Skip to main content

Advertisement

Log in

Efficient community identification in complex networks

  • Original Article
  • Published:
Social Network Analysis and Mining Aims and scope Submit manuscript

Abstract

Complex networks are large, dynamic, random graphs modeled to replicate interactions among entities in real-world complex systems (e.g., the Internet, the World Wide Web, online social networks—Facebook, Twitter, etc., and the human connectome). These networks differ from the classical ErdösRényi random graphs in terms of network properties such as degree distribution, average distance and clustering. Existence of communities is one such property inherent to complex networks. A community may be defined informally as a locally dense subgraph, of a significant size, in a large globally sparse graph. Such communities are of interest in various disciplines, including graph theory, physics, statistics, sociology, biology, and linguistics. At least two different questions may be posed on the community structure in large networks: (1) given a network, detect or extract all (i.e., sets of nodes that constitute) communities, and (2) given a node in the network, identify the best community that the given node belongs to, if there exists one. Several algorithms have been proposed to solve the former problem, known as community discovery. The latter problem, known as community identification, has also been studied, but to a much smaller extent. Both these problems have been shown to be NP-complete, and a number of approximate algorithms have been proposed in recent years. In this paper, we discuss the various community definitions in the literature and analyze the algorithms for identifying communities. We propose an alternative definition of a community based on the average degree of the induced subgraph. Also, we propose a novel algorithm to identify community in complex networks based on maximizing the average degree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Networks, in this literature, refers to large graphs and not the wired or wireless networks from communication.

  2. The diameter of a graph is defined as the largest distance between two nodes in the graph.

  3. The number of edges incident on a node is called the degree of the node.

References

  • Agarwal N, Liu H, Tang L, Yu P (2011) Modeling blogger influence in a community. Soc Netw Anal Min 1–24. doi:10.1007/s13278-011-0039-3

  • Alba RD (1973) A graph-theoretic definition of a sociometric clique. J Math Sociol 3(1):113–126

    Article  MathSciNet  MATH  Google Scholar 

  • Albert R, Jeong H, Barabasi A (1999) Diameter of the world-wide web. Nature 401(6749):130–131

    Article  Google Scholar 

  • Arenas A, Fernández A, Gómez S (2008) Analysis of the structure of complex networks at different resolution levels. New J Phys 10(5):053039

    Article  Google Scholar 

  • Bagrow JP (2008) Evaluating local community methods in networks. J Stat Mech Theory Exp 2008(05):P05001

    Article  Google Scholar 

  • Bagrow JP, Bollt EM (2005) Local method for detecting communities. Phys Rev E 72(4):046108

    Article  Google Scholar 

  • Barabási A (2009) Scale-free networks: a decade and beyond. Science 325(5939):412–413

    Article  MathSciNet  Google Scholar 

  • Blondel V, Guillaume J, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech 10:P10008

    Article  Google Scholar 

  • Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang DU (2006) Complex networks: structure and dynamics. Phys Rep 424(4–5):175–308

    Article  MathSciNet  Google Scholar 

  • Brandes U, Delling D, Gaertler M, Goerke R, Hoefer M, Nikoloski Z, Wagner D (2006) Maximizing modularity is hard. arXiv:physics/0608255v2

  • Branting L (2011) Context-sensitive detection of local community structure. Soc Netw Anal Min 1–11. doi:10.1007/s13278-011-0035-7

  • Bu D, Zhao Y, Cai L, Xue H, Zhu X, Lu H, Zhang J, Sun S, Ling L, Zhang N, Li G, Chen R (2003) Topological structure analysis of the protein–protein interaction network in budding yeast. Nucleic Acids Res 31(9):2443–2450. doi:10.1093/nar/gkg340

    Article  Google Scholar 

  • Caci B, Cardaci M, Tabacchi M (2011) Facebook as a small world: a topological hypothesis. Soc Netw Anal Min: 1–5. doi:10.1007/s13278-011-0042-8

  • Cami A, Deo N (2007) Techniques for analyzing dynamic random graph models of web-like networks: an overview. Networks 51(4):211–255

    Article  MathSciNet  Google Scholar 

  • Chen D, Fu Y, Shang M (2009a) A fast and efficient heuristic algorithm for detecting community structures in complex networks. Physica A 388(13):2741–2749

    Article  Google Scholar 

  • Chen J, Zaiane O, Goebel R (2009b) Local community identification in social networks. In: International Conference on Advances in Social Networks Analysis and Mining (ASONAM), IEEE Computer Society, pp 237–242

  • Chung F, Lu L, Dewey TG, Galas DJ (2003) Duplication models for biological networks. J Comput Biol 10(5):677–687. doi:10.1089/106652703322539024

    Article  Google Scholar 

  • Clauset A (2005) Finding local community structures in networks. Phys Rev E 72:026132

    Article  Google Scholar 

  • Clauset A, Newman MEJ, Moore C (2004) Finding community structure in very large networks. Phys Rev E 70:066111

    Article  Google Scholar 

  • Deo N (1974) Graph theory with applications to engineering and computer science. Prentice-Hall, Inc., Upper Saddle River

    MATH  Google Scholar 

  • Deo N, Cami A (2007) Preferential deletion in dynamic models of web-like networks. Info Process Lett 102(4):156–162

    Article  MathSciNet  MATH  Google Scholar 

  • Dorogovtsev SN, Mendes JFF (2003) Evolution of networks: from biological nets to the Internet and WWW. Oxford University Press, Oxford

  • Dourisboure Y, Geraci F, Pellegrini M (2007) Extraction and classification of dense communities in the web. In: Paper presented at the Proceedings of the 16th International Conference on World Wide Web, Banff, Alberta

  • Duch J, Arenas A (2005) Community detection in complex networks using external optimization. Phys Rev E 72:027104

    Google Scholar 

  • Erdös P, Rényi A (1959) On random graphs. Publ Math Debrecen 6:290–297

    MathSciNet  MATH  Google Scholar 

  • Flake GW, Lawrence S, Giles CL (2000) Efficient identification of Web communities. In: Paper presented at the Proceedings of 6th ACM SIGKDD International Conference on Knowledge discovery and data mining, Boston

  • Flake GW, Lawrence S, Lee Giles C, Coetzee FM (2002) Self-organization and identification of Web communities. Computer 35(3):66–71. doi:http://dx.doi.org/10.1109/2.989932

    Google Scholar 

  • Flaxman AD, Frieze AM, Vera J (2006) A geometric preferential attachment model of networks. Internet Math 3(2):187–205

    Article  MathSciNet  MATH  Google Scholar 

  • Fortunato S (2010) Community detection in graphs. Phys Rep 486(3–5):75–174

    Article  MathSciNet  Google Scholar 

  • Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness. Freeman, New York

    MATH  Google Scholar 

  • Girvan M, Newman MEJ (2002) Community structure in social and biological networks. Proc Natl Acad Sci USA 99(12):7821–7826

    Article  MathSciNet  MATH  Google Scholar 

  • Gleiser PM, Danon L (2003) Community structure in Jazz. Adv Complex Systems 6(4):565–573

    Article  Google Scholar 

  • He Y, Wang J, Wang L, Chen ZJ, Yan C, Yang H, Tang H, Zhu C, Gong Q, Zang Y, Evans AC (2009) Uncovering intrinsic modular organization of spontaneous brain activity in humans. PLoS One 4(4):e5226

    Article  Google Scholar 

  • Hu Y, Chen H, Zhang P, Li M, Di Z, Fan Y (2008) Comparative definition of community and corresponding identifying algorithm. Phys Rev E 78(2):026121

    Article  Google Scholar 

  • Jeong H, Mason SP, Barabasi AL, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411(6833):41–42

    Article  Google Scholar 

  • Karinthy F (1929) Chains. In: Everything is different, Budapest

  • Koonin EV, Wolf YI, Karev GP (2006) Power laws, scale-free networks and genome biology. Molecular biology intelligence unit, Birkhäuser

    Google Scholar 

  • Krebs V (2005) http://www.orgnet.com/index.html

  • Kristiansen P, Hedetniemi SM, Hedetniemi ST (2004) Alliances in graphs. J Comb Math Comb Comp 48:157–178

    MathSciNet  MATH  Google Scholar 

  • Lancichinetti A, Fortunato S, Radicchi F (2008) Benchmark graphs for testing community detection algorithms. Phys Rev E 78:046110

    Article  Google Scholar 

  • Lancichinetti A, Radicchi F, Ramasco JJ, Fortunato S (2011) Finding statistically significant communities in networks. PLoS One 6(4):e18961

    Article  Google Scholar 

  • Luccio F, Sami M (1969) On the decomposition of networks in minimally interconnected subnetworks. Circuit Theory IEEE Trans 16(2):184–188

    Article  MathSciNet  Google Scholar 

  • Luce R, Perry A (1949) A method of matrix analysis of group structure. Psychometrika 14(2):95–116. doi:10.1007/bf02289146

    Article  MathSciNet  Google Scholar 

  • Luo F, Wang JZ, Promislow E (2006) Exploring local community structures in large networks. In: Proceedings of International Conference on Web Intelligence, pp 233–239

  • Luo F, Yang Y, Chen C-F, Chang R, Zhou J, Scheuermann RH (2007) Modular organization of protein interaction networks. Bioinformatics 23(2):207–214. doi:10.1093/bioinformatics/btl562

    Article  Google Scholar 

  • Luo F, Wang JZ, Promislow E (2008) Exploring local community structures in large networks. Web Intell Agent Systems 6(4):387–400

    Google Scholar 

  • Lusseau D (2003) The emergent properties of a dolphin social network. Proc R Soc Lond Ser B Biol Sci 270(Suppl 2):S186–S188. doi:10.1098/rsbl.2003.0057

    Article  Google Scholar 

  • Lusseau D, Schneider K, Boisseau OJ, Haase P, Slooten E, Dawson SM (2003) The bottlenose dolphin community of doubtful Sound features a large proportion of long-lasting associations. Behav Ecol Sociobiol 54(4):396–405. doi:10.1007/s00265-003-0651-y

    Article  Google Scholar 

  • Mokken RJ (1979) Cliques, clubs and clans. Qual Quant 13(2):161–173. doi:10.1007/bf00139635

    Article  Google Scholar 

  • Newman MEJ (2001) The structure of scientific collaboration networks. Proc Natl Acad Sci USA 98(2):404–409

    Article  MathSciNet  MATH  Google Scholar 

  • Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45(2):167–256

    Article  MathSciNet  MATH  Google Scholar 

  • Newman MEJ (2004) Detecting community structure in networks. Eur Phys J B 38:321–330

    Article  Google Scholar 

  • Newman MEJ (2006) Modularity and community structure in networks. Proc Natl Acad Sci USA 103:8577–8582

    Article  Google Scholar 

  • Newman MEJ, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E 69:026113

    Article  Google Scholar 

  • Onnela J-P, Fenn D, Reid S, Porter M, Mucha P, Fricker M, Jones N (2010) A taxonomy of networks. arXiv:10065731v2

  • Papadopoulos S, Skusa A, Vakali A, Kompatsiaris Y, Wagner N (2009) Bridge bounding: a local approach for efficient community discovery in complex networks. arXiv:0902.0871v1 [physics.data-an]

  • Pellegrini M, Haynor D, Johnson JM (2004) Protein interaction networks. Expert Rev Proteomics 1(2):239–249

    Article  Google Scholar 

  • Pimm SL (1979) The structure of food webs. Theor Popul Biol 16(2):144–158

    Article  Google Scholar 

  • Pollner P, Palla G, Vicsek T (2006) Preferential attachment of communities: the same principle, but a higher level. Eur Phys Lett 73(3):478

    Article  MathSciNet  Google Scholar 

  • Porter MA, Onnela J, Mucha PJ (2009) Communities in networks. Notices of the AMS 56(9):1082–1097, 1164–1166

    Google Scholar 

  • Radicchi F, Castellano C, Cecconi F, Loreto V, Parisi D (2004) Defining and identifying communities in networks. Proc Natl Acad Sci USA 101:2658–2663

    Article  Google Scholar 

  • Rice SA (1927) The identification of blocs in small political bodies. Am Political Sci Rev 21(3):619–627

    Article  MathSciNet  Google Scholar 

  • Rives AW, Galitski T (2003) Modular organization of cellular networks. Proc Natl Acad Sci USA 100(3):1128–1133. doi:10.1073/pnas.0237338100

    Article  Google Scholar 

  • Scanlon JM, Deo N (2008) Network communities based on maximizing average degree. Congressus Numerantium 190:183–192

    MathSciNet  MATH  Google Scholar 

  • Schaeffer SE (2005) Stochastic local clustering for massive graphs. Proc of 9th Pacific-Asia Conf on Knowledge Discovery and Data Mining. LNCS 3518:354–360

    Google Scholar 

  • Schaeffer SE (2007) Graph Clustering. Computer Science Review 1(1):27–64

    Article  MathSciNet  Google Scholar 

  • Seidman SB (1983) Network structure and minimum degree. Soc Netw 5(3):269–287. doi:10.1016/0378-8733(83)90028-x

    Article  MathSciNet  Google Scholar 

  • Seidman SB, Foster BL (1978) A graph-theoretic generalization of the clique concept. J Math Sociol 6(1):139–154

    Article  MathSciNet  MATH  Google Scholar 

  • Shneiderman B (2006) Network visualization by semantic substrates. IEEE Trans Visual Comput Graph 12:733–740

    Article  Google Scholar 

  • Song Y, Zhuang Z, Li H, Zhao Q, Li J, Lee W-C, Giles CL (2008) Real-time automatic tag recommendation. In: Paper presented at the Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval, Singapore

  • Strogatz SH (2001) Exploring complex networks. Nature 410(6825):268–276

    Article  Google Scholar 

  • Sun Y, Danila B, Josić K, Bassler KE (2009) Improved community structure detection using a modified fine-tuning strategy. Eur Phys Lett 86(2):28004

    Article  Google Scholar 

  • Vasudevan M, Balakrishnan H, Deo N (2009) Community discovery algorithms: an overview. Congressus Numerantium 196:127–142

    MathSciNet  MATH  Google Scholar 

  • Vázquez A (2003) Growing network with local rules: preferential attachment, clustering hierarchy, and degree correlations. Phys Rev E 67(5):056104

    Article  Google Scholar 

  • Wang X, Chen G, Lu H (2007) A very fast algorithm for detecting community structures in complex networks. Phys A 384(2):667–674

    Article  Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of small-world networks. Nature 393(6684):440–442

    Article  Google Scholar 

  • Weiss RS, Jacobson E (1955) A method for the analysis of the structure of complex organizations. Am Sociol Rev 20(6):661–668

    Article  Google Scholar 

  • Xu X-J, Zhang X, Mendes JFF (2009) Growing community networks with local events. Physica A 388(7):1273–1278

    Article  Google Scholar 

  • Zachary WW (1977) An information flow model for conflict and fission in small groups. J Anthropol Res 33(4):452–473

    Google Scholar 

Download references

Acknowledgments

We thank Mark Newman, Alex Arenas and Yong He for sharing their data on real-world complex networks. We also thank Elisa Schaeffer for sharing her algorithm (and code) and Andrea Lancichinetti for sharing his code to generate benchmark graphs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahadevan Vasudevan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasudevan, M., Deo, N. Efficient community identification in complex networks. Soc. Netw. Anal. Min. 2, 345–359 (2012). https://doi.org/10.1007/s13278-012-0077-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13278-012-0077-5

Keywords

Navigation