the reactivity βph of physicians, which dictates
how long it takes for them to revise their strategy, on the number of active physicians and
for varying fD. For intermediate fD and high reactivity, few physicians go inactive as they
can catch up with patients’ moves and adapt their strategy. At the opposite, for small βph

physicians react slowly and the probability of going inactive before adapting is larger. For
a homogeneous system with fD ≈ 0 or fD ≈ 1, all physicians stay active independently
of their reactivity. Indeed, as long as all physicians play the same strategy, they also have
the same average performance and payoff. Thus, the probability for a physician to change
strategy is small, as is that to systematically outperform another physician and attract their
patients.

Finally, Fig. 7 illustrates how the systemic performance index Ip depends on the con-
trol parameters. A higher pND translates into a less performant system: physicians become



1082 Dynamic Games and Applications (2022) 12:1067–1085

0 5 10 15
0

0.2

0.4

cND

p
N
D

0 20 40 60
kND

0.996

0.998

1.000

1.002

Performance Index

Fig. 7 Systemic performance index after T = 35 time steps. Unvarying parameters fixed as in scenario C
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defensive since the probability of being found guilty increases. On the other hand, advisably
reducing the compensation for given pND is effective in producing a virtuous medical sys-
tem, because a low kND does not discourage from giving the defensive treatment. We found a
reduced sensitivity on cND. The bluish and yellowish regions roughly correspond to systems
where most physicians act defensively and non-defensively, respectively. Since the choice of
strategy is driven entirely by the physicians’ payoffs, see Eq. (2), and cND enters them only
indirectly via fL, its effects on Ip are usually of smaller amplitude. The exception is the region
of pND between 0.2 and 0.4, and cND ≈ 3. We know from the top-left corner of Fig. 5 that
such values of pND correspond to a transition from a non-defensive to a defensive system.
It could be shown that such region is one where the average payoff difference (2) crosses 0.
Consequently the role of fL in determining the sign of the difference is mostly significant.
From the bottom-right panel of Fig. 5, we also see that cND ≈ 3 approximately represents
the boundary that separates a highly litigious system from a neutral one. Correspondingly,
being the system neutral when cND < 3, physicians can tolerate even high values of pND
as, on average, their payoff from non-defensive treatments is higher. On the contrary, in the
regions far from this boundary, the effects of cND are small. In general, rising the cost of
litigiousness is not guaranteed to be effective in steering the system toward the virtuous state.

5 Conclusions

In this paper, we introduced a stylized dynamical model of a medical system in presence
of positive defensive medicine. This was represented in terms of a bipartite network of
physicians and patients, where treatments are described as strategic interactions between
these agents as a sequence of one-shot games. The network dynamics is twofold. Patients are
allowed to change physician, which corresponds to changes in the network topology. Agent
strategies change according to their payoffs, while physician choice takes place according to
a physician reputation index.

Suchmodel features a rich dynamics that in principle can be altered by regulators changing,
in particular, the following control parameters: cost of litigiousness, amount of compensations
to damaged patients, and probability for virtuous physicians to be condemned to compensate
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a damaged patient. We compared different benchmark scenarios and provided evidence that
convergence to a virtuous steady state is not guaranteed. A major result of such comparison
is that the steady state does not depend on the litigiousness of the initial system or the
initial distribution of strategies in the physician population or the distribution of patients
over physicians. Most of all, we showed that the qualitative features exhibited by the model’s
dynamics are robust with respect to different choices of the reputation, or the criterion patients
adopt in selecting a new physician. In particular, reaching a virtuous steady state or an entirely
defensive one is something that appears to be independent of the fact that patients look at the
quality of treatments directly or they rely merely on popularity to make a choice.

We performed an extensive comparative statics analysis. This was carried out for a sce-
nario that corresponds to a risky optimal treatment only slightly favored in terms of expected
benefits, even though it has much higher certain benefit compared to a defensive therapy. This
analysis confirmed that a virtuous systems is to be expected in a wide region of the parameters
space, even for very litigious patients. Only when the legal system is very penalizing toward
virtuous physicians we observe a polarization in favor of a defensive strategy. Interestingly
this also showed that it is generally difficult to control the litigiousness in the system. Coun-
terintuitively, penalizing litigiousness by increasing legal costs or reducing compensations,
or having a court more favorable toward the optimal treatment, are not guaranteed to be
effective policies. Indeed, such policies can result in a virtuous system but, in front of a
higher probability of cases, a differential advantage can emerge in favor of litigious patients.
In terms of agent attributes, our simulations also highlight that a possibly large number of
physicians may end up having very few or no patients. This happens when their reactivity is
too small and it does not allow them to adapt their strategy as to offset the loss of patients.

Although our results can only give general indications, without necessarily representing
empirical results, we believe that the model discussed here and its comparative analysis can
be valuable in understanding patient–physician strategic interactions as well as the coupling
between the dynamics of agent strategies and that of link formation in the bipartite network.
Although the model already exhibits a rich dynamics, an interesting research perspective
would be to include heterogeneity in the network by considering, for instance, physicians
with varying degree of skillfulness or patients with varying inclination to litigiousness.
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